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1. Introduction

Incomplete preferences have been increasingly recognised as
of importance. Appeals to the weakening of the completeness
axiom—which demands that for every pair of options, the decision
maker has a weak preference for one over the other—have been
made both in the name of ‘psychological realism’ (Aumann,
1962; Dubra et al., 2004; Danan, 2003b; Galaabaatar and Karni,
2013) and on the basis of normative considerations (Aumann,
1962; Bewley, 1986/2002). Moreover, incomplete preferences
have proved invaluable in the development of alternative models
of choice, such as those incorporating a tendency to stick to
the status quo (Bewley, 1986/2002; Masatlioglu and Ok, 2005).
Incomplete preferences naturally arise in multi-agent settings,
where the preferences of a group, or those drawn from group
members’ beliefs or utilities, may naturally be incomplete (Dubra
et al., 2004). As a final example, objectively rational preferences in
the sense of Gilboa et al. (2010)—those preferences for which the
decision maker can convince others of their correctness, by a form
of proof for example—are naturally incomplete.
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The traditional approach to modelling incomplete preferences
proceeds, roughly speaking, by dropping the completeness axiom
whilst retaining the other standard axioms, and replacing the
single function or measure in the relevant model by a set. For
instance, in decision under uncertainty, the benchmark unanimity
multi-prior model proposed by Bewley (1986/2002) retains all
standard Anscombe and Aumann (1963) axioms for subjective
expected utility except completeness, and replaces the single
probability measure in the representation by a set of probability
measures. In particular, it retains the independence axiom.

However, under all of the interpretations mentioned above,
there appear to be cases where the standard independence axiom
is violated. Consider a decision maker who is faced with choices
between bets on the colour of the next ball drawn from an urn
containing only black and white balls, as shown in Fig. 1. For
simplicity, suppose that the bets are given in dollars and the
decision maker has linear utility.' She is told neither the proportion
nor the number of balls in the urn, but she has observed fifteen
draws (with replacement), nine of which were black and the rest
of which were white. It does not seem implausible that there
are decision makers who prefer f to 0 given this information,
whilst being indeterminate in their preference between g and 0.
Certainly, from a normative point of view, it is not unreasonable
to hold a preference between the first pair of bets while not

1 Alternatively, one could read the bets as given in utils, and as corresponding to

the appropriate mixtures of corresponding dollar bets in the standard way; e.g. f is

i 99
the mixture 700000& T+ 700000 9"
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Colour of ball drawn from urn
Black White

f 15 -10

0 0 0

g 1.5M -1M

fr 15 xn -10 xn

Fig. 1. Bets (‘M’ stands for ‘million’).

having a determinate preference between the second pair, given
the weakness of the information and the stakes involved. Even
from the point of view of objective rationality, there is a ‘statistical
argument’ for preferring f over 0—based, for example, on a classical
hypothesis test with a weak significance level (e.g. 10%)>—whereas
there is no objectively rational preference between g and 0—in
the situation where more is at stake, arguably more stringent
standards of proof, such as tougher significance levels, are required,
and the data do not support any conclusions at such levels.
Analogous cases exist for the group interpretation of incomplete
preferences: for example, if there is agreement between two
leading urn-experts that the proportion of black balls is 1, but a
large disagreement in the community as a whole on the proportion
of black balls, it is does not seem unreasonable for the group to
form a preference between f and 0 without forming one between
g and 0. Since independence implies that there is preference for f
over 0 if and only if there is preference for g over 0, it is violated in
these examples.

Reinterpreting the event that the ball is black to be the success
of a new technology, for example, and the observations to be
suggestive yet inconclusive findings, it is clear that there are real-
life cases where this sort of preference pattern is exhibited. On
the basis of limited grounds (be they scarce information, a weak
argument or agreement among a few members of the group),
decision makers may be ready to form preferences when the
decision is relatively unimportant, but cannot do so when there
is more at stake. Our proposed diagnosis is that the traditional
models of incomplete preferences (in terms of sets of probability
measures, for example) overlook the fact that decision makers can
be more or less sure of their beliefs. The examples given above
suggest that how sure the decision maker is in a belief may be
related to her preferences over options for which this belief is
relevant. These appear to be cases where determinate preferences
are formed on the basis of beliefs in which the decision maker is
not entirely sure in some situations—in particular, when little is at
stake in the decision—whereas there are other situations—when
the decision is more important, for example—in which she may
need to be more sure of her beliefs to avoid indeterminacy.

The aim of this paper is to propose a model of decision
under uncertainty that, whilst deviating as little as possible
from standard models of incomplete preference, incorporates the
decision maker’s confidence in her beliefs. Inspired by the above
considerations, it seems that an appropriate model should adhere
to the following maxim: one’s preferences are indeterminate when
and only when one’s confidence in the beliefs needed to form
a preference does not match up to the stakes involved in the
choice. We develop such a model, drawing on existing research
on confidence in belief and its role in decision making, and in
particular on the concepts introduced in Hill (2013). Like the
standard Bewley model, we focus on indeterminacy of preferences

2 Explicitly, a one-sided classical statistical test rejects the hypothesis that the
proportion of black balls is 0.4 at the 10% significance level, and for probabilities of
black above 0.4, f has a higher expected utility than 0.

that is driven solely by the decision maker’s beliefs, tacitly
assuming that she is fully confident in her utilities.

As concerns behavioural properties, note that in the context of
incomplete preferences, independence applied to the preference
f > 0 and the acts g and 0 (Fig. 1) in fact implies two distinct
things: on the one hand, there is a determinate preference between
g and 0; on the other hand, this preference goes in the appropri-
ate direction (g > 0). The examples above only conflict with the
former condition, not the latter; however, it is the latter condi-
tion that is at the heart of the independence property. Hence it
is natural to drop the former condition, retaining the latter: that
is, to demand that the standard independence condition applies
whenever the preferences involved are determinate. This is the
appropriate weakening of independence for the model developed
in this paper. Indeed, the other main axiomatic difference from the
Bewley multi-prior model involves a similar weakening of transi-
tivity: it applies whenever preferences are determinate, but inde-
terminacy is permitted in some cases where standard transitivity
would have demanded determinate preference.’ We take the mild-
ness of these axioms to be an indication of the parsimony of this
departure from the benchmark Bewley model of incomplete pref-
erences under uncertainty.

Another central contribution of the paper is to identify some
interesting consequences of the incorporation of confidence for
the question of how to ‘complete’ preferences—a question that
is pertinent under all the aforementioned interpretations, in
particular when a decision must be taken. It allows the distinction
between, and characterisation of, two strategies for preference
completion. One respects confidence, insofar as it only allows the
decision maker to use beliefs in which she has sufficient confidence
given the stakes involved in the decision. A government who bases
its climate policy on ‘full scientific certainties’, however scarce they
may be and ignoring the less well-established opinions of experts,
adopts this strategy. The other strategy goes on hunches, insofar
as it allows the decision maker to mobilise all her beliefs—even
those in which she has little confidence—when she is forced to
choose. An entrepreneur who undertakes a venture on the basis
of her ‘gut feeling’, without being strongly convinced of its success,
is adopting this strategy. The distinction between these strategies,
though pre-theoretically reasonable and potentially pertinent to
the understanding of real-life decisions, has not yet been identified
in the literature, to our knowledge.

Finally, a standard interpretation of indeterminacy of pref-
erences in market settings (dating back at least to Bewley,
1986/2002)is in terms of reluctance to trade, and it is natural to ask
what implications the incorporation of confidence into models of
incomplete preference has in such settings. We show that it adds
a friction absent under other non-expected utility or incomplete
preference models of decision under uncertainty, with conse-
quences for the difficulty of attaining a Pareto optimum via Pareto-
improving trade.

The basic notions of the model are introduced and formally
defined in Section 2. The model is formally stated in Section 3.1,
and the representation result is given in Sections 3.2-3.3.
Section 3.4 contains a comparative statics analysis. In Section 4,
we consider the question of how to complete one’s incomplete
preferences. In Section 5, we consider the consequences of the
model in markets under uncertainty. Related literature is discussed
in Section 6. Proofs of all results and other material are to be found
in the Appendices.

3 The need for a weakening of transitivity can also be seen on the example above.
It is not implausible, in the light of similar considerations to those behind the
preference for f over 0, that the decision maker prefers f"*! to f* for all n between
0 and 99999 (recall that she has linear utility). Transitivity would imply that she
prefers g over 0, and hence is violated. See Section 3.2 for further discussion.
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2. General preliminaries

2.1. Setup

Throughout the paper, we use the standard Anscombe-Aumann
framework (Anscombe and Aumann, 1963), as adapted by Fishburn
(1970). Let S be a non-empty finite set of states; subsets of S are
called events. A(S) is the set of probability measures on S, endowed
with the Euclidean topology. X is a nonempty set of outcomes;
a consequence is a probability measure on X with finite support.
A(X) is the set of consequences. Acts are functions from states to
consequences; » is the set of acts. 4 is a mixture set with the
mixture relation defined pointwise: for f, hin 4 and @ € [0, 1],
the mixture of + (1 — «)h is defined by («f + (1 — @)h)(s, x) =
af (s, x) + (1 — a)h(s, x). We write f, h as short for af + (1 — a)h.
With slight abuse of notation, a constant act taking consequence
¢ for every state will be denoted ¢ and the set of constant acts
will be denoted A(X). For technical convenience, we shall focus
on unbounded utilities, where a utility functionu : A(X) — N is
unbounded if u(A(X)) = N.

The decision maker’s preferences over 4 are represented by
a binary relation <. ~ and < are the symmetric and asymmetric
components of <, and x is the ‘determinate preference’ relation,
defined as follows: f =< gifff < gorf > g.Sof % g means
that the decision maker does not have a determinate preference
between f and g. For a preference relation <, let <, be the
associated risk preferences; that is, the restriction of < to the set
of constant acts A(X). £ is the set of preference relations on
A(X).

Forany < ,x) € Pax),apairofacts (f, g) € 4 x A constitutes
anon-trivial choice if f (s) = ax) g(s) for somes € S. (A X A ’;tA(X) C
A X o is the set of non-trivial choices. Moreover, for any pair

(f.g8) € A x A,let@SM) ={(f.g) e Ax A | Ja €

(0, 1], h € As.t. f(5) ~ap0) (fuh)(s) and g'(s) ~acx) (8uh)(s) Vs €
S, or f(s) ~ap(fyh)(s) and g(s) ~ax)(g,h)(s) Vs € S}. There
is a sense in which the choice between f and g and the choice
between f,h and g, h are the ‘same’ choice; we will say that these

two choices are versions of each other. (f, g)-, % is thus the set

of all pairs which are versions of the choice between f and g.
The standard independence axiom implies that preferences are
uniform on such sets (for all (f', g’) € (f, g)ﬁmo,f/ < glifff < g);
as we shall see, this will not be assumed here. To ease notation, we
omit the subscript < 5, from both notions when it is clear from
the context. o

Since (A4 x )" and (f, g) are entirely determined by <),
once one knows the utility function representing <), these
sets can be fully defined. In practice, there are several model-free
methods for measuring utilities (for example, Wakker and Deneffe,
1996; Abdellaoui, 2000), which are independent of the treatment
of uncertainty and hence can be applied in the context of this
model. Any such method could be used by an analyst to obtain
these sets.

2.2. Stakes

Under the maxim proposed in the Introduction, the stakes
involved in a choice between two options may have implications
for the preferences over them. One can imagine several different
notions of what counts as the stakes in a choice; Fig. 2 gives some
examples. We shall be non-committal about the ‘proper’ notion
of stakes, and use an abstract representation here. Each notion of
stakes specifies whether a choice involves higher or lower stakes
than another, often on the basis of the utility profiles of the acts
(see Fig. 2). Accordingly, whether a given choice involves higher
or lower stakes depends on the decision maker’s utility function

and hence on his risk preferences, < (x). So we model the notion
of stakes by a function £, that, given <,x) € Pax), yields a stakes

relation < <A’ that is, a relation on the set of non-trivial choices

(pairs of acts in (A x 4)™).% This relation is interpreted as follows:
(f. &) =<, (f'.&") means that the stakes involved in the choice

between f and g are (weakly) lower than the stakes involved in the
choice between f’ and g’ =<, and <<, are the symmetric
and asymmetric components of <., %’ defined in the standard
way. We shall be interested in notions of stakes satisfying the
following basic properties, for all < ).

(Weak Order) < <a00 is reflexive, transitive and complete.

(Symmetry) Forall (f,g) € (4 x A)™, (f,8) =<,y (&, )

(Extensionality) For all (f,g), (f',g) € (A x A)™, if f(5) ~a00
f'(s) and g(s) ~ax) &'(s) for all s € S, then (f, g) =<0
', &).

(Continuity) For all (f,g), (f',g) € (A x A)" and h € A,
the sets {(«, B) € [0, 11| (fuh, ggh) Z< 00 (f’,g")} and
{(er, B) € [0, 11%| (fh, ggh) = (f’, g")} are closed in

{(er, B) € [0, 17| (fuh, ggh) € (A x A)™}.
(Richness) For all (f,g),(f,g8) € (A x A)™, there exists

(.8, (f".&") € (f.g) such that (f'.gh <., (.8
éﬁA(X)(f//7g//)'

Weak order states that the non-trivial binary choices the agent
may be faced with can be weakly ordered according to the stakes
involved in them. We take this to be a basic property of the notion
of stakes, and accept it without discussion here.® Symmetry states
that the stakes involved in a choice do not depend on the order
in which the alternatives are presented, and deserves no further
discussion.’

Extensionality says that all that counts for the stakes are the
values of the consequences of the acts at the different states. If
two acts are extensionally equivalent—that is, the decision maker
is indifferent between the consequences of the acts at every state—
then in virtually all formal theories of decision under uncertainty,
they are treated (and evaluated) in exactly the same way. Since this
aspect of standard practice is not the focus of the current paper, we
shall follow it here and assume extensionality, which essentially
says the same thing for stakes.

On mixing a pair of acts with a third act, the stakes involved in a
choice may change; Continuity says that this change is continuous
in the degree of mixing. This seems reasonable: the stakes may be
altered as one or both of the acts on offer are mixed with another
act, but one would not expect the stakes to ‘jump’ as the mixture
coefficient moves gradually from one value to another.

Richness is a technical property, which states that there exists
a version of every choice that involves stakes as far up or down
the stakes order as desired. As noted in Section 2.1, there is a sense

4 So, formally, a notion of stakes is a function <, : Pax) — (A X A) X (A X A)
whose image is contained in (4 x #4)™ x (A X 4A)"™. Note that it naturally associates
a stakes relation to each utility function.

5 Since trivial choices—such as the choice between an act and itself—can only be
qualified as choices in a technical sense of the term, it seems inappropriate to talk
of them as having stakes; for this reason, they are absent from the domain of the
stakes relation. Nevertheless, the main results (with relevant definitions modified
accordingly) continue to apply if stakes relations assign a position in the stakes
order to trivial choices.

6 See Hill (2012, Section 3.1) for a discussion of the possibility of weakening the
completeness assumption in a different but related framework.

7 As shall be evident in the discussion below, symmetry does not rule out
dependence on properties of the acts other than the order of presentation, such
as whether one of the acts is the status quo.
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The stakes in the choice between f and g are given by

®

(ii)

(iii)

(iv)

)

the maximum of the negation of the utility of the least preferred consequence

which could be obtained, taken over f or g
the maximum utility of the most preferred consequence which could be obtained
by forg

the maximum of the negation of the expected utility of the part of the act taking
values below some threshold, calculated using a given probability measure, taken

over f org

the maximum absolute value of the difference between the utility of f(s) and the

utility of g(s), taken over s € S

the maximum absolute value of the difference between the utility of f(s) and the

utility of g(s), taken at the s € S where this difference is non-zero for which the

minimum utility out of f(s) and g(s) is lowest.

Fig. 2. Some notions of stakes.

in which the choices between f and g, and between f,h and g,h
are versions of the ‘same’ choice. Nevertheless, the stakes involved
in these two choices may differ; to that extent, the latter choice,
for instance, can be thought of as a version of the former one at
the stakes level corresponding to (f,h, g,h). Using such versions,
one can thus consider the decision maker’s preferences at different
stakes levels. We will say that the decision maker prefers f to g
at a certain stakes level if she prefers f’ to g’ for some version

(f',g") € (f,g) involving that level of stakes. Richness simply
states that for any non-trivial choice and stakes level, there is a
version of the choice that has stakes above the level in question,
and there is a version that has stakes below that level. The intuition
is that the mixing with a third act involved in the definition of the

versions of a choice, @ can affect many of the properties of a
pair of acts, and in particular the main properties that are relevant
for the stakes involved in the choice between them.

To get an idea of the mildness of these properties, note that all
the notions of stakes in Fig. 2 satisfy them. To ease notation, we
omit the subscript < 4(x) from the stakes relation < when it is

==ax)
clear from the context.

