Fast Last-Iterate Convergence of Learning in Games Requires Forgetful Algorithms

Julien Grand-Clément (HEC Paris)

Workshop on Learning in Games - Toulouse 2024
Main objective:
Understanding the last-iterate behavior of learning algorithms

Why it’s interesting?
Recent applications: Poker [Brown and Sandholm, 2018], Stratego [Perolat et al., 2022], LLMs [Munos et al., 2023]...

Main result:
Optimistic FTRL does not admit last-iterate convergence rate that depends “nicely” on the players’ dimensions and the payoff matrix
Regret minimization

Let $R : \Delta^d \rightarrow \mathbb{R}$ be 1-strongly convex.

Bregman divergence:

$$D_R(x, x') = R(x) - R(x') - \langle \nabla R(x'), x - x' \rangle.$$

Online Mirror Descent:

$$x^t = \arg\min_{x \in \Delta^d} \left\{ \langle \ell^{t-1}, x \rangle + \frac{1}{\eta} D_R(x, x^{t-1}) \right\} \quad \text{(OMD)}$$

Follow-The-Regularized-Leader:

$$x^t = \arg\min_{x \in \Delta^d} \left\{ \sum_{k=1}^{t-1} \ell^k, x \right\} + \frac{1}{\eta} R(x) \quad \text{(FTRL)}$$

Note: OMD and FTRL are the same for Legendre regularizers.
Optimistic algorithms [Rakhlin and Sridharan, 2013, Syrgkanis et al., 2015]

Optimistic Online Mirror Descent:

\[
\hat{x}^t = \arg\min_{x \in \Delta^d} \{ \langle \ell^{t-1}, x \rangle + \frac{1}{\eta} D_R(x, \hat{x}^{t-1}) \} \\
x^t = \arg\min_{x \in \Delta^d} \{ \langle \ell^{t-1}, x \rangle + \frac{1}{\eta} D_R(x, \hat{x}^t) \}
\]

(OOMD)

Optimistic Follow-The-Regularized-Leader:

\[
x^t = \arg\min_{x \in \Delta^d} \left\{ \langle \sum_{k=1}^{t-1} \ell^k + \ell^{t-1}, x \rangle + \frac{1}{\eta} R(x) \right\}
\]

(OFTRL)
Optimistic algorithms [Rakhlin and Sridharan, 2013, Syrgkanis et al., 2015]

Optimistic Online Mirror Descent:

\[\hat{x}_t = \arg \min_{x \in \Delta^d} \{ \langle \ell^{t-1}, x \rangle + \frac{1}{\eta} D_R(x, \hat{x}^{t-1}) \} \]

\[x_t = \arg \min_{x \in \Delta^d} \{ \langle \ell^{t-1}, x \rangle + \frac{1}{\eta} D_R(x, \hat{x}^t) \} \]

(OOMD)

Optimistic Follow-The-Regularized-Leader:

\[x_t = \arg \min_{x \in \Delta^d} \left\{ \left(\sum_{k=1}^{t-1} \ell^k + \ell^{t-1}, x \right) + \frac{1}{\eta} R(x) \right\} \]

(OFTRL)

Two important algorithms:

- OGD: OOMD with \(R = \frac{1}{2} \| \cdot \|_2^2 \)
- OMWU: OFTRL/OOMD with \(R = \) negative entropy
Matrix games

Optimization problem:

$$\min_{x \in \Delta^{d_1}} \max_{y \in \Delta^{d_2}} x^\top Ay$$

Goal: Compute \((x^*, y^*)\) with \(\text{DualityGap}(x^*, y^*) = 0\), where

$$\text{DualityGap}(x^*, y^*) := \max_{y \in \Delta^{d_2}} (x^*)^\top Ay - \min_{x \in \Delta^{d_1}} x^\top Ay^*.$$

