
On the interplay between average and

discount optimality in robust MDPs

Julien Grand-Clément (HEC Paris)

Marek Petrik (University of New Hampshire)

Nicolas Vieille (HEC Paris)

ICCOPT 2025

1 / 26



This talk in one slide

Main objective:

Solve (robust) MDPs with average return

Why it’s interesting?

Well-studied for MDPs and stochastic games...

... largely understudied for robust MDPs

Main results:

1. Properties of average optimal policies for robust MDPs

2. Computing average opt. policies by solving discounted problems
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Setup for robust Markov decision process

s s’action
random

transition

Psas′ 

rsarewardcurrent 
state next 

statea

• Finite set of states and actions

• History-dependent policy π ∈ ΠH: maps finite histories to actions

• Transition probabilities P = (Psas′), unknown: P ∈ U

This talk: U convex compact, sa-rectangular:

U = ×(s,a)∈S×AUsa, Usa ⊂ ∆(S)
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Discounted and average returns

Given a policy π ∈ ΠS and some transitions P ∈ U :

Discounted return: for a discount factor γ ∈ [0, 1),

Rγ(π,P) = (1− γ)
∞∑
t=0

γt · Eπ,P [rstat ]

Average return:

RAVG(π,P) = lim
T→+∞

1

T + 1

T∑
t=0

Eπ,P [rstat ]

Hardy-Littlewood: lim
γ→1

Rγ(π,P) = RAVG(π,P)

Blackwell [Bla62]: for γ → 1, discount opt. policies are average opt.
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Main objective in this talk: Find a policy π solving

sup
π∈ΠH

inf
P∈U

RAVG(π,P) (1)

Main difficulties: RAVG is discontinuous, lim/sup/inf may not exist,

Bellman operator not a contraction, no ergodic/unichain assumption...

[GCPV23]: stationary deterministic optimal policies exist for (1).

How to compute average optimal policies?

Sketch of our approach:

• “Optimal discounted policies are average optimal for γ large enough”

• ⇒ “let’s just solve discounted models for γ large enough”
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Definition: The Blackwell discount factor

The Blackwell discount factor γbw ∈ [0, 1) is the smallest discount

factor such that the set of stationary discount optimal policies does not

change for all γ in (γbw, 1).
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Figure 1: Example with three policies a1, a2, a3
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Definition: The Blackwell discount factor

The Blackwell discount factor γbw ∈ [0, 1) is the smallest discount

factor such that the set of stationary discount optimal policies does not

change for all γ in (γbw, 1).

Theorem 5 in [Bla62] 1:

The Blackwell discount factor exists for finite MDPs.

Extension by [Sma66] for finite MDPs:

The interval [0, 1) can be partitioned into finitely many subintervals,

inside which the set of stationary discount optimal policies is constant.

1. Upper bound on γbw for MDPs?

2. Existence and upper bounds for robust MDPs?

1Blackwell proved something slightly weaker
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Bound on the Blackwell discount factor γbw for MDPs

γ 7→ Rγ(π) is a rational function of γ ∈ [0, 1):

Rγ(π) =
poly1(γ)

poly2(γ)

Rγ(π) = Rγ(π′) is a polynomial equation in γ: Q(γ) = 0, and Q(1) = 0

Root separation: [Lag69],[Had93],[Mah62],[Rum79]...

Let Q =
∑n

i=0 aiX
i with ai ∈ Z,maxi |ai | ≤ H and Q(1) = 0.

∃ SEP(n,H) > 0 such that Q(x) 6= 0 for 1− SEP(n,H) < x < 1.

Key property for our application

For γ > 1− SEP(n,H), “discounted returns can’t intersect!”

⇒ γbw ≤ 1− SEP(n,H)

Remains to bound degree/height of Q → use “closed-form” for Rγ(π)
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Main bound on the Blackwell discount factor γbw for MDPs

Theorem [GCP24]

Consider a finite MDP instance with:

• M = maximum rewards and common denominator for transitions

• S = number of states

Then

1− γbw ≥ Ω

(
1

(2M)S2

)
.

Note 1: no assumption on MDP instance (unichain, mixing time, etc.)!

Note 2: MDPs can be solved in Õ (| log(1− γ)|) [Ye05]

⇒ weakly-polytime algorithms for computing average optimal policies.
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The case of robust MDPs

What about robust MDPs?

The Blackwell discount factor exists γbw for U sa-rec. AND:

• [TB07]: based on `∞-ball

• [GGC22]: U polytope

• [WVA+23]: unichain assumption + average optimal policy unique.

Q: Existence of γbw for general sa-rectangular, compact convex U?

11 / 26



Counterexample to existence the Blackwell discount factor γbw

Theorem

The Blackwell discount factor may not exist, even for sa-rectangular

convex compact uncertainty set U .

