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Abstract

In a situation of decision under uncertainty, a decision maker wishes to

choose according to the maxmin expected utility rule, and he can observe

the preferences of a set of experts who all share his utility function and

all use the maxmin EU rule. This paper considers rules for aggregating

the experts’ sets of priors into a set that the decision maker can use. It is

shown that, in a multi profile setting, among the rules that allow the decision

maker’s evaluation of an act to depend only on the experts’ evaluations of

that act, the only rule satisfying the standard unanimity or Pareto condition

on preferences is the “set of weights” aggregation rule, according to which

the decision maker’s set of priors is the set of weighted averages of the priors

in the experts’ sets, with the weights taken from a set Λ of probability vectors

over the experts. An analogous characterisation is obtained for variational

preferences.
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1 Introduction

Consider a decision maker who, prior to making her decision, can consult a col-

lection of experts who may have different opinions on the facts pertinent to the

decision in question. In other words, the experts may have different beliefs – and

hence different preferences over the options available – and the decision maker

would like to use a rational or justified method to aggregate these beliefs, and so

inform her preferences. What method should she use?

This question can be considered in a specific or a general form. The specific

form asks, for a given set of expert beliefs, what beliefs the decision maker could

admissibly hold. The general form requires as an answer a rule or method for

aggregating any set of expert beliefs into a belief for the decision maker. This

distinction is well known in the literature on social choice and preference aggre-

gation, where one distinguishes between the single profile setting and the more

common multi profile setting. The latter in particular is a natural choice when one

is interested in a method for aggregating any sets of beliefs or preferences, rather

than in a single case of aggregation.

Under the standard assumption for decision making under uncertainty – the

Bayesian assumption that all involved have beliefs represented by probability

measures and form preferences by maximising expected utility – the question of

belief aggregation has been studied in both single and multi profile settings. A

popular rule for belief aggregation is the linear pooling rule, according to which

the decision maker’s probability measure is a weighted average of those of the

experts (Stone, 1961). This rule has been axiomatically derived both in the single

profile setting (Mongin, 1995) and in the multi profile setting (McConway, 1981;
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Wagner, 1982; Genest and Zidek, 1986), although not necessarily in a preference

setup. However, the Bayesian paradigm has been forcefully challenged, and sev-

eral have argued that nothing should force the experts and the decision maker to

have a single probability measure (Gilboa et al., 2009, 2012). In this paper, we

consider the problem of belief aggregation in a case where each agent’s beliefs

cannot necessarily be represented by a single probability measure, but rather by

a set of probability measures, or priors. Moreover, since such sets are generally

not observable, we consider the problem from the point of view of preferences;

we assume that all the agents form preferences according to arguably the simplest

model using sets of priors, namely the maxmin expected utility model axiomatised

by Gilboa and Schmeidler (1989).1 To focus on the problem of belief aggregation,

and avoid well-known difficulties with simultaneous aggregation of beliefs and

utilities (Mongin, 1995; Gilboa et al., 2004; Gajdos et al., 2008), we assume that

the agents all share the same utility function; they only differ in their respective

sets of priors.

This problem has been considered in the single profile setup in a recent paper

by Crès et al. (2011). They axiomatise and defend the following rule for aggre-

gating sets of priors: there exists a set of weight vectors Λ ⊆ ∆({1, . . . , n}) such

that, for given expert sets of priors Ci, the decision maker has the set of priors

(1)

{
p =

n∑
i=1

λipi| λ ∈ Λ, pi ∈ Ci

}
Just like the weight vector in the linear pooling rule in the Bayesian case,

the set Λ can be thought of as representing the decision maker’s confidence in
1In this paper, we generally retain the interpretation of the sets of priors as the experts’ beliefs

or objective information. However, given that this interpretation is complicated in the maxmin EU

model by the inability of this model to distinguish belief from attitude to uncertainty, one may

prefer an alternative reading of the main result as a step towards aggregation results for models

using sets of priors but allowing a distinction between beliefs and uncertainty attitudes, such as

