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This talk in one slide

Research question:

Which models of uncertainty sets lead to tractable robust MDPs?

Why it’s interesting?
Many models: s-rec., sa-rec., r-rec., d-rec., k-rec., (§,n)-rec., etc.

with different properties/proofs, no principled way to check tractability
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Research question:

Which models of uncertainty sets lead to tractable robust MDPs?

Why it’s interesting?
Many models: s-rec., sa-rec., r-rec., d-rec., k-rec., (§,n)-rec., etc.

with different properties/proofs, no principled way to check tractability
Main novelty: necessary and sufficient condition for tractability

Main results:

1. Only s-rectangular models are tractable in all generality!

2. We uncover many weakly tractable models, “by design”
3. Unified analysis of “tractability” for different models of uncertainty
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Setup for robust Markov decision process

current reward 7
state next
actiona transition state
- random -
Psas’

® Finite set of states and actions: S, A

Initial distribution over the states p € A(S)
® Rewards rq,s for current state-action (s, a) and next state s’

® Transition proba. P = (Ps,s ), unknown: P € P, convex compact

History-dependent policy 7 € My: maps all finite histories to A(.A)
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Objective for robust MDPs

Discounted value function: v™F € RS defined as
o0
P P _
vioP o = ET lz YV rsapsess | S0 = s] ,VseS.
=0

Main objective of RMDPs: Solve
. T, mP
sup inf pu v™
TeMy peP
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Objective for robust MDPs

Discounted value function: v™F € RS defined as
o0
P P _
vioP o = ET lz YV rsapsess | S0 = s] ,VseS.
=0

Main objective of RMDPs: Solve

sup inf p'v™P

TeMy peP

Theorem [LT07, WKR13, GBZ 18]
In all generality:
* Deciding minpep pu ' v™P > o is NP-hard.

® Optimal policies may need to be history-dependent

When are RMDPs “tractable” ?

Stationary/deterministic policies, algos for min and sup inf problems...
PcP 7€My PcP
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Rectangularity

“The adversary chooses Ps,s independently across different s":

P = XSGSPS7 Ps = (Psas’)as’ C A(S)A
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“The adversary chooses Ps,s independently across different s":

P = XSGSPS7 Ps = (Psas’)as’ C A(S)A

N

Example 1: P s-rectangular, based on /..-distance from nominal P:

P= {(Psa) | |Psas’ - ISsas" < E,V (S, a, S/)}
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Rectangularity

“The adversary chooses Ps,s: independently across different s”:

P = XSESP57 Ps = (Psas’)as’ C A(S)A

Example 2: P non rectangular, based on ¢;-distance from nominal P:

Z ‘Psas’ */Ssas’| SE}

sas
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Rectangularity

“The adversary chooses Ps,s: independently across different s”:

P = XSESPSa 7)5 - (Psas’)as’ C A(S)A

Example 3: P non rectangular, based on underlying factors:

1 1
P = {(Psa) |Psa: §W1+§W27

(w!, w?) e W x W2},
WL W2 C A(S)
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Properties of optimal policies [WKR13]
For P s-rec. convex compact, there exists stationary optimal policies.
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2 T, 7P T,,7
mnp' vl =p u
PeP

8/16



Properties of optimal policies [WKR13]

For P s-rec. convex compact, there exists stationary optimal policies.
An appealing property of s-rectangular models:

the policy evaluation problem can be solved by dynamic programming:

,P T,,7
min v™ u
PEPM —H

with u™ the unique fixed-point of the worst-case Bellman operator:

:—manwsa (rea+~yu™),VseS.
acA
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But there are other models in the literature!
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But there are other models in the literature!
® rrec. [GBZ118, GGC22]:
P, = Wu,,, W = (W', ..., w") € X;c(qW', us, fixed

® (&,m)-rec. [HMDL24]: r-rec. + u's can vary too
® d-rec. [MLB'22]: r-rec. with finite horizon + copies of states

® k-rec. [MMX16]: finite horizon, transitions can change max. k times

Some of these are “tractable”, some are not, for some we don’t know...

