On the interplay between average and discount optimality in robust MDPs

Julien Grand-Clément (HEC Paris) Marek Petrik (University of New Hampshire) Nicolas Vieille (HEC Paris)

ICCOPT 2025

This talk in one slide

Main objective:

Solve (robust) MDPs with average return

Why it's interesting?

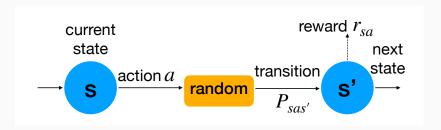
Well-studied for MDPs and stochastic games...

... largely understudied for robust MDPs

Main results:

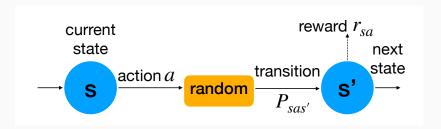
- 1. Properties of average optimal policies for robust MDPs
- 2. Computing average opt. policies by solving discounted problems

Setup for robust Markov decision process



- · Finite set of states and actions
- History-dependent policy $\pi \in \Pi_H$: maps finite histories to actions
- Transition probabilities $P = (P_{sas'})$, unknown: $P \in \mathcal{U}$

Setup for robust Markov decision process



- Finite set of states and actions
- History-dependent policy $\pi \in \Pi_H$: maps finite histories to actions
- Transition probabilities P = (P_{sas'}), unknown: P ∈ U
 This talk: U convex compact, sa-rectangular:

$$\mathcal{U} = imes_{(s,a) \in \mathcal{S} imes \mathcal{A}} \mathcal{U}_{sa}, \quad \mathcal{U}_{sa} \subset \Delta(\mathcal{S})$$

Given a policy $\pi \in \Pi_S$ and some transitions $\mathbf{P} \in \mathcal{U}$:

Discounted return: for a discount factor $\gamma \in [0,1)$,

$$R_{\gamma}(\pi, \mathbf{P}) = (1 - \gamma) \sum_{t=0}^{\infty} \gamma^{t} \cdot \mathbb{E}^{\pi, \mathbf{P}}[r_{s_{t}a_{t}}]$$

Given a policy $\pi \in \Pi_S$ and some transitions $\mathbf{P} \in \mathcal{U}$:

Discounted return: for a discount factor $\gamma \in [0,1)$,

$$R_{\gamma}(\pi, \mathbf{P}) = (1 - \gamma) \sum_{t=0}^{\infty} \gamma^{t} \cdot \mathbb{E}^{\pi, \mathbf{P}}[r_{s_{t}a_{t}}]$$

Average return:

$$R_{\mathsf{AVG}}(\pi, \mathbf{P}) = \lim_{T \to +\infty} \frac{1}{T+1} \sum_{t=0}^{I} \mathbb{E}^{\pi, \mathbf{P}} \left[r_{s_t a_t} \right]$$

Given a policy $\pi \in \Pi_S$ and some transitions $\mathbf{P} \in \mathcal{U}$:

Discounted return: for a discount factor $\gamma \in [0,1)$,

$$R_{\gamma}(\pi, \mathbf{P}) = (1 - \gamma) \sum_{t=0}^{\infty} \gamma^{t} \cdot \mathbb{E}^{\pi, \mathbf{P}}[r_{s_{t}a_{t}}]$$

Average return:

$$R_{\mathsf{AVG}}(\pi, \mathbf{P}) = \lim_{T \to +\infty} \frac{1}{T+1} \sum_{t=0}^{T} \mathbb{E}^{\pi, \mathbf{P}} \left[r_{s_t a_t} \right]$$

 $\mathsf{Hardy\text{-}Littlewood:}\ \lim_{\gamma \to 1} R_{\gamma}(\pi, \textbf{\textit{P}}) = R_{\mathsf{AVG}}(\pi, \textbf{\textit{P}})$

Given a policy $\pi \in \Pi_S$ and some transitions $\mathbf{P} \in \mathcal{U}$:

Discounted return: for a discount factor $\gamma \in [0,1)$,

$$R_{\gamma}(\pi, \mathbf{P}) = (1 - \gamma) \sum_{t=0}^{\infty} \gamma^{t} \cdot \mathbb{E}^{\pi, \mathbf{P}} [r_{s_{t}a_{t}}]$$