Self-play: both x-player and y-player use regret minimizers, using

$$\ell^t_x = Ay^t, \ell^t_y = -A^\top x^t.$$
Matrix games

Optimization problem:

$$\min_{x \in \Delta^{d_1}} \max_{y \in \Delta^{d_2}} x^\top A y$$

Goal: Compute \((x^*, y^*)\) with \(\text{DualityGap}(x^*, y^*) = 0\), where

$$\text{DualityGap}(x^*, y^*) := \max_{y \in \Delta^{d_2}} (x^*)^\top A y - \min_{x \in \Delta^{d_1}} x^\top A y^*.$$

Self-play: both \(x\)-player and \(y\)-player use regret minimizers, using

$$\ell_x^t = Ay^t, \ell_y^t = -A^\top x^t.$$

Two important algorithms:

- OGDA: both players use OGD
- “OMWU”: both players use OMWU
Advantages of OMWU over OGDA:

- Logarithmic dependence on the size of payoff matrix
- Closed-form updates:

\[x^t[i] \propto x^1[i] \times \exp \left(-\eta \left(\sum_{k=1}^{t-1} \ell^k[i] + \ell^{t-1}[i] \right) \right). \]

- $\tilde{O}(1/T)$ ergodic convergence to (coarse) correlated equilibrium in general-sum games [Daskalakis et al., 2021, Anagnostides et al., 2022]
Notions of convergence

Consider the sequences \(\{x^t\}, \{y^t\} \) computed by self-play.

We have **ergodic convergence** when

\[
\lim_{T \to +\infty} \text{DualityGap}(\bar{x}^T, \bar{y}^T) = 0.
\]

[Rakhlin and Sridharan, 2013, Syrgkanis et al., 2015]: \(O \left(\frac{1}{T} \right) \) ergodic convergence rate for OGDA/OMWU.
Consider the sequences $\{x^t\}, \{y^t\}$ computed by self-play.

We have **ergodic convergence** when

$$\lim_{T \to +\infty} \text{DualityGap}(\bar{x}^T, \bar{y}^T) = 0.$$

[Rakhlin and Sridharan, 2013, Syrgkanis et al., 2015]: $O\left(\frac{1}{T}\right)$ ergodic convergence rate for OGDA/OMWU.

We have **last-iterate convergence** when

$$\lim_{T \to +\infty} \text{DualityGap}(x^T, y^T) = 0.$$

Advantage: less computation (no need to average)
Convergence of optimistic algorithms

Last-iterate dynamics of OGDA:

- Unconstrained setting [Daskalakis et al., 2018, Hsieh et al., 2019, Liang and Stokes, 2019, Golowich et al., 2020]
- Matrix games: linear convergence with metric subregularity constants [Wei et al., 2021]
- Matrix games: convergence in $O(1/\sqrt{T})$ [Cai et al., 2022, Gorbunov et al., 2022]

Last-iterate dynamics of OMWU:

- Unique N.E.: convergence with fixed step sizes (could be exponentially small), no rate [Daskalakis and Panageas, 2019]
- Unique N.E.: linear convergence with metric subregularity constants [Wei et al., 2021]
- Convergence for adaptive step sizes, no rate [Mertikopoulos et al., 2019, Hsieh et al., 2021]
- This work: rate of convergence of OMWU for matrix games?
Convergence of optimistic algorithms

Last-iterate dynamics of OGDA:
- Unconstrained setting [Daskalakis et al., 2018, Hsieh et al., 2019, Liang and Stokes, 2019, Golowich et al., 2020]
- Matrix games: linear convergence with metric subregularity constants [Wei et al., 2021]
- Matrix games: convergence in $O(1/\sqrt{T})$ [Cai et al., 2022, Gorbunov et al., 2022]

Last-iterate dynamics of OMWU:
- Unique N.E.: convergence with fixed step sizes (could be exponentially small), no rate [Daskalakis and Panageas, 2019]
- Unique N.E.: linear convergence with metric subregularity constants [Wei et al., 2021]
- Convergence for adaptive step sizes, no rate [Mertikopoulos et al., 2019, Hsieh et al., 2021]
Convergence of optimistic algorithms

Last-iterate dynamics of OGDA:

