Regret Matching+: Instability, average- and last-iterate convergence in games

Julien Grand-Clément, Assistant Professor, ISOM Department, HEC Paris
Joint with Yang Cai¹, Gabriele Farina², Christian Kroer³, Chung-Wei Lee⁴, Haipeng Luo⁴, Weiqiang Zheng¹

¹ Yale, ² MIT, ³ Columbia, ⁴ USC
What is this talk about?

- Regret minimization: prevalent for solving games
- Regret Matching\(^{+}\) (RM\(^{+}\)): regret minimizer used in all poker AI breakthroughs, widely outperform other methods in practice...
- ... despite “weak” theoretical guarantees:
 - RM\(^{+}\): $O(1/\sqrt{T})$ convergence to Nash equilibrium
 - State-of-the-art: $O(1/T)$ convergence to NE
What is this talk about?

- Regret minimization: prevalent for solving games
- Regret Matching\(^+\) (RM\(^+\)): regret minimizer used in all poker AI breakthroughs, widely outperform other methods in practice...
- ... despite “weak” theoretical guarantees:
 - RM\(^+\): \(O(1/\sqrt{T})\) convergence to Nash equilibrium
 - State-of-the-art: \(O(1/T)\) convergence to NE

What is missing in the literature?

1. Gap between empirical vs. theoretical performances of RM\(^+\)
2. Can RM\(^+\)-based algorithms achieve \(O(1/T)\) average convergence?
Our contributions:

1. We show a surprising “failure mode” of RM$^+$, due to its *instability*.

2. We provide two fixes: *restarting* and *smoothing*.
 \[\Rightarrow\] New algorithms for game solving:
 \[\cdot\] \(O(1/T)\) average convergence
 \[\cdot\] \(O(1/\sqrt{T})\) best-iterate convergence, last-iterate convergence
Our contributions:

1. We show a surprising “failure mode” of RM$^+$, due to its instability.

2. We provide two fixes: restarting and smoothing.
 ⇒ New algorithms for game solving:
 \[O(1/T) \] average convergence
 \[O(1/\sqrt{T}) \] best-iterate convergence, last-iterate convergence

Why is this interesting?

1. Reconcile RM$^+$-based methods with state-of-the-art th. guarantees

2. Several questions remain open: advantages of alternation, linear averaging, the case of extensive-form games, etc.
Presentation based on:

Outline for today:

1. Game solving via regret minimization
2. Regret Matching$^+$ (RM$^+$) and instability
3. Improved average convergence after stabilizing RM$^+$
4. Last-iterate convergence after stabilizing RM$^+$
Regret minimization: for $t = 1, ..., T$,

1. Choose a strategy $x_t \in \Delta_n$ based on past observations
2. Observe the loss vector $\ell_t \in \mathbb{R}^n$
3. Suffer an instantaneous loss $\langle \ell_t, x_t \rangle \in \mathbb{R}$
Regret minimization: for $t = 1, \ldots, T$,

1. Choose a strategy $x_t \in \Delta_n$ based on past observations
2. Observe the loss vector $\ell_t \in \mathbb{R}^n$
3. Suffer an instantaneous loss $\langle \ell_t, x_t \rangle \in \mathbb{R}$

The regret Reg^T at period T is

$$
\text{Reg}^T := \max_{a \in \{1, \ldots, n\}} \sum_{t=1}^{T} \langle \ell_t, x_t \rangle - \sum_{t=1}^{T} \ell_{ta}.
$$
Regret minimization: for $t = 1, \ldots, T$,

1. Choose a strategy $x_t \in \Delta_n$ based on past observations
2. Observe the loss vector $\ell_t \in \mathbb{R}^n$
3. Suffer an instantaneous loss $\langle \ell_t, x_t \rangle \in \mathbb{R}$

The regret Reg^T at period T is

$$\text{Reg}^T := \max_{a \in \{1, \ldots, n\}} \sum_{t=1}^{T} \langle \ell_t, x_t \rangle - \sum_{t=1}^{T} \ell_{ta}.$$

A regret minimizer constructs a sequence of decisions x_1, x_2, \ldots in Δ_n such that for any sequence of losses ℓ_1, ℓ_2, \ldots, we have

$$\lim_{T \to +\infty} \frac{\text{Reg}^T}{T} = 0.$$
Regret minimization: for $t = 1, \ldots, T$,

1. Choose a strategy $x_t \in \Delta_n$ based on past observations
2. Observe the loss vector $\ell_t \in \mathbb{R}^n$
3. Suffer an instantaneous loss $\langle \ell_t, x_t \rangle \in \mathbb{R}$

The regret Reg^T at period T is

$$\text{Reg}^T := \max_{a \in \{1, \ldots, n\}} \sum_{t=1}^{T} \langle \ell_t, x_t \rangle - \sum_{t=1}^{T} \ell_{ta}.$$

A regret minimizer constructs a sequence of decisions x_1, x_2, \ldots in Δ_n such that for any sequence of losses ℓ_1, ℓ_2, \ldots, we have

$$\lim_{T \to +\infty} \frac{\text{Reg}^T}{T} = 0.$$

Why do we care?
Regret minimization: for $t = 1, \ldots, T$,

1. Choose a strategy $x_t \in \Delta_n$ based on past observations
2. Observe the loss vector $\ell_t \in \mathbb{R}^n$
3. Suffer an instantaneous loss $\langle \ell_t, x_t \rangle \in \mathbb{R}$

The regret Reg^T at period T is

$$\text{Reg}^T := \max_{a \in \{1, \ldots, n\}} \sum_{t=1}^{T} \langle \ell_t, x_t \rangle - \sum_{t=1}^{T} \ell_{ta}.$$

A regret minimizer constructs a sequence of decisions x_1, x_2, \ldots in Δ_n such that for any sequence of losses ℓ_1, ℓ_2, \ldots, we have

$$\lim_{T \to +\infty} \frac{\text{Reg}^T}{T} = 0.$$

Why do we care? Online resource allocation [BLM22], auctions [BG19], game solving: poker [BBJT15], Go [SHM+16]…
Regret minimization can be used to solve matrix games:

\[
\min_{x \in \Delta_n} \max_{y \in \Delta_m} \langle x, Ay \rangle.
\]