Average return:

$$R_{\mathsf{AVG}}(\pi, \mathbf{P}) = \lim_{T \to +\infty} \frac{1}{T+1} \sum_{t=0}^{T} \mathbb{E}^{\pi, \mathbf{P}} [r_{s_t a_t}]$$

Hardy-Littlewood: $\lim_{\gamma \to 1} R_{\gamma}(\pi, \mathbf{P}) = R_{\mathsf{AVG}}(\pi, \mathbf{P})$

Blackwell [Bla62]: for $\gamma \to 1$, discount opt. policies are average opt.

$$\sup_{\pi \in \Pi_{\mathsf{H}}} \inf_{\mathbf{P} \in \mathcal{U}} R_{\mathsf{AVG}}(\pi, \mathbf{P}) \tag{1}$$

$$\sup_{\pi \in \Pi_{\mathbf{H}}} \inf_{\mathbf{P} \in \mathcal{U}} R_{\mathsf{AVG}}(\pi, \mathbf{P}) \tag{1}$$

Main difficulties: R_{AVG} is discontinuous, lim/sup/inf may not exist, Bellman operator not a contraction, no ergodic/unichain assumption...

$$\sup_{\pi \in \Pi_{\mathbf{H}}} \inf_{\mathbf{P} \in \mathcal{U}} R_{\mathsf{AVG}}(\pi, \mathbf{P}) \tag{1}$$

Main difficulties: R_{AVG} is discontinuous, lim/sup/inf may not exist, Bellman operator not a contraction, no ergodic/unichain assumption...

[GCPV23]: stationary deterministic optimal policies exist for (1).

How to compute average optimal policies?

$$\sup_{\pi \in \Pi_{\mathsf{H}}} \inf_{\mathbf{P} \in \mathcal{U}} R_{\mathsf{AVG}}(\pi, \mathbf{P}) \tag{1}$$

Main difficulties: R_{AVG} is discontinuous, lim/sup/inf may not exist, Bellman operator not a contraction, no ergodic/unichain assumption...

[GCPV23]: stationary deterministic optimal policies exist for (1).

How to compute average optimal policies?

Sketch of our approach:

- "Optimal discounted policies are average optimal for γ large enough"
- \Rightarrow "let's just solve discounted models for γ large enough"

The Blackwell discount factor $\gamma_{bw} \in [0,1)$ is the smallest discount factor such that the set of stationary discount optimal policies does not change for all γ in $(\gamma_{bw},1)$.

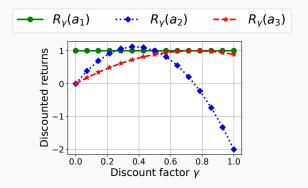


Figure 1: Example with three policies a_1, a_2, a_3

The Blackwell discount factor $\gamma_{bw} \in [0,1)$ is the smallest discount factor such that the set of stationary discount optimal policies does not change for all γ in $(\gamma_{bw},1)$.

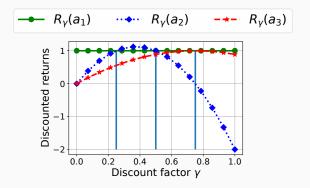


Figure 2: Example with three policies a_1, a_2, a_3

The Blackwell discount factor $\gamma_{bw} \in [0,1)$ is the smallest discount factor such that the set of stationary discount optimal policies does not change for all γ in $(\gamma_{bw},1)$.

Theorem 5 in [Bla62] 1:

The Blackwell discount factor exists for finite MDPs.

Extension by [Sma66] for finite MDPs:

The interval [0,1) can be partitioned into finitely many subintervals, inside which the set of stationary discount optimal policies is constant.

¹Blackwell proved something slightly weaker

The Blackwell discount factor $\gamma_{\rm bw} \in [0,1)$ is the smallest discount factor such that the set of stationary discount optimal policies does not change for all γ in $(\gamma_{\rm bw},1)$.

Theorem 5 in [Bla62] 1:

The Blackwell discount factor exists for finite MDPs.

Extension by [Sma66] for finite MDPs:

The interval [0,1) can be partitioned into finitely many subintervals, inside which the set of stationary discount optimal policies is constant.

- 1. Upper bound on $\gamma_{\rm bw}$ for MDPs?
- 2. Existence and upper bounds for robust MDPs?