In this paper, we adopt the perspective presented in Hill (2013),
according to which the notion of stakes is an objective feature of
the decision model: representations involving different notions of
stakes are considered to constitute different decision models (in
much the same way as representations with different functional
forms are usually treated as different models).® We thus assume
throughout Sections 3 and 4 a notion of stakes <, satisfying the
five properties above. The analysis and results hold for any notion
satisfying these properties: the specification of a particular notion
of stakes (such as any of the notions in Fig. 2) will yield axioms
and results for representations involving that notion. As such, the
results below can be thought of as applying to a class of decision
models, where the members of the class differ on the notions of
stakes. Note that, to the extent that some axioms involve stakes,
different notions of stakes will correspond to different behavioural
properties, and hence it is possible in principle to tell whether the
decision maker is using a given notion or not. See Hill (2016) for

8 The reader is referred to Section 6 and especially Hill (2013) for a discussion
of how different decision models in the same family can be obtained by varying
decision rules and notions of stakes.

a representation in which the stakes (over general, rather than
only two-element menus) are endogenously derived in a related
decision model.

Remark 1. Rather than assuming a notion of stakes yielding a
stakes relation defined on pairs of acts, it could have been defined
on triples in 4 X A x I, where I" can have several interpretations.
I' could be understood as a set of context indices; hence
dependence of the stakes on the context can be accommodated.
Alternatively, I could be interpreted as the status quo, if there
is one; one can thus capture dependence of the stakes on the
status quo. It is straightforward to adapt the properties above to
such notions of stakes; corresponding modifications to the axioms
below yield similar results where the stakes may depend on factors
other than the two acts on offer.

2.3. Confidence ranking and cautiousness coefficient
We recall two notions that were introduced in Hill (2013).

Definition 1. A confidence ranking & is a nested family of closed,
convex subsets of A(S). A confidence ranking & is continuous if, for
everyC € &,C = Ugzscec € = Nasceoe C- It is balanced if, for
every G, G, € E with @, C @y, €1 N1i(Cy) # 2.0

Confidence rankings represent decision makers’ confidence in
their beliefs. A set in the confidence ranking is interpreted as
corresponding to a level of confidence. A probability judgement'’
that applies under every probability measure in the set is one
that the decision maker holds to the corresponding level of
confidence. Larger sets correspond to higher levels of confidence;
this translates the fact that one holds fewer probability judgements
(or beliefs) with those levels of confidence. Whilst proposed as
a representation of individual beliefs, confidence rankings have a
natural interpretation for groups. Each probability measure can be
thought of as the beliefs of a member of the group, and each level

9 For a set X, X is the closure of X and ri(X) is its relative interior. Note that the
union of a nested family of convex sets is convex.
10 By probability judgement, we mean a statement concerning probabilities, such
as ‘the probability of event A is greater than p’.
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as corresponding to a level in the group’s hierarchical structure
(e.g. in a country, one level will contain cabinet ministers, another
will contain members of the government, another all elected
representatives, and so on). A probability judgement held at a
particular level is one that is shared unanimously by all group
members who have at least the rank corresponding to that level.

The convexity and closedness of the sets of probability
measures in the confidence ranking are standard assumptions
for decision rules involving sets of probabilities. The continuity
property guarantees a continuity in one’s confidence in probability
judgements: it ensures, for example, that one cannot be confident
up to a certain level that the probability of an event is in [0.3, 0.7]
and then confident only that the probability is in [0.1, 0.9] at
the ‘next’ confidence level up. Balancedness—the sole property
not already present in Hill (2013)—guarantees that, whilst precise
probability assignments held at lower confidence levels may be
revoked at higher confidence levels, this will not happen in a
lopsided way. For example, if one is confident that the probability
of an event is 0.5 at some confidence level, balancedness allows
one to be confident only that the probability is in [0.45, 0.55] at a
higher level, but it does not permit one to be confident only that it
is in an interval such as [0.5, 0.6] (where 0.5 is on the boundary).
This property of the confidence ranking is a direct consequence
of retaining the essence of the standard independence property
(Section 3.2), when weak preferences are taken as primitive.

The second notion required is that of a cautiousness coefficient
for a confidence ranking Z, under a utility function u, which is
defined to be a function D : A x A — Z that is surjective on
(A x A)"—for each @ € Z, there exists (f,g) € (A x A)™
with D((f,g)) = C—and preserves <—for all (f, g), (f,g) €
(A x A (f,g) < (f',g), then D((f,g)) < D((f',g")). The
cautiousness coefficient represents the decision maker’s attitude
to choosing in the absence of confidence. It assigns to any pair of
acts the level of confidence that is required in beliefs for them to
play a role in the choice between the acts. This level of confidence
corresponds to the appropriate set of probability measures in the
confidence ranking. Preservation of the stakes relation implies that
D assigns a confidence level to a choice solely on the basis of
the stakes involved in that choice, and is faithful to the intuition
that the higher the stakes, the higher the confidence required in
probability judgements for them to play arole in the choice.!! Since
in this paper stakes are assigned to choices (pairs of acts), it is
natural to take this to be the domain of the cautiousness coefficient.
(Hill, 2013 uses a notion of stakes, and accordingly a cautiousness
coefficient, defined on acts; see Sections 4.3 and 6.) Surjectivity
of D basically attests to the behavioural nature of the confidence
ranking: it implies that for each set of probability measures in the
ranking, there will be a level of stakes, and hence a choice, for which
it is the relevant set.

As suggested, the confidence ranking and the cautiousness
coefficient are (like the utility function) subjective elements in the
model, representing the decision maker’s attitudes—specifically,
beliefs and (certain) tastes respectively. This separation of
attitudes, which is defended formally in Section 3.4, allows a clean
connection between these technical notions and the everyday
concept of confidence in beliefs. In particular, the informal English-
language concept of confidence in beliefs denotes an aspect of
an individual’s beliefs, separate from her tastes—and the same
goes for the formalisation proposed here, namely the confidence
ranking. The reader is referred to Hill (2013) for further discussion
and defence.

11 pean assign any confidence level to a trivial choice (a pair of acts not in (4 x
A)™): since the choice is trivial, the assignment will have no effect on preferences.
Since these are uninteresting, we shall henceforth focus the discussion on non-
trivial choices.

3. A theory of incomplete preferences and confidence

In this section, we axiomatise and analyse a representation of
incomplete preferences. Throughout this section and the next one,
we assume a fixed notion of stakes =<, satisfying the properties in
Section 2.2.

3.1. Representation

The representation of preferences that we shall consider is of
the following form: for all acts f and g, f < g if and only if

D u(f(s).ps) < Y u(g(s)).p(s) forallp e D((f, ) (1)

SES S€ES

where u is a utility function on A(X) and D is a cautiousness
coefficient for a confidence ranking =, under u. This representa-
tion embodies the guiding maxim stated in the Introduction: one’s
preferences are indeterminate when and only when one’s confi-
dence in the beliefs needed to form a preference does not match
up to the stakes involved in the choice. To see why, note firstly
that D((f, g)) is the set of probability measures associated with the
choice between acts f and g, and depends entirely on the stakes
involved in this choice. As explained in Section 2.3, it specifies the
confidence level associated to those stakes. So a decision maker is
confident enough in a probability judgement for it to play a role in
the decision only if it holds for all probability measures in D((f, g)).
Under representation (1), g is weakly preferred to f if and only if,
based only on such probability judgements, the decision maker can
conclude that the expected utility of g is at least as high as that of
f. So if, on the basis of these probability judgements, the decision
maker can conclude neither that g has expected utility at least as
high as f nor that f has expected utility at least as high as g, then
she has no preference between them. In other words, her prefer-
ences over a pair of acts are indeterminate if she does not hold the
beliefs needed to conclude in favour of one of them to the level of
confidence required by the stakes involved in the decision. Repre-
sentation (1) is thus a faithful formal rendition of the aforemen-
tioned maxim.

3.2. Axioms
Consider the following axioms on <.
Axiom A1 (C-Completeness). Forallc,d € A(X),c < d.

Axiom A2 (Reflexivity and Non-Degeneracy). < is reflexive and
non-degenerate.

Axiom A3 (StakﬁT\ransitivity). Forallf,g,h e 4, (f,g) € @
and (g”, h”) € (g, h) such that (f, h) < (f', g’) or f(s) ~ g(s) for
alls € S,and (f, h) < (g”,h") org(s) ~ h(s) foralls € S,iff' < g’
andg” < h”,thenf < h.

Axiom A4 (Pure Independence). For all f,g,h € « and for all
o € (0,1) such that f < gand f,h < g,h, f < g if and only if
fah < goh.

Axiom A5 (Monotonicity). For all f,g € A, if f(s) < g(s) for all
seS,thenf <g.

Axiom A6 (Consistency). Forallf,g € A and (f', g') € (f/5 such
that (f', g') < (f, g),iff < g, thenf’ =< g".

Axiom A7 (Continuity). For all f,g,h € w4, the set {(«, ) €
[0, 11? | fyh < ggh} is closed in [0, 1]%
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Axiom A8 (Continuity in Stakes). For all (f, g) € (A X A)", h € A
with (f, g) not <-maximal and f (s), g(s) > h(s) foralls € S,f > g

if and only if for all B € (0, 1), there exists (f', (gsh)’) € (f, gsh)
such that (f’, (ggh)’) > (f,g) and f’ > (ggh)'.

Axiom A9 (Unboundedness). For every c,d € A(X) withc < d,
there exists e, & € A(X) such that d%e <c=<d=x c%e’.

Reflexivity and Non-degeneracy (A2) and Monotonicity (A5)
are standard and require no further comment. Continuity (A7) is
a slight strengthening of the standard continuity axiom, and is
related to axioms used elsewhere in the literature on incomplete
preferences (see, for example, Dubra et al, 2004). Indeed, in
the presence of transitivity, independence and monotonicity,
this axiom is equivalent to the standard one (see for example
Gilboa et al. (2010, Lemma 3)). C-Completeness (A1), which
corresponds to an axiom first introduced by Bewley (1986/2002)
and proposed under this name by Gilboa et al. (2010), simply says
that preferences over constant acts are determinate. It translates
the fact that the agent is assumed to be fully confident in her
utilities; as stated in the Introduction, only confidence in beliefs
is at issue here.

As concerns Stakes Transitivity (A3), note firstly that transitivity
in the case of incomplete preferences involves two distinct
conditions: firstly, if f < g and g < h, then one has determinate
preferences between f and h; secondly, these preferences go in
the appropriate direction—that is, f < h. However, the former
condition may be too strong. A decision maker may prefer spending
$10 on a bet on a certain ambiguous event to her current portfolio,
no matter what her current portfolio is. Transitivity (applied
repeatedly) implies that she prefers spending $10 000 on 1000 bets
on this same event to her current portfolio, whereas it does not
seem unreasonable, under any of the standard interpretations of
incompleteness cited in the Introduction, to have indeterminate
preferences over these options.

Stakes transitivity weakens the first clause of the standard
transitivity property, whilst retaining its second clause. More
precisely, except for cases where the choices are trivial, it demands
determinate preference between f and h only when the decision
maker’s preferences between f and g and between g and h
are determinate for stakes higher than the stakes involved in
the choice between f and h. (Recall from Sections 2.1 and
2.2 that preferences over acts f and g at a given stakes level
are fleshed out formally in terms of preferences over versions

of that choice—elements of @—having those stakes.) In the
example above, stakes transitivity thus allows indeterminacy of
preferences concerning the $10000 bet, insofar as the stakes are
higher than for a single $10 bet. Importantly, in the presence
of the other axioms, stakes transitivity implies that, whenever
preferences are determinate, they go in the direction implied by
the standard transitivity axiom. So, to the extent that one can speak
of ‘violations’ of the standard axiom, they never result in preference
cycles, but only in indeterminacy of preference where transitivity
would have implied a determinate preference.'? In this sense, this
is a particularly mild weakening of transitivity. Note finally that, in
the presence of A4, stakes transitivity is equivalent to transitivity
whenever preferences are complete.

A similar situation holds for Pure Independence (A4). Whereas
the standard independence axiom implies, firstly, that certain
preferences are determinate, and secondly, that they go in a

12 Perhaps it would be more appropriate to call these ‘abstentions’ from the
transitivity axiom, reserving the term ‘violation’ for patterns of determinate
preference that are incompatible with the axiom.

certain direction, pure independence simply states that whenever
preferences are determinate, they go in the direction specified by
the standard independence condition. Evidently it fully retains the
intuitions behind the standard axiom, whilst accounting for the
examples given in the Introduction. Indeed, it can be thought of
as an alternative way of extending the traditional independence
axiom to the case of incomplete preferences, which separates the
part of the standard axiom concerning determinacy of preference
from the arguably more important part concerning direction of
preference.

Consistency (A6) is perhaps the most novel axiom and naturally
so: it deals with the relationship between preferences at different
stakes levels. It says that, if preferences in a choice between f
and g are determinate, then preferences will be determinate in
any version of the choice between f and g, as long as the stakes
are not higher. In other words, if one has determinate preferences
between two options at a given stakes level, then as the stakes
fall, one retains the determinacy of the preferences. If the decision
maker can choose between the options when there are hundreds
of thousands of dollars at stake, then she can still choose when
there are only tens of thousands at stake. As such, it is this axiom
in particular that translates the idea that the higher the stakes,
the more confidence is needed to take the choice. This is a fully
behavioural axiom, which is in principle testable by, for example,
comparing preferences at different stakes levels. (Of course, the
other axioms are as behavioural as their standard counterparts.)

Continuity in Stakes (A8) is a largely technical axiom. The main
direction states that, whenever f is preferred to g, then as the
stakes in the choice are gradually increased (supposing they are
not maximal), f may no longer be preferred to g, but the most
preferred act ‘below’ g (in the appropriate sense of being a mixture
of g with an act dominated statewise by g and f) to which it is
preferred will not suddenly ‘jump’ down with a slight increase in
stakes. This basically ensures that the ‘lower contour set’ of an
act changes gradually with an increase in the stakes involved in
the decision. The axiom also includes the converse direction: if,
for each act ‘below’ g there is a higher stakes level at which f is
preferred to that act, then f is preferred to g. This direction is in
fact implied by the other axioms whenever (f, g) is not <-minimal,
and thus can be dropped if one assumes that < has no minimal
elements (as is the case for several of the notions of stakes given
in Fig. 2). Unboundedness (A9) is a standard axiom guaranteeing
the unboundedness of utility. As mentioned previously, we assume
unbounded utilities for technical convenience: modulo slight but
clumsy reformulations of some of the axioms and definitions, the
results go through in the absence of this assumption.

3.3. Result

The preceding axioms characterise the following representation
of preferences.

Theorem 1. Let < be a binary relation on 4. The following are
equivalent.

(i) < satisfies A1-A9.

(ii) There exists an unbounded affine utility functionu : A(X) — N,
a balanced continuous confidence ranking = and a cautiousness
coefficient D for E under u such that, forallf,g € A, f < gif
and only if

> u(f().p(s) < Y _u(g(s)).ps) forallp € D((f,g)). (1)

NN ses

Furthermore, E is unique, D is unique on (s x 4)™, and u is unique
up to positive affine transformation.
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Note that it follows from this theorem that, if < satisfies A1-A9
and is complete, then & = {{p}} for some probability p € A(S),
and D((f, g)) = {p} forall (f, g) € 4 x +.In other words, adding
completeness to the other axioms yields a standard subjective
expected utility representation.

3.4. Decisiveness and attitudes to choosing in the absence of
confidence

We now undertake a basic comparative statics analysis of a
decision maker’s decisiveness under the model proposed above.
Beyond giving a characterisation of decisiveness in this model, the
analysis will also corroborate the interpretations of the confidence
ranking and cautiousness coefficient proposed in Section 2.3.

Under models of incomplete preferences, if decision maker 2
weakly prefers f to g whenever decision maker 1 does, this is
an indication that 2 is less prone to indeterminacy of preference
than 1. This insight inspires the following standard definition of
decisiveness: <! is less decisive than <? if <! € <2.13

In order to characterise this relation in terms of the elements of
the model, we require the relation C on families of sets, defined as
follows. For two families of sets = and &', we write & = &’ when,
for every © € &, there exists ¢’ € E’ with € C ¢€’. We have the
following result.

Proposition 1. Let <' and =<? satisfy Axioms A1-A9, and be
represented by (uy, &y,D;) and (u;, &», D,) respectively. The
following are equivalent:

(i) <'is less decisive than <2.
(ii) uy is a positive affine transformation of uqy, &, C
D>((f,8)) S Di((f,8)) forall (f, g) € (A x A)™.