Duality gap of a pair \((\hat{x}, \hat{y})\):

\[
\text{DualityGap}(\hat{x}, \hat{y}) = \max_{y \in \Delta_m} \langle \hat{x}, Ay \rangle - \min_{x \in \Delta_n} \langle x, A\hat{y} \rangle.
\]

\[
\text{DualityGap}(\hat{x}, \hat{y}) \leq \epsilon \Rightarrow (\hat{x}, \hat{y}) \text{ is } \epsilon\text{-Nash equilibrium}
\]
Regret minimization can be used to solve matrix games:

$$\min_{x \in \Delta_n} \max_{y \in \Delta_m} \langle x, Ay \rangle.$$

Duality gap of a pair \((\hat{x}, \hat{y})\):

$$\text{DualityGap}(\hat{x}, \hat{y}) = \max_{y \in \Delta_m} \langle \hat{x}, Ay \rangle - \min_{x \in \Delta_n} \langle x, A\hat{y} \rangle.$$

$$\text{DualityGap}(\hat{x}, \hat{y}) \leq \epsilon \Rightarrow (\hat{x}, \hat{y}) \text{ is } \epsilon\text{-Nash equilibrium}$$

\textbf{Folk Theorem [FS99]}

Assume that each player of a matrix game runs a regret minimizer with loss \(\ell_t\) equal to their own expected cost.

Then the average of the iterates is an approximate Nash equilibrium of the game, with a duality gap equal to

$$\frac{\text{Reg}_1^T + \text{Reg}_2^T}{T}.$$
Rock Paper Scissors:

\[
\min_{x \in \Delta_3} \max_{y \in \Delta_3} \langle x, Ay \rangle, \quad A = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix}
\]

\[x_0 = \mathbb{P}(\text{play rock}), \quad x_1 = \mathbb{P}(\text{play paper}), \quad x_3 = \mathbb{P}(\text{play scissors}), \text{ etc.}\]

Unique Nash Eq.: \(x^* = y^* = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)\).

Losses for x-player: \(Ay\), loss for y-player: \(-A^T x\).
Rock Paper Scissors:

\[
\min_{x \in \Delta_3} \max_{y \in \Delta_3} \langle x, Ay \rangle, \quad A = \begin{pmatrix}
0 & -1 & 1 \\
1 & 0 & -1 \\
-1 & 1 & 0 \\
\end{pmatrix}
\]

Run Regret Matching\[^{+}\] (TBD) to generate \(x_1, \ldots, x_T\) and \(y_1, \ldots, y_T\).

Average iterates:

\[
\bar{x}_T = \frac{1}{T} \sum_{t=1}^{T} x_t, \quad \bar{y}_t = \frac{1}{T} \sum_{t=1}^{T} y_t
\]
Rock Paper Scissors:

\[
\min_{x \in \Delta_3} \max_{y \in \Delta_3} \langle x, Ay \rangle, \quad A = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix}
\]

Run Regret Matching\(^+\) (TBD) to generate \(x_1, \ldots, x_T\) and \(y_1, \ldots, y_T\).

Average iterates:

\[
\bar{x}_T = \frac{1}{T} \sum_{t=1}^{T} x_t, \quad \bar{y}_t = \frac{1}{T} \sum_{t=1}^{T} y_t
\]

Figure 1: Running Regret Matching\(^+\) for 500 iterations.
Folk Theorem [FS99]

Assume that each player of a matrix game runs a regret minimizer with loss ℓ_t equal to their own expected cost.

Then the average of the iterates is an approximate Nash equilibrium of the game, with a duality gap equal to

$$\frac{\text{Reg}_1^T + \text{Reg}_2^T}{T}.$$
Folk Theorem [FS99]

Assume that each player of a matrix game runs a regret minimizer with loss ℓ_t equal to their own expected cost.

Then the average of the iterates is an approximate Nash equilibrium of the game, with a duality gap equal to

$$\frac{\text{Reg}_1^T + \text{Reg}_2^T}{T}.$$

1. If \forall player i, $\text{Reg}_i^T = O\left(\sqrt{T}\right)$ then convergence in $O\left(1/\sqrt{T}\right)$.

This is the theoretical state-of-the-art [RS13, SALS15, DFG21]... but the empirical state-of-the-art (for poker AI) is a regret minimizer with "only" $O\left(1/\sqrt{T}\right)$ convergence guarantees.
Folk Theorem [FS99]

Assume that each player of a matrix game runs a regret minimizer with loss ℓ_t equal to their own *expected cost*.

Then the average of the iterates is an approximate *Nash equilibrium* of the game, with a duality gap equal to

$$\frac{\text{Reg}_1^T + \text{Reg}_2^T}{T}.$$

1. If \forall player i, $\text{Reg}_i^T = O\left(\sqrt{T}\right)$ then convergence in $O\left(1/\sqrt{T}\right)$.

2. If $\text{Reg}_1^T + \text{Reg}_2^T = \tilde{O}\left(1\right)$ then convergence in $\tilde{O}\left(1/T\right)$.

This is the *theoretical* state-of-the-art [RS13, SALS15, DFG21]...
Folk Theorem [FS99]

Assume that each player of a matrix game runs a regret minimizer with loss ℓ_t equal to their own expected cost.

Then the average of the iterates is an approximate Nash equilibrium of the game, with a duality gap equal to

$$\frac{\text{Reg}_1^T + \text{Reg}_2^T}{T}.$$

1. If \forall player i, $\text{Reg}_i^T = O\left(\sqrt{T}\right)$ then convergence in $O\left(1/\sqrt{T}\right)$.

2. If $\text{Reg}_1^T + \text{Reg}_2^T = \tilde{O}\left(1\right)$ then convergence in $\tilde{O}\left(1/T\right)$.

This is the theoretical state-of-the-art [RS13, SALS15, DFG21]...