¹Blackwell proved something slightly weaker

$$\gamma \mapsto R_{\gamma}(\pi)$$
 is a rational function of $\gamma \in [0,1)$:

$$R_{\gamma}(\pi) = \frac{\mathsf{poly}_1(\gamma)}{\mathsf{poly}_2(\gamma)}$$

 $\gamma \mapsto R_{\gamma}(\pi)$ is a rational function of $\gamma \in [0,1)$:

$$R_{\gamma}(\pi) = \frac{\mathsf{poly}_1(\gamma)}{\mathsf{poly}_2(\gamma)}$$

$$R_{\gamma}(\pi)=R_{\gamma}(\pi')$$
 is a polynomial equation in $\gamma\colon Q(\gamma)=0$, and $Q(1)=0$

 $\gamma \mapsto R_{\gamma}(\pi)$ is a rational function of $\gamma \in [0,1)$:

$$R_{\gamma}(\pi) = \frac{\mathsf{poly}_1(\gamma)}{\mathsf{poly}_2(\gamma)}$$

 $R_{\gamma}(\pi)=R_{\gamma}(\pi')$ is a polynomial equation in $\gamma\colon Q(\gamma)=0$, and Q(1)=0

Root separation: [Lag69],[Had93],[Mah62],[Rum79]...

 $\gamma \mapsto R_{\gamma}(\pi)$ is a rational function of $\gamma \in [0,1)$:

$$R_{\gamma}(\pi) = \frac{\mathsf{poly}_1(\gamma)}{\mathsf{poly}_2(\gamma)}$$

 $R_{\gamma}(\pi)=R_{\gamma}(\pi')$ is a polynomial equation in $\gamma\colon Q(\gamma)=0$, and Q(1)=0

Root separation: [Lag69],[Had93],[Mah62],[Rum79]...

Let $Q = \sum_{i=0}^{n} a_i X^i$ with $a_i \in \mathbb{Z}, \max_i |a_i| \leq H$ and Q(1) = 0.

 $\exists \ \mathsf{SEP}(n,H) > 0 \ \mathsf{such that} \ Q(x) \neq 0 \ \mathsf{for} \ 1 - \mathsf{SEP}(n,H) < x < 1.$

 $\gamma \mapsto R_{\gamma}(\pi)$ is a rational function of $\gamma \in [0,1)$:

$$R_{\gamma}(\pi) = \frac{\mathsf{poly}_1(\gamma)}{\mathsf{poly}_2(\gamma)}$$

 $R_{\gamma}(\pi)=R_{\gamma}(\pi')$ is a polynomial equation in $\gamma\colon Q(\gamma)=0$, and Q(1)=0

Root separation: [Lag69],[Had93],[Mah62],[Rum79]...

Let $Q = \sum_{i=0}^{n} a_i X^i$ with $a_i \in \mathbb{Z}$, $\max_i |a_i| \le H$ and Q(1) = 0.

 $\exists \ \mathsf{SEP}(n,H) > 0 \ \mathsf{such that} \ Q(x) \neq 0 \ \mathsf{for} \ 1 - \mathsf{SEP}(n,H) < x < 1.$

Key property for our application

For $\gamma > 1 - SEP(n, H)$, "discounted returns can't intersect!"

 $\gamma \mapsto R_{\gamma}(\pi)$ is a rational function of $\gamma \in [0,1)$:

$$R_{\gamma}(\pi) = \frac{\mathsf{poly}_1(\gamma)}{\mathsf{poly}_2(\gamma)}$$

 $R_{\gamma}(\pi)=R_{\gamma}(\pi')$ is a polynomial equation in $\gamma\colon Q(\gamma)=0$, and Q(1)=0

Root separation: [Lag69],[Had93],[Mah62],[Rum79]...

Let $Q = \sum_{i=0}^{n} a_i X^i$ with $a_i \in \mathbb{Z}$, $\max_i |a_i| \le H$ and Q(1) = 0.

 $\exists \ \mathsf{SEP}(n,H) > 0 \ \mathsf{such that} \ Q(x) \neq 0 \ \mathsf{for} \ 1 - \mathsf{SEP}(n,H) < x < 1.$

Key property for our application

For $\gamma > 1 - SEP(n, H)$, "discounted returns can't intersect!"

$$\Rightarrow \gamma_{\mathsf{bw}} \leq 1 - \mathsf{SEP}(n, H)$$

 $\gamma \mapsto R_{\gamma}(\pi)$ is a rational function of $\gamma \in [0,1)$:

$$R_{\gamma}(\pi) = \frac{\mathsf{poly}_1(\gamma)}{\mathsf{poly}_2(\gamma)}$$

 $R_{\gamma}(\pi)=R_{\gamma}(\pi')$ is a polynomial equation in $\gamma\colon\thinspace Q(\gamma)=0$, and Q(1)=0

Root separation: [Lag69],[Had93],[Mah62],[Rum79]...