Hill (2010).
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the different experts. Moreover, by allowing a set of weight vectors rather than a

single vector, one can represent more uncertainty on the part of the decision maker

concerning the “value” of the different experts. (We refer to Crès et al. (2011) for

more discussion of this interpretation, as well as for another interpretation of the

rule.) However, whereas in the Bayesian case, a unanimity or Pareto condition on

preferences is necessary and sufficient in the single profile setting for the linear

pooling rule (under appropriate richness conditions), the work of Crès et al. (2011)

indicates that this is not the case for maxmin EU decision makers and the rule

(1). Indeed, they introduce a new condition, Expert Uncertainty Aversion, which

requires a sort of unanimity with respect to mixes of certainty equivalents, and

which is motivated precisely by the possibility of uncertainty on the part of the

decision maker and an assumption of aversion to that uncertainty. They show

that this condition, which is stronger than the standard unanimity condition, is

equivalent to aggregation rule (1).

In the main result of the paper, we show that things are in a certain sense

“cleaner” in the multi profile setting. In this setting, one explicitly considers rules

for aggregating sets of priors, and hence for aggregating the maxmin expected util-

ity preferences over acts generated by these sets. As long as one restricts oneself to

rules that, in determining the value of a particular act for the decision maker, only

take into account how the experts value that act, the standard unanimity condition

is necessary and sufficient for (1). Moreover, the set Λ in (1) is unique. As well as

providing a conceptually simpler derivation of the aggregation rule (1), this result

can be thought of as another argument in its favour. There is no need to appeal

to intuitions about the decision maker’s attitude to his uncertainty concerning the

experts; if one seeks a general rule for aggregating maxmin expected utility pref-

erences where the decision maker’s evaluation of an act is simply a function of

the experts’ evaluations, then the unanimity condition alone implies that one must

use (1).

The paper is organised as follows. The formal framework is given in Section
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2.1, the conditions are given and discussed in Section 2.2, and the aggregation rule

is defined in Section 2.3. The result is stated in Section 2.4. Section 3 contains a

brief discussion of some properties of the result, a related condition, an extension

to the case of variational preferences, and other relevant literature. Proofs are

relegated to the appendices.

2 Multi profile multi prior aggregation

2.1 Setup

We use the standard Anscombe-Aumann framework (Anscombe and Aumann,

1963), as adapted by Fishburn (1970). Let S be a set of states, containing at least

three elements, with a σ-algebra Σ of events. ∆(Σ) is the set of finitely-additive

probability measures on (S,Σ). X is a nonempty set of outcomes; a consequence

is a von Neumann-Morgenstern lottery on X , that is, a probability measure on X

with finite support. L is the set of consequences. Acts are Σ-measurable functions

from states to consequences; F is the set of acts. So, for an act f , and a state s,

f(s) is a lottery overX with finite support; for a utility function u overX , we will

denote the expected utility of this lottery by u(f(s)) =
∑

x∈supp(f(s)) f(s)(x)u(x).

F is a mixture set with the mixture relation defined pointwise: for f, h,∈ F and

α ∈ <, 0 ≤ α ≤ 1, the mixture αf+(1−α)h is defined by (αf+(1−α)h)(s, x) =

αf(s, x) + (1−α)h(s, x). A constant act is an act yielding the same consequence

in every state; Fc is the set of constant acts. With slight abuse of notation, for any

c ∈ L, we shall use c to denote the constant act yielding c in every state.

We consider a decision maker who can rely on the advice of n experts. The

decision maker’s and the experts’ preferences are represented by binary relations

on F , denoted by �i (with appropriate subscripts). ∼i and ≺i are the symmetric

and asymmetric components of �i, defined as usual. �i can be extended to L as

standard. We assume that the decision maker’s and experts’ preferences satisfy the
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axioms of Gilboa and Schmeidler (1989). Moreover, as noted in the introduction,

to focus on the case of aggregation of sets of priors, we assume that the experts

and the decision maker have the same non-degenerate utility u. In other words,

their preference relations agree on Fc (and so on L). Let Pu denote the set of

preference relations satisfying the Gilboa-Schmeidler axioms and such that the

restriction to L is represented by u; the decision maker’s and experts’ preference

relations all belong to Pu.

By the Gilboa and Schmeidler (1989) result,�i∈ Pu if and only if there exists

a convex and weak∗ closed set of finitely additive measures on (S,Σ), Ci, such

that f �i g iff Ji(f) ≤ Ji(g), where

(2) Ji(f) = min
p∈Ci

∫
u(f(s))dp(s)

Let Ju be the set of functionals of this form with utility u. We denote the

subset of Ju containing Ji where Ci is a singleton by EUu; evidently, these are

expected utility functionals with utility function u.