... but the empirical state-of-the-art (for poker AI) is a regret minimizer with “only” $O(1/\sqrt{T})$ convergence guarantees.
Regret Matching$^+$ (RM^+) [TBJB15]

Start at $R_1 = 0 \in \mathbb{R}^n_+$, then

\[x_t = \frac{R_t}{\|R_t\|_1} \]

\[R_{t+1} = [R_t + \langle \ell_t, x_t \rangle 1 - \ell_t]^+ \]
Start at $R_1 = 0 \in \mathbb{R}^n$, then

$$x_t = R_t/\|R_t\|_1$$

$$R_{t+1} = [R_t + \langle \ell_t, x_t \rangle 1 - \ell_t]^+$$
Start at $R_1 = 0 \in \mathbb{R}^n$, then

$$x_t = \frac{R_t}{\|R_t\|_1}$$

$$R_{t+1} = [R_t + \langle \ell_t, x_t \rangle 1 - \ell_t]^+$$
Regret Matching\(^+\) (RM\(^+\)) [TBJB15]

Start at \(R_1 = 0 \in \mathbb{R}_+^n\), then

\[
x_t = \frac{R_t}{\|R_t\|_1}
\]

\[
R_{t+1} = [R_t + \langle \ell_t, x_t \rangle 1 - \ell_t]^+
\]
Regret Matching\(^+\) (RM\(^+\)) [TBJB15]

Start at \(R_1 = 0 \in \mathbb{R}_+^n \), then

\[
x_t = \frac{R_t}{\|R_t\|_1}
\]

\[
R_{t+1} = [R_t + \langle \ell_t, x_t \rangle 1 - \ell_t]^+
\]
Why is this called Regret Matching$^+$?

The update for R_t is

$$R_{t+1} = [R_t + \langle l_t, x_t \rangle 1 - l_t]^+.$$
Why is this called Regret Matching$^+$?

The update for R_t is

$$R_{t+1} = [R_t + \langle l_t, x_t \rangle 1 - l_t]^+.$$

Suppose we forget about the operator $[\cdot]^+$, then

$$R_{T+1} = \sum_{t=1}^T \langle l_t, x_t \rangle 1 - \sum_{t=1}^T l_t.$$
Why is this called Regret Matching+$^+$?

The update for R_t is

$$R_{t+1} = [R_t + \langle \ell_t, x_t \rangle 1 - \ell_t]^+.$$

Suppose we forget about the operator $[.]^+$, then

$$R_{T+1} = \sum_{t=1}^{T} \langle \ell_t, x_t \rangle 1 - \sum_{t=1}^{T} \ell_t.$$

Recall the definition of the regret:

$$\text{Reg}^T := \max_{a \in \{1, \ldots, n\}} \sum_{t=1}^{T} \langle \ell_t, x_t \rangle - \sum_{t=1}^{T} \ell_{ta}$$

$$= \max_{a \in \{1, \ldots, n\}} R_{T+1,a}.$$
Why is this called Regret Matching\(^+\)?

The update for \(R_t \) is

\[
R_{t+1} = [R_t + \langle \ell_t, x_t \rangle 1 - \ell_t]^+.
\]

Suppose we forget about the operator \([.]^+\), then

\[
R_{T+1} = \sum_{t=1}^{T} \langle \ell_t, x_t \rangle 1 - \sum_{t=1}^{T} \ell_t.
\]

Recall the definition of the regret:

\[
\text{Reg}^T := \max_{a \in \{1, \ldots, n\}} \sum_{t=1}^{T} \langle \ell_t, x_t \rangle - \sum_{t=1}^{T} \ell_{ta}
\]

\[
= \max_{a \in \{1, \ldots, n\}} R_{T+1, a}
\]

\(\Rightarrow \) \(R_t \) is called the lifted regret and \(\text{Reg}^T \leq \|R_{T+1}\|_{\infty} \).
Why is this called Regret Matching$^+$?

The update for R_t is

$$R_{t+1} = [R_t + \langle \ell_t, x_t \rangle 1 - \ell_t]^+.$$

Suppose we forget about the operator $[.]^+$, then

$$R_{T+1} = \sum_{t=1}^T \langle \ell_t, x_t \rangle 1 - \sum_{t=1}^T \ell_t.$$

Recall the definition of the regret:

$$\text{Reg}^T := \max_{a \in \{1, \ldots, n\}} \sum_{t=1}^T \langle \ell_t, x_t \rangle - \sum_{t=1}^T \ell_{ta}$$

$$= \max_{a \in \{1, \ldots, n\}} R_{T+1,a}$$

$\Rightarrow R_t$ is called the *lifted regret* and $\text{Reg}^T \leq \|R_{T+1}\|_\infty$.

$\Rightarrow x_t = R_t/\|R_t\|_1$: we play actions with large regrets.
Regret Matching\(^+\) (\(RM^+\)) [TBJB15]

Start at \(R_1 = 0 \in \mathbb{R}^n\), then

\[
x_t = \frac{R_t}{\|R_t\|_1},
\]

\[
R_{t+1} = [R_t + \langle \ell_t, x_t \rangle 1 - \ell_t]^+.
\]

Why do we like this algorithm?

1. \(RM^+\) is a regret minimizer: \(\text{Reg}^T = O\left(\sqrt{T}\right)\).
Regret Matching$^+$ (RM$^+$) [TBJB15]

Start at $R_1 = 0 \in \mathbb{R}^n$, then

$$x_t = R_t / \|R_t\|_1,$$

$$R_{t+1} = [R_t + \langle \ell_t, x_t \rangle 1 - \ell_t]^+.$$

Why do we like this algorithm?

1. RM$^+$ is a regret minimizer: $\text{Reg}^T = O\left(\sqrt{T}\right)$.

2. Geometric intuition: $\text{Reg}^T \leq \|R_{T+1}\|_\infty$.

Regret Matching$^+$ (RM$^+$) [TBJB15]

Start at $R_1 = 0 \in \mathbb{R}^n_+$, then

$$x_t = R_t / \| R_t \|_1,$$

$$R_{t+1} = [R_t + \langle \ell_t, x_t \rangle 1 - \ell_t]^+.$$

Why do we like this algorithm?