Let $Q = \sum_{i=0}^{n} a_i X^i$ with $a_i \in \mathbb{Z}$, $\max_i |a_i| \le H$ and Q(1) = 0.

 $\exists \ \mathsf{SEP}(n,H) > 0 \ \mathsf{such that} \ Q(x) \neq 0 \ \mathsf{for} \ 1 - \mathsf{SEP}(n,H) < x < 1.$

Key property for our application

For $\gamma > 1 - \mathsf{SEP}(n, H)$, "discounted returns can't intersect!"

$$\Rightarrow \gamma_{\mathsf{bw}} \leq 1 - \mathsf{SEP}(n, H)$$

Remains to bound degree/height of Q o use "closed-form" for $R_\gamma(\pi)$

Theorem [GCP24]

Consider a finite MDP instance with:

- M = maximum rewards and common denominator for transitions
- S = number of states

Then

$$1 - \gamma_{\mathsf{bw}} \geq \Omega\left(rac{1}{(2M)^{S^2}}
ight).$$

Theorem [GCP24]

Consider a finite MDP instance with:

- M = maximum rewards and common denominator for transitions
- S = number of states

Then

$$1-\gamma_{\mathsf{bw}} \geq \Omega\left(rac{1}{(2\mathit{M})^{\mathcal{S}^2}}
ight).$$

Note 1: no assumption on MDP instance (unichain, mixing time, etc.)!

Theorem [GCP24]

Consider a finite MDP instance with:

- M = maximum rewards and common denominator for transitions
- S = number of states

Then

$$1 - \gamma_{\mathsf{bw}} \geq \Omega\left(rac{1}{(2\mathit{M})^{\mathit{S}^2}}
ight).$$

Note 1: no assumption on MDP instance (unichain, mixing time, etc.)!

Note 2: MDPs can be solved in $\tilde{O}(|\log(1-\gamma)|)$ [Ye05]

 \Rightarrow weakly-polytime algorithms for computing average optimal policies.

The case of robust MDPs

What about robust MDPs?

The Blackwell discount factor exists γ_{bw} for \mathcal{U} sa-rec. AND:

- [TB07]: based on ℓ_{∞} -ball
- [GGC22]: *U* polytope
- [WVA⁺23]: unichain assumption + average optimal policy unique.

Q: Existence of γ_{bw} for general sa-rectangular, compact convex \mathcal{U} ?

Counterexample to existence the Blackwell discount factor $\gamma_{\rm bw}$

Theorem

The Blackwell discount factor may not exist, even for sa-rectangular convex compact uncertainty set \mathcal{U} .

Long story short: worst-case discounted returns oscillate as $\gamma o 1$

Counterexample to existence the Blackwell discount factor $\gamma_{\rm bw}$

Theorem

The Blackwell discount factor **may not exist**, even for sa-rectangular convex compact uncertainty set \mathcal{U} .

Long story short: worst-case discounted returns oscillate as $\gamma \to 1$

Jérôme Bolte, ICCOPT, Monday July 2021 2025:

"Oscillations are always hidden behind monsters"

Counterexample to existence the Blackwell discount factor $\gamma_{\rm bw}$

Theorem

The Blackwell discount factor **may not exist**, even for sa-rectangular convex compact uncertainty set \mathcal{U} .

Long story short: worst-case discounted returns oscillate as $\gamma o 1$

Jérôme Bolte, ICCOPT, Monday July 2021 2025:

"Oscillations are always hidden behind monsters"

We construct an instance with one state s and two actions a_1, a_2 s.t.:

- Action a_1 is optimal for $\gamma=1-\frac{1}{2k}$
- Action a_2 is optimal for $\gamma = 1 \frac{1}{2k+1}$

Counterexample to existence the Blackwell discount factor γ_{bw}

Theorem

The Blackwell discount factor **may not exist**, even for sa-rectangular convex compact uncertainty set \mathcal{U} .