Besides the utility function, the main two elements in this
result are the confidence ranking and the cautiousness coefficient.
However, they may be understood as playing different roles.
Consider two decision makers with the same utility function.
Decision maker 1 has unanimity preferences a la Bewley: her
confidence ranking contains a single set of probability measures
C; and the cautiousness coefficient sends all pairs of acts to that
set. Decision maker 2, by contrast, has a confidence ranking &,
with a range of sets of probability measures, and an appropriate
cautiousness coefficient, sending different pairs of acts to different
sets. As long as ¢’ C ¢ forall @’ € &5, 1 will be less decisive than
2.However, there seems to be something more precise to say about
the relationship between the two decision makers. In particular, it
appears that, on the one hand, 1 is less sensitive to the importance
of decisions than 2—if she prefers f over g at a given stakes level,
then she has the same preference at any stakes level, no matter
how high—but, on the other hand, 1 is confident of fewer beliefs
than 2. In other words, there seems to be an aspect of belief (how
confident one is of certain beliefs) as well as an aspect of taste (how
willing one is to decide on the basis of beliefs in which one has
a certain amount of confidence) mixed together in Proposition 1.
To tease them apart, let us introduce the notion of confidence in
preferences.

&, and

Definition 2. Let < satisfy Axioms A1-A9. The confidence-in-
preferences relation < on (A x )™ is defined as follows: for any

f.8.5.8 € A (f.9) < (.2 iff, for all ',g) € (f,g) and
(f'.g) € (f,g) such that (f', g) = (f', g'):
ff=gd=f>g.

13 Containment of the preference relations is equivalent to saying that, for all
f.g € A iff ='gthenf>?g.

Definition 2 relies on the observation that, if a decision maker
prefers f to g at a given stakes level but has indeterminate
preferences between f and g at that level, then this can be taken as
an indication that she is more confident in her preference for f over g
than in her preference for f over g.'* In other words, one can extract
information about a decision maker’s confidence in her preferences
from the extent to which she holds specific preferences at given
stakes levels. This is done according to the simple principle: the
preferences that the decision maker holds at higher stakes are
those in which she is more confident.

Given these considerations, we shall say that two decision
makers 1 and 2 are confidence equivalent if they have the same
confidence-in-preferences relation: <! = <.

Proposition 2. Let <' and <? satisfy Axioms A1-A9, and be
represented by (ui, =1, D;) and (ua, 55, D) respectively. <! and
<2 are confidence equivalent if and only if u, is a positive affine
transformation of u; and &1 = =,.

So a decision maker’s confidence in her preferences is entirely
determined by her utility function and her confidence ranking.
Since one would expect a decision maker’s confidence in her
preferences to be fully determined by her tastes for consequences
(utilities) and her confidence in her beliefs, this corroborates
the interpretation of the confidence ranking as representing
confidence in beliefs.

The notion of confidence in preferences also helps shed light
on the example above: decision makers 1 and 2 obviously have
different confidence in preferences, and it is this difference, as
much as any difference in attitude to choosing in the absence of
confidence, that yields the difference in decisiveness. The following
corollary of Propositions 1 and 2 makes this explicit.

Corollary 1. Let <! and <? satisfy Axioms A1-A9, be confidence
equivalent, and be represented by (u, Z,D;) and (u, £, D)
respectively. The following are equivalent:

(i) <1is less decisive than <>.
(i) D2((f, g)) S D1((f, g)) forall (f, g) € (A x A)™.

In summary, for decision makers with the same confidence
in preferences, differences in decisiveness are completely charac-
terised by the relationship between their cautiousness coefficients.
To the extent that such decision makers have the same confidence,
differences in decisiveness must come down to differences in
their attitudes to choosing on the basis of limited confidence. This
supports the interpretation of the decision maker’s cautiousness
coefficient as capturing precisely her attitude to choosing in the
absence of confidence.

4. Incomplete preferences and choice

There may be situations in which indeterminate preferences
have direct consequences in choice. Decision makers with
indeterminate preferences may opt for the status quo, if it exists
(Bewley, 1986/2002); they may postpone the decision, if possible
(Danan, 2003a; Kopylov, 2009); more generally, they may take a
deferral option, if one is present (Hill, 2016). However, in many
situations, such ‘choice-avoidance mechanisms’ are unavailable

14 Recall from Sections 2.1and 2.2 that talk of preferences at different stakes levels
is spelt out formally in terms of preferences over appropriate versions of the choice.
Moreover, for reasons similar to those mentioned in footnote 5, it seems unnatural
to speak of—and define—confidence in preferences concerning a trivial choice.
Nevertheless, the notion can be simply extended to encompass trivial choices (by
stipulating that one has maximal confidence in preferences over them, for example)
without affecting the results below.
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and the decision maker will have to make a choice. This essentially
poses the question of how a decision maker with incomplete
preferences ‘completes’ her preference relation in situations where
she must choose.

This question is evidently relevant under all the interpretations
of incomplete preferences mentioned in the Introduction, though
the form it takes may depend on the interpretation adopted. For
example, in the perspective proposed by Gilboa et al. (2010),
the question of completion is that of the relationship between
objectively and subjectively rational preferences. Note that a
purely behavioural interpretation of the question can be given, by
thinking of incompleteness in terms of deferral. The incomplete
preference relation considered in previous sections can be thought
of as representing the decision maker’s behaviour when a deferral
option is available: when preferences are indeterminate, she
defers. The question of completion is thus the question of how she
would choose in situations where no deferral option is available."

Consider a decision maker who is forced to choose be-
tween options over which her preferences are indeterminate.
Pre-theoretically, two sorts of strategies for deciding suggest them-
selves. One sort of strategy respects confidence: it uses only the be-
liefs that the decision maker holds with the appropriate level of
confidence given the stakes involved. The intuition is that, since
these are the appropriate beliefs for decisions involving these
stakes, they are the only ones she allows herself to rely on when
deciding. Since they do not yield a determinate choice under rep-
resentation (1), the decision maker has to employ a different de-
cision rule, involving considerations of caution or an element of
random choice, for example. Another sort of strategy goes on
hunches: it allows the decision maker to use all of her beliefs, ir-
respective of the confidence she has in them. The intuition here is
that, whilst the decision maker would not decide on a hunch—a be-
lief in which she has limited confidence—if she could avoid it (by
deferring the decision for instance), when she is forced to decide
she may as well mobilise all of her beliefs—even hunches. Given
that she is relying on more beliefs, the decision maker may be able
to form a determinate preference using the ‘unanimity’ rule em-
ployed in representation (1); if not, she will require a different de-
cision rule.

We suggest that this distinction corresponds to an important
difference between possible reactions to forced choice, under all
of the interpretations cited in the Introduction. It seems that some
decision makers in certain situations—an entrepreneur following
her ‘gut feelings’, or a general going on his intuition in the
heat of a battle, for example—rely on beliefs in which they have
insufficient confidence when called on to decide, whereas others
in other situations—a governor deciding whether to permit the
construction of a nuclear plant, or a doctor deciding on treatment
for a patient, for example—only limit themselves to beliefs that
they hold with sufficient confidence given the decision at hand.
In the perspective proposed by Gilboa et al. (2010), a strategy
that respects confidence only uses the beliefs that are ‘objectively
defendable’ to form subjectively rational preferences, and in this
sense is close to the representation given in that paper. However,
it does not seem unreasonable, when forming one’s (personal)
subjectively rational preferences, to rely on beliefs that one cannot
convince others of with sufficiently strong arguments: this is
tantamount to adopting a strategy that goes on hunches. Finally,
the distinction takes a particularly simple form under the group
interpretation of incompleteness: in cases of disagreement within
the group, a strategy that respects confidence forms preferences

15 gee Hill (2012) for further discussion of this interpretation of incompleteness,
and Hill (2016) for a general treatment of deferral in the context of decision under
uncertainty.

accounting for the full scope of the disagreement, whereas a
strategy that goes on hunches chooses what the board of directors
deem preferable, ignoring the others’ opinions. Whilst some
groups, such as certain associations, may sometimes use the former
strategy, others, for example many firms, often seem to use the
latter one.

In this section, we provide an axiomatic analysis of choice on the
basis of incomplete preferences, proposing two general procedures
that respect confidence, and showing, for each one, the behavioural
difference with the corresponding procedure that goes on hunches.

4.1. Preference completions: framework and basic properties

Formally, we augment the framework introduced in the
previous sections with a binary relation, <€, over the set of acts.
It represents the ‘completion’ of the decision maker’s preference
< from Sections 2 and 3. The issue of choice on the basis of
incomplete preferences can be tackled by considering axioms on
the completed preference relation and the relationship with <,
such as the following.

Axiom C1 (Forced Choice). <€ is complete.

Axiom B1 (C-Consistency). For allx,y € A(X), x < yif and only if
x=<y.

Axiom B2 (Consistency). Forallf, g € A,ifg < f,theng < f.

Forced Choice (C1) states that the completed preferences are
indeed complete; it translates the fact that the decision maker
must choose. C-Consistency (B1) just says that the preference
orders coincide on constant acts. This is natural, given that
incompleteness of < is driven by beliefs, and indeed only occurs
for comparisons involving non-constant acts. Consistency (B2),
which was first introduced by Gilboa et al. (2010), states that
<€ simply completes < without reversing any preferences. These
three axioms are the minimal requirement one could ask of a
completion of <¢; indeed, when we speak of a completion of <, we
shall henceforth mean a preference relation satisfying B1, B2 and
C1 with respect to <.'6

4.2. Simple rules for preference completion

To introduce perhaps the most immediate sort of completion
rule, consider the following two axioms.

Axiom B3 (Benchmark on Certainty). For allf, g € 4, g <°f ifand
only if there exist c,d € A(X) with ¢ > d such that f* > ¢’ for

some (f’,c’) € (f,c) with (f',c’) = (f,g),and g’ # d for all
g, d) e (g dwith (g, d) = (f,g).

Axiom B3°-"N (Stakes-Neutral Benchmark on Certainty). For all f, g
€ A, g <°f if and only if there exist c,d € A(X) withc > d

such that f* > ¢’ for some (f',¢’) € ﬁ and g’ ¥ d for all
(g, d) e (g d.

Incomplete preferences provide a crude indication of the
relative worth of acts for the decision maker. One way of
getting a more refined judgement is by comparing them with, or
‘benchmarking’ them against constant acts—that is, by considering
which constant acts they are preferred to. Thus, even if the
decision maker’s preferences between two acts, say f and g, are
indeterminate, she may have determinate preference for f over

16 This terminology was introduced in Danan et al. (forthcoming).
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a particular constant act (e.g. a sure $5), whilst not having a
determinate preference for g over an inferior constant act (e.g.
a sure $4). The axioms both demand that in precisely these
sorts of cases she strictly prefers f to g when forced to choose.
In other words, an act is chosen over another in situations of
forced choice precisely when it fairs better than the other act
in the comparison with constant acts (according to the initial,
incomplete, preference relation). The difference between the
axioms is that whilst Benchmark on Certainty (B3) employs stakes-
corrected comparisons with constant acts—only versions of the
choice between an act and a given constant act at the appropriate
stakes level are involved—Stakes-neutral Benchmark on Certainty
(B3°N) adopts stakes-neutral comparisons—all versions of the
choice are considered, no matter the stakes level. Note that, when
<isrepresented according to (1), both axioms imply C-Consistency
(B1) and Consistency (B2).

As the following results show, these two axioms characterise
behaviourally the difference between the two strategies described
above.

Theorem 2. Let < satisfy A1-A9, and be represented according

to(1) by (u, &, D). Then

(i) <€ is a completion of < satisfying B3 if and only if, for allf, g €
A,

f=g iff min
peD((f.g)) oS

u(f(s)).p(s) < peg(l(ifr}g)) Z;u(g (5))-p(s)
(2)

(ii) <€ is a completion of < satisfying B3°™N if and only if, for all
f.g e

f=‘g if pg}ifczﬂf(s))p(s) <

NN

pgilriff ;u(g(S)).p(S).

(3)

Both Benchmark on Certainty (B3) and Stakes-neutral Bench-
mark on Certainty (B3°") characterise cautious decision making,
insofar as decision makers who satisfy them choose on the basis of
the minimum expected utility taken over a set of probability mea-
sures (Gilboa and Schmeidler, 1989). They differ, however, in the
set over which the minimum is taken, and hence the beliefs used.
Benchmark on Certainty (B3) implies that the decision maker uses
only the beliefs that she holds with sufficient confidence given the
stakes (see the interpretation of D((f, g)) in Sections 2.3 and 3.1).
A decision maker satisfying this axiom employs a strategy that re-
spects confidence to decide when forced to choose. By contrast,
Stakes-neutral Benchmark on Certainty (B3°V) yields a represen-
tation involving the smallest set of probability measures in her con-
fidence ranking; this set encapsulates all her beliefs, even those in
which she has little confidence. A decision maker satisfying this
axiom thus relies on all of her beliefs when forced to choose: she
employs a strategy that goes on hunches.

Hence, among cautious procedures for ‘completing’ incomplete
preferences, the difference between Benchmark on Certainty
and its stakes-neutral counterpart characterises precisely the
difference between a strategy that respects confidence and one
that goes on hunches. The ability to capture in a simple and precise
way both of these pre-theoretically conceivable, and apparently
relevant strategies for deciding when one is not sure could be
considered as a strength of the present approach, and in particular
of the notion of confidence ranking. To the knowledge of the
author, this is the first model in the literature capable of capturing
this distinction.

Note finally that representation (2) is by no means the only
completion procedure that respects confidence: one could imagine
analogous representations with different decision rules such as the

«-maxmin EU rule (Ghirardato et al., 2004) or a random decision
rule in the style of Gul and Pesendorfer (2006) and Karni and Safra
(2014). For each such representation, there will be a ‘sister’ version,
analogous to representation (3), adopting a strategy that goes on
hunches. However, the family of completion procedures respecting
confidence goes beyond even these examples, as we shall now see.

4.3. Transitivity of the completion and stakes on acts

As the following example illustrates, the completion procedure
respecting confidence characterised above (representation (2)) has
an important drawback: it may lead to violations of transitivity.

Example 1. Consider a state space consisting of two states, S =
{s, t} and a real outcome space, X = . Suppose that the notion of
stakesis <,, where (f, g) <im0 (f", &) iffmin< , , {f (5), f (), &(5),
g} =awx min<, {f'(s),f'(t), g'(s), g (t)}. X is represented ac-
cording to (1) with u the identity function and & = {{p :
p(s) € [0.6 — €,06 + €]} : € € [0,0.4]}. Since ZF is
naturally parametrised by € € [0, 0.4], D can be defined as a
function into [0, 0.4]. Using this formulation, D is defined by:
D(f.g) = 0 if min{f(s),f(t),g(s),g®)} > 0, D(f,g) =
— To000 MIn{f (s), f (1), £(s), (D)} if min{f(s),f(t), (). g(O)} €
[—4000, 0], and D(f,g) = 0.4 if min{f(s), f(t),g(s),g(t)} <
—4000.

Consider the acts f, g, h defined as follows: f (s) = f(t) = 500;
g(s) = 4100, g(t) = —2000 and h(s) = 1000, h(t) = 0. If the
completed preferences are represented according to (2), then, by
simple calculation, we have f =g and g >~ h (since D((f, g)) =
D((g,h)) = {p : p(s) € [0.4,0.8]}), whereas h>°f (since
D((f,g)) = D((f, h)) = {p : p(s) = 0.6}), violating transitivity.

Does this discredit every completion procedure that respects
confidence, or is this problem specific to the simple rule
encapsulated in representation (2)? Such violations seem to stem
from the fact that the notion of stakes used here is defined
on (binary) choices—that is pairs of acts—so different sets of
probabilities may be used in the evaluation of the same act f in the
context of different pairwise comparisons. Indeed, we now present
results showing that this problem can be avoided by completing
preferences in such a way that stakes can be thought of as
being assigned to the acts themselves. Moreover, the behavioural
distinction between strategies that respect confidence and those
that go on hunches is retained for such completions.

To present the results, we first state a stakes-neutral version
of the Consistency axiom, which, analogously with the Stakes-
neutral Benchmark on Certainty B3°™", involves preferences over
any version of the choice, no matter the stakes.

Axiom B2V (Stakes-Neutral Consistency).Forallf, g € A, if there
exists (f', g’) € (f,g) withg < f,theng < f.
Note that this axiom implies standard Consistency (B2).

We shall also require the following terminology. For any f € A,
let ¢; € A(X) be a <-minimal element such that, forall c € A(X),
iffiz ¢, then ¢s > c. Similarly, let ¢ € A(X) be a <-maximal
element such that, for all c € A(X), iff < c, then G =< c
¢r can be thought of as a lower certainty equivalent of f—for any

completion of <, the certainty equivalent will be weakly preferred
to ¢f; similarly, ¢; is its upper certainty equivalent. A representor is

a function p : 4 — A X 4. It can be understood as assigning to
every act f a place (that of the pair p(f)) in the stakes order. Two
representors shall be of interest:

) i)z ()
puce () = {(f ) otherwise

prce(f) = (f, Ci)'
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The Maximal Certainty Equivalent representor pycg (f) assigns
to an act f the place in the stakes order that is highest out of
the stakes involved in the choice between the act and its lower
certainty equivalent, and those involved in the choice between it
and its upper certainty equivalent. The Lower Certainty Equivalent
representor picr(f) treats an act as if it has the same stakes as
those involved in the choice between the act and its lower certainty
equivalent.

