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This talk in one slide

Research question:

Which models of uncertainty sets lead to tractable robust MDPs?

Why it’s interesting?

Many models: s-rec., sa-rec., r-rec., d-rec., k-rec., (ξ, η)-rec., etc.

with different properties/proofs, no principled way to check tractability

Main novelty: necessary and sufficient condition for tractability

Main results:

1. Only s-rectangular models are tractable in all generality!

2. We uncover many weakly tractable models, “by design”

3. Unified analysis of “tractability” for different models of uncertainty
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Setup for robust Markov decision process

s s’action
random

transition

Psas′ 

rsas′ 
rewardcurrent 

state next 
statea

• Finite set of states and actions: S,A
• Initial distribution over the states µ ∈ ∆(S)

• Rewards rsas′ for current state-action (s, a) and next state s ′

• Transition proba. P = (Psas′), unknown: P ∈ P, convex compact

• History-dependent policy π ∈ ΠH: maps all finite histories to ∆(A)
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Objective for robust MDPs

Discounted value function: vπ,P ∈ RS defined as

vπ,Ps = Eπ,P
[ ∞∑
t=0

γtrstatst+1 | s0 = s

]
,∀ s ∈ S.

Main objective of RMDPs: Solve

sup
π∈ΠH

inf
P∈P

µ>vπ,P

Theorem [LT07, WKR13, GBZ+18]

In all generality:

• Deciding minP∈P µ>vπ,P ≥ α is NP-hard.

• Optimal policies may need to be history-dependent

When are RMDPs “tractable”?

Stationary/deterministic policies, algos for min
P∈P

and sup
π∈ΠH

inf
P∈P

problems...
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Rectangularity

s-rectangularity [WKR13]

“The adversary chooses Psas′ independently across different s”:

P = ×s∈SPs , Ps = (Psas′)as′ ⊂ ∆(S)A

Example 1: P s-rectangular, based on `∞-distance from nominal P̂:

P = {(Psa) | |Psas′ − P̂sas′ | ≤ ε,∀ (s, a, s ′)}
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Rectangularity

s-rectangularity [WKR13]

“The adversary chooses Psas′ independently across different s”:

P = ×s∈SPs , Ps = (Psas′)as′ ⊂ ∆(S)A

Example 2: P non rectangular, based on `1-distance from nominal P̂:

P = {(Psa) |
∑

(s,a,s′)

|Psas′ − P̂sas′ | ≤ ε}
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Rectangularity

s-rectangularity [WKR13]

“The adversary chooses Psas′ independently across different s”:

P = ×s∈SPs , Ps = (Psas′)as′ ⊂ ∆(S)A

Example 3: P non rectangular, based on underlying factors:

P = {(Psa) |Psa =
1

2
w 1 +

1

2
w 2,

(w 1,w 2) ∈ W1 ×W2},
W1,W2 ⊂ ∆(S)
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Properties of optimal policies [WKR13]

For P s-rec. convex compact, there exists stationary optimal policies.

An appealing property of s-rectangular models:

the policy evaluation problem can be solved by dynamic programming:

min
P∈P

µ>vπ,P = µ>uπ

with uπ the unique fixed-point of the worst-case Bellman operator:

uπs = min
P∈P

∑
a∈A

πsaP>
sa (rsa + γuπ) ,∀ s ∈ S.
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But there are other models in the literature!

• r-rec. [GBZ+18, GGC22]:

Psa = Wusa,W = (w 1, ...,w r ) ∈ ×i∈[r ]W i ,usa fixed

• (ξ, η)-rec. [HMDL24]: r-rec. + u’s can vary too

• d-rec. [MLB+22]: r-rec. with finite horizon + copies of states

• k-rec. [MMX16]: finite horizon, transitions can change max. k times

Some of these are “tractable”, some are not, for some we don’t know...