Long story short: worst-case discounted returns oscillate as $\gamma o 1$

Jérôme Bolte, ICCOPT, Monday July 2021 2025:

"Oscillations are always hidden behind monsters"

We construct an instance with one state s and two actions a_1, a_2 s.t.:

- Action a_1 is optimal for $\gamma = 1 \frac{1}{2k}$
- Action a_2 is optimal for $\gamma = 1 \frac{1}{2k+1}$

Intuition: the next two functions oscillate and intersect as $\gamma \to 1$:

$$\gamma \mapsto \min_{oldsymbol{P} \in \mathcal{U}_{sa_1}} R_{\gamma}(a_1, oldsymbol{P})$$

$$\gamma \mapsto \min_{oldsymbol{P} \in \mathcal{U}_{sa_2}} R_{\gamma}(a_2, oldsymbol{P})$$

Preventing oscillations with definability

Definable functions [Cos00] (definition and o-minimality: see (2)):

- "Building blocks": multinomials and exp
- Stable under several operations: If f, g are definable, then so are $f + g, f \circ g, f \times g, f/g, -f, f^{-1}$
- Stable by max and min:
 Pointwise max and min of definable functions are definable
- Definable sets = graph of definable functions

Preventing oscillations with definability

Definable functions [Cos00] (definition and o-minimality: see (2)):

- "Building blocks": multinomials and exp
- Stable under several operations: If f, g are definable, then so are $f + g, f \circ g, f \times g, f/g, -f, f^{-1}$
- Stable by max and min:
 Pointwise max and min of definable functions are definable
- Definable sets = graph of definable functions

Examples: KL divergences, ℓ_p norms, Wasserstein distance

Preventing oscillations with definability

Definable functions [Cos00] (definition and o-minimality: see (2)):

- "Building blocks": multinomials and exp
- Stable under several operations: If f,g are definable, then so are $f+g,f\circ g,f\times g,f/g,-f,f^{-1}$
- Stable by max and min:
 Pointwise max and min of definable functions are definable
- Definable sets = graph of definable functions

Examples: KL divergences, ℓ_p norms, Wasserstein distance

Example: $U_{sa} = \{ \boldsymbol{p} \in \Delta(\mathcal{S}) \mid f(\boldsymbol{p}, \hat{\boldsymbol{p}}) \leq \alpha \}$ is definable if f is definable

Why do we care?

Existence the Blackwell discount factor γ_{bw}

Definability prevents oscillations:

Monotonicity Lemma

If $f:(a,b)\to\mathbb{R}$ is definable, we can partition (a,b) into *finitely* many subintervals, in which f is either constant or strictly monotone.

Discounted returns can not oscillate when $\mathcal U$ is definable:

Lemma

If \mathcal{U} is definable, then $\gamma \mapsto \min_{\mathbf{P} \in \mathcal{U}} R_{\gamma}(\pi, \mathbf{P})$ is definable.

Existence the Blackwell discount factor γ_{bw}

Definability prevents oscillations:

Monotonicity Lemma

If $f:(a,b)\to\mathbb{R}$ is definable, we can partition (a,b) into *finitely* many subintervals, in which f is either constant or strictly monotone.

Discounted returns can not oscillate when \mathcal{U} is definable:

Lemma

If \mathcal{U} is definable, then $\gamma \mapsto \min_{\mathbf{P} \in \mathcal{U}} R_{\gamma}(\pi, \mathbf{P})$ is definable.

Putting everything together:

Theorem

Let ${\mathcal U}$ be an sa-rectangular convex compact uncertainty set.

If \mathcal{U} is definable, then the Blackwell discount factor γ_{bw} exists.

Existence the Blackwell discount factor γ_{bw}

Definability prevents oscillations:

Monotonicity Lemma

If $f:(a,b)\to\mathbb{R}$ is definable, we can partition (a,b) into *finitely* many subintervals, in which f is either constant or strictly monotone.

Discounted returns can not oscillate when \mathcal{U} is definable:

Lemma

If \mathcal{U} is definable, then $\gamma \mapsto \min_{\mathbf{P} \in \mathcal{U}} R_{\gamma}(\pi, \mathbf{P})$ is definable.

Putting everything together:

Theorem

Let $\mathcal U$ be an sa-rectangular convex compact uncertainty set.

If $\mathcal U$ is definable, then the Blackwell discount factor γ_{bw} exists.

Next question: how to bound γ_{bw} away from 1?