• Unconstrained setting [Daskalakis et al., 2018, Hsieh et al., 2019, Liang and Stokes, 2019, Golowich et al., 2020]

• Matrix games: linear convergence with metric subregularity constants [Wei et al., 2021]

• Matrix games: convergence in $O(1/\sqrt{T})$ [Cai et al., 2022, Gorbunov et al., 2022]

Last-iterate dynamics of OMWU:

• Unique N.E.: convergence with fixed step sizes (could be exponentially small), no rate [Daskalakis and Panageas, 2019]

• Unique N.E.: linear convergence with metric subregularity constants [Wei et al., 2021]

• Convergence for adaptive step sizes, no rate [Mertikopoulos et al., 2019, Hsieh et al., 2021]

• This work: rate of convergence of OMWU for matrix games?
Convergence of optimistic algorithms

For matrix games:

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Ergodic</th>
<th>Last-iterate</th>
<th>Last-iterate (trick)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OGDA</td>
<td>(\frac{\text{poly}(d_1,d_2)L_2}{T})</td>
<td>(\frac{\text{poly}(d_1,d_2)L_2}{\sqrt{T}})</td>
<td>(\frac{C_1}{(1+C_2)^T})</td>
</tr>
<tr>
<td>OMWU</td>
<td>(\frac{\text{polylog}(d_1,d_2)L_1}{T})</td>
<td>(o(1); \text{rate?})</td>
<td>(\frac{C_3}{(1+C_4)^T}) (unique N.E.)</td>
</tr>
</tbody>
</table>

Note: \(C_1, C_2, C_3, C_4\) obtained from metric subregularity:

\[\text{DualityGap}(x, y) \geq c \cdot \text{dist}((x, y), \text{set of N.E.}) \]

\[\implies \text{may be arbitrarily bad even with fixed } d_1, d_2, \max_{i,j} |A_{ij}|. \]
Convergence of optimistic algorithms

For matrix games:

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Ergodic</th>
<th>Last-iterate</th>
<th>Last-iterate (trick)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OGDA</td>
<td>$\frac{\text{poly}(d_1,d_2)L_2}{T}$</td>
<td>$\frac{\text{poly}(d_1,d_2)L_2}{\sqrt{T}}$</td>
<td>$\frac{C_1}{(1+C_2)^T}$</td>
</tr>
<tr>
<td>OMWU</td>
<td>$\frac{\text{polylog}(d_1,d_2)L_1}{T}$</td>
<td>$o(1)$; rate?</td>
<td>$\frac{C_3}{(1+C_4)^T}$ (unique N.E.)</td>
</tr>
</tbody>
</table>

Note: C_1, C_2, C_3, C_4 obtained from metric subregularity:

$$\text{DualityGap}(x, y) \geq c \cdot \text{dist}((x, y), \text{set of N.E.})$$

\Rightarrow may be arbitrarily bad even with fixed d_1, d_2, $\max_{i,j} |A_{ij}|$.

Our main theorem

Theorem (Informal)

Consider two-player zero-sum games with matrix entries in $[0, 1]$, and d_1 and d_2 are the number of actions.
For OMWU with constant step size, no function f can satisfy

1. $\text{DualityGap}(x^T, y^T) \leq f(d_1, d_2, T)$ for all T.
2. $\lim_{T \to \infty} f(d_1, d_2, T) \to 0$.

Holds for OFTRL with regularizer = entropy/log/squared L^2 norm/Tsallis entropy

Idea of the proof:

• We construct a 2×2 matrix game A_{δ} parametrized by $\delta > 0$.
• After $\Omega(1/\eta \delta)$ iterations of OFTRL, the duality gap is a constant c, a universal constant depending on the regularizer.
Our main theorem

Theorem (Informal)

Consider two-player zero-sum games with matrix entries in \([0, 1]\), and \(d_1\) and \(d_2\) are the number of actions.
For OMWU with constant step size, no function \(f\) can satisfy

1. \(\text{DualityGap}(x^T, y^T) \leq f(d_1, d_2, T)\) for all \(T\).
2. \(\lim_{T \to \infty} f(d_1, d_2, T) \to 0\).