Can we find a necessary and sufficient condition for tractability?
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Definition: s-tractability

An uncertainty set P is s-tractable if, for any parameters:

any rewards (rsas′), discount factor γ ∈ [0, 1), initial distribution µ,

the policy evaluation problem can be solved by dynamic programming:

min
P∈P

µ>vπ,P = µ>uπ (1)

with uπ the unique fixed-point of the worst-case Bellman operator:

uπs = min
P∈P

∑
a∈A

πsaP>
sa (rsa + γuπ) ,∀ s ∈ S.

Note in (1): LHS = global min. over P + non-linear objective

RHS = state-wise minimization, linear objectives

⇒ uπ is worst-case value function for s-rectangular extension of P

Necessary and sufficient condition for s-tractability?
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Theorem

Assume that P is convex compact. Then

P is s-tractable if and only P is s-rectangular.

Proof sketch:

1 Goal: P is a Cartesian product over s

2 P convex ⇒ P = conv(ext(P))

3 If we show ext(P) is s-rectangular, then P is s-rectangular

4 ext(P) is recovered by minimizing linear forms over P
5 s-tractable ⇒ minimizing linear forms over Ps for each s ∈ S

recovers a kernel in P
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Weakly tractable models

Note that r-rec. models are not s-tractable in all generality!

But [GBZ+18, GGC22] show “tractability” of r-rectangular models...

⇒ some additional assumptions in the rewards!

Weak tractability

P is weakly s-tractable if it is s-tractable, under the additional

assumption that the rewards do not depend on the next states:

rsas′ = rsa,∀ s, a, s ′.

1. What are the implications of weak tractability?

2. Necessary and sufficient condition for weak tractability?

3. Other weakly tractable models than r-rec.?
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Implications of weak s-tractability:

1 We can efficiently solve min
P∈P

µ>vπ,P (DP + convex program)

2 We can efficiently solve max
π∈ΠS

min
P∈P

µ>vπ,P

Additional implications for P convex:

1 Optimality of stationary policies

2 We can efficiently solve sup
π∈ΠH

min
P∈P

µ>vπ,P

3 Equivalence between stationary and non-stationary adversaries

An important point: P weakly tractable ⇒ minP∈P µ>vπ,P = µ>uπ...

... with uπ = fixed-point for the s-rectangular extension!

So non-rectangularity is “useless” if P is weakly tractable
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Necessary and sufficient condition for weak tractability

The following statements are equivalent:

1 P is weakly s-tractable

2 the Weak Simultaneous Solvability Property (Weak SSP) holds:

∀ (π,V ) ∈ ΠS × RS ,∩s∈S arg min
P∈P

〈Ps ,πsV>〉 6= ∅ (Weak SSP)

Weak SSP ⇐⇒ we can optimize linear forms over P independently over

s, but objective = rank one matrices

Which models of uncertainty are weakly s-tractable?
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∀ (π,V ) ∈ ΠS × RS ,∩s∈S arg min
P∈P

∑
s,a

πsaP>
saV 6= ∅. (Weak SSP)

Many models of uncertainty are weakly s-tractable:

1 s-rec. works

2 r-rec. works: Psa = Wusa ⇒ P>
saV = u>

saW>V

3 P = P1 × P2 such that P1 is r-rec. and P2 is s-rec.

4 (ξ, η)-rec. works: Psa = Wusa, W and u in Cartesian product set

5 Other models in the paper; what’s important is the unified analysis

But non-rectangularity appears useless!
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Discussion and conclusion

Take-aways:

1 The case for s-rectangular uncertainty sets:

- Other models are not *always* tractable

- Nonrectangular models “bring down” to rectangular extensions

2 Change of paradigm for the design of uncertainty sets:

Weak SSP “by design” ⇒ tractability “for free”

3 “Hardness” of sup
π∈ΠH

min
P∈P

lies in min
P∈P

e.g. r-rec.: [GBZ+18] then [GGC22]

Next steps:

• Beyond dynamic programming: gradient based-methods?

More in the paper + if you are interested in this topic:

Yan Li and Alexander Shapiro: Rectangularity and duality of DRMDPs

Thank you!
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