1. RM$^+$ is a regret minimizer: $\text{Reg}^T = O\left(\sqrt{T}\right)$.

2. Geometric intuition: $\text{Reg}^T \leq \|R_{T+1}\|_\infty$.

3. Parameter-free: no step size to learn/choose.
Regret Matching\(^+\) (RM\(^+\)) [TBJB15]

Start at \(\mathbf{R}_1 = 0 \in \mathbb{R}^n_+ \), then

\[
\begin{align*}
x_t &= \mathbf{R}_t / \| \mathbf{R}_t \|_1, \\
\mathbf{R}_{t+1} &= [\mathbf{R}_t + \langle \ell_t, x_t \rangle \mathbf{1} - \ell_t]^+. \end{align*}
\]

Why do we like this algorithm?

1. RM\(^+\) is a regret minimizer: \(\text{Reg}_T = O\left(\sqrt{T} \right) \).
2. Geometric intuition: \(\text{Reg}_T \leq \| \mathbf{R}_{T+1} \|_\infty \).
3. Parameter-free: no step size to learn/choose
4. Strong empirical performances, \(\approx 10x \) faster than \(O(1/T) \) algo\(s \) [BBJT15, MSB\(^+\)17, BS18, BS19, FKS21]...
Regret Matching\(^+\) (RM\(^+\)) [TBJB15]

Start at \(R_1 = 0 \in \mathbb{R}^n_+ \), then

\[
x_t = R_t / \| R_t \|_1,
\]

\[
R_{t+1} = [R_t + \langle \ell_t, x_t \rangle 1 - \ell_t]^+.
\]

Why do we like this algorithm?

1. RM\(^+\) is a regret minimizer: \(\text{Reg}^T = O\left(\sqrt{T} \right) \).
2. Geometric intuition: \(\text{Reg}^T \leq \| R_{T+1} \|_\infty \).
3. Parameter-free: no step size to learn/choose
4. Strong empirical performances, \(\approx \) 10x faster than \(O(1/T) \) algos [BBJT15, MSB\(^+\)17, BS18, BS19, FKS21]...
5. ... and RM\(^+\) is still not very well understood!
Main idea: use a prediction of ℓ_t when computing x_t.

Build \hat{R}_t by predicting ℓ_t

$$x_t = \frac{\hat{R}_t}{\|\hat{R}_t\|_1},$$

$$R_{t+1} = [R_t + \langle \ell_t, x_t \rangle 1 - \ell_t]^+.$$
Main idea: use a prediction of ℓ_t when computing x_t.

$$
\hat{R}_t = [R_t + \langle \ell_{t-1}, x_{t-1} \rangle 1 - \ell_{t-1}]^+
$$

$$
x_t = \frac{\hat{R}_t}{\| \hat{R}_t \|_1},
$$

$$
R_{t+1} = [R_t + \langle \ell_t, x_t \rangle 1 - \ell_t]^+.
$$
Main idea: use a prediction of ℓ_t when computing x_t.

Build \hat{R}_t by predicting ℓ_t

\[
x_t = \frac{\hat{R}_t}{\|\hat{R}_t\|_1},
\]

\[
R_{t+1} = [R_t + \langle \ell_t, x_t \rangle 1 - \ell_t]^+.
\]
Main idea: use a prediction of ℓ_t when computing x_t.

Build \hat{R}_t by predicting ℓ_t

\[
x_t = \frac{\hat{R}_t}{\|\hat{R}_t\|_1},
\]

\[
R_{t+1} = [R_t + \langle \ell_t, x_t \rangle 1 - \ell_t]^+.
\]
Main idea: use a prediction of ℓ_t when computing x_t.

\textit{Build \hat{R}_t by predicting ℓ_t}

$$x_t = \frac{\hat{R}_t}{\|\hat{R}_t\|_1},$$

$$R_{t+1} = [R_t + \langle \ell_t, x_t \rangle 1 - \ell_t]^+. $$

\[\mathbb{R}_+^2 \]
\[\mathbb{R}_-^2 \]
\[\Delta_2 \]
\[R_t \]
\[\hat{R}_t \]
\[0 \]
Main idea: use a prediction of \(\ell_t \) when computing \(x_t \).

Build \(\hat{R}_t \) by predicting \(\ell_t \)

\[
x_t = \frac{\hat{R}_t}{\|\hat{R}_t\|_1},
\]

\[
R_{t+1} = [R_t + \langle \ell_t, x_t \rangle 1 - \ell_t]^+.
\]
Main idea: use a prediction of ℓ_t when computing x_t.

\begin{align*}
\text{Build } \hat{R}_t \text{ by predicting } \ell_t \\
x_t &= \frac{\hat{R}_t}{\|\hat{R}_t\|_1}, \\
R_{t+1} &= [R_t + \langle \ell_t, x_t \rangle 1 - \ell_t]^+.
\end{align*}
Main idea: use a prediction of ℓ_t when computing x_t.

Build \hat{R}_t by predicting ℓ_t

$$x_t = \hat{R}_t / \| \hat{R}_t \|_1,$$

$$R_{t+1} = [R_t + \langle \ell_t, x_t \rangle 1 - \ell_t]^+.$$
Main idea: use a prediction of \(\ell_t \) when computing \(x_t \).

Build \(\hat{R}_t \) by predicting \(\ell_t \)

\[
x_t = \frac{\hat{R}_t}{\| \hat{R}_t \|_1},
\]

\[
R_{t+1} = [R_t + \langle \ell_t, x_t \rangle 1 - \ell_t]^+.
\]
Main idea: use a prediction of ℓ_t when computing x_t.

Build \hat{R}_t by predicting ℓ_t

$$x_t = \frac{\hat{R}_t}{\|\hat{R}_t\|_1},$$

$$R_{t+1} = [R_t + \langle \ell_t, x_t \rangle 1 - \ell_t]^+. $$
Main idea: use a prediction of ℓ_t when computing x_t.

Build \hat{R}_t by predicting ℓ_t as ℓ_{t-1}

$$x_t = \hat{R}_t / \| \hat{R}_t \|_1,$$

$$R_{t+1} = [R_t + \langle \ell_t, x_t \rangle 1 - \ell_t]^+. $$

1. Predictive RM$^+$ is a regret minimizer: $\text{Reg}^T = O\left(\sqrt{T}\right)$.
Main idea: use a prediction of ℓ_t when computing x_t.