We are interested in completions satisfying transitivity, as well
as the standard Archimedean continuity condition."”

Theorem 3. Let < satisfy A1-A9, and be represented according
to (1) by (u, &, D). Then

(i) if <€ is a transitive Archimedean completion of <, then there

exists « A — [0, 1] such that, for all f,g € A,
f=Cgiff V(f) < V(g), where
V) =a(@)  min ;u(f(S)).p(S)

+(1-a() max Zsj u(f ()).p(s) (4)

(ii) if <€ is a transitive Archimedean completion of =< satisfy-
ing B25N, then there exists @ : 4 — [0, 1] such that, for all
f.geAf=giff V() < V(g), where

V() =alf) pe“;rifc > u(f().p6s)

seS

+ (- ““))péﬁﬁj‘c > u(f()).p(s). (5)

NN

Part (i) of this result reveals the consequences of demanding
that the completion is transitive. It tells us that the completed
preferences are represented by a functional similar to the
generalised Hurwicz representation (Ghirardato et al, 2004;
Cerreia-Vioglio et al., 2011), which involves a mixture of the
maximum and minimum expected utility taken over a set of
probability measures. However, unlike this representation, the set
of probability measures involved depends on the act evaluated.
In particular, interpreting pyce(f) as giving the stakes level
corresponding to f, the set depends on the stakes involved in the
choice of the act. So, representation (4), like representation (2), can
be thought of as employing a strategy for preference completion
that respects confidence. The difference lies in the domain of the
notion of stakes used. Representation (2) uses the stakes involved
in the choice between two acts to determine the level of confidence
appropriate for the evaluation of each of the acts. Representation
(4) uses the stakes associated with the act itself (via the representor
puce) to fix the appropriate confidence level for its evaluation.
Theorem 3 part (i) shows that effectively using a stakes relation on
acts, appropriately derived from the notion of stakes over choices,
to set the confidence level is the only way to guarantee that the
completion is transitive.

Part (ii) shows that this discussion is orthogonal to the
issue of the distinction between completion strategies introduced
above. Representation (5) uses the set of probability measures
encapsulating all of the decision maker’s beliefs, even those
she holds with little confidence. So, just like B3 and B3°™"
(see Theorem 2), the difference between Consistency (B2, which
is by definition satisfied by completions; Section 4.1) and its
stronger stakes-neutral version, B2°™", characterises precisely the

17 Namely, for all f, g, h € s, the sets {o € [0, 1] | fyh < g} and {o € [0,1] |
foh > g} are closed in [0, 1].

difference between a strategy that respects confidence and one
that goes on hunches.

Note that this result—including the distinction between the
two strategies—can be extended to yield a characterisation of
completions using the maxmin expected utility rule, rather than
the generalised Hurwicz one. As the following proposition shows,
it suffices to add the Caution axiom proposed by Gilboa et al.(2010)
or its stakes-neutral version, respectively.

Axiom B4 (Caution).Forallf € 4,c € AX), iff % c,thenc =°f.

Axiom B45-N (Stakes-Neutral Caution). For all f, g € A, iff ¥ ¢’
forall (f',c’) € (f, c), thenc =“f.

Proposition 3. Let < satisfy A1-A9, and be represented according
to (1) by (u, &, D). Then

(i) if <Cis a transitive Archimedean completion of < satisfying B4,
then, forallf, g € A:

f=g iff

inyep u(f(s)).p(s) < min
PeDLce (D) 52653 peD(picE ©))

> u(g(s)pis) (6)

seS

(ii) <€ is a transitive Archimedean completion of < satisfying B25-N

and B4°™N if and only if < is represented according to (3).

Note that Benchmark on Certainty (B3) entails B4. So part (i)
of this proposition implies that whenever B3 is satisfied and <°¢
is transitive, the completion will conform to a stakes-sensitive
version of the maxmin expected utility representation, where the
appropriate level of confidence for the evaluation of an act depends
on the stakes associated with it (via p;cg), independently of the
pairwise comparison in which it is considered. Part (ii), which
characterises how the distinction between the two strategies plays
out in the context of this completion procedure, implies that
Stakes-neutral Benchmark on Certainty (B3°™") is equivalent to
the stakes-neutral B2°~ and B4°", when the completion satisfies
standard conditions.

Remark 2. Some of these results can be sharpened for specific
notions of stakes with particular properties. Take, for instance,
notions of stakes that always rank choices between an act and
a constant act as having low stakes, in the following sense: for
every act f € » and constant act ¢ € A(X) that neither strictly
dominates nor is strictly dominated by f (i.e. neither ¢ > f(s) for
alls € Snorc < f(s) foralls € S), (f,h) = (f,c) for every
h € . (The notions (i) and (ii) in Fig. 2 have this property.) For
such notions of stakes, the conditions in Proposition 3 part (i) are
both necessary and sufficient for representation (6).

Remark 3. Some notions of stakes over binary choices are
naturally built from notions of stakes over acts themselves; in
such cases, the representors used above may ‘recover’ the initial
notion of stakes over acts. For example, notion (i) in Fig. 2—stakes
as the utility of the least preferred consequence taken over both
acts—is naturally obtained from the notion of stakes on acts which
looks at the least preferred consequence the act could yield; and
both representors above generate precisely this notion of stakes
on acts. Moreover, this is the notion effectively used by Hill (2013).
Indeed, under notion (i) in Section 2.2, Proposition 3 part (i) (and
Remark 2) provides a novel foundation for the confidence-based
representation in Hill (2013), in much the same way that Gilboa
et al. (2010) can be thought of as providing a novel foundation for
the maxmin EU representation of Gilboa and Schmeidler (1989).
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Finally, let us comment on the case of a decision maker whose
confidence ranking contains a singleton set.'® Such a decision
maker is a ‘Bayesian with confidence’: if forced to give her best
estimate for the probability of any event, she could come up with
a single value (and these values satisfy the laws of probability),
although she may not be very confident in it. Faced with a decision
in which she is forced to choose, but where she has little confidence
in the relevant beliefs, if such a decision maker goes on hunches,
then she acts precisely like a subjective expected utility maximiser
(under any of the completion procedures considered above). In
this case, the distinction between the two strategies for preference
completion may be thought of as offering a new perspective on the
debate between Bayesians and non-Bayesians: to the question of
whether decision makers can form precise probabilities (raised, for
example, by Gilboa et al., 2009), it adds the question of whether
they should choose on the basis of them even if they could form
them.

5. Confidence and indeterminacy in markets

As a further exploration of the wider implications of the
model, we briefly consider some consequences for risk sharing in
financial markets. Recall that one interpretation of indeterminacy
of preferences is in terms of status quo choice, if there is a status
quo option. A status quo is present in a market setting: it is simply
the option of not trading. Bewley (1989) and Rigotti and Shannon
(2005) have considered the consequences of the unanimity model
a la Bewley in a market setting, interpreting indeterminacy of
preferences as the choice of not trading. We do the same here for
preferences represented according to (1).

We consider a standard Arrow-Debreu exchange economy with
a complete set of (non-negative) state-contingent commodities on
a finite state space S. The set of acts « is defined as in Section 2.1,
with the set of outcomes specified by X = 9. A state-contingent
commodity is a vector in i°_, and can be naturally assimilated with

the corresponding element in +.'? With slight abuse of notation, a
constant state-contingent commodity yielding outcome w in every
state will be denoted w. The economy has finitely many agents,
indexed by i = 1...n. Each has preferences < over . (and hence
over Sﬁi) represented as in (1) for a stakes relation <'. Each agent

thus has a utility function u' : N, — N, a balanced continuous
confidence ranking £’ on S and a cautiousness coefficient D'.
We assume that all u' are differentiable, strictly concave and
strictly increasing. Note that, since expected utility preferences
and unanimity preferences a la Bewley are special cases of (1),
the economy may contain agents with these sorts of preferences.
The aggregate endowment is e € ‘)ts Finally, an allocation

!, ....,x" e (‘)t )" is said to befeaszble 1fZ X =e,itis mterlor

1fo > O foralliand s, and it is a full insurance allocation if all the X'
are constant.

Definition 3. An allocation (y!,...,y") Pareto dominates the
allocation (x!, . .., x") if, for each agentz either y' = x' ory' = x'.

A feasible allocatlon (!, X") is Pareto optimal if there is no
feasible allocation that Pareto dominates it.

18 hin (2013) calls such confidence rankings ‘centred’.

9 State-contingent commodities correspond to acts whose consequences are
degenerate lotteries; Sﬁi thus corresponds to a proper subset of 4. Nevertheless, for
each agent, thanks to the continuity of her utility function, every lottery over )i, (i.e.
element of A(X)) has a certainty equivalentin 91, so, given her utility function, her
preferences over » are completely determined by her preferences over .‘Hi. Hence,
although we assume preferences over .+, this is equivalent in this setup to assuming
preferences over %5 % » similarly, properties of preferences can be formulated either
in terms of 4 or ‘RS We continue to use the notation introduced in Section 2, and in
particular the generic symbols f, g, h. .. for acts; we use standard vector notation
and generic symbols x, y, z . . . for commodities.

This notion of Pareto optimality is very close to that studied by
Fon and Otani (1979). The notion of Pareto dominance employed
says that an allocation dominates another exactly when all agents
who trade contingent commodities strictly prefer their new
commodity to their old one. This is a natural notion in the context
of incomplete preferences where indeterminacy is interpreted
in terms of sticking to the status quo: it supposes that agents
who do not have strict preference for trade—either because they
consider the commodity on offer not to be better than what they
have, or because they do not have sufficient confidence to form
determinate preferences—stick to their initial endowment.

In Appendix A, we provide a general characterisation result
for Pareto optimality, under some technical assumptions. A direct
corollary is that, when the aggregate endowment is constant across
states, an interior full insurance allocation (x!, Xx™) is Pareto
optimal if and only if (); (), ri(D'((', 2))) # @ (see Corollary 2
in Appendix A). It follows tﬁat grosso modo, if each agent in the
economy who requires more confidence to take decisions with
higher stakes were to simply ignore the stakes, and always chose
as if the stakes were at the lowest possible level for the commodity
she is allocated, this would make little difference to whether the
allocation is Pareto optimal or not.?’ So an economy with agents
represented by (1) is roughly equivalent to an economy where
each agent is replaced by an agent with unanimity preferences
a la Bewley who takes as her set of probability measures a set
corresponding to the lowest stakes level for choices involving
the commodity she is allocated. This highlights some similarities
between economies with agents a la Bewley and those with agents
represented according to (1).

Things are considerably different, however, regarding the
question of how fast Pareto optima can be reached. (To the extent
that, as noted in the proof of Theorem 4, Pareto optima correspond
to appropriately defined equilibria, this is closely related to the
question of how fast the economy can arrive at equilibrium.)*!
There is often a simple, if idealised, fastest way to achieve a Pareto
optimum. In particular, whenever a non-Pareto optimal allocation
(x',...,x") is dominated by a (feasible) Pareto optimal one
(y', ..., y"), then there is a ‘one-step’ move to a Pareto optimum,
which is acceptable to all agents—namely, each agent swaps x'
for y'. (This set of ‘swaps’ corresponds to a set of simultaneous
trades among the agents.) Whenever this is the case, we say that
', ...,y") is one-step accessible from (x', x™). In economies
where agents have expected utility preferences, preferences a
la Bewley or preferences represented by many of the standard
non-expected utility theories proposed in the literature (and in
particular those considered by Rigotti et al., 2008), every Pareto
dominated allocation is Pareto dominated by a Pareto optimum.
In other words, every allocation has a Pareto optimum that is one-
step accessible from it. This is not necessarily true for economies
containing agents represented by (1), as the following example
shows.

Example 2. Consider a two-agent economy with two states of
the world, s; and s, and suppose that each agent i has constant
l—yi
A
= 1). Agent 1's preferences

relative risk aversion ! (so the utlllty function is u'(x) =
if Y/ # 1and u'(x) = Inxif y!

20 Thisisa rough statement because, for a family {G;| i € I} of closed sets, it is not
necessarily the case that ()., ri(G)) = ri[";, Ci.

21 Rigotti and Shannon (2005) address a related question with their notion of
‘equilibrium with inertia’, which, approximately, is an equilibrium which Pareto
dominates the initial endowment. The example below shows that, by contrast with
economies whose agents have preferences a la Bewley, equilibria with inertia may
not exist, even if equilibria do exist, in economies whose agents have preferences
represented by (1).
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are represented by (1), where the stakes in the choice between x
and y with x # y are given by max; |x(s) — y(s)|.?* She has the
following confidence ranking: {{p € A(S)| 0.5 — € < p(s1) <
0.5 + €}| € € (0, 0.45]}. Note that since each set in the confidence
ranking is uniquely identified by an € € (0, 0.45], the cautiousness
coefficient is entirely specified by a function from pairs of acts to
values of €. Using this formulation, the cautiousness coefficient is
given by D'((x, y)) = min{n max; |x(s) — y(s)|, 0.45} forall x # y
and for some n > 0, where n characterises the agent’s attitude
to choosing in the absence of confidence (see Section 3.4). Agent
2 is an expected utility decision maker with probability measure
assigning 0.5 to both states.

Suppose that there is no aggregate risk in the economy: the sum
of allocations is w in both states. Hence allocations are of the form
(51w, Sw), (1 = §p)w, (1 — §)w)) for §1, 8, € [0, 1]. It can be
shown that the only Pareto optima are full insurance allocations
(see Theorem 4 in Appendix A). Now consider the risky endowment
x', x%) = (Bw, (1 = w), (1 — §w, dw)), where § € (%, 1].
It would seem that a natural ‘one-move’ trade yielding a Pareto
optimal allocation would be for 2 to give 1 ((% —dw, (6 — %)w).
It is easy to check that %w >2x%. Moreover, Y p(s)u'(w) >
Yo pu'(x)) forall p € M, ri(D'((x', x))). Were the agents
to ignore the stakes and always choose as if they were at their
lowest level, this would be sufficient for the trade to be acceptable
to both agents: that is, for the full insurance allocation (%w, %w)

to be one-step accessible from (x!, x*). However, if they take the
stakes into account as specified by representation (1), there is a
stronger condition that is required for the trade to be acceptable to
agent 1, namely that > p()u'(Gw) > > p(s)u'(x}) forallp €
D'((x', 1w)), with strict inequality for some p. By straightforward
calculation, this condition holds if and only if**

forall p € D! <<xl, %w)) . (7)

Hence, by the definition of D', 1w 3! x! whenever

1
s

1-y1 _ 1-— 5)17;/1

1
2

<
P $

1

1 11—y
min{nw (8 —-),045} +0.5 > 2— - (8)
2 s1=vl — (1 =817

This inequality has solutions for various values of the parame-
ters: it is straightforward to check, for example, that when y! = 2,
5 = %, w = 1500, n = 0.001, the inequality is satisfied and
so 2w #' x'. In such cases, the Pareto optimum (5w, w) is not
one-step accessible from (x!, x?). By a similar argument, one can
show that no Pareto optimal allocation is one-step accessible from
(x', x?). Hence the following result.

Proposition 4. There may exist Pareto dominated allocations from
which no Pareto optimal allocation is one-step accessible.

This phenomenon is basically a consequence of the dependence
on stakes in representation (1), which allows agents to have deter-
minate preferences at low stakes levels that they may withdraw
at higher stakes levels. Whereas it is the former preferences—and
in particular the probability measures corresponding to low levels

22 As noted in footnote 19, although the stakes relation is defined on pairs of
contingent commodities, this yields a well-defined stakes relation on pairs of acts.
Given the utility function, it is straightforward to check that this stakes relation
satisfies the properties assumed in this paper.

3 Here we consider the case where y1 # 1; the case of y; = 1 can be treated
similarly.

of stakes—which determine whether an allocation is Pareto opti-
mal or not, the latter preferences—and the associated larger sets
of probability measures—determine whether an agent accepts a
given trade or not. If all agents were indifferent to the stakes, and
formed preferences using the smallest sets of probability measures
in their confidence rankings (that is, as if the stakes were at their
lowest level), then any Pareto dominated allocation would indeed
be Pareto dominated by a Pareto optimal one. However, whenever
there is an agent who takes the stakes into account according to
representation (1), she may not be confident enough in her pref-
erence for that Pareto optimal allocation over her initial endow-
ment to choose the former at the appropriate level of stakes, and
so sticks to the status quo. She refrains from trading, and the ‘one-
step’ move to the Pareto optimum is blocked.