Bound on the Blackwell discount factor γ_{bw} for robust MDPs

Theorem [GCP24]

Consider a finite MDP instance with \mathcal{U} sa-rectangular and:

- M = maximum rewards and common denominator for transitions
- S = number of states
- $\mathcal{U}_{\mathsf{sa}} = \ell_1$ or ℓ_∞ balls around nominal transition probabilities.

Then

$$1 - \gamma_{\mathsf{bw}} \geq \Omega\left(rac{1}{(4M)^{S^2}}
ight).$$

Bound on the Blackwell discount factor γ_{bw} for robust MDPs

Theorem [GCP24]

Consider a finite MDP instance with \mathcal{U} sa-rectangular and:

- M = maximum rewards and common denominator for transitions
- S = number of states
- $\mathcal{U}_{\mathsf{sa}} = \ell_1$ or ℓ_∞ balls around nominal transition probabilities.

Then

$$1 - \gamma_{\mathsf{bw}} \geq \Omega\left(rac{1}{(4M)^{\mathcal{S}^2}}
ight).$$

RMDPs can be solved in $\tilde{O}((1-\gamma)^{-1})...$

... So we don't obtain a polytime algorithm!

Open Questions and Future Work

More in the papers:

Bounding γ_{bw} for robust MDPs [GCP24]

A complete treatment of average optimality for sa-rec. RMDPs [GCPV23]

The case of s-rec. RMDPs [GCPV23, GCV25]

A more refined analysis of $\gamma_{\rm bw}$ for stochastic games [GGCK25]

Next steps:

sa-rec. RMDPS: computing average optimal policies?

The case of ϵ -optimal policies?

Unichain/irreducible, weakly-communicating, absorbing, etc.

Open Questions and Future Work

More in the papers:

Bounding $\gamma_{\rm bw}$ for robust MDPs [GCP24]

A complete treatment of average optimality for sa-rec. RMDPs [GCPV23]

The case of s-rec. RMDPs [GCPV23, GCV25]

A more refined analysis of $\gamma_{\rm bw}$ for stochastic games [GGCK25]

Next steps:

sa-rec. RMDPS: computing average optimal policies?

The case of ϵ -optimal policies?

Unichain/irreducible, weakly-communicating, absorbing, etc.

Thank you!

References i

David Blackwell.

Discrete dynamic programming.

The Annals of Mathematical Statistics, pages 719–726, 1962.

Michel Coste.

An introduction to o-minimal geometry.

Istituti editoriali e poligrafici internazionali Pisa, 2000.

Julien Grand-Clément and Marek Petrik.

Reducing blackwell and average optimality to discounted mdps via the blackwell discount factor.

Advances in Neural Information Processing Systems, 36, 2024.

Julien Grand-Clement, Marek Petrik, and Nicolas Vieille.

Beyond discounted returns: Robust markov decision processes with average and blackwell optimality.

arXiv preprint arXiv:2312.03618, 2023.

References ii

Julien Grand-Clément and Nicolas Vieille.

Playing against a stationary opponent.

arXiv preprint arXiv:2503.15346, 2025.

Vineet Goyal and Julien Grand-Clément.

Robust Markov decision processes: Beyond rectangularity.

Mathematics of Operations Research, 2022.

Stéphane Gaubert, Julien Grand-Clément, and Ricardo D Katz.

Thresholds for sensitive optimality and blackwell optimality in stochastic games.

arXiv preprint arXiv:2506.18545, 2025.

J. Hadamard.

Etude sur les propriétés des fonctions entières et en particulier d'une fonction considéré par Riemann.

Journal de Mathématiques Pures et Appliquées, 58:171–215, 1893.

References iii

G. Ivengar.

Robust dynamic programming.

Mathematics of Operations Research, 30(2):257–280, 2005.

J. L. Lagrange.

Sur la résolution des équations numériques.

Mémoires de l'Académie royale des Sciences et Belles-Lettres de Berlin, XXIII, 1769.

K. Mahler.

On some inequalities for polynomials in several variables.

J. London Math. Soc, 37(1):341–344, 1962.

M. Mignotte and M. Waldschmidt.

On algebraic numbers of small height: linear forms in one logarithm.

Journal of Number Theory, 47(1):43-62, 1994.

References iv

A. Nilim and L. El Ghaoui.

Robust control of Markov decision processes with uncertain transition probabilities.

Operations Research, 53(5):780-798, 2005.

Siegfried M Rump.