Build \hat{R}_t by predicting ℓ_t as ℓ_{t-1}

$$x_t = \hat{R}_t / \|\hat{R}_t\|_1,$$
$$R_{t+1} = [R_t + \langle \ell_t, x_t \rangle 1 - \ell_t]^+.$$

1. Predictive RM$^+$ is a regret minimizer: $\text{Reg}^T = O\left(\sqrt{T}\right)$.
2. Parameter-free: no step size to learn/choose
Main idea: use a prediction of ℓ_t when computing x_t.

BUILD \hat{R}_t BY PREDICTING ℓ_t AS ℓ_{t-1}

$$x_t = \frac{\hat{R}_t}{\|\hat{R}_t\|_1},$$

$$R_{t+1} = [R_t + \langle \ell_t, x_t \rangle 1 - \ell_t]^+. $$

1. Predictive RM$^+$ is a regret minimizer: $\text{Reg}^T = O\left(\sqrt{T}\right)$.
2. Parameter-free: no step size to learn/choose.
3. Strong empirical performances, vastly outperforms $O(1/T)$ algos [BBJT15, MSB$^+$17, BS18, BS19, FKS21].
Predictive Regret Matching$^+$ [FKS21]

Main idea: use a prediction of ℓ_t when computing x_t.

Build \hat{R}_t by predicting ℓ_t as ℓ_{t-1}

$$x_t = \frac{\hat{R}_t}{\|\hat{R}_t\|_1},$$

$$R_{t+1} = [R_t + \langle \ell_t, x_t \rangle 1 - \ell_t]^+.$$

1. Predictive RM$^+$ is a regret minimizer: $\text{Reg}^T = O\left(\sqrt{T}\right)$.
2. Parameter-free: no step size to learn/choose
3. Strong empirical performances, vastly outperforms $O(1/T)$ algs [BBJT15, MSB$^+$17, BS18, BS19, FKS21].
4. But not known to ensure $O(1/T)$ convergence, despite optimism!
Recall that $x_t = R_t / \| R_t \|_1$.

Instability: $\| x_t - x_{t+1} \|_2$ may be large... despite small $\| R_t - R_{t+1} \|_2$.

\[\mathbb{R}_+^2 \]

\[\mathbb{R}_-^2 \]

\[0 \]

\[\Delta_2 \]
Recall that \(x_t = \frac{R_t}{\|R_t\|_1} \).

Instability: \(\|x_t - x_{t+1}\|_2 \) may be large... despite small \(\|R_t - R_{t+1}\|_2 \).
Recall that $x_t = \frac{R_t}{\|R_t\|_1}$.

Instability: $\|x_t - x_{t+1}\|_2$ may be large... despite small $\|R_t - R_{t+1}\|_2$.
Recall that $x_t = R_t / \| R_t \|_1$.

Instability: $\| x_t - x_{t+1} \|_2$ may be large... despite small $\| R_t - R_{t+1} \|_2$.
Instability in (predictive) RM^+

Instability happens because $\|R_t\|_1$ is small.
Instability in (predictive) RM^+

Instability happens because $\|R_t\|_1$ is small.

Proposition

Let $R_1, R_2 \in \mathbb{R}_+^n$ and $x_1 = R_1/\|R_1\|_1, x_2 = R_2/\|R_2\|_1$. Then

$$\|x_1 - x_2\|_2 \leq \frac{\sqrt{n}}{\max\{\|R_1\|_1, \|R_2\|_1\}} \cdot \|R_1 - R_2\|_2$$

(1)
Instability in (predictive) RM$^+$

- Instability makes it hard to minimize regret for the other players...
- But recall that small $\|R_T\|_\infty$ is good news for the player:

$$\text{Reg}^T \leq \|R_{T+1}\|_\infty.$$
Example on a pathological example

Solving a small matrix game: \(\min_{x \in \Delta_3} \max_{y \in \Delta_3} \langle x, Ay \rangle \).

Running (vanilla) Predictive RM\(^+\):
Example on a pathological example

Solving a small matrix game: \(\min_{x \in \Delta_3} \max_{y \in \Delta_3} \langle x, Ay \rangle \).

Running (vanilla) Predictive RM\(^+\):

![Graphs showing the behavior of norms over iterations](image)
Example on a pathological example

Solving a small matrix game: \(\min_{x \in \Delta_3} \max_{y \in \Delta_3} \langle x, Ay \rangle \).

Running (vanilla) Predictive RM\(^+\):

![Graph showing strategy cycles](image)

After \(10^7\) iterations, \(x_t\) cycles between 5 strategies.

Recall that the loss for the y-player is \(-A^T x_t\)!
Example on a pathological example

Solving a small matrix game: \(\min_{x \in \Delta_3} \max_{y \in \Delta_3} \langle x, Ay \rangle \).

Running (vanilla) Predictive RM\(^+\):

![Graph showing duality gap vs. number of iterations](image)

Slope of the linear fit: \(-0.496\) \(\Rightarrow\) duality gap decreases as \(O(1/\sqrt{T})\).
Example on a pathological example

Diagnostic:

1. Instability of one player harms the convergence to an equilibrium.

2. Instability happens because $\|R_t\|_1$ is small.

Question:

How to ensure that R_t is not too close to the origin 0?
Toward stable Predictive RM$^+$: first idea

Restarting: run Predictive RM$^+$, and at the end of every iteration:

If $R_{t+1} \leq R_01$ then $R_{t+1} = R_01$.

\[
\begin{align*}
 \mathbb{R}_2^+ - \mathbb{R}_2^- + \Delta_2 R_0 & R_0 1 \\
 0 & R_0 \\
\end{align*}
\]
Toward stable Predictive RM\(^+\): first idea

Restarting: run Predictive RM\(^+\), and at the end of every iteration:

\[\text{If } R_{t+1} \leq R_01 \text{ then } R_{t+1} = R_01. \]

This can be done in linear time.

Theorem

Assume that each player runs Predictive RM\(^+\) with restarting with \(R_0 = XXX \).