We have already mentioned one interpretation of this result in
terms of maximal speed of convergence to equilibrium. It indicates
a non-trivial bound on how fast a Pareto optimal allocation can
be reached: allowing any conceivable way of constructing a set of
simultaneous trades (as unfeasible as it may be in practice), it may
still be impossible to get to a Pareto optimum by a single set of
trades if the market contains agents who incorporate confidence
into their preferences, and who do not trade when they lack
sufficient confidence. Another interpretation is in terms of the
restrictions placed on the (theoretical) power of a social planner. In
standard general equilibrium models, as well as the market under
uncertainty models mentioned above, a suitably intelligent social
planner who knows the agents’ preferences could propose a set of
simultaneous trades that would be accepted by all agents and that
would bring the market to a Pareto optimum. This relies on the fact
that, in these models, for each allocation, there is a Pareto optimum
that is one-step accessible. That this is not necessarily the case in
the current model attests to the limited influence of such a social
planner: even if she had all the information about preferences
(and infinite computational power), the social planner might not
be able to propose a set of simultaneous trades that leaves the
economy in a Pareto optimum and is acceptable to all. The agents’
tendency to demand more confidence in beliefs when the stakes
are higher mean that she may not be able to persuade some of them
to shift from the endowment to a Pareto optimal allocation when
the stakes involved in the change are high, though they would
have accepted the trade if the stakes had been low. Confidence,
combined with the status quo interpretation of indeterminacy
of preference, can hinder Pareto-enhancing intervention in the
market.

The natural question is, of course: how fast can a Pareto
optimum be reached? Put in terms of the second interpretation
offered above, this amounts to asking how many times a social
planner has to intervene to bring the economy to a Pareto
optimum. Let us say that a feasible allocation (y!, . . ., y") is m-step
accessible from (x!, ..., x") if there is a sequence of m — 1 feasible
allocations, the first of which Pareto dominates (x!, ..., x"), the
last of which is Pareto dominated by (y!,...,y"), and each of
which is Pareto dominated by its successor. A Pareto optimum
which is not one-step accessible may be m-step accessible: this
means that, under ideal conditions, it can be reached not with a
single set of trades that is acceptable to all, but rather after m
consecutive sets of trades, each of which is acceptable to all. If,
for a given allocation, there is a Pareto optimum that is m-step
accessible and none that is m’-step accessible for m" < m, this can
be thought of as a bound on the how fast the economy can come
to a Pareto optimum: it requires at least m sets of simultaneous
trades. A social planner has to intervene at least m times. There are,
however, allocations from which no Pareto optimum is accessible
in a finite number of steps.
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Proposition 5. There may exist Pareto dominated allocations from
which no Pareto optimal allocation is m-step accessible, for any
finite m.

When there are agents whose preferences incorporate their
confidence in beliefs, and who stick to the status quo when they
do not have enough confidence to take a choice, it may thus be
theoretically impossible for the market to arrive at a Pareto optimal
allocation in finite time. Because, quite simply, there may not exist
a finite sequence of sets of trades reaching a Pareto optimum,
where all agents have sufficient confidence to accept all the trades.
Confidence, combined with taking the status quo option—and not
trading—when one is not sufficiently confident in any option, adds
considerable friction into the economy.

These results may be relevant in situations where there are
obvious advantages from reallocation—be it by trade in a market,
or by policy implementation by a government—but changes arise
slowly, if not at all. For instance, a recognised ‘puzzle’ is that
reforms that most economists agree to be socially beneficial
are either not implemented, or deemed unpopular (Williamson,
1994; Rodrik, 1996; Olofsgard, 2003). Many of the most salient
examples discussed in the literature follow some shock (e.g. the
crises in Latin America of the 1970-80’s, the fall of communism
in Eastern Europe), after which one might expect the public to
have low confidence in their beliefs. The previous propositions
suggest that this limited confidence could lead the public to
resist big, high-stakes reforms—even ones which they would agree
with if they had more confidence or if the stakes were lower.
The confidence model thus provides a novel explanation of this
puzzle. Moreover, it suggests that small, lower-stakes reforms
that ‘move’ in the direction of the big one may be feasible,
though they might not allow the policy maker to arrive at a
Pareto optimum. Another consequence of these findings concerns
market behaviour after a large shock (such as the 2008 crash).
The propositions identify a theoretical friction preventing a market
from coming to equilibrium, to be contrasted with practical factors
(concerning market structure, for instance) that might slow speed
of convergence (or prevent it completely). They suggest that in
cases where investor confidence is low (such as after a shock),
markets may be slower to come to equilibrium than in other
situations. Whilst this appears to be consistent with anecdotal
evidence (e.g. on the state of the markets since 2008), we know
of no existing empirical work testing this prediction.

6. Related literature

Bewley (1986/2002) was the first to axiomatise a ‘unanimity’
representation of an incomplete preference relation by a set of
probability measures, according to which there is a preference
between acts if the expected utilities of the acts lie in the
appropriate relation for all the probability measures in the
set. Technically, our representation is closer to the unanimity
representation used by Ghirardato et al. (2004) and Gilboa et al.
(2010), who take the weak rather than the strict preference
relation as primitive.”* The unanimity model cannot capture
differing degrees of confidence, and hence it does not have the
richness to capture the effect of the stakes involved in a choice on
the degree of confidence required of beliefs to play a role in it, and
hence on determinacy of preferences. Representation (1) can thus
be thought of as a generalisation of the unanimity representation,

24 The representation in Ghirardato et al. (2004) and Gilboa et al. (2010) differs
from representation (1) by replacing D((f, g)) with a fixed set of probability
measures; the representation in Bewley (1986/2002) differs moreover in replacing
the weak preferences and orders by strict ones.

replacing a single fixed set of probability measures by a family of
sets, where the set of measures used varies depending on the stakes
involved in the decision.

Representation (1) belongs to a family of decision models that
represent the decision maker’s state of belief by a confidence
ranking and are based on the idea that different sets of probability
measures may be used in the evaluation of options, according to
the stakes involved. This family was introduced and motivated
in Hill (2013). There it was noted that members differ along
two dimensions: firstly, the decision rule which determines
preferences on the basis of a set of probability measures and
a utility function, and, secondly, the notion of stakes. In this
perspective, the current paper can be thought of as complementary
to Hill (2013), exploring different parts of the family introduced
there. Theorem 1 axiomatises the models in the family that take
the unanimity decision rule (as opposed to the maxmin expected
utility rule, as in Hill, 2013) and any notion of stakes over binary
choices satisfying some basic properties (as opposed to a particular
notion of stakes over acts, as in Hill, 2013; see also Section 4.3,
Remark 3). Moreover, some of the results in Section 4 (in particular,
their part (i)’s) can be thought of as providing foundations for
other classes of models belonging to the same family, with
different decision rules (maxmin expected utility, generalised
Hurwicz) and notions of stakes (over choices, over acts). Hill (2013)
discusses the relationship between the proposed family of models
incorporating confidence and the existing literature on complete
preferences, and in particular ambiguity (such as Klibanoff et al.,
2005; Maccheroni et al., 2006; Chateauneuf and Faro, 2009). We
refer the reader to that paper for more details on the comparison
with models of complete preferences, and restrict our discussion
here to the literature on incomplete preferences.

Nau (1992) has proposed a theory of incomplete preferences
which is similar to representation (1) in content and motivation.
Besides the differences in framework (he uses the de Finetti
framework, rather than the Anscombe-Aumann one used here),
presentation (he uses confidence-weighted upper and lower
conditional probabilities on random variables, rather than the
notions of confidence ranking and cautiousness coefficient) and
conceptualisation (the distinction between stakes and confidence
is not fully brought out; the notion of cautiousness coefficient,
and with it the separation of confidence in beliefs from attitudes
to choosing in the absence of confidence, is absent), he assumes
a particular notion of stakes, whereas we do not. In fact, Nau's
model is the special case of the theory presented here with (iv) in
Fig. 2 as stakes. His particular notion of stakes imposes properties
on the representation, such as convexity (Nau, 1992, p1741),
which do not apply for all notions; whilst they play a central
role in his axiomatisation, they are thus absent from ours. On
the other hand, our result brings out some general aspects of
the representation—for example, the fact that it respects Pure
Independence, and hence, as argued in Sections 1 and 3.2, the
essence of the standard independence axiom—that lie beyond the
focus of Nau’s presentation and motivation. Finally, Nau does not
discuss the implications of confidence for preference completion,
which was treated in Section 4.

Recently, Faro (2015) has proposed an extension of Bewley's
representation incorporating an ambiguity index—a real-valued
function on the space of probability measures—in a way inspired
by the variational preferences model of Maccheroni et al. (2006).
His representation, like Bewley’s and the one studied here, involves
a universal quantification over probability measures; Cerreia-
Vioglio et al. (2015) axiomatise the ‘justifiable’ version of his
model, involving an existential quantification instead. Lehrer and
Teper (2011, Theorem 2) axiomatise a representation involving
sets of sets of probability measures, where an act is preferred
to another if it has a higher expected utility for all probability
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measures in at least one of the sets. There are significant differences
from the current proposal in the representation of preferences (for
example, the notion of the stakes plays no role in these models), the
concepts involved and how they are modelled, and the behavioural
properties. Conceptually, Faro (2015) suggests an interpretation of
his ambiguity index in terms of confidence (in experts or opinions).
However, his model does not support a distinction between beliefs
and tastes (see his Section 4.3), whereas the difference between
the confidence ranking and the cautiousness coefficient in the
model proposed here can be considered to correspond precisely
to such a distinction (Sections 2.3 and 3.4). As noted in Section 2.3,
this separation is essential to the concept of confidence in beliefs
that is at issue in this paper. (See also Hill, 2013 for a discussion
of a similar point in relation to ambiguity models.) On the
behavioural front, these models employ more severe weakenings
of transitivity than used here, and indeed allow preference cycles
whilst representation (1) does not (Section 3.2); moreover, Faro
(2015) employs a more severe weakening of independence. Faro
(2015) also considers the relation to the variational preferences
and maxmin EU models, in a manner similar to our treatment of
the question of preference completion in Section 4.

Minardi and Savochkin (2015) propose a representation of a
graded preference relation in terms of a capacity over a set of
probability measures, where the ‘strength of or ‘confidence in’
the preference for an act is equal to the measure of the set of
probability measures for which the expected utility of the act
is greater. Their graded preference relation is a binary relation
over pairs of acts, and hence is reminiscent of the confidence-in-
preferences relation introduced in our Section 3.4, with the notable
difference that whilst Minardi and Savochkin (2015) assume
this relation as a primitive, here it is defined from (ordinary)
preferences over acts (Definition 2, Section 3.4). Analogous points
to those made in the previous paragraph appear to apply to
the comparison with this model. For example, notwithstanding
the difference in framework, their transitivity condition (Weak
Transitivity) seems to be closer to the weakening of transitivity
used in Faro (2015) and Lehrer and Teper (2011) than to the one
used here.

Seidenfeld et al. (1995), Nau (2006), Ok et al. (2012) and
Galaabaatar and Karni (2013) have explored extensions of
Bewley’s representation involving sets of probabilities and sets
of utilities. The behavioural points made in the Introduction, in
particular concerning the independence axiom in the presence of
incompleteness, continue to hold for these models. They plead in
favour of the incorporation of confidence in beliefs and confidence
in utilities; this is left as a topic for future research. Hill (2012)
proposes a model of confidence in preferences that retains the
same basic intuition as the models of confidence of belief used here,
and applies it in the context of choice under certainty. Hill (2016)
develops a model of choice in the presence of a costly deferral
option which contains a natural extension of representation (1)
to general, as opposed to two-element menus, where stakes
are assigned to menus and the only acts chosen from a menu
have highest expected utility according to the appropriate set of
priors (see his Section 3). Moreover, as opposed to the approach
adopted here (Section 2.2), the (analogue of the) stakes relation is
endogenously derived (see his Remark 1).

The discussion of the completion of incomplete preferences
is technically related to Gilboa et al. (2010), Kopylov (2009),
Nehring (2009) and Danan et al. (forthcoming), who provide results
relating pairs of binary relations, where one is complete, the
other is represented according to the unanimity representation
described above, and they are represented by related or identical
sets of probability measures. All these authors work with single
sets of probability measures, rather than confidence rankings,
and hence cannot capture the distinction between the two

strategies presented in Section 4. Putting aside this point, and
notwithstanding some technical differences, our Proposition 3 is
closely related to Theorem 3 in Gilboa et al. (2010), whereas our
Theorem 3 can be thought of as a version of Proposition 2 in Danan
et al. (forthcoming). By contrast, Theorem 2 involves a new sort of
‘connecting’ axiom (Benchmark on Certainty) and provides, in the
case of a degenerate confidence ranking (containing a single set of
probability measures), a new axiomatisation of the representation
obtained in Gilboa et al. (2010)’'s Theorems 3 and 4.

Finally, the interpretation of indeterminacy of preference in
terms of sticking to a status quo option used in Section 5 has been
considered by Bewley (1986/2002), under the name of the ‘inertia
assumption’. Bewley (1989) was the first to consider consequences
for trade, and Rigotti and Shannon (2005) undertake a thorough
analysis of markets involving decision makers with unanimity
preferences. Billot et al. (2000), Rigotti et al. (2008) and Ghirardato
and Siniscalchi (2014) consider markets involving decision makers
with complete non-expected utility preferences.

7. Conclusion

Decision makers may have incomplete preferences. Moreover,
they may be more or less confident in their beliefs. In this paper, a
theory which relates incompleteness of preferences to confidence
in beliefs was proposed. It is based on the following maxim: one
has a determinate preference over a pair of acts if and only if one’s
confidence in the beliefs needed to form the preference matches
up to the stakes involved in the choice between the acts. In the
absence of sufficient confidence, preferences are indeterminate.

A formal decision rule conforming to this maxim was proposed.
The decision maker’s confidence in her beliefs is modelled by
a confidence ranking—a nested family of sets of probability
measures. A cautiousness coefficient assigns to any decision a
level of confidence relevant for that decision (represented formally
by a set in the confidence ranking), which is determined by the
stakes involved. The decision rule according to which one act is
preferred to another if it has higher expected utility according to all
the probability measures in the appropriate set was axiomatised.
Moreover, comparative statics analysis of the relative decisiveness
of decision makers, as well as of their confidence in preferences,
suggests that the confidence ranking captures the decision maker’s
confidence in beliefs, and the cautiousness coefficient her attitude
to choosing in the absence of confidence.

It was argued that the choice-theoretic properties that dis-
tinguish the proposed model from the standard Bewley model
of incomplete preferences are both axiomatically mild and
behaviourally reasonable under most of the existing interpreta-
tions of incomplete preferences. Moreover, the question of the
‘completion’ of incomplete preferences—which is relevant under
all of the aforementioned interpretations, in particular to handle
situations where a choice is required—was considered. The intro-
duction of the notion of confidence allows the identification of
two strategies for preference completion. One strategy respects
confidence, insofar as it only relies on the beliefs that the deci-
sion maker holds to the appropriate level of confidence given the
stakes involved in the decision. The other strategy goes on hunches,
to the extent that it mobilises all of the decision maker’s beliefs,
even those in which she has little confidence, in situations where
she is forced to decide. It was argued that each of these strategies
may be pertinent in different decision situations under the various
interpretations of incomplete preferences, and axiomatic charac-
terisations of several completion procedures using the two strate-
gies were proposed.

Finally, possible consequences of the model in a market setting
were considered, where indeterminacy of preferences translates
into refusal to trade. In particular, it was shown that, unlike other
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models, there may exist Pareto dominated allocations that are
not dominated by any Pareto optimum. This indicates that the
incorporation of confidence can add a considerable friction to the
economy: it may be theoretically impossible for the market to
come to a Pareto optimum by a single set of trades accepted by
all. Moreover, there are cases where no finite sequence of sets of
trades, accepted by all, can bring the market to a Pareto optimum.

Appendix A. Characterisation of Pareto optima under repre-
sentation (1)

Readers familiar with the literature on general equilibria in the
absence of completeness or transitivity might expect these results
to be directly applicable to the case considered in Section 5. This is
in fact not straightforwardly possible in general, for two reasons.
Firstly, the weakening of transitivity in representation (1) implies
that, for certain notions of stakes, preferences represented by (1)
may not be convex.””> Secondly, since the weak preference order is
taken as primitive, it does not follow from the axioms in Section 3.2
that the strict preference order is continuous.?®

To deal with these issues, we assume the following properties
of the notion of stakes and of the preferences.

Monotone decreasing Forall <,x) € Pax).f, 8 € Aanda, B €
[0, 1], if o < B, then (f, gaf) =<, (f, 85

Full support For all s € S, there exists ¢; € M such that, for all
heAanda € (0, 1], (15)eh > (c5)eh’

The monotone decreasing property of stakes states that as one
considers choices between acts that are ‘closer’ to each other (in the
sense of mixtures), the stakes decrease. This property is satisfied by
several of the notions of stakes mentioned in Section 2.2.