Long story short: worst-case discounted returns oscillate as γ → 1

Jérôme Bolte, ICCOPT, Monday July 2021 2025:

“Oscillations are always hidden behind monsters”

We construct an instance with one state s and two actions a1, a2 s.t.:

• Action a1 is optimal for γ = 1− 1
2k

• Action a2 is optimal for γ = 1− 1
2k+1

Intuition: the next two functions oscillate and intersect as γ → 1:

γ 7→ min
P∈Usa1

Rγ(a1,P)

γ 7→ min
P∈Usa2

Rγ(a2,P)
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Preventing oscillations with definability

Definable functions [Cos00] (definition and o-minimality: see (2)):

• “Building blocks”: multinomials and exp

• Stable under several operations:

If f , g are definable, then so are f + g , f ◦ g , f × g , f /g ,−f , f −1

• Stable by max and min:

Pointwise max and min of definable functions are definable

• Definable sets = graph of definable functions

Examples: KL divergences, `p norms, Wasserstein distance

Example: Usa = {p ∈ ∆(S) | f (p, p̂) ≤ α} is definable if f is definable

Why do we care?
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Existence the Blackwell discount factor γbw

Definability prevents oscillations:

Monotonicity Lemma

If f : (a, b)→ R is definable, we can partition (a, b) into finitely many

subintervals, in which f is either constant or strictly monotone.

Discounted returns can not oscillate when U is definable:

Lemma

If U is definable, then γ 7→ minP∈U Rγ(π,P) is definable.

Putting everything together:

Theorem

Let U be an sa-rectangular convex compact uncertainty set.

If U is definable, then the Blackwell discount factor γbw exists.

Next question: how to bound γbw away from 1?

14 / 26



Existence the Blackwell discount factor γbw

Definability prevents oscillations:

Monotonicity Lemma

If f : (a, b)→ R is definable, we can partition (a, b) into finitely many

subintervals, in which f is either constant or strictly monotone.

Discounted returns can not oscillate when U is definable:

Lemma

If U is definable, then γ 7→ minP∈U Rγ(π,P) is definable.

Putting everything together:

Theorem

Let U be an sa-rectangular convex compact uncertainty set.

If U is definable, then the Blackwell discount factor γbw exists.

Next question: how to bound γbw away from 1?

14 / 26



Existence the Blackwell discount factor γbw

Definability prevents oscillations:

Monotonicity Lemma

If f : (a, b)→ R is definable, we can partition (a, b) into finitely many

subintervals, in which f is either constant or strictly monotone.

Discounted returns can not oscillate when U is definable:

Lemma

If U is definable, then γ 7→ minP∈U Rγ(π,P) is definable.

Putting everything together:

Theorem

Let U be an sa-rectangular convex compact uncertainty set.

If U is definable, then the Blackwell discount factor γbw exists.

Next question: how to bound γbw away from 1?
14 / 26



Bound on the Blackwell discount factor γbw for robust MDPs

Theorem [GCP24]

Consider a finite MDP instance with U sa-rectangular and:

• M = maximum rewards and common denominator for transitions

• S = number of states

• Usa = `1 or `∞ balls around nominal transition probabilities.

Then

1− γbw ≥ Ω

(
1

(4M)S2

)
.

RMDPs can be solved in Õ
(
(1− γ)−1

)
...

... So we don’t obtain a polytime algorithm!
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Open Questions and Future Work

More in the papers:

Bounding γbw for robust MDPs [GCP24]

A complete treatment of average optimality for sa-rec. RMDPs [GCPV23]

The case of s-rec. RMDPs [GCPV23, GCV25]

A more refined analysis of γbw for stochastic games [GGCK25]

Next steps:

sa-rec. RMDPS: computing average optimal policies?

The case of ε-optimal policies?

Unichain/irreducible, weakly-communicating, absorbing, etc.

Thank you!
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Rigorous definition of definability

Definition: definable set and definable function [Cos00]

A subset of Rn is definable if it is the image, under a canonical

projection Rn+k → Rn that eliminates any set of k variables, of a set of

the form

{x ∈ Rn+k | Poly(x1, ..., xn+k , exp(x1), ..., exp(xn+k)) = 0} (2)

A function is definable if its graph is definable.

Back to main body: slide 14
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Main results in [GCPV23]

Uncertainty set U Discount optimality Average optimality Blackwell optimality

Singleton (MDPs)
stationary,

deterministic

stationary,

deterministic
stationary, deterministic

sa-rectangular, compact
stationary,

deterministic

stationary,

deterministic

• may not exist

• ∃ π stationary deterministic,

π ε-Blackwell optimal, ∀ε > 0

• π also average optimal

sa-rectangular, compact,

definable

stationary,

deterministic

stationary,

deterministic

• stationary, deterministic

• π also average optimal

s-rectangular,

compact convex

stationary,

randomized

• may not exist

• may be history-

dependent,

randomized

may not exist
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Main results in [GCPV23]

Our main results for the average return:

sup
π∈ΠH

inf
P∈U

Eπ,P
[

lim sup
T→+∞

1

T + 1

T∑
t=0

rstatst+1

]
.

1. For sa-rectangular RMDPs:

• Optimality of stationary deterministic policies

• Strong duality (existence of a value)

• “All” optimality criteria (lim inf, lim sup) are equivalent

• Optimal average value = limγ→1 VALγ

2. For s-rectangular RMDPs:

• Non-existence of optimal policies in general

• The Big Match: Markovian policies are optimal

• Optimality criteria are not equivalent
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Main results in [GCPV23]

Our main results for Blackwell optimality:

For sa-rectangular RMDPs:

• Blackwell optimal policies may not exist in general

• ε-Blackwell optimal stationary policies always exist

• Non-Lipschitzness of the discounted value functions as γ → 1

• Definable uncertainty sets ⇒ existence of stationary Blackwell

optimal policies

For s-rectangular RMDPs:

• Blackwell optimal policies may not exist in general
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