Can we find a necessary and sufficient condition for tractability?
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Definition: s-tractability
An uncertainty set P is s-tractable if, for any parameters:

any rewards (rss ), discount factor v € [0, 1), initial distribution g,

the policy evaluation problem can be solved by dynamic programming:

. T, P T,
P _ 1
min g v pou (1)
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. T, P T,
g e 1
min g v pu (1)

with u™ the unique fixed-point of the worst-case Bellman operator:
. T
ul = min Z TeaPgy (Fsa +yu™) Vs € S.

s
acA

Note in (1): LHS = global min. over P + non-linear objective

RHS = state-wise minimization, linear objectives
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the policy evaluation problem can be solved by dynamic programming:

. T, P T,
g e 1
min g v pu (1)

with u™ the unique fixed-point of the worst-case Bellman operator:

- T
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a
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Definition: s-tractability
An uncertainty set P is s-tractable if, for any parameters:

any rewards (rss ), discount factor v € [0, 1), initial distribution g,

the policy evaluation problem can be solved by dynamic programming:

. T, P T,
g e 1
min g v pu (1)

with u™ the unique fixed-point of the worst-case Bellman operator:

- T
ul = min EE;WSQPSQ (rea +yu™),VsesS.
a

Note in (1): LHS = global min. over P + non-linear objective
RHS = state-wise minimization, linear objectives

= u” is worst-case value function for s-rectangular extension of P

Necessary and sufficient condition for s-tractability?
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Theorem

Assume that P is convex compact. Then

‘P is s-tractable if and only P is s-rectangular.
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Theorem

Assume that P is convex compact. Then

‘P is s-tractable if and only P is s-rectangular.

Proof sketch:

@ Goal: P is a Cartesian product over s

® P convex = P = conv(ext(P))

© If we show ext(P) is s-rectangular, then P is s-rectangular
O ext(P) is recovered by minimizing linear forms over P

© s-tractable = minimizing linear forms over P for each s € S
recovers a kernel in P
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Weakly tractable models

Note that r-rec. models are not s-tractable in all generality!
But [GBZ118, GGC22] show “tractability” of r-rectangular models...

= some additional assumptions in the rewards!
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Weakly tractable models

Note that r-rec. models are not s-tractable in all generality!
But [GBZ118, GGC22] show “tractability” of r-rectangular models...

= some additional assumptions in the rewards!

P is weakly s-tractable if it is s-tractable, under the additional
assumption that the rewards do not depend on the next states:

/
I'sas’ = rsa7v57 a,s.

1. What are the implications of weak tractability?
2. Necessary and sufficient condition for weak tractability?

3. Other weakly tractable models than r-rec.?
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Implications of weak s-tractability:

TTrP(

@ We can efficiently solve gﬂn I DP + convex program)

® We can efficiently solve max min pu' v™P

wels PEP
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Implications of weak s-tractability:

TTrP(

@ We can efficiently solve gﬂn I DP + convex program)

® We can efficiently solve max min pu' v™P

wels PEP

Additional implications for P convex:

@ Optimality of stationary policies
® We can efficiently solve sup min ' v™P
meny PEP

© Equivalence between stationary and non-stationary adversaries

,P T,,7

An important point: P weakly tractable = minpep pu' v P = pTu”...

. with u™ = fixed-point for the s-rectangular extension!

So non-rectangularity is “useless” if P is weakly tractable
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Necessary and sufficient condition for weak tractability

The following statements are equivalent:

@ P is weakly s-tractable
@ the Weak Simultaneous Solvability Property (Weak SSP) holds:

Y (7, V) € Ms x RS, Nyes arg min (Ps, V1) #0  (Weak SSP)

Weak SSP <= we can optimize linear forms over P independently over
s, but objective = rank one matrices
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@ P is weakly s-tractable
@ the Weak Simultaneous Solvability Property (Weak SSP) holds:

Y (7, V) € Ms x RS, Nyes arg min (Po, V1) #0 (Weak SSP)

Weak SSP <= we can optimize linear forms over P independently over
s, but objective = rank one matrices

Which models of uncertainty are weakly s-tractable?
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V (7, V) € Mg x RS, Nyes arg ,gneigZTrsaPsTaV #0.  (Weak SSP)
s,a

Many models of uncertainty are weakly s-tractable:

@ s-rec. works

@ r-rec. works: Py, = Wug, = PLV =u W'V

©® P = P; x P> such that Py is r-rec. and P is s-rec.

@ (&, n)-rec. works: Ps; = Wug,, W and u in Cartesian product set

@ Other models in the paper; what's important is the unified analysis

But non-rectangularity appears useless!
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Discussion and conclusion

Take-aways:

@ The case for s-rectangular uncertainty sets:
- Other models are not *always* tractable
- Nonrectangular models “bring down" to rectangular extensions
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Discussion and conclusion

Take-aways:

@ The case for s-rectangular uncertainty sets:
- Other models are not *always* tractable
- Nonrectangular models “bring down" to rectangular extensions

® Change of paradigm for the design of uncertainty sets:
Weak SSP “by design” =- tractability “for free"

©® "Hardness” of sup min lies in min
reny PEP PeP

e.g. r-rec.: [GBZ118] then [GGC22]
Next steps:
® Beyond dynamic programming: gradient based-methods?

More in the paper + if you are interested in this topic:
Yan Li and Alexander Shapiro: Rectangularity and duality of DRMDPs

Thank you!
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