Full support is the behavioural formulation of the following full
support property of Z': for each s € S, there exists by > 0 such that
p(s) = bsforallp € U@ieg C;. This property can be thought of as
the analogue of full support for a probability measure, but for sets
of measures and confidence rankings. In particular, it is stronger
than simply asking that all probability measures in the confidence
ranking have full support: it requires moreover that probability
measures have a common non-zero lower bound on the values for
each state.

Under these assumptions, we have a characterisation of Pareto
optima. For a contingent commodity x € Eﬁi and an agent i, let

plsu’ (x,) p(sisPU” (xs5)
Yopu(x)’ T Y pHu ()
tesS

teS

mIx =

p e )riD'(x, z)))] .
Z#X

25 Consider a stakes relation where (f,g.h) > (f,g), (f, h), for some « € (0, 1);
with such a notion of stakes, the preferences g, h > f % g,h are compatible with
representation (1).

26 schmeidler (1971) has shown that for incomplete transitive preferences (over
appropriate spaces), the weak and strict preference orderings cannot both be
continuous. Although his result does not apply here, due to the weakening of
transitivity, it emphasises the subtlety of the issue of the continuity of the derived
strict preference ordering. Note that this issue could also have been resolved
by taking the strict preference ordering as primitive and using a version of the
representation proposed by Bewley (1986/2002); see Section 6.

27 1 is the characteristic function for s: 15(s’) = 1fors’ = sand 15(s") = 0 for
s’ # s. As specified in Section 2.1, ¢ is the constant act taking the degenerate lottery
yielding c; for sure in all states.

Theorem 4. Suppose that, for each 1 < i < n, the notion of stakes
<i is monotone decreasing and the preference relation <' satisfies
full support. An interior allocation (x',...,x™) is Pareto optimal iff
N 1) # .

The intuition behind this result is analogous to similar results
in the literature (Rigotti and Shannon, 2005; Rigotti et al., 2008):
ITi(x) is the set of supports of the strict upper contour set of x under
<! and an allocation is Pareto optimal if and only if the intersection
of all such sets is non-empty. The theorem has several immediate
consequences.

Corollary 2. Suppose that the aggregate endowment is constant
across states and that, for each 1 < i < n, the notion of stakes <!
is monotone decreasing and the preference relation <' satisfies full
support.

(i) Aninterior full insurance allocation (x', ..., x") is Pareto optimal
iff (i Mo 1D'((X, 2))) # 2.

(i) If, for each i, there exists ' C A(S) with B! = {C'}, then
there exists an interior full insurance Pareto optimal allocation
iff (M) ri(C") # @. In this case, every full insurance allocation is
Pareto optimal.

The first corollary, which is a simple consequence of the fact
that I7i(x)) = M ri(D'((x', z))) when x is constant, is a general
characterisation of Pareto optimality of an interior full insurance
allocation under representation (1). It is in the style of existing
results, such as Billot et al. (2000), Rigotti and Shannon (2005)
and Rigotti et al. (2008). Unlike these cases, the existence of a full
insurance Pareto optimal allocation does not imply that all full
insurance allocations are Pareto optimal, because, in general, the
relevant sets of probability measures may differ depending on the
constant commodity.

The second corollary involves the special case of representation
(1) where the confidence ranking is degenerate: this is essentially
the unanimity model of preferences a la Bewley. The result differs
slightly from that of Rigotti and Shannon (2005, Corollary 2),
which also concerns the Bewley model, insofar as their result
involves the intersection of the sets of probability measures of
the different agents, whereas ours uses the intersections of their
relative interiors. This difference is due to the fact that they take
the strict preference relation as primitive, use the representation
axiomatised by Bewley (1986/2002) (see Section 6), and take a
stricter notion of Pareto optimality.

Appendix B. Proofs

Throughout the Appendix, B will denote the space of all real-
valued functions on S, and ba(S) will denote the set of additive real-
valued set functions on S, both under the Euclidean topology. B is
equipped with the standard order: a < biffa(s) < b(s) foralls € S.
For x € N, we define x* to be the constant function taking value x.

B.1. Proof of Theorem 1

The main part of the result is to show the sufficiency of the
axioms for the representation (direction (i) to (ii)), the proof of
which proceeds as follows. By standard arguments, we obtain a
von Neumann-Morgenstern utility function on the consequences,
which allows us to work with real-valued functions on S instead
of acts. For each stakes level r, we define a preference relation
=<, on these functions, which can be thought of as representing
the preferences between corresponding acts considered ‘as if the
choices had stakes r. We show (Lemma B.5) that, for each non-
minimal stakes level r, <, is a non-degenerate, monotonic, affine,
Archimedean pre-order, whence, by Gilboa et al. (2010, Corollary
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1) (which is a version of a Ghirardato et al., 2004, Proposition A.2),
there is a closed convex set of probability measures C, representing
=<, according to the unanimity rule. Lemma B.10 shows that
the preference relations for minimal stakes can be represented
according to the unanimity rule with the intersection of the ¢, for
the other stakes levels. By Lemma B.7, the ¢, form a nested family
of sets, and we thus have a confidence ranking. By Lemmas B.8
and B.9, this confidence ranking is continuous; by Lemma B.11, it is
balanced. By construction, the function that assigns to any stakes
level r the set ¢, is a well-defined cautiousness coefficient.

Now we proceed with the proof. First we assume (i); we will
show (ii). If < is trivial ((f,g) = (f’,g") forallf,f’, g, g’ € 4A),
then (A3) is equivalent to the standard transitivity axiom, and A4
and A6 are jointly equivalent to the standard independence axiom,
so the result follows immediately from Gilboa et al. (2010, Theorem
1). We henceforth assume that < is not trivial. We begin with the
following lemma.

Lemma B.1. There exists a non-constant utility function u represent-
ing the restriction of < to the constant acts. Moreover, u(A(X)) = N.

Proof. By A1, A2, A4 and A7, the restriction of < to constant acts
is non-degenerate complete, reflexive and satisfies independence
and continuity. We now show that it is transitive. Forany c, d, e €
A(X), suppose that c < dand d < e. If (c, e) is <-minimal, then
(A3)immediately implies that ¢ < e. Now suppose that (c, e) is not
<-minimal. If c ~ d ~ e, thenc ~ eby (A3).Ifc ~ dandd ~ e,
then by the extensionality of <, (c, e) = (d, e), so (A3) implies that
¢ < e.The casewhered ~ eand c ~ dis treated similarly. Consider
finally the case where ¢ = d and d ~ e. By the richness of <, there
exist (¢, d') € (c, d)and (d”, ¢") € (d, e) such that (c, e) < (c/, d')
and (c,e) < (d”,¢”).By Al and A4, c'(s) < d'(s) and d"(s) < €”(s)
foralls € S, from which it follows by (A5) that¢’ < d’and d” < ¢”.
Hence, by (A3), ¢ < e, as required. The existence of u follows from
the von Neumann-Morgenstern theorem. The unboundedness of
u is a straightforward consequence of A9. O

There is thus a many-to-one mapping between acts in 44 and
elements of B, given by a = u o f, for f € . With slight
abuse of notation, we use < to denote the order generated on B
by < under this mapping, and < to denote the order generated on
B x B\ {(a,a) | a € B} by <. (< and < are well-defined on B
by A3, A5 and the extensionality of <) Similarly, we use (e, o) to
denote the mapping on B x B generated by (e, e): explicitly, for
(a,b) € BxB,(a,b) ={(d,b) €eBxB|3a>0,leBst.d=
aa+ (1 —a)land b’ = ab + (1 — a)l}.

Lemma B.2. For every a,d,b,b € Bwitha # band a # b, there
exists (a', ') € (a, b) such that (@', b') = (@, b).

Proof. If (a, b) = (@, b), then there is nothing to show. Suppose
without loss of generality that (a, b) < (a, b); the other case is

treated similarly. By richness of < and the definition of (e, e), there
exist B > 0Oand ! € 4 suchthat (Ba+ (1 - B), Bb+ (1 - B)) =
(a,b). If (Ba+ (1 — B)L, b+ (1 — B)) = (a, b), then the result
has been established; if not, then by continuity of <, there exists
o > 0 such that (wa + (1 — @), ab/—l—\(l — a)l) = (a, b). Since
(xa+ (1 —a)l,ab+ (1 — a)l) € (a,b), this yields the required
result. O

Let $ be the set of equivalence classes of <. As standard, < on
B x B\ {(a,a) | a € B} generates a relation on 4§, which will be
denoted < (with symmetric and asymmetric components = and
< respectively): forr,s € 4, r < siff, forany (f,g) € r and
(f',g) es (f,g) £ (f,g).r € $isaminimal element if r <
(resp.r > s) for all' s € 4. Note that, since < is a linear ordermg,
there is at most one minimal element; if it exists, we denote the

minimal element by 8. r € 4 is full if, for every a,b € B with
a # b, there exists (a’, b’) € (a, b) such that (d’, b’) € r. It follows
from Lemma B.2 that every element in 4 is full. Let 8% be the set
of non-minimal elements. For eachr € 87, let <, be the reflexive
binary relation on B such that, for alla, b € B witha # b,a <, b
iff there exists (a’, b’) € (a, b) such that (a’,b’) € randd’ < b'.
The following lemma implies that, for a,b € B with a # b and
everyr € 8%, a<,biffd < b forevery (a’, ') € (a, b) such that
(a,b) er.

Lemma B.3. Foreverya,b,l,m € Band «, § > 0 with (ea+ (1 —
a)l,ab+ (1 —a)), (Ba+ (1 —B)ym,Bb+(1—B)m) €r € 87,
aa+(1—a)l <ab+ A —a)liff Ba+(1—B)m < Bb+(1—p)m.

Proof. Since (ea + (1 — ), ab + (1 — @)l) € r,a # b. Without
loss of generality, suppose that 8 < «. We first establish the
result for the case where 8 < «. Note that Ba + (1 — f)m =

Blaa+ (1 — o)) + (1 = By(LE /31 + = "f‘m) where "‘B:ﬁﬂl +
“aiaﬂﬁm € B; similarly for gb + (1 — ,B)m. Let f,g,h € A be
suchthataea + (1 — @)l = uof,ab+ (1 —a)l = uogand
%l—i—%m = uoh;soBa+ (1—B)m = uofghand
Bb+ (1—Bym = uogsc. Since (f.g) = (fsh,gsh), by (A6),
f = gifffsh = gph. Hence, by A4, f < giff fsh < gsh. So
aa+(1—a)l < ab+ (1 —a)liff Ba+(1— B)ym < Bb+ (1~ g)ym,
as required.

Now consider the case where § = «. If | = m, the result is
immediate, so suppose that [ # m. Suppose that wa + (1 — o)l <
ab + (1 — a)l; we show that a4+ (1 — B)m < b+ (1 — B)m.
Since r is non-minimal, there exists s € 4% withs < r. Since
s is full, there exists n € Band y > 0,y # 1, such that
(Yaa+ A —-—a)D+ A —=y)n,y@b+ 1 —-a))+ (1 —y)n) e

— (YeB—B y—va 1V ya—yap ;
s.Let X = (ya — (1= yal + o) + - m) and consider
Slaya+ (1 — ya) (X2 + iy n) + (1 — 8)X for § > 0. Note

I-ya 1-ya
that this equals y (@a + (1 — oe)l) + (1 — y)nwhené = 1and

Ba+ (1 — Bpym when § = -£; moreover, it can be rewritten as
5y(aa+(1—a1))+(1—5y)(f 5Vn+] 752 X). Hence, byAGandA4
and since va+ (1—a)l < ab+ (1—a)l, forevery § ;é - =
that (§(aya+(1—ya) (5= ;’zl—l-l yan))—l—(l X, é(ocyb—i—(l—
ya) (5= )}:Zl—i—l Van))—l—(l—rS)X) < (aa+(1—a)l,ab+(1—a))),
we have that (aya + (1 — ya) (XX 4+ L)) + (1 — 8)X <

£ such

T—ya' T 1ya
S(ayb+(1—ya) (3= ;’;‘l—t—l yan))—:(l—8)XyBythecontmu1tyof
<, there exists a limit § with (8 (aya+(1—ya) = ;:ZH-] Wn))—i—
(15X, B(@yb+(1-ya) 3221+ (=L m) +(1-5)X) = (ea+
(1—a)l, ab+(1—a)l) and (8(oeya—|—(l—ya)(’1’ re) 4 Wn))—i—
(1=8X,8yb+ (1 - yao) (=25

(xa+ (1 — ), b+ (1 — a)l) for 3115 € ( ﬁ , D). lf 1s such a

limit &, then it follows by A7 that Ba+ (1 — ﬂ)m_ < ,8b+ (1—-p8)m,
as required. If not, then take any such limit §: by the previous
observation, 8(aya + (1 — ya)(’]’ 2+ 1= o) + (1 X <
Slayb+ (1 —ya) (3Ll + L) + (1 —5)x with § # L1t
follows by A6 and A4 that Ba+ (1 — B)m < Bb+ (1 — ﬂ)m as
required. The converse is established by the same argument. O

We now establish some properties of the relations <.

LemmaB4. Forallr,s € 87 withr > s, <, C <,

Proof. If s = r, there is nothing to show, so suppose not. Consider
a,b € Bsuchthat a=<,b.If a = b, the result follows from the
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reflexivity of <, and =<,; henceforth suppose that this is not the
case. Without loss of generality, it can be assumed that (a, b) € r.
(If not, replace a, b with wa + (1 — a)l, ab + (1 — «a)l where
(xa+ (1 — a)l,ab + (1 — @)l) € r and continue as below.) It
follows from Lemma B.3 thata < b.Let 8 > 0 and m € B, be such
that (Ba+ (1—B)m, b+ (1 — B)m) € s(such B and m exist since
sis full). A6 and A4 imply that a + (1 — f)m < Bb+ (1 — B)m,
and hence a <X, b, asrequired. O

Recall that a binary relation < on B is

e non-degenerate if there exists a, b € B such that a < b but not
a>b.

e monotonic if, for all a, b, € B,ifa < bthena < b.

e dffine if, foralla,b,c € Band @ € (0,1),a < biffaa + (1 —
a)c <ab+ (1 —a)c.

e Archimedean if, for all a,b,c € B, the sets {« € [0,1] |
aa+ (1 —a)b = cland {o € [0,1] | va+ (1 — )b < ¢}
are closed in [0, 1].

e apre-order if < is reflexive and transitive.

Lemma B.5. For every r € 4%, <, is a non-degenerate, monotonic,
affine, Archimedean pre-order.

Proof. Non-degeneracy. By A2, < is non-degenerate; by A5 and A1,
it follows that the restriction of < to A(X) is non-degenerate. But
=<, coincides with < on A(X), so it is non-degenerate.
Monotonicity. Suppose that a < b and a # b (the result is
immediate for a = b). Then, wa + (1 — @)l < ab + (1 — a)l for
l € Band @ > Osuch that (wa + (1 — a)l,ab + (1 — @)l) € r. By
monotonicity (A5), a + (1 — @)l < ab+ (1 —a)l,and so a <X, b.
Affineness. The result is immediate if a = b; henceforth suppose
not. Since r is full, there exists § > 0 and ! € B such that (8a +
(1-=p8)L, Bb+ (1 —B)]) € r.Consider S(ea+ (1 —a)c)+ (1—pB)I
and B(ab+ (1 —a)c) 4+ (1 — B)I: since r is full, there exists y > 0
and m € B such that (y(B(wa+ (1 —a)c) + (1 — B)D) + (1 —
y)ym,y(B(ab+ (1 —a)c) + (1 — B)) + (1 — y)m) € r. Note
that y(B(ea+ (1 —a)c) + (1 — B + (1 — y)m = ay(Ba+
(] -Bh+ (1 - ay)(’l’_g;’ Bc+ (A - ﬂ)l) + = aym) where

L (Be + (1 - B))
distinguish three cases.

Ifya < 1,letf,g,h € AbesuchthatBa+ (1 —B)l=uof,
Bb+(1—B)l = uog and *=2% (Bc+(1—B)) +7=% m = uoh. Since
(f,8) = (fayh, gayh), byA6 andA4 Ba+(1-=p)I =< Bb+(1-p8)I
iffy(Blaa+ (1 —a)o)+(A—-BD+ (1 —y)m=y(Blab+(1-
a)c)+ (1—pB))+ (1 —y)m.Butsince y (B(ea+ (1 —a)c)+ (1 —
B +(1—y)m = By (@a+(1—a)0)+(1—By) 5L 1+ =5 m),
and similarly for b, it follows that a <, biffaa + (1 — a)c <, ab +
(1 — a)c, as required.

If yo > 1, then the same argument can be applied, with
f.g,h e Asuchthatay (Ba+(1—B))+(1—ay) (=L (Bc+(1—

1-ay
B+ Wm)—uof ay (Bb+(1=B)D+(1—ay) A=k (Be+(1—-
B+ 15m) = uogand I=X (Bc+ (1— H)D + {=5m = uoh,
and using f 1 handg 1 h.
ay ay

The final case is when there exists no y # % satisfying the
conditions stated above. This case is treated analogously to the
o = B case in the proof of Lemma B.3.

