MINI-INTRODUCTION EN STATISTIQUE

Purpose and Sustainability Purpose Track - Mémoire

18 septembre 2020 - Chang-Wa HUYNH

Rappel : articulation des quatre méthodes proposées

PARIS

Sondages (validité externe, corrélation)

Que sont les statistiques ?

Probabilités Statistiques

Modèles connus / postulés Simulations Modèles épidémiologiques Modèles financiers Gestion de files d'attente Etudes de données existantes Statistiques descriptives Statistiques mathématiques Tests d'hypothèses Prédiction

•••

Big Data (+ informatique)

Analyse des sondages

(e.g. Age, Genre)

(e.g. Légitimité du leader)

Prédiction

- Impact de chaque facteur
- Probabilité d'avoir ces résultats "par hasard"
- Variance expliquée

PARIS

Simultanéité / causalité inversée

PARIS

Un exemple

PARIS

Participant	Genre	Age	Approbation (/10)	
1	F	23	1	Movenne d'approbation : 5.6/10
2	F	21	3	75% de femmes et 25 ans d'âge moyen
3	F	20	4	
4	F	32	6	Moyenne d'approbation chez les femmes : 5.3/10 Moyenne d'approbation chez les hommes: 6.5/10
5	F	30	8	-,,-
6	F	35	10	Tendance plus difficile à dégager pour l'âge
7	Н	20	5	
8	Н	32	8	
-	Н	21	2	
-	F	27	3	Non observés Pourquoi ? Impact ?

(Légitimité du leader)

Y

7

En pratique

Résultats sous SPSS

72% de la variance est expliquée par les facteurs utilisés

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate		
1	.849 ^a	.720	.609	1.85991		

a. Predictors: (Constant), Genre, Age

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.	le modèle global est
1	Regression	44.579	2	22.289	6.443	.041 ^b	significatif (<0.05)
	Residual	17.296	5	3.459			
	Total	61.875	7				

a. Dependent Variable: Approbation

b. Predictors: (Constant), Genre, Age

Coefficients^a

		Unstandardized	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	-3.804	3.219		-1.182	.290
	Age	.396	.113	.831	3.507	.017
	Genre	-1.497	1.522	233	984	.370

a. Dependent Variable: Approbation

HEC

chaque année supplémentaire augmente le score d'approbation de 0.4 points

Non significatif (mais ne veut pas dire que cet effet n'existe pas) Autres logiciels

Aurions-nous pu obtenir ces données "par hazard" ?

Plus l'effet est subtil, plus il faut de participants pour le détecter

Un (nouvel) exemple avec un effet moins marqué

PARIS

Participant	Genre	Age	Ancienne Approbation (/10)	Nouvelle Approbation (/10)
1	F	23	1	5
2	F	21	3	6
3	F	20	4	5.5
4	F	32	6	6.5
5	F	30	8	6.5
6	F	35	10	6
7	н	20	5	5.5
8	н	32	8	6
-	Н	21	2	5
-	F	27	3	5

Rappel Hypothèse de recherche

(Légitimité du leader)

Model Summary						
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate		
1	.657 ^a	.432	.204	.46172		
a. Predictors: (Constant), Genre, Age						

ANOVA^a

	Sum of Squares	df	Mean Square	F	Sig.
Regression	.809	2	.405	1.898	(244 ^b)
Residual	1.066	5	.213		
Total	1.875	7			
	Regression Residual Total	Sum of SquaresRegression.809Residual1.066Total1.875	Sum of SquaresdfRegression.8092Residual1.0665Total1.8757	Sum of SquaresdfMean SquareRegression.8092.405Residual1.0665.213Total1.87577	Sum of SquaresdfMean SquareFRegression.8092.4051.898Residual1.0665.213Total1.8757

a. Dependent Variable: Approbation

b. Predictors: (Constant), Genre, Age

Coefficients^a

		Unstandardize	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
L	(Constant)	4.366	.799		5.463	.003
	Age	.053	.028	.641	1.897	.116
	Genre	.122	.378	.109	.324	.759

a. Dependent Variable: Approbation

Quelques étapes

- Quels sont les biais de mon échantillon ?
- Quelles sont les variables explicatives intéressantes pour mon hypothèse de recherche ?
 - Limiter le nombre de variables. Celles-ci ne doivent pas être trop corrélées entre elles.
- Importer les données dans SPSS: File/Import/Excel
- Vérifier le type (en bas de la fenêtre de données/Variable view):
 - Scale (nombre) / Nominal (catégories, comme le genre, l'industrie, etc.)
- Statistiques descriptives: Analyze/Descriptive statistics/Descriptives
- Modèle linéaire: Analyze/Regression/Linear
 - Hypothèses du modèle et quick start: <u>https://statistics.laerd.com/spss-tutorials/linear-regression-using-spss-statistics.php</u>
 - Trois questions : le modèle global est-il significatif ? Quelle variance explique t-il ? Quels sont les facteurs explicatifs intéressants (significatif ? magnitude ? signe ?)
- Concentrer vos analyses sur <u>le</u> modèle le plus intéressant

Annexe: recodage

- Les fichiers excel que vous exportez (e.g. Google Forms) peuvent contenir des données numériques mais sous forme de texte.
 - "pas d'accord", "plutôt d'accord", etc.
- Il est possible de les recoder sous forme numérique dans Excel pour pouvoir exploiter les données.
 - Transformer "pas d'accord" en -1, "Plutôt pas d'accord" en -0.5, etc.
- La fonction à utiliser est « RECHERCHEV » ou « VLOOKUP » (pour les Excel en français et anglais respectivement).
 - La syntaxe de la fonction est =RECHERCHEV(Valeur dans le sondage; Zone de la table de recoding (en commencant par la colonne où se trouve les valeurs dans le sondage); Numéro de la colonne où se trouve la valeur numérique associée (2 si c'est à côté); faux (pour indiquer qu'il ne faut considérer que les matching exacts))
 - Pour un exemple : <u>https://sites.google.com/a/uci.edu/ss3a/advanced-excel-functions</u> (section « B. VLOOKUP and Recoding »)
 - Les tables de recoding doivent être sur une feuille Excel séparée (et non sur le côté, comme sur le tutorial) pour ne pas être importées dans SPSS