Holds for OFTRL with regularizer = entropy/log/squared \(L_2\) norm/Tsallis entropy
Our main theorem

Theorem (Informal)

Consider two-player zero-sum games with matrix entries in \([0, 1]\), and \(d_1\) and \(d_2\) are the number of actions.

For OMWU with constant step size, no function \(f\) can satisfy

1. \(\text{DualityGap}(x^T, y^T) \leq f(d_1, d_2, T)\) for all \(T\).
2. \(\lim_{T \to \infty} f(d_1, d_2, T) \to 0\).

Holds for OFTRL with regularizer = entropy/log/squared \(L_2\) norm/Tsallis entropy

Idea of the proof:

- We construct a 2x2 matrix game \(A_\delta\) parametrized by \(\delta > 0\).
- After \(\Omega(1/\eta \delta)\) iterations of OFTRL, the duality gap is a constant \(c\), a universal constant depending on the regularizer.
Consider the matrix game A_δ with $\delta \in (0, 1/2]$:

$$A_\delta := \begin{bmatrix} \frac{1}{2} + \delta & \frac{1}{2} \\ 0 & 1 \end{bmatrix}.$$

A_δ has a unique Nash equilibrium: $x^*[1] = \frac{1}{1+\delta}$, $y^*[1] = \frac{1}{2(1+\delta)}$.

Bad region: $x[1] \geq \frac{1}{1+\delta}$, $y[1] \geq \frac{1}{2} + c \Rightarrow \text{DualityGap}(x, y) \geq c.$
A difficult matrix game for OFTRL

\[
\begin{align*}
\text{DualityGap}(x, y) & \geq c \\
x : 1 & \preceq 2 \\
y : 1 & \preceq 2 \\
x : 1 & \preceq 2 \\
y : 1 & \succeq 2
\end{align*}
\]
Reformulating OFTRL

2x2 game ⇒ we focus on \(x[1], y[1] \). Define

\[
F_{\eta,R}(e) := \arg\min_{x \in [0,1]} \left\{ x \cdot e + \frac{1}{\eta} R(x) \right\}
\]

\[
e_x^t := \ell_x^t[1] - \ell_x^t[2]
\]

\[
E_x^t := \sum_{k=1}^{t} e_x^k
\]

We can rewrite OFTRL:

\[
x^t[1] = F_{\eta,R} \left(E_x^{t-1} + e_x^{t-1} \right)
\]

\[
y^t[1] = F_{\eta,R} \left(E_y^{t-1} + e_y^{t-1} \right)
\]

(OFTRL)
Assumptions on the regularizers

Define
\[F_{\eta,R}(e) := \arg\min_{x \in [0,1]} \{ x \cdot e + \frac{1}{\eta} R(x) \}. \]

Important: \(F_{\eta,R} : \mathbb{R} \to [0,1] \) is non-increasing.

Assumption

We assume that the regularizer \(R \) satisfies the following properties: the function \(F_{\eta,R} : \mathbb{R} \to [0,1] \) is

1. **Unbiased**: \(F_{\eta,R}(0) = \frac{1}{2} \).
2. **Rational**: \(\lim_{E \to -\infty} F_{\eta,R}(E) = 1 \) and \(\lim_{E \to +\infty} F_{\eta,R}(E) = 0 \).
3. **Lipschitz continuous**: There exists \(L \geq 0 \) such that \(F_{1,R} \) is \(L \)-Lipschitz.