Polynomial minimum root separation.

Mathematics of Computation, 33(145):327–336, 1979.

Richard D Smallwood.

Optimum policy regions for markov processes with discounting.

Operations Research, 14(4):658–669, 1966.

References v

Ambuj Tewari and Peter L Bartlett.

Bounded parameter Markov decision processes with average reward criterion.

In International Conference on Computational Learning Theory, pages 263-277. Springer, 2007.

Yue Wang, Alvaro Velasquez, George Atia, Ashley Prater-Bennette, and Shaofeng Zou.

Robust average-reward markov decision processes.

In Proceedings of the AAAI Conference on Artificial Intelligence. volume 37, pages 15215-15223, 2023.

C. K. Yap.

Fundamental problems of algorithmic algebra, volume 49. Oxford University Press Oxford, 2000.

References vi

Y. Ye.

A new complexity result on solving the Markov decision problem.

Mathematics of Operations Research, 30(3):733-749, 2005.

Rigorous definition of definability

Definition: definable set and definable function [Cos00]

A subset of \mathbb{R}^n is *definable* if it is the image, under a canonical projection $\mathbb{R}^{n+k} \to \mathbb{R}^n$ that eliminates any set of k variables, of a set of the form

$$\{x \in \mathbb{R}^{n+k} \mid \mathsf{Poly}(x_1, ..., x_{n+k}, \mathsf{exp}(x_1), ..., \mathsf{exp}(x_{n+k})) = 0\}$$
 (2)

A function is definable if its graph is definable.

Back to main body: slide 14

Uncertainty set ${\cal U}$	Discount optimality	Average optimality	Blackwell optimality
Singleton (MDPs)	stationary, deterministic	stationary, deterministic	stationary, deterministic
sa-rectangular, compact	stationary, deterministic	stationary, deterministic	$ \begin{tabular}{ll} \bullet & {\rm may \ not \ exist} \\ \bullet & \exists \ \pi \ {\rm stationary \ deterministic}, \\ \pi & \epsilon\text{-Blackwell optimal}, \ \forall \epsilon > 0 \\ \bullet & \pi \ {\rm also \ average \ optimal} \\ \end{tabular} $
sa-rectangular, compact, definable	stationary, deterministic	stationary, deterministic	 stationary, deterministic π also average optimal
s-rectangular, compact convex	stationary, randomized	may not exist may be history-dependent, randomized	may not exist

Our main results for the average return:

$$\sup_{\pi \in \Pi_{\mathsf{H}}} \inf_{\mathbf{P} \in \mathcal{U}} \quad \mathbb{E}^{\pi, \mathbf{P}} \left[\limsup_{T \to +\infty} \frac{1}{T+1} \sum_{t=0}^{T} r_{s_t a_t s_{t+1}} \right].$$

- 1. For sa-rectangular RMDPs:
 - · Optimality of stationary deterministic policies
 - Strong duality (existence of a value)
 - "All" optimality criteria (lim inf, lim sup) are equivalent
 - ullet Optimal average value $=\lim_{\gamma o 1} \mathsf{VAL}_{\gamma}$

Our main results for the average return:

$$\sup_{\pi \in \Pi_{\mathsf{H}}} \inf_{\mathbf{\textit{P}} \in \mathcal{U}} \quad \mathbb{E}^{\pi,\mathbf{\textit{P}}} \left[\limsup_{T \to +\infty} \frac{1}{T+1} \sum_{t=0}^{T} r_{s_t a_t s_{t+1}} \right].$$

1. For sa-rectangular RMDPs:

- · Optimality of stationary deterministic policies
- Strong duality (existence of a value)
- "All" optimality criteria (lim inf, lim sup) are equivalent
- ullet Optimal average value $=\lim_{\gamma o 1} \mathsf{VAL}_{\gamma}$

2. For s-rectangular RMDPs:

- Non-existence of optimal policies in general
- The Big Match: Markovian policies are optimal
- Optimality criteria are not equivalent

Our main results for Blackwell optimality:

For sa-rectangular RMDPs:

- Blackwell optimal policies may not exist in general
- ϵ -Blackwell optimal stationary policies always exist
- ullet Non-Lipschitzness of the discounted value functions as $\gamma o 1$
- Definable uncertainty sets ⇒ existence of stationary Blackwell optimal policies

For s-rectangular RMDPs:

• Blackwell optimal policies may not exist in general