We seek an aggregation rule that, for any set of expert preference relations of

the sort just specified, yields a preference relation for the decision maker. That

is, we seek a function A : Pnu → Pu, which we call the aggregation function.

Following the terminology in social choice, we call elements of Pnu profiles, and

denote them by � (using superscripts to indicate different profiles and subscripts

to indicate different members of a given profile). We write�A(�) instead ofA(�).

In the light of the previous remark concerning the representation of preference

relations in Pu, A generates a (unique) function from J n
u to Ju; with slight of

abuse of notation, we also denote this function by A. As for preferences, n-tuples

of functionals in Ju are called profiles, and are denoted by J .
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2.2 The conditions

We consider two properties of the relationship between the experts’ preferences

and those of the decision maker. The first, which can only be formulated in a multi

profile setting, is the following.

Weak independence For every pair of profiles �1,�2∈ Pnu and every f ∈ F ,

if, for all 1 ≤ i ≤ n and all c ∈ Fc, f �1
i c iff f �2

i c, then, for all d ∈ Fc,

f �A(�1) d iff f �A(�2) d.

Recall that all the agents involved have the same utility function, and hence the

same preferences over Fc; the set of constant acts thus provides “universal” scale

on which the other acts can be evaluated. Weak independence states that if every

expert evaluates a given act in the same way in two different profiles – in the sense

that he ranks the act in the same way in both profiles relative to every constant act

– then the decision maker evaluates the act in the same way for both profiles.

Although this property is stated in terms of observables, namely preferences, it is

equivalent to the following condition on the functionals: for every pair of profiles

of functionals, J1, J2 ∈ J n
u and every f ∈ F ,

if, for all 1 ≤ i ≤ n, J1
i (f) = J2

i (f), then A(J1)(f) = A(J2)(f).

It is hence clear that this condition basically states that the value assigned to

an act by the decision maker’s functional depends only on the values assigned to

the act by the experts’ functionals, and not, say, on other properties of their func-

tionals. Weak independence is a natural condition when one is searching for an

aggregation rule: one would want that rule to only take into account the evalua-

tions of the experts, and not other aspects of their preferences. It has the flavour

of the independence of irrelevant alternatives axioms in social choice, though it

is evidently much weaker. Moreover, it is analogous to the weak setwise func-

tion property (McConway, 1981), also called irrelevance of alternatives (Wag-

ner, 1982), in the literature on pooling Bayesian beliefs, though it is a condition
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on preferences, whereas the cited conditions are formulated directly in terms of

probability measures.

The other property involved is the standard unanimity or Pareto weak-preference

property, which requires no further comment.

Unanimity For any �= (�1, . . . ,�n) ∈ Pu and f, g ∈ F , if f �i g for all

1 ≤ i ≤ n, then f �A(�) g.

2.3 The aggregation rule

We consider the aggregation rule proposed in Crès et al. (2011), namely, for a

profile �= (�1, . . . ,�n) ∈ Pnu represented according to (2) by sets of priors

C1, . . . , Cn respectively, �A(�) is represented (according to (2)) by the set:

(1) CA(�) =

{
p =

n∑
i=1

λipi| λ ∈ Λ, pi ∈ Ci

}

for some closed and convex set Λ ⊆ ∆({1, . . . , n}).

As noted in the cited paper, this rule is equivalent to a condition on the rela-

tionship between the decision maker’s and experts’ functionals: the former is the

minimum over a set of mixes of the latter, with mixing weights taken in Λ. This

is recalled in the following fact.

Fact 1 (Crès et al. (2011), Proposition 1). For a closed and convex set Λ ⊆
∆({1, . . . , n}), and maxmin EU functionals JA, J1, . . . , Jn represented by sets

of priors CA, C1, . . . Cn respectively,

JA(f) = min
λ∈Λ

n∑
i=1

λiJi(f) iff CA =

{
p =

n∑
i=1

λipi| λ ∈ Λ, pi ∈ Ci

}
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2.4 Result

We can now state the main result.