More assumptions here: (1).
Reformulating OFTRL

\[x^t[1] = F_{\eta,R} (E_x^{t-1} + e_x^{t-1}) \]
\[y^t[1] = F_{\eta,R} (E_y^{t-1} + e_y^{t-1}) \]

(OFTRL)

Important note: \(e^t_y \in [-\delta, 1] \)
\(\Rightarrow \) if \(E_y^t \) is large, it takes \(\Omega(1/\delta) \) iterations to make it close to 0.
Numerical experiments

Figure: Dynamics produced by OMWU and OGDA in the same game A_δ.
Numerical experiments

Figure: Dynamics produced by variants of OFTRL with different regularizers and OGDA in the same game A_δ.

\begin{align*}
x^t[1] &= F_{\eta,R} \left(E_x^{t-1} + e_x^{t-1} \right) \\
y^t[1] &= F_{\eta,R} \left(E_y^{t-1} + e_y^{t-1} \right)
\end{align*}

(OFTRL)
Numerical experiments

Figure: Influence of $\delta > 0$ on the duality gaps of OMWU after 10^4 iterations.
\[x^t[1] = F_{\eta,R} \left(E_x^{t-1} + e_x^{t-1} \right) \]
\[y^t[1] = F_{\eta,R} \left(E_y^{t-1} + e_y^{t-1} \right) \]

(OFTRL)

Stage I: Starting at \(x^1[1] = y^1[1] = 1/2 \), we prove
- \(x^t[1] \) increases until \(T_1 \) s.t. \(x^{T_1}[1] \geq \frac{1}{1+\delta} \).
Stage I: Starting at $x^1[1] = y^1[1] = 1/2$, we prove

- $x^t[1]$ increases until T_1 s.t. $x^{T_1}[1] \geq \frac{1}{1+\delta}$.
- $e_x^t \geq 0$: action 1 \prec action 2 for the y-player, $y^t[1]$ decreases.
\[x^t[1] = F_{\eta,R} \left(E_x^{t-1} + e_x^{t-1} \right) \]
\[y^t[1] = F_{\eta,R} \left(E_y^{t-1} + e_y^{t-1} \right) \] (OFTRL)

Stage I: Starting at \(x^1[1] = y^1[1] = 1/2 \), we prove

- \(x^t[1] \) increases until \(T_1 \) s.t. \(x^{T_1}[1] \geq \frac{1}{1+\delta} \).
- \(e^t_y \geq 0 \): action 1 \(\prec \) action 2 for the y-player, \(y^t[1] \) decreases.
- At the last period \(T_1 \), we have \(y^{T_1}[1] \leq \frac{1}{2} - c_1 \).
\[x^t[1] = F_{\eta,R} \left(E_{x}^{t-1} + e_{x}^{t-1} \right) \]
\[y^t[1] = F_{\eta,R} \left(E_{y}^{t-1} + e_{y}^{t-1} \right) \] (OFTRL)

Stage II:

- \([-\delta \leq e_{y}^{t} < 0 \Rightarrow y^t[1]\] increases, at most by \(\eta L\delta\).
\[x^t[1] = F_{\eta,R} \left(E_{x}^{t-1} + e_{x}^{t-1} \right) \]

\[y^t[1] = F_{\eta,R} \left(E_{y}^{t-1} + e_{y}^{t-1} \right) \]

(OFTRL)

Stage II:

- \(-\delta \leq e_{y}^{t} < 0 \Rightarrow y^t[1] \) increases, at most by \(\eta L \delta \).
- Stage II lasts until \(T_2 \) s.t. \(y^{T_2}[1] \geq 1/2(1 + \delta) \).
- Thus \(T_2 - T_1 = \Omega \left(c_1 / \eta L \delta \right) \).
\[x^t[1] = F_{\eta,R} \left(E_x^{t-1} + e_x^{t-1} \right) \]
\[y^t[1] = F_{\eta,R} \left(E_y^{t-1} + e_y^{t-1} \right) \]

(OFTRL)

Stage II:
- \(-\delta \leq e_y^t < 0 \Rightarrow y^t[1]\) increases, at most by \(\eta L \delta\).
- Stage II lasts until \(T_2\) s.t. \(y^{T_2}[1] \geq 1/2(1 + \delta)\).
- Thus \(T_2 - T_1 = \Omega(c_1/\eta L \delta)\).
- \(e_x^t < 0,\) and \(x^t[1]\) keeps growing closer to 1: \(E_x^{T_2} \leq E_x^{T_1} - \Omega(1/\eta L \delta)\).
\[
x^t[1] = F_{\eta,R} \left(E_{x}^{t-1} + e_{x}^{t-1} \right)
\]
\[
y^t[1] = F_{\eta,R} \left(E_{y}^{t-1} + e_{y}^{t-1} \right)
\]