Then max \(\{ \text{Reg}_1^T, \text{Reg}_2^T \} \) = \(O(T^{1/4}) \).

\(\Rightarrow \) Convergence to a Nash Equilibrium at a rate of \(O \left(\frac{1}{T^{3/4}} \right) \).
Toward stable RM^+: second idea

Smoothing: run Predictive RM^+, and at the end of every iteration:

If $\langle R_{t+1}, 1 \rangle \leq R_0$ then replace R_{t+1} by its projection on $R_0 \Delta_n$.

This ensures $R_t \in \{ R \in \mathbb{R}^n \mid R \geq 0, \langle R, 1 \rangle \geq R_0 \}$.
Toward stable RM^+: second idea

Smoothing: run Predictive RM^+, and at the end of every iteration:

If $\langle R_{t+1}, 1 \rangle \leq R_0$ then replace R_{t+1} by its projection on $R_0 \Delta_n$.

This ensures $R_t \in \{R \in \mathbb{R}^n \mid R \geq 0, \langle R, 1 \rangle \geq R_0\}$.

\[
\mathbb{R}_+^2 - \mathbb{R}_-^2 \ni R_0 \ni \Delta_2 \ni \times R_{t+1}
\]
Toward stable RM^+: second idea

Smoothing: run Predictive RM^+, and at the end of every iteration:

If $\langle R_{t+1}, 1 \rangle \leq R_0$ then replace R_{t+1} by its projection on $R_0 \Delta_n$.

This ensures $R_t \in \{ R \in \mathbb{R}^n \mid R \geq 0, \langle R, 1 \rangle \geq R_0 \}$.
Toward stable $\text{RM}^+:$ second idea

Smoothing: run Predictive RM^+, and at the end of every iteration:

If $\langle \mathbf{R}_{t+1}, \mathbf{1} \rangle \leq R_0$ then replace \mathbf{R}_{t+1} by its projection on $R_0 \Delta_n$.

This ensures $\mathbf{R}_t \in \{ \mathbf{R} \in \mathbb{R}^n \mid \mathbf{R} \geq 0, \langle \mathbf{R}, \mathbf{1} \rangle \geq R_0 \}$.

\[
\begin{align*}
\mathbb{R}^2_+ & \quad \mathbb{R}^2_- \\
\mathbb{R}^2_+ & \quad \Delta_2 \\
\mathbb{R}^2_- & \quad 0 \\
\mathbb{R}^2_+ & \quad R_0 \\
\mathbb{R}^2_- & \quad R_0 \\
\mathbb{R}^2_+ & \quad \mathbb{R}^2_- \\
\mathbb{R}^2_+ & \quad \Delta_2 \\
\mathbb{R}^2_- & \quad 0 \\
\mathbb{R}^2_+ & \quad R_0 \\
\mathbb{R}^2_- & \quad R_0 \\
\end{align*}
\]
Toward stable RM^+: second idea

Smoothing: run Predictive RM^+, and at the end of every iteration:

If $\langle R_{t+1}, 1 \rangle \leq R_0$ then replace R_{t+1} by its projection on $R_0 \Delta_n$.

This ensures $R_t \in \{ R \in \mathbb{R}^n \mid R \geq 0, \langle R, 1 \rangle \geq R_0 \}$.

This can be done in $O(n \log(n))$.

$R \mapsto R/\|R\|_1$ is smooth on $\{ R \in \mathbb{R}^n \mid R \geq 0, \langle R, 1 \rangle \geq R_0 \}$:

$$\| \frac{R_1}{\|R_1\|_1} - \frac{R_2}{\|R_2\|_1} \|_2 \leq \frac{\sqrt{n}}{R_0} \cdot \|R_1 - R_2\|_2$$ (2)
Toward stable RM$^+$: second idea

Smoothing: run Predictive RM$^+$, and at the end of every iteration:

\[\text{If } \langle R_{t+1}, 1 \rangle \leq R_0 \text{ then replace } R_{t+1} \text{ by its projection on } R_0 \Delta_n. \]

Theorem

Assume that each player runs Predictive RM$^+$ with Smoothing with $R_0 = XXX$. Then:

- $\max \left\{ \text{Reg}_1^T, \text{Reg}_2^T \right\} = O (T^{1/4})$.
- $\text{Reg}_1^T + \text{Reg}_2^T = O(1)$.

\Rightarrow Convergence to a Nash Equilibrium at a rate of $O (1/T)$.

Example on a pathological example (continued)

Solving a small matrix game: $\min_{x \in \Delta_3} \max_{y \in \Delta_3} \langle x, Ay \rangle$.

Running Predictive RM$^+$ with restarting:
Solving a small matrix game: $\min_{x \in \Delta_3} \max_{y \in \Delta_3} \langle x, Ay \rangle$.

Running Predictive RM$^+$ with Smoothing:
Solving a small matrix game:

$$\min_{x \in \Delta_3} \max_{y \in \Delta_3} \langle x, Ay \rangle.$$

Comparing the average convergence to a Nash Equilibrium:
All the guarantees presented so far are for the average iterates:

\[\bar{x}_T = \frac{1}{T} \sum_{t=1}^{T} x_t, \quad \bar{y}_t = \frac{1}{T} \sum_{t=1}^{T} y_t \]

How about convergence in \(x_T, y_T \), i.e., last-iterate convergence?
Last-iterate convergence

All the guarantees presented so far are for the average iterates:

\[\bar{x}_T = \frac{1}{T} \sum_{t=1}^{T} x_t, \quad \bar{y}_t = \frac{1}{T} \sum_{t=1}^{T} y_t \]

How about convergence in \(x_T, y_T \), i.e., last-iterate convergence?

Why do we care?

- Quite simpler than average iterates
- Averaging may be cumbersome/expensive computationally
- No last-iterate convergence \(\Rightarrow \) cycling/diverging behaviors
Last-iterate convergence

Convergence on average vs. last-iterate convergence:

Figure 4: Running Regret Matching$^+$ for 10^5 iterations for Rock-Paper-Scissors.
Our contributions 1/3

⇒ RM$^+$ and Predictive RM$^+$ may diverge on a simple 3×3 matrix game.
⇒ Poor performance of the last iterates of RM$^+$ / PRM$^+$:

Figure 5: Last iterate performance of RM$^+$, PRM$^+$ and Smooth PRM$^+$.
We could only prove convergence of RM^+ under very strong assumptions.