Theorem 1. The following are equivalent:

(i) A satisfies unanimity and weak independence

(ii) There exists a closed and convex set Λ ⊆ ∆({1, . . . , n}) such that, for each

J = (J1, . . . , Jn) ∈ J n
u , and every f ∈ F ,

(3) A(J)(f) = min
λ∈Λ

n∑
i=1

λiJi(f)

(iii) There exists a closed and convex set Λ ⊆ ∆({1, . . . , n}) such that, for each

�= (�1, . . . ,�n) ∈ Pnu , represented by the sets C1, . . . , Cn respectively,

�A(�) is represented by the set of priors

(1) CA(�) =

{
p =

n∑
i=1

λipi| λ ∈ Λ, pi ∈ Ci

}

Moreover, there is a unique closed convex set Λ satisfying (ii) and (iii).

3 Discussion

1. Size of the state space. The requirement that the state space has at least three

states is necessary. If there are only two states s1, s2, then the rule which, given

�1, . . . ,�n∈ Pu represented by sets of priors C1, . . . , Cn, yields the maxmin EU

preference represented by the set of priors
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C ′ =

{
p

 p(s1) ≥ 1
2 min1≤i≤n minpj∈Ci pj(s1) + 1

2 max1≤i≤n minpj∈Ci pj(s1) &

p(s1) ≤ 1
2 min1≤i≤n maxpj∈Ci pj(s1) + 1

2 max1≤i≤n maxpj∈Ci pj(s1)

}
satisfies weak independence and unanimity. To understand this example, it suf-

fices to consider the functional J ′(f) = 1
2

min1≤i≤n Ji(f) + 1
2

max1≤i≤n Ji(f).

Whereas the preferences generated by this functional evidently satisfy weak inde-

pendence and unanimity, this functional is guaranteed to be a maxmin EU func-

tional only when there are two states, and in this case, it is straightforward to show

that it is represented according to (2) by the set of priors C ′.

2. Weak and strong independence. The weak independence condition states that

the decision maker’s evaluation of an act depends only on the experts’ evaluations

of that act, but allows the nature of this dependence to differ from act to act.

A stronger condition, which is analogous to stronger conditions considered in the

literature on pooling Bayesian beliefs (such as the strong setwise function property

of McConway (1981), also called strong label neutrality by Wagner (1982)) is the

following.

Strong independence For every pair of profiles �1,�2∈ PnU and every f, g ∈
F , if, for all 1 ≤ i ≤ n and all c ∈ Fc, f �1

i c iff g �2
i c, then, for all d ∈ Fc,

f �A(�1) d iff g �A(�2) d.

This property basically states that the decision maker’s evaluation of an act

is a function solely of the evaluations of the experts, independently of the act in

question. In particular, it is equivalent to demanding that, for every pair of profiles

J1, J2 ∈ J n
u and every pair of acts f, g ∈ F , if, for all 1 ≤ i ≤ n, J1

i (f) = J2
i (g),

then A(J1)(f) = A(J2)(g). It turns out that this condition is equivalent to the

conjunction of weak independence and unanimity.

Proposition 1. A satisfies strong independence if and only if it satisfies weak

independence and unanimity.
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Similar equivalences have been obtained in the literature, but only for cases

where all agents are Bayesian (McConway, 1981; Wagner, 1982) or have belief

functions (Wagner, 1989); this appears to be the first such result for sets of priors

and maxmin EU preferences. Of course, it follows immediately from Theorem 1

that strong independence is necessary and sufficient for aggregation rule (1).

3. Extension to variational preferences. Similar methods to those developed in

the proof of Theorem 1 may prove useful for obtaining characterisations of aggre-

gation rules for other classes of preferences. To illustrate, consider the problem

of finding an aggregation rule for the case where both the decision maker and the

experts have variational preferences, and where they share the same unbounded

utility function. Variational preferences (Maccheroni et al., 2006) involve the rep-

resentation of preferences by a functional of the following form:

(4) Ji(f) = min
p∈∆(Σ)

(∫
u(f(s))dp(s) + ci(p)

)
where ci : ∆(Σ) → [0,∞] is a grounded, convex and lower semicontinu-

ous function. This representation is a generalisation of maxmin EU preferences,

which correspond to the special case where c is an indicator function. Let Pvaru be

the set of preferences