(OFTRL)

Stage III:
- \(y^t[1]\) keeps increasing until \(x^t[1] \leq 1/(1 + \delta)\).
\[x^t[1] = F_{\eta,R} \left(E^{t-1}_x + e^{t-1}_x \right) \]
\[y^t[1] = F_{\eta,R} \left(E^{t-1}_y + e^{t-1}_y \right) \]

(OFTRL)

Stage III:

- \(y^t[1] \) keeps increasing until \(x^t[1] \leq 1/(1 + \delta) \).
- \(x^t[1] \leq 1/(1 + \delta) \) \(\Rightarrow \) \(E^{T_1}_x \leq E^t_x \).
\(x^t[1] = F_{\eta,R} \left(E_x^{t-1} + e_x^{t-1} \right) \)

\(y^t[1] = F_{\eta,R} \left(E_y^{t-1} + e_y^{t-1} \right) \) \hspace{1cm} (OFTRL)

Stage III:

- \(y^t[1] \) keeps increasing until \(x^t[1] \leq 1/(1 + \delta) \).
- \(x^t[1] \leq 1/(1 + \delta) \Rightarrow E_x^{T_1} \leq E_x^t \).
- But at \(T_2 \), we have \(E_x^{T_2} \leq E_x^{T_1} - \Omega(1/\eta L \delta) \). Since \(e_x^t \leq 1 \), we still have \(x^t[1] \geq 1/(1 + \delta) \) after \(\Omega(1/\eta L \delta) \) steps.
\[x^t[1] = F_{\eta,R}(E_{x}^{t-1} + e_{x}^{t-1}) \]

\[y^t[1] = F_{\eta,R}(E_{y}^{t-1} + e_{y}^{t-1}) \]

(OFTRL)

Stage III:

- \(y^t[1] \) keeps increasing until \(x^t[1] \leq 1/(1 + \delta) \).
- \(x^t[1] \leq 1/(1 + \delta) \Rightarrow E_{x}^{T_1} \leq E_{x}^t \).
- But at \(T_2 \), we have \(E_{x}^{T_2} \leq E_{x}^{T_1} - \Omega(1/\eta L \delta) \). Since \(e_{x}^t \leq 1 \), we still have \(x^t[1] \geq 1/(1 + \delta) \) after \(\Omega(1/\eta L \delta) \) steps.
- Until \(T_3 = T_2 + \Omega(1/\eta L \delta) \), \(e_{y}^t \leq 0 \), and \(y^{T_3}[1] \geq \frac{1}{2} + c_2 \).
Main theorem

We proved:

There is a universal constant c (dependent on the regularizer) such that for any $\delta > 0$, we can find a game A_δ where the duality gap for OFTRL is at least c after $\Omega(1/\delta)$ rounds.
Main theorem

We proved:

There is a universal constant \(c \) (dependent on the regularizer) *such that for any* \(\delta > 0 \), *we can find a game* \(A_\delta \) *where the duality gap for OFTRL is at least* \(c \) *after* \(\Omega(1/\delta) \) *rounds.*

Formal statement:

Theorem

Assume the regularizer \(R \) satisfies our assumptions with universal constant \(c_1, c_2, \hat{\delta}, L > 0 \). Let \(\delta \in (0, \hat{\delta}) \)

The OFTRL dynamics on \(A_\delta \) *with any step size* \(\eta \leq \frac{1}{4L} \) *satisfies the following: there exists an iteration* \(t \geq \frac{c_1}{3\eta L \delta} \) *with a duality gap of at least* \(c_2 \).
Conclusion

- **Main result**: Negative result for the rate of convergence of OMWU (OFTRL).