Pre-order. Reflexivity follows from the definition of <,. As for
transitivity, suppose that a <, b and b <, c and that a # b # c (if

= b,b = cora = c, the result is immediate). Since r is full,
there exists | € B and « > 0 such that (ea + (1 — &), ac + (1 —
a)l) € r. Moreover, there exists m,n € B and g, y > 0 such that
Blaa+(A1—a)D+(1—-B)m, B(ab+(1—a))+(1—pB)m) € rand
(y(ab+(1—a))+(A—y)m, y(ec+(1—a))+(1—y)m) € r.Since
a=<,band b=, c,bylemmaB.3, f(aa+ (1 —a)) + (1 —pB)m <

Blab+(1—-a))+ (1 —-pFmandy(ab+(1—-a))+(1—y)m =<
y(ac + (1 — a)l) + (1 — y)m. Hence, by A3, wa + (1 — o)l <
ac + (1 — a)l, and so a <, c, as required.

Archimedean. Consider {« € [0, 1] | @a + (1 — a)b >, c}; the
other case is dealt with similarly. Let & be a limit point of this set,
and without loss of generality, assume that (¢a + (1 —a)b,c) € r
(if not, replace a, b, c with appropriate versions for which this
is the case). It needs to be shown that aa + (1 — a)b>,c. If
aa + (1 — a)b = c the result is immediate; suppose henceforth
that this is not the case. If there is a open interval I in {« € [0, 1] |
aa + (1 — a)b >, c} such that « is a limit point of I and such
that (8a + (1 — B)b,c) £ (@a + (1 — a)b,c) forall B € I,
then, by Lemma B.4, Ba + (1 — B)b > c forall 8 € I, whence
aa+ (1 —a)b > cbyA7,and so @a + (1 — &)b >, c as required.

Now suppose that there is no such interval. Since r is a non-
minimal element of 4, by the continuity of < and Lemma B.2, there
exists | € Band § > 0 such that (§(@a+ (1 —a)b)+(1— I, dc+
(1=8) < (@a+ (1 —a)b, ). Suppose that § < 1; the other case
is treated similarly. Let y = min{§ € (8, 1]| (§(@a + (1 — a)b) +
(1=38)I, 6c+(1—=58)D = (@a+(1—a)b, c)} (by the continuity of <
this is a minimum). Consider any é € (8, y); by the definition of y,
(8(@a+(1—a)b)+(1-68)1, 5c+(1-98)]) < (a¢a+(1—a)b, c).Note
moreover that §(aea+(1—a)b) +(1—=38)l = a(a+(1-8))+(1—
@) (8b+(1—48)l). So, by the continuity of <, there is an open interval
Is € (0, 1) containing & such that, forall 8 € Iy, (8(§a+(1—68))) +
1=pB)b+ (1 —=08)D,5c+ (1—98)) < (@¢a+ (1 —a)b, c). Note
thatIsN{a € [0, 1] | a4+ (1 —a)b >, c} is non-empty, since & is a
limit point of {& € [0, 1] | «a+ (1 — «)b >, c}. Furthermore, since
BBa+(1-8)D+(1-B)([Bb+(1-98)I) = 6(Ba+(1—B)b)+(1-6)],
Lemma B.4 implies that 8(6a+ (1—8§)) 4+ (1—B)(6b+(1—38)]) >
dc+ (1 =¥%lforallelsN{a €[0,1] | xa+ (1 —a)b>,c}. It
follows by A7 that @(8a + (1 — 8)I) + (1 —a)(éb + (1 — )] >
8¢ + (1 — §)L Since this holds for all § € (6, y), it follows by A7
that y (@a+ (1 —a)b) + (1 — y)I = yc+ (1 — y)I; whence, since
(y(aa+(1—a)b)+(A—p), yc+(A—p)) e r,aa+(1—a)b >, c,
asrequired. O

Lemma B.6. For eachr € 87, there exists a unique closed convex set
of probabilities C; such that, foralla, b € B, a X, b iff

> as)p(s) < Y _b(s)p(s) forallp € €.

NN ses

(B.1)

Proof. This follows from Lemma B.5, by Gilboa et al. (2010,
Corollary 1),’® which establishes such a representation for non-
degenerate, monotonic, affine, Archimedean pre-orders. O

LemmaB.7. Forallr,s € 8T withr >s, G C G
Proof. This follows directly from Lemma B.4 and Ghirardato et al.
(2004, Proposition A.1). O

Cr.

LemmaB.S. Forallr € 87, ¢, =, _,
Proof. By LemmaB.7, G, 2 G forallr’ < r.Suppose, for reductio,

that ¢, 2 |J, ., G, so that there exists a point (probability

measure) p € G, \ |J,._, Cr. By a separating hyperplane theorem,
there is a linear functional ¢ on ba(S) and o € N such that ¢ (p) <

< ¢(q) forallq € Ur, -, Cp. Since B is finite-dimensional, there
isa real valued function a € B such that ¢(q) = Y . a(s)q(s) for
any q € ba(S).Sincer is full, there exists § > 0and m € B such that
(Sa+ (1 —38)m,Sa* + (1 — §)m) € r. By Lemma B.2, there exists
l € Band 8 > 0 suchthat (8(6a+ (1 —8)m)+ (1 — B)I, B(Sa* +

28 See Ghirardato et al. (2004, Proposition A.2) for a related result.
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1=8m+(1—-pB)) < (ba+(1—68)m, a* 4+ (1—8)m). Consider
the case in which 8 < 1; the other case is treated similarly. Let
B = min{y € [B, 1] (B(a + (1 = &)m) + (1 — P)I, BSa™ +
A-=-m+ 0 —p8)) = @Ga+ (1—-48m,sa*+ (1 —35)m)} (this
is a minimum by the continuity of <). Taking f, g, h € 4 such that
uof =8a+(1—686muog =38x*+(1—8manduoh =1,it
follows, by the construction, that for any y € (8, '), g,h < f,h.
However, by construction, gg'h Z fgrh, contradicting (A7). Hence

@r = UT/<T @r/. O

Lemma B.9. For all non-maximalr € 8%, G, = (.., Cy.

r'>r
Proof. By LemmaB.7, G, C @ forallr’ > r.Suppose, for reductio,
that & C ()., G, so that there exists a point (probability
measure)p € ()., G \ Cr. By a separating hyperplane theorem,
there is a linear functional ¢ on ba(S),an« € 9 and an € > 0 such
that ¢(p) < @« — e and @ < ¢(q) for all ¢ € C,. Since B is finite-
dimensional, there is a real-valued function a € Bsuchthat¢(q) =
Y s a(s)q(s) for any q € ba(S). Since r is full, there exists § > 0
and m € B such that (a+ (1—6)m, §a* + (1 —38)m) € r.Take any
x € Nwithx < «, a(s) foralls € S,and letf, g, h € A be such that
uof = da+(1—8)m,uog = da*+(1—8)m,uoh = 5x*+(1—38)m.
Let B € (0, 1) be such thatu o ggh = §(a — 5)* + (1 — §)m;
such a 8 exists by the definition of g and h. By construction, f > g,
£(s).g(s) = h(s) forall s € S, for all (f’, (gsh)) € (f.ggh) with
(', (ggh)’) > (f,g).andf’ # (ggh)’.Since (f, g) is not <-maximal,
this contradicts A8; hence ¢, = (.., Cv. O

Lemma B.10. Let <4 be the relation on B generated by (B.1) with
the set of probability measures (), + Cr. If there exists a minimal
element of 4, 8, then < |5 = X5 s

Proof. Let a,b € B be such that (a,b) € 4 and suppose that
a=<nsb. Let x = minfa(s), b(s) | s € S}. Since a < b, it follows
from representation (B.1) and Lemma B.6 that for each 8 € (0, 1),
there exists a non-maximal s > & such that Ba + (1 — B8)x* < b,
and thus, by Lemma B.2, there exists « > 0 and | € B such that
(xBa+ 1 —-p8)x*)+ (1A —a),ab+ (1 —a)l) > (a,b) and
a(Ba+(1—B)x")+(1—a)l < ab+ (1—«a)l. Hence, by A8,a < b,
as required. Now suppose that a < b. By A8, for every 8 € (0, 1),
there exists r > 4 such that b >, fa + (1 — B)x*, where x is as
defined above. So, by Lemma B.6, b >4 Ba + (1 — B)x* for all
B € (0, 1). Since <4 is Archimedean, it follows that b = 4 a, as
required. O

LemmaB.11. Forallr,s € 8%, if G C Gs, then G, Nri(Cy) # @.
Similarly, if there exists a minimal element of 8, then for alls € 87,
(res+ Cr NTi(C) # @.

Proof. We consider only the case of r, s € 8T; the other case is
treated similarly, noting that if 4 exists, then it is full. Suppose
that the condition does not hold, so there exist r,s € 4% with
G, C Gsand G, Nri(Cs) = @.Since G, is convex and in the relative
boundary of Cs, it follows from a supporting hyperplane theorem
that there is a linear functional ¢ on ba(S) and ¢ € N and such
that ¢(q) = a forall ¢ € @ and ¢(q) > « for all ¢ € G with strict
inequality for some q € Cs. Since B is finite-dimensional, there is a
real-valued function a € B such that ¢(q) = ) s a(s)q(s) for any
q € ba(S). Since s is full, there exists ¥y > 0 and [ € B such that
(ya+ (1 —p)l, ya* + (1 — y)I) € s. Since r is full, there exists
8 > 0,m € Bsuch that (§(ya+ (1 —y)D) + (1 —8)m, §(ya* +
(1—9y)) + (1 —6m) e r.Consider the case in which§ < 1;
the other case is treated similarly. Let f,g, h € « be such that
uof =ya+1—-yp)luog =ya*+ (1 —y),uoh = m.By
construction, f > g, whilst fsh ~ gsh, contradicting A4. So there
exist no suchr, s, as required. O

Conclusion of the proof of Theorem 1. Define

{C|rest) if$§ =4"
E={lelresTiu{[) e} ifs=s"uls)

rest

where the G, are as specified in Lemma B.6. It follows from
Lemma B.7 that & is a nested family of sets. Since the G, are
closed and convex for all r € 4% (Lemma B.6), & is a confidence
ranking. By Lemmas B.8 and B.9, Z' is continuous; by Lemma B.11,
it is balanced. D is defined as follows: for all (f,g) € A X A,
if [(f,g)] € 4T, then D((f,8)) = Curop if (f.g) € 4, then
D((f,g)) = (\ses+ Cs; and if f(s) ~ g(s) for all s € S, then
D((f, g)) = C, for some arbitrary € € Z. Order preservation and
surjectivity of D are immediate from the definition and Lemma B.7.
By construction and Lemma B.10, u, &, D represent < according
to (1).

The direction from (ii) to (i) is generally straightforward. The
only interesting case is continuity (A7). Consider any f,g,h €
4, and the set {(a, B) € [0,11?] fyh =< ggh}. Suppose that
(a*, B*) is a limit point of this set, and consider a sequence
((aj, Bi)) of members of the set with (¢, ;) — (a*, B*). If there
exists a subsequence of ((«4, B;)), tending to (a*, 8*), such that
(fo, s 8, 1) 2 (forh, gp«h) for all (a;, , By,), then the result follows
from the fact that D is order-preserving and the continuity of the
unanimity rule. Now consider the case in which there exists a
no such subsequence. In this case, there exists f’,g’ € 4 with
(f",g") < (fuxh, gg=h). Moreover, by the continuity of <, for each
such (f’, g’), there is an open interval around («*, 8*) such that
(fyh,gsh) = (f'.g’) for any (y, ) in this interval. Hence, for
each such (f’, g’), there is a subsequence ((oz ("1 ﬂj[g/,gq])) of

(. ). tending to @, ), with (F ., gﬁw,g” = (. g)

for all n € N. It follows, since D is order preservmg, that for all
M€ N Les Ul HOIPE) < Foes U85, M5 PIO). for

allp € D((f', g )) Hence, by the continuity of the representation,
it follows that Y . _c u(fyxh(s)).p(s) < Y .5 u(gp=h(s)).p(s), for
all p € D((f’, g")). Since this holds for every (f',g") < (f,2),
and since, by the continuity of the confidence ranking and the

surjectivity of D, D((f,g)) = U(f’,g’)<(f,g) D((f’, g’)), there
cannot be a ¢ € D((f,g)) such that )  _cu(fy<h(s)).q(s) >
Y s U(gprh()).q(s). So foxh =< gg+h, and hence {(a,B) €
[0, 11%| fyh < ggh} is closed, as required.

Finally, consider the uniqueness clause. Uniqueness of u
follows from the von Neumann-Morgenstern theorem. As regards
uniqueness of =, proceed by reductio; suppose that (u, &, D)
and (u, E,, Dy) both represent < according to (1), with & #
Z,. Since &7 and Z, are continuous, they must differ on some
non-minimal element; hence, by the surjectivity of the D;, there
exists (f,g) € (A x )" with non-minimal stakes such that
D1((f, g)) # D,((f, g)). Suppose, without loss of generality, that
p € D1((f,g)) \ D2((f, g)). By a separating hyperplane theorem,
there is a linear functional ¢ on ba(S) and o € N such that ¢ (p) <
o < ¢(q) forall g € D,((f, g)). Since B is finite-dimensional, there
is a real-valued function a € B such that ¢(q) = > s a(s)q(s)
for any g € ba(S). By the richness of <, there exists y > 0 and
l e Bsuchthat (ya+ (1 —y)Lya*+ (1 —y)) = @Uuof,uog).
Taking h, i € A suchthatuoh = ya+ (1 — y)landuoh’ =
yo* 4+ (1 — y)l, we have that ) __c u(h(s))p(s) > > s u(h)p(s)
forall ps.t.p € D,((h, ")), whereas this is not the case for all p s.t.
p € D1((h, h")), contradicting the assumption that both (u, &1, D;)
and (u, &, D,) represent <. A similar argument establishes the
uniqueness of D. O
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B.2. Proofs of results in Sections 3.4 and 4

Proof of Proposition 1. Let the assumptions of the proposition be
satisfied. (ii) implies (i) is straightforward, so we consider only (i)
implies (ii). Since the preference relations are complete on the set
of constant acts, they coincide on that set; hence, by the uniqueness
clause of the von Neumann-Morgenstern theorem, u; is a positive
affine transformation of u;. Hence the stakes relation and the
mapping from « to B used in the proof of Theorem 1 can be taken
to be the same for the two agents; we use the notation employed in
that proof. By (i), for everyr € 87, 5: - 53, and so, by Ghirardato
et al. (2004, Proposition A.1), €* C ¢. It follows that &, C &4
and Dy ((f, 8)) € Di((f, g)) forall (f, g) € (A x A)™. O

Proof of Proposition 2. The ‘if direction is straightforward. The
‘only if direction is a simple corollary of the proof of Theorem 1.
On the one hand, if <' and <? are confidence equivalent, they
have identical preferences over constant acts (of which they are
maximally confident), and hence the same utilities up to positive
affine transformation. On the other hand, if they are confidence
equivalent, the sets of preferences {<, |r € 41} defined in the
proof of Theorem 1 are the same, and so the confidence rankings
are the same. O

Proof of Theorem 2. First consider part (i). Showing the necessity
of the axioms is straightforward; we now show sufficiency.
Consider f,g € A.If f(s) ~ g(s) for all s € S then
Minp((r,g)) Y ses U(E($)-P(S) = minp(sg)) Y scs u(f(5)).p(s). In
this case, B3 implies that neither f #¢ g norg #° f,so,by C1,f ~“ g,
as required by the desired representation. Suppose henceforth
that this is not the case, i.e. that f(s) ~ g(s) for some s € S.
Consider firstly the case where minpy g)) Y .5 U(g(5)).p(s) >
Minp( g)) O e U(F(5)).p(s). Consider any ¢ € A(X) such that
there exists (f', ¢) € @with f',ch) = (f,g)and f/ > c;it
thus follows that ) u(g(s)).p(s) > u(c) for all p € D((f, g)). By
the richness and continuity of <, for eachd € A(X) withd < c,
there exist (g/,d) € @ such that (g’, d) = (f, g); moreover,
for any suchd and (g’, d'), g’ > d'. It follows by B3 that g £° f, and
thus, by C1, g =€ f, as required.

Now suppose that minpy g)) Zses u(g(s)).p(s) < minps g)
Y ees Uf(5)).p(s), so there exist c,d € A(X) with minpy g)
D ses U(g().p(s) < u(d) < u(c) < minp(g gy D s U (5))-P(S).
Take any such c,d. First, note that it is not the case that
D ses U(E(9)).p(s) < u(d) forall p € D((f, g)). It thus follows from
representation (1) that for all (g’, d") € @ such that (g’, d) =
(f.g). g % d.However, we have u(c) < ) (s u(f(s)).p(s) for
all p € D((f, g)). By the richness and continuity of <, there exists
f',c) e ﬂ such that (f,¢’) = (f,g); by representation

1), f > (. It follows from B3 that g <¢f, as required. Hence
representation (2) holds.