Theorem

Assume that the matrix game has a strict Nash Eq. (x^*, y^*):

- x^* is the unique best-response to y^*
- y^* is the unique best-response to x^*

Then RM^+ converges: the sequence $(x_t, y_t)_{t \in \mathbb{N}}$ has a limit.

Note: strict N.E. implies N.E. is unique and (x^*, y^*) are deterministic.
Our contributions 2/3

Let $\mathcal{Z}^* \subset \Delta_n \times \Delta_m$ be the set of Nash equilibria.

Theorem

For Smooth Predictive RM$^+$, we show

1. Last-iterate convergence: the sequence $(x_t, y_t)_{t \in \mathbb{N}}$ has a limit.

2. Best-iterate convergence:
 For some $\alpha > 0$ and starting at (x_0, y_0),
 \[
 \min_{t \in \{1, \ldots, T\}} \text{DualityGap} (x_t, y_t) = \frac{\alpha \cdot \text{dist} ((x_0, y_0), \mathcal{Z}^*)}{\sqrt{T}}
 \]
Let $\mathcal{Z}^* \subset \Delta_n \times \Delta_m$ be the set of Nash equilibria.

Theorem

For Smooth Predictive RM$^+$, we show

1. **Last-iterate convergence:** the sequence $(x_t, y_t)_{t \in \mathbb{N}}$ has a limit.

2. **Best-iterate convergence:**
 For some $\alpha > 0$ and starting at (x_0, y_0),
 \[
 \min_{t \in \{1, \ldots, T\}} \text{DualityGap} (x_t, y_t) = \frac{\alpha \cdot \text{dist} ((x_0, y_0), \mathcal{Z}^*)}{\sqrt{T}}
 \]

Metric subregularity [WLZL20] $\exists \ c > 0$ such that, for any $t \in \mathbb{N}$,

\[
 c \cdot \text{dist} ((x_t, y_t), \mathcal{Z}^*) \leq \text{DualityGap}(x_t, y_t).
\]
There exists a time $\tilde{t} \in \{1, \ldots, T\}$ such that

$$\text{dist} \left((x_{\tilde{t}}, y_{\tilde{t}}), \mathcal{Z}^* \right) \leq \frac{\alpha}{c \sqrt{T}} \cdot \text{dist} \left((x_0, y_0), \mathcal{Z}^* \right).$$
There exists a time \(\tilde{t} \in \{1, \ldots, T\} \) such that

\[
\text{dist} \left((x_{\tilde{t}}, y_{\tilde{t}}), Z^* \right) \leq \frac{\alpha}{c \sqrt{T}} \cdot \text{dist} \left((x_0, y_0), Z^* \right).
\]

\(T \) such that \(\frac{\alpha}{c \sqrt{T}} = \frac{1}{2} \):

\(\Rightarrow \) in a constant number of steps, we halve the distance to \(Z^* \):

\[
\text{dist} \left((x_{\tilde{t}}, y_{\tilde{t}}), Z^* \right) \leq \frac{1}{2} \text{dist} \left((x_0, y_0), Z^* \right).
\]
There exists a time $\tilde{t} \in \{1, \ldots, T\}$ such that

$$\operatorname{dist}((x_\tilde{t}, y_\tilde{t}), Z^*) \leq \frac{\alpha}{c\sqrt{T}} \cdot \operatorname{dist}((x_0, y_0), Z^*).$$

T such that $\frac{\alpha}{c\sqrt{T}} = \frac{1}{2}$:

\Rightarrow in a constant number of steps, we halve the distance to Z^*:

$$\operatorname{dist}((x_\tilde{t}, y_\tilde{t}), Z^*) \leq \frac{1}{2} \operatorname{dist}((x_0, y_0), Z^*).$$

\Rightarrow Why not reinitializing the algorithm at time \tilde{t}: $(x_0, y_0) \leftarrow (x_\tilde{t}, y_\tilde{t})$?
There exists a time $\tilde{t} \in \{1, \ldots, T\}$ such that

$$\text{dist} \left((x_{\tilde{t}}, y_{\tilde{t}}), Z^* \right) \leq \frac{\alpha}{c\sqrt{T}} \cdot \text{dist} \left((x_0, y_0), Z^* \right).$$

Let T be such that $\frac{\alpha}{c\sqrt{T}} = \frac{1}{2}$:

\Rightarrow in a \textit{constant} number of steps, we halve the distance to Z^*:

$$\text{dist} \left((x_{\tilde{t}}, y_{\tilde{t}}), Z^* \right) \leq \frac{1}{2} \text{dist} \left((x_0, y_0), Z^* \right).$$

\Rightarrow Why not reinitializing the algorithm at time \tilde{t}: $(x_0, y_0) \leftarrow (x_{\tilde{t}}, y_{\tilde{t}})$?

Problem: of course we can’t identify the time \tilde{t}...
There exists a time \(\tilde{t} \in \{1, \ldots, T\} \) such that

\[
\text{dist} \left((x_{\tilde{t}}, y_{\tilde{t}}), Z^* \right) \leq \frac{\alpha}{c \sqrt{T}} \cdot \text{dist} \left((x_0, y_0), Z^* \right).
\]

\(T \) such that \(\frac{\alpha}{c \sqrt{T}} = \frac{1}{2} \):

\(\Rightarrow \) in a constant number of steps, we halve the distance to \(Z^* \):

\[
\text{dist} \left((x_{\tilde{t}}, y_{\tilde{t}}), Z^* \right) \leq \frac{1}{2} \text{dist} \left((x_0, y_0), Z^* \right).
\]

\(\Rightarrow \) Why not reinitializing the algorithm at time \(\tilde{t} \): \((x_0, y_0) \leftarrow (x_{\tilde{t}}, y_{\tilde{t}}) \) ?

Problem: of course we can’t identify the time \(\tilde{t} \) ...