- **Next steps**:
 Universal best-iterate convergence rate?
 Rate for adaptive step sizes?
 Mixing OGD/OMWU?

 Slides/code on my website
Conclusion

• **Main result**: Negative result for the rate of convergence of OMWU (OFTRL).

• **Next steps**:
 Universal best-iterate convergence rate?
 Rate for adaptive step sizes?
 Mixing OGD/OMWU?

• Preprint: https://arxiv.org/abs/2406.10631
 Slides/code on my website

Thank you!

References II

Assumptions on the regularizers

Define

\[F_{\eta,R}(e) := \arg\min_{x \in [0,1]} \{ x \cdot e + \frac{1}{\eta} R(x) \}. \]

Assumption (Informal)

There are some constants such that

\[
F_{1,R}(E) \geq \frac{1}{1+\delta} \Rightarrow \quad F_{1,R} \left(E - \Omega \left(\frac{1}{\delta} \right) \right) \geq F_{1,R}(E) + \Omega(\delta)
\]

(1)

\[
F_{1,R}(E) \geq \frac{1}{2(1+\delta)} \Rightarrow \quad F_{1,R} \left(E - \Omega(\delta) \right) \geq \frac{1}{2} + \Omega(1)
\]

(2)

Both our assumption hold for the negative entropy, squared Euclidean norm, the log barrier, and the Tsallis entropy regularizers. Link to main presentation: (2).
Assumptions on the regularizers

Define

\[F_{\eta,R}(e) := \arg\min_{x \in [0,1]} \{ x \cdot e + \frac{1}{\eta} R(x) \}. \]

Assumption

Let \(L \) be the Lipschititness constant of \(F_{1,R} \). Denote constant \(c_1 = \frac{1}{2} - F_{1,R}(\frac{1}{20L}) \). There exist universal constants \(\delta', c_2 > 0 \) and \(c_3 \in (0, \frac{1}{2}] \) such that for any \(0 < \delta \leq \delta' \),

1. If \(F_{1,R}(E) \geq \frac{1}{1+\delta} \), then \(F_{1,R}(\frac{-c_2^2}{30L\delta} + E) \geq \frac{1+c_3}{1+c_3+c_3+\delta} \)

2. If \(F_{1,R}(E) \geq \frac{1}{2(1+\delta)} \), then \(F_{1,R}(\frac{-c_3c_1^2}{120L} + \frac{\delta}{4L} + E) \geq \frac{1}{2} + c_2 \).

Both our assumption hold for the negative entropy, squared Euclidean norm, the log barrier, and the negative Tsallis entropy regularizers. Link to main presentation: (2)
Other convergence rates

Following [Wei et al., 2021]:

Corollary

Let $\delta \in (0, \frac{1}{2})$. For OMWU with step size $\eta \leq \frac{1}{8}$ on A_δ satisfies

$$\text{DualityGap}(x^T, y^T) \leq \frac{1200e^{\frac{10}{\delta}}}{\eta} \cdot \frac{1}{\sqrt{T}}, \forall ~ T \geq 1.$$

\Rightarrow Problem-constant independent best-iterate rate for OMWU:

Theorem

Let $\delta \in (0, \frac{1}{32})$. For OMWU with step size $\eta \leq \frac{1}{8}$

$$\min_{t \in [T]} \text{DualityGap}(x^t, y^t) \leq O\left(\frac{1}{\eta \ln T}\right), \forall ~ T \geq 2.$$
Adaptive stepsizes [Duchi et al., 2011]: \(\eta_t = \frac{1}{\sqrt{\epsilon + \sum_{k=1}^{t-1} \|\ell_k\|_k^2}} \)

Figure: Here \(\delta := 10^{-2} \) and adaptive step size with \(\epsilon = 0.1 \).
Figure: Dynamics and duality gap when the x-player uses OGD. We choose $\delta = 0.01$ and $\eta = 0.1$ in all figures.
Figure: Dynamics and duality gap when the y-player uses OGD. We choose $\delta = 0.01$ and $\eta = 0.1$ in all figures.