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Recent successes for learning in games

AlphaGo beats top Go player Lee Sedol in 2016 [SHM+16]:

Abstract of the Nature paper:
“[Our algorithms] are trained by a novel combination of supervised
learning from human expert games, and reinforcement learning
from games of self-play”.
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Recent successes for learning in games
AIs beating top poker players: Libratus [BS18], Pluribus [BS19]

Description of Pluribus in the Science paper:
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Other recent achievements

AIs for Stratego [PDVH+22] and Diplomacy [FBB+22]:

Other areas of applications of self-play: boosting [FS96], training
generative adversarial networks [DISZ18], fine-tuning large
language models [MVC+23], protein folding [WTH+23]
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Why should people in Operations Management care?

• Powerful tools developed for solving multi-agent decision
problems

• At the core: regret minimization and online learning...
... already used in several areas in OM
- online resource allocation [BLM22]
- pricing in auctions [CBGM14]
- online market equilibrium [GPK21]
- network revenue management [MW21]
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This Talk In One Slide

Main objective:
Understanding the convergence of learning algorithms (OMWU)

Why it’s interesting?
See previous slides

Main results:

1 The most popular algorithms converge arbitrarily slow ...
... because they don’t forget the past quickly enough!

2 Last- vs. best- vs. random- vs. average-iterate convergence

3 Uniform vs. universal convergence
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Matrix games

Think of rock-paper-scissors:

Setup: two players with d1 and d2 actions, zero-sum payoff Aij

Strategies: x ∈ ∆d1 , y ∈ ∆d2

Payoff: the first player pays x>Ay to the second player

Goal: Compute a Nash equilibrium (x?, y?)

Approach: (x?, y?) N.E. ⇐⇒ DualGap(x?, y?) = 0 with

DualGap(x?, y?) := max
y∈∆d2

(x?)>Ay − min
x∈∆d1

x>Ay?.
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Self-play

Self-play: the machine learns by playing against itself.

At iteration t:

1 Players choose strategies x t , y t

2 x-player receives loss Ay t ∈ Rd1

3 y-player receives loss −A>x t ∈ Rd2

Stop at iteration T , return average iterates: 1
T

∑T
t=1(x t , y t)

Next question:
How should player choose their strategies next, given the losses?
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Multiplicative Weight Update (MWU)1

Example for the x-player, with loss `t = Ay t ∈ Rd1 :
For each action i ,

x ti ∝ exp

(
−η ·

(
t−1∑
τ=1

`τi

))
(MWU)

• MWU decreases the proba. to play action i with large loss `i
• At iteration t, MWU uses all past losses `1, .., `t−1

Optimistic MWU: count the last loss twice

x ti ∝ exp

(
−η ·

(
t−1∑
τ=1

`τi + `t−1
i

))
(OMWU)

1Also called Hedge, online mirror descent, dual averaging, FTRL, etc.
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Advantages of OMWU:

1 Closed-form updates

2 Regret bounds logarithmic in the size of payoff matrix

3 Regret bound in Õ(1) in n-player games [DFG21]

4 Õ(1/T ) average convergence to (coarse) correlated
equilibrium in general-sum games [ADF+22]

Best-in class guarantees!
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Notions of convergence

Consider the sequence {x t , y t}t computed by self-play.

Average convergence:

lim
T→+∞

DualGap

(
1

T

T∑
t=1

(x t , y t)

)
= 0.

Seminal results [RS13, SALS15]:
OMWU gives O(1/T ) average convergence in matrix games.

What if computing running averages is too cumbersome?
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Notions of convergence

Consider the sequence {x t , y t}t computed by self-play.

Last-iterate convergence:

lim
T→+∞

DualGap(xT , yT ) = 0.

Best-iterate convergence:

lim
T→+∞

min
t≤T

DualGap(x t , y t) = 0.

Random-iterate convergence:

lim
T→+∞

1

T

T∑
t=1

DualGap(x t , y t) = 0.
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Why do we care about convergence in iterates?

• Computationally cheaper than averaging (think of LLMs)

• Eventually the players sample actions from an equilibrium

• W/o convergence, undesirable recurrence/chaotic behavior

• Practical performance may be better than averaging
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Last-iterate dynamics of OMWU:

• Convergence result without rates [DP19, MLZ+19, HAM21]

• Unique N.E.: linear rate with large constant C > 0 [WLZL21]:

DualGap
(
xT , yT

)
= O

(
C · exp

(
−T

C

))

Problem: C may be arbitrarily large, even for A ∈ [0, 1]2x2!
For δ = min. non-zero probability in N.E., C = Ω

(
exp

(
1
δ

))
Open research questions before our work:
Better rates for last-iterate convergence of OMWU?
What about best-/random-iterate convergence?
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Uniform vs. universal rates:

• Universal rate: depends on T , d1, d2 and payoff matrix A

Example [WLZL21]:

∀A,∃C > 0,DualGap
(
xT , yT

)
= O

(
C · exp

(
−T

C

))

• Uniform rate: depends only on T , d1, d2.