Solution: bound the distance to \(Z^* \) by distances between \(\hat{R}^t, R^{t+1}, R^t \).
Theorem

Consider running Smooth Predictive RM\(^+\), with the following trick:
At iteration \(t \),

“Reinitialize the algorithm if the current duality gap has been halved since last reinitialization”

Then we have linear last-iterate convergence:

\[
\text{DualityGap} (x_t, y_t) = O (\beta^t) \quad \text{for some } \beta \in (0, 1)
\]
Conclusion

- Better understanding of Regret Matching\(^+\) and predictive variants
- New algorithms with strong theoretical guarantees

Limitations:
1. We lose the step-size free property (choice of \(R_0\))
2. Convergence rates don’t apply for extensive-form games (CFR)/multiplayer normal-form games
3. Other unexplained aspects of RM:
 - alternation, linear averaging, etc.

More in the papers + code available online

Thank you!
Conclusion

• Better understanding of Regret Matching\(^+\) and predictive variants

• New algorithms with strong theoretical guarantees

• Limitations:
 1. We lose the step-size free property (choice of \(R_0\))
 2. Convergence rates don’t apply for extensive-form games (CFR)/multiplayer normal-form games
 3. Other unexplained aspects of RM\(^+\): alternation, linear averaging, etc.

• More in the papers + code available online
Conclusion

- Better understanding of Regret Matching$^+$ and predictive variants
- New algorithms with strong theoretical guarantees

Limitations:
1. We lose the step-size free property (choice of R_0)
2. Convergence rates don’t apply for extensive-form games (CFR)/multiplayer normal-form games
3. Other unexplained aspects of RM$^+$: alternation, linear averaging, etc.

- More in the papers + code available online

Thank you!
Michael Bowling, Neil Burch, Michael Johanson, and Oskari Tammelin.
Heads-up limit hold’em poker is solved.

Santiago R Balseiro and Yonatan Gur.
Learning in repeated auctions with budgets: Regret minimization and equilibrium.

Santiago R Balseiro, Haihao Lu, and Vahab Mirrokni.
The best of many worlds: Dual mirror descent for online allocation problems.
Noam Brown and Tuomas Sandholm.
Superhuman AI for heads-up no-limit poker: Libratus beats top professionals.

Noam Brown and Tuomas Sandholm.
Superhuman AI for multiplayer poker.

Finite-time last-iterate convergence for learning in multi-player games.
Constantinos Daskalakis, Maxwell Fishelson, and Noah Golowich.
Near-optimal no-regret learning in general games.

Gabriele Farina, Christian Kroer, and Tuomas Sandholm.
Faster game solving via predictive Blackwell approachability: Connecting regret matching and mirror descent.

Yoav Freund and Robert E Schapire.
Adaptive game playing using multiplicative weights.

Deepstack: Expert-level artificial intelligence in heads-up no-limit poker.

Alexander Rakhlin and Karthik Sridharan.

Online learning with predictable sequences.

Fast convergence of regularized learning in games.
28, 2015.
Mastering the game of go with deep neural networks and tree search.

Oskari Tammelin, Neil Burch, Michael Johanson, and Michael Bowling.
Solving heads-up limit Texas hold’em.
In *Twenty-Fourth International Joint Conference on Artificial Intelligence*, 2015.
Theorem
Consider running Smooth Predictive RM$^+$, with the following trick:
At iteration t,

$$\text{if } \|\hat{R}^{t+1} - R^t\|_2 + \|\hat{R}^t - R^t\|_2 \leq 2^{-k} \text{ then } R^{t+1} \leftarrow x_{t+1}, k \leftarrow k + 1$$

and similarly for the y-player.

Then we have linear last-iterate convergence:

$$\text{DualityGap} \left(x_t, y_t \right) = O \left(\beta^t \right) \text{ for some } \beta \in (0, 1)$$
Zero-sum game G: $\min_{x \in \Delta_{d_1}} \max_{y \in \Delta_m} \langle x, Ay \rangle$.

Gradient operator $F_G(z) := \begin{pmatrix} Ay \\ -A^\top x \end{pmatrix}$ for $z = (x, y) \in \Delta_n \times \Delta_m$.

This is a monotone operator:

$$\langle F_G(z) - F_G(z'), z - z' \rangle \geq 0, \forall z, z' \in \Delta_n \times \Delta_m.$$

OGD has last-iterate convergence for monotone operators [COZ22].
Smooth PRM$^+$ \iff running OGD with operator F defined as

$$F(z) := \begin{pmatrix} A \frac{z_2}{\|z_2\|_1} - \frac{z_1^\top}{\|z_1\|_1} A \frac{z_2}{\|z_2\|_1} \cdot 1_n \\ -A^\top \frac{z_1}{\|z_1\|_1} + \frac{z_2^\top}{\|z_2\|_1} A^\top \frac{z_1}{\|z_1\|_1} \cdot 1_m \end{pmatrix}$$

for all $z = (z_1, z_2) \in \mathbb{R}_n^+ \times \mathbb{R}_m^+$.
Smooth PRM\(^+\) \iff running OGD with operator \(F\) defined as

\[
F(z) := \begin{pmatrix}
A \frac{z_2}{\|z_2\|_1} - \frac{z_1^\top}{\|z_1\|_1} A \frac{z_2}{\|z_2\|_1} \cdot 1_n \\
-A^\top \frac{z_1}{\|z_1\|_1} + \frac{z_2^\top}{\|z_2\|_1} A^\top \frac{z_1}{\|z_1\|_1} \cdot 1_m
\end{pmatrix}
\]

for all \(z = (z_1, z_2) \in \mathbb{R}_+^n \times \mathbb{R}_+^m\).

A simpler form:

\[
F(z) := \begin{pmatrix}
Ay - x^\top Ay \cdot 1_n \\
-A^\top x + y^\top A^\top x \cdot 1_m
\end{pmatrix}
\]

for \(x = \frac{z_1}{\|z_1\|_1}, y = \frac{z_2}{\|z_2\|_1}\) for \(z = (z_1, z_2) \in \mathbb{R}_+^n \times \mathbb{R}_+^m\).

The operator \(F\) is **not** monotone.