Now consider part (ii). Showing the necessity of the axioms
is straightforward; we show sufficiency. Consider f,g € . If
f(s) ~ g(s) foralls € S then minﬂCEECZSEs u(g(s)).p(s) =
minn._c X ses UF(5)).p(s). In this case, B3*" implies that
neither f #“g nor g #°f, so, by Cl, f~“g, as required by
the desired representation. Suppose henceforth that this is
not the case, ie. that f(s) ~ g(s) for some s € S.
Consider firstly the case where minn._.c Y oses U(E(9).p(s) >
minn__. c D s U(f(5)).p(s). Consider any ¢ € A(X) such that

there exists (f’,c’) € @ with f* > ¢’; it thus follows that
D ses U(E()).p(s) = u(c) forallp € (.7 C. Considerany d < c.
By the continuity of representation (1), the continuity of Z and the
surjectivity of D, there exists € € & such that )" _c u(g(s)).p(s) >

u(d) for all Ip € C. Moreover, by the richness of <, there exists

(g,d) e (g, d) such that D((g’,d")) € @, sog’ > d'. Since this

holds for all d < c, it follows by B35~ that g £¢ f, and thus, by C1,
g >=°f, as required.

Now suppose that minn___ ¢ D oees UE(9).p(s) < minn__.c
Zses u(f(s)).p(s), so there exist c,d € A(X) with minmCGEc
D ses UE(9)).p(s) < u(d) < uc) < minn_;c D ses U(f(5)).p(S).
Take any such c,d. First, note that it is not the case that
Y ses U(E(9)).p(s) < u(d) forall p € (5 C. It thus follows from
representation (1), the continuity of & and the surjectivity of D that

there exists (g’, d') € (g, d) such that g’ ¥ d’. However, we have
uc) < X s u(f(s)).p(s) forallp € ﬂCGE C; so, by the continuity
representation (1 ) the continuity of Z and the surjectivity of D,
there exists € € & such that ) s u(g(s)).p(s) > u(c) for all p €

C. By the richness and continuity of <, there exists (f’, ¢’) € (f, c)
such that D((f’, ¢’)) € G, so f’ = c’. It follows from B3°~" that
g <°f, as required. Hence representation (3) holds. O

Proof of Theorem 3. First consider part (i). By B1, =ax) = 52(}0,
so u represents the restriction of < A<X> to constant acts. Consider
f € A. Note that ¢; and ¢; exist and are uniquely defined up to

~, by representation (1). Suppose without loss of generality that
focr) = (f,cp), so puce(f) = (f,cr); the other case follows

simﬁarly. By the definition, and the coHtinuity of (1), ¢ X f = ¢f.
By representation (1), it follows that u(cy) < Y . u(f(s)).p(s) for
all p € D(pmce(f)), 50 u(cr) < MiNpep(oye () Dses U (5))-D(S).
Moreover, if u(ci) < MiNpep(oye () 2ses UF(5)).p(s), then, by
the continuity of &, the surjectivity of D and representation
(1), for any d € AX) with d > ¢, there exists o €
(0, 1) such that ”(ifad) < minpeD(q,Clad)) > s Uf(5)).p(s), so
¢ < ¢ d < f, contradicting the definition of ¢;. So u(c;) =
el e el i
MiNpep(oy () Dses U (5)).p(s). By a similar argument, u(cy) =
MaXp(f,e7) ) _ses u(f(s)).p(s). By the order-preserving property of
D, it follows that u(cy) < MaXp(pyer () D ses U (5)).p(s). Take any
d € A(X) such that u(d) = maxp(eye () 2_ses U (5)).p(s) (such a
d exists by representation (1)). By construction, d > ¢f, so by (1),
d > f. It follows from B2 that ¢; < f <“d.

By Archimedean continuity and a standard argument, there
exists a unique a(f) € [0, 1] such that f ~“¢; (f)d. Let V(f) =

—a

u(cy (f)d). By C1 and A3, V represents <€. Since u is affine, V(f) =
—

a(Hu(c)+1—a()u(d) = a(f) Minp(ye ) D ses U ($))-p()+

(1 — a(f)) maxp e ¢)) Zses u(f(s)).p(s), as required.
As for part (i), by B1, <ax) = <CA<X), so u represents the

restriction of <, y, to constant acts. Consider f € +. Let ;" be the
<-minimal element of A(X) such that, for all ¢ € A(X) for which
there exists « € (0, 1] and h € « such that f,h > ch, ¢’ > ¢

and let ¢ be the <-maximal element of A(X) such that, forallc e
AX) for which there exists « € (0, 1] and h € 4 such that f,h <
ch ' <c. By B25-N and reasoning similar to that used in the proof
of part (i), ¢’ <°f =°¢", u(cy) = minpen ;¢ Doses U (5))-P(5)
and u(cf ) = maxpemcer € D ses U(F(5)).p(s). The result follows by
Archimedean continuity and the affineness of u, as in the proof of
part(i). O

Proof of Proposition 3. For part (i), by the argument in the
proof of Theorem 3(i), for all f € A, g = f, and
u(cf) MiNpep(f, ) Y ses U(f(5)).p(s). By B2, it follows that G <‘f.
Moreover, for any d € A(X) withd > ¢, du:f > ¢, whence,
by the definition of <, d%cf Z f; so d;cf >¢f by B4. Since
d>°© d%Cf by B1, it follows by A3 that d>°f. By continuity, it
follows that o ~¢ f. Hence <€ is represented by V(f) = u(cf)

Mminyep, ) Zses u(f(s)).p(s) as required.
Similar arguments establish part (ii). O
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B.3. Proofs of results in Section 5 and Appendix A

As stated in Section 5 (see in particular footnote 19), we
continue to use the standard notation (and generic terms f, g ...)
for acts, as well as the standard notation (and generic terms
X,z ...) for commodities. In particular, for commodities x, z and
o € [0,1], ax + (1 — «)z is the standard vector sum of
products of the two commodities, whereas x,z is the act obtained
by applying the mixture operation on (the acts corresponding to)
the commodities. Whilst x,z does not in general belong to ?Ri_,
for any preference relation <’ with the properties specified in
Section 5, there is a natural element in E)ifr corresponding to it;
namely ((u)~M(eu'(x1) + (1 — @)u'(z1)), ..., W) Nau'(xs) +
1 - a)ui(z‘5|))). (At each state, the lottery obtained in that state
is replaced by its certainty equivalent.) Henceforth we denote this
element by X! z.

We first require the following lemma.

Lemma B.12. If the notion of stakes <! is monotone decreasing, the
strict preferences > have the following reduced convexity property:
forallf,g, h € A, if g, h>'f, then, for all @ € (0, 1), there exists
B € (0, 1] such that (g,h) g f >if forall B’ € (0, B].

Proof. Let f,g,h € s such that g, h>'f, and consider « €
(0, 1). By the monotone decreasing and continuity properties of
stakes, there exists 8 € (0, 1] such that ((gah)ﬁf,f)§iiA(X)

min{(g, f), (h, f)}. By the representation (1) and the fact that the
confidence ranking is balanced, it follows that (g h)gf >'f. By
the fact that the stakes are monotone decreasing, and the prop-
erties of the representation, (g,h)g f >if for all B/ € (0, B], as
required. O

Proof of Theorem 4. Foranyx € ﬂii,letnf(x) ={pe AX)|Vz €

S)%i, ifz > x, thenp.z > p.x}, and let 7i(x) = {p € A(X)|Vz €
mi, ifz > x, then p.z > p.x}. On inspection, it is straightforward
to check that the reduced convexity property (Lemma B.12),
combined with the concavity of u and the monotonicity of
representation (1), is sufficient for the application of standard
arguments on welfare theorems in the absence of completeness
and transitivity, notably (Fon and Otani, 1979), yielding the
conclusion that, if x is Pareto optimal, there exists p € (), 7'(f").
(In a word, in the presence of reduced convexity and concavity of
the utility function, Pareto optimality implies that the convex hull
of the strict upper contour set of x' is disjoint from {x'}, allowing
application of a separating hyperplane theorem. By monotonicity
of representation (1), the separating hyperplane has a positive
normal; by normalising, this yields a p € (), 7'(x).) We show
that 7'(x) = 7'(x) for all i and x € %5. Suppose not, and let
p € @' (x) \ 7'(x) for some i and x; so there exists z with z >/ x
and p.z = p.x. By the fact that stakes are monotone decreasing,
the balancedness of the confidence ranking, and representation (1),
z,x>'x for any o € (0, 1]. By strict concavity of u, for all s € S,
Zx)s = W) Nau'(z,) + (1 — 0)u'(xs)) < azs + (1 — a)x,, with
strict inequality whenever z; # x;. It follows that either p.x =
p.(@z+(1—a)x) > p. (z;x), contradicting the assumption thatp €
7(f), or p(s) = 0 whenever x; # z;. Consider the latter case, and

— — i q(51)
let S; = {s € S| p(s) = 0}. By full support, mmqu@gsi@ q(S\;o
q(s1) maxsgs, @) o

0; pick any § > 0 with mquUeesi TG Tinges, 7@

€ > 0 and define the allocation z¢ as follows: z{ = € fors € Sy,
and z¢ = —e.8 for s & S;. By the definition of z¢, z + z¢ > x for €
sufficiently small, and p.(z + z¢) < p.x for all € > 0, contradicting
the assumption that p € 7/(x). Hence 7'(x) = 7'(x) as required.

By standard arguments, if (), 7'(x') # o, then &, ..., xYis
Paretos optimal. It remains to show that IT(x) = x(x) for all i and
x €N

We first show that IT'(x) € #'(x). Note that, if z >x, then
> p()(W(z) — u'(xs)) > 0forallp € ri(D'((x, z))) and hence
for all p € (), i(D'(x, 2)). By concavity of u', it follows that
> PO (x5)(zs — x;) > Oforall p € (., ri(D'(x, 2)). Renormal-
ising, it follows that, for any q € IT'(f), > < 0s-(zs — x) > 0,and
hence that g.z > g.x. Since this holds for all z € %5 with z >'x,
q e m'(x). A ‘

~We now show that 7r'(x) € I7'(x). Suppose not, and let p €
7' (x) \ IT'(x). Since, as is straightforwardly checked, IT'(x) is con-
vex, by a separation theorem, there existsy € %5 and b e %
withp.y < b < gy forallq € 'Hf(x) where the right hand in-
equality is strict for all ¢ € ri(J/T'(x)). Without loss of generality,
we can take b = 0. Since this implies that, for ¢ > 0, q.ay =

m > ps)u’ (x)ays > Oforallp € (N Ti(D' (%, 2))

with strict inequality for all p € ri(ﬂ#x ri(D'(x, 2))), and since

M, #x ri(Di(x, z)) is compact, it follows that, for « sufficiently small,

Y pE) (W ((x + ay)s) — u'(x)) > 0forallp € (), ri(D'(x, 2)),
with strict inequality for some such p. Let A be the set of « pos-
sessing this property and such that x + ay € E)’ti; we show that

x+o:y4>" x for some o € A.Ifnot, then for every a € A, there exists
p € D'((x + ay, x)) with 3 p(s)(u'((x + ay)s) — u'(x5)) < 0.By
nestedness of E", it follows that Fhere exists p € ﬂz#x ri(D'(x, 2))
with > p(s)(u'((x + ay)s) — u'(xs)) < O, contradicting the in-
verse inequality above. Hence x + ary > x for some & > 0, whereas
p.(x +ay) < p.x,sop & m'(x),as required. O

Proof of Proposition 4. We show this on Example 2. Consider the
full insurance allocation (zg, 232) = ((w, sw), (1 — dw, (1 —
8)w)). Agent 2 would accept to exchange x2 for this (x? <2 z2) iff:

0.5u*((1 — 8)w) + 0.5u*(Sw) < u*(1 - 4).
This gives a strict upper bound v on 8. If a condition analogous
to that in (8) holds, namely:

min{nw max{|8§ — 3|, |§ — (1 —8)|}, 0.45} + 0.5

1

1 (1 — 8!

> 5T (=3 (B.2)

for all § < v, then, for all § such that x* <2 22, x' £'z}; hence

there are no Pareto optimal allocations accessible from (x!, x?). It
is straightforwardly checked that, with the parameter values given
in the text, these conditions are satisfied. O

Proof of Proposition 5. It suffices to give an example where no
Pareto optimum is m-accessible for any finite m; we use a
refinement of the previous example, with y! = y? = 1. Take an
allocation (x', x?) = ((61w, S,w), (1 — 8;)w, (1 — &;)w)) with
the following properties:

@Q)1>6>6,>0
(b) 81 — 82 < 1852(1 — 81)

(c) nw > max{

1 1
(A=) +(1=3) 03 (1-5,)05(281—1)* §,+602605 2605515 2}'

It is straightforward to see that such allocations exist: §; = %,

8 = 3.n = 22 is an example. Suppose, for reductio, that a

Pareto optimal allocation is m-accessible for some finite m: there
exists a sequence of allocations (le, sz = (Gw, pw), (1 —
Sipw, (1 = sp)w)), 1 < j < m+ 1, with x1,x3) = (x!,x?),
Xy >'xorxi, , = xiforalli,j,and (x}, . X4,,) Pareto optimal—
and so (x}, 1. x21) = (('w,8w), (1 = 8w, (1 — §)w)) for
some 8’ € [0, 1]. Without loss of generality, it can be assumed
that §' < (S(j+1)1 < 51‘] < 87 and § > 8(,'+])2 > 5]‘2 > §, for all
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1 < j < m. Moreover, such a sequence implies that 0.5u%((1 —
S)w) + 0.5u((1 — 8)w) < v?((1 — 8)w) and p(sy)u' (§;w) +
ps)u'Gw) < u'(@w) for all p € [y ri(D'(',X));
since (), 21 ri(D'(x!, x')) contains (only) the probability measure
giving the value 0.5 to each state, it follows that 0.5u'(§;w) +
0.5u’(8,w) < u'(§'w). Hence:
82 <89%89% <8 <1—(1—6)%(1—8)"° < 6. (B.3)
Consider an arbitrary consecutive pair (x!, x*) and (xj]H, szﬂ)
in the sequence. By Theorem 4 and the fact that the lat-

. . psu’ (! s1)
ter is a Pareto-improvement on the former, {(m,
tes i
plspu" (5] (52)) 11 1 pesu? (2 (51)
— = J =T ri(tD'(x!, x! N —
Ztespu)ul/(x}(r)))' poc nD. %)) {(Zfespmuz’(xf(r))’
Pl (8 (52) ; .
= J = ¢ ri(D?(x2, x? = . Doing the calcula-
Ytes POU? (2 (0)) )P € niD . X)) &
tions, and using the fact that ri(D*(x}, x%,,)) = 0.5, this is the case
81518

21yl 4l .
i 5152315 g ri(D (xj , Xj—H))' Hence we must have that:

min{nw max{|1 — dg+n1l, 8G+1)2 — dj2l}, 0.45} + 0.5
S — 818
< i1 j19j2 ) (B.4)
8]'1 + 8]'2 — 28]'18]‘2

Bﬂ _6j15j2
8j1+38j2—28j19)2

188, (1 — 8j1)
1858,(1 — 87)

Note that 0.95 < if and only if:

8j1 — Op

VWV

by the bounds noted above on §;; and Jj. It follows from
assumption (b) and the fact that §;; — d;, < 8; — &, for all j, that,

. 6]'1 _6j16j2 .
for allj, 0.95 > 5523157 (B.4) thus reduces to the following

inequalities
1 8i1 — &;
dG+n1 = 61 — — P
2nw 8j] + 8]‘2 — 28j15j2
1 8]1 — 8]‘2

Sisna <dp+ ——"b 2
G+12 s 277w 5]'1 + 5]'2 — 25j15j2

And so:
81 — 822 = (81 — 8p) (1 - —;) . (B.5)
nw &1 + 82 — 2815
But, using (B.3):
81 + 8jp — 28j16p2
(1=8)+ (1 —-68)"(1-8)"(28 — 1)

. 1
1f6j1, 5]‘2 > E

WV

1
0580 4 8y~ 20001° i85, 8 <

1 . 1 1
E if 5]'1—5 5j—5 <0.

It thus follows from (B.5) that:

8G+11 — Sg+1)2 = (671 — 62) (1 — x) (B.6)
where

1 1
x= max{n_w(l S8+ (1= 01)05(1— 80528, — 1)

1 1 2 }
nw 893895 4§, — 28925157 nw |’

By assumption(c), x < 1.Iterating inequality (B.6), we obtain:
Sm+11 — Sme1y2 = (61— 8)(1 — )™ >0

contradicting the assumption that (x),,x2,;) is Pareto
optimal. O
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