Research question: can we find a function f such that

∃C > 0,∀A,DualGap
(
xT , yT

)
= O (f (C ,T ))
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Our results for OMWU (in blue cells) [CFGC+24, CFGC+25]:

Convergence universal uniform

Last iterate

O
(
C · exp

(
−T

C

))†
Ω
(

1
)

Random iterate O
(

log(C )
1
2 · T−

1
4

)
Ω
( 1

logT

)

Best iterate O(T−
1
6 )‡

Table: †: C := Ω(exp( 1
δ )) with δ > 0 is the min. proba. in N.E.. ‡: This

upper bound only holds for 2× 2 games.
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Our results for OMWU (in blue cells):
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1
6 )‡

Table: †: C := Ω(exp( 1
δ )) with δ > 0 is the min. proba. in N.E.. ‡: This

upper bound only holds for 2× 2 games.

1 Uniform last-iterate rates are impossible

2 Uniform random-iterate rates are no faster than 1/ log(T )

3 Uniform best-iterate rates are polynomial in 1/T
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Example of impossibility result

Theorem (Informal)

Consider two-player zero-sum games with matrix entries in [0, 1],
and d1 and d2 are the number of actions.

For OMWU with constant step size, no function f can satisfy

1. DualGap(xT , yT ) ≤ f (d1, d2,T ) for all T .

2. limT→∞ f (d1, d2,T )→ 0.

Note: for each instance A, DualGap(xT , yT )→ 0 ...
... but we can make this convergence arbitrarily slow!
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A difficult matrix game for OMWU

Consider the matrix game Aδ with 0 < δ < 1/2:

Aδ :=

[
1
2 + δ 1

2

0 1

]

Aδ has a unique N.E., δ-close to the simplex boundary.

Only 2 actions ⇒ dynamics fully described by x t [1], y t [1] ∈ (0, 1)
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Running OMWU on Aδ

(a) Dynamics of OMWU
(b) Dynamics of OMWU (analysis)

In Aδ, a duality gap of c > 0 is attained after Ω
(

1
δ

)
iterations!
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Running OMWU on Aδ

(a) Dynamics of OMWU
(b) Duality gap of last iterate

In Aδ, a duality gap of c > 0 is attained after Ω
(

1
δ

)
iterations!
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Running OMWU on Aδ

(a) Dynamics of OMWU
(b) Dynamics of OMWU (analysis)

Main issue: OMWU does not forget the past quickly enough!
y t+1[1] can only decrease if x t [1] < x?[1].
But the x-player uses all the losses from the past:

x ti ∝ exp

(
−η ·

(
t−1∑
τ=1

`τi + `t−1
i

))
(OMWU)
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Running OMWU on Aδ

Recall δ > 0 captures how close is N.E. to the boundary

100 101 102 103 104

Iteration

10−2

10−1

E
qu

ili
br

iu
m

ga
p

δ = 0.05

100 101 102 103 104

Iteration

δ = 0.01

100 101 102 103 104

Iteration

δ = 0.005

1
Figure: Duality gap of last-iterates produced by OMWU in the game Aδ

for various values of δ.

In Aδ, a duality gap of c > 0 is attained after Ω
(

1
δ

)
iterations!
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Random-iterate performance

(a) Dynamics of OMWU
(b) Dynamics of OMWU (analysis)

In Aδ, after O
(

1
δ log(δ)

)
iterations, the duality gap remains larger

than c > for Ω
(

1
δ

)
iterations!
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Random-iterate performance

(a) Dynamics of OMWU

0 5/δ log(1/δ)

Iteration

10−3

10−2

10−1

Entropy (OMWU)

1

(b) Average Duality gap

Main issue: OMWU does not forget the past quickly enough!
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Time permitting: experiments with other regularizers:
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1
Figure: OFTRL with different regularizers and OGDA in Aδ.

1 OMWU = FTRL with entropy as regularizer.
Pathological behaviors persist with other regularizers!

2 Optimistic Gradient Descent (OGDA, only uses last loss) fixes
the issue
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Time permitting: mixing OMWU and OGD

0.5 1.0
xt[1]

0.0
0.2
0.4
0.6
0.8
1.0

yt [1
]

(OMWU,OMWU)

102

Iteration

10 2

10 1

Eq
ui

lib
riu

m
 g

ap

0.5 1.0
xt[1]

0.0
0.2
0.4
0.6
0.8
1.0

yt [1
]

(OMWU,OGD)

102

Iteration

10 2

10 1

Eq
ui

lib
riu

m
 g

ap
0.5 1.0

xt[1]

0.0
0.2
0.4
0.6
0.8
1.0

yt [1
]

(OGD,OMWU)

101 103

Iteration

10 4

10 3

10 2

10 1

Eq
ui

lib
riu

m
 g

ap

0.5 1.0
xt[1]

0.0
0.2
0.4
0.6
0.8
1.0

yt [1
]

(OGD,OGD)

101 103

Iteration

10 4

10 3

10 2

10 1

Eq
ui

lib
riu

m
 g

ap

⇒ Only one non-forgetful player seems to lead to pathological
behavior!
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Conclusion

• Main result: separation last-/best-/random-iterate
convergence for a widely studied algorithms

• Next steps:
How to alleviate this “pathological behavior”?
Uniform best-iterate conv. rate beyond 2× 2 games?

• More in the two papers:
follow-the-regularized-leader (FTRL) vs. online gradient
descent (OGD)
Papers/slides/code available on my website

Thank you!
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Adaptive stepsizes

Adaptive stepsize [DHS11]: ηt = 1/
√
ε+

∑t−1
k=1 ‖`k‖2
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1Figure: Here δ := 10−2 and adaptive step size with ε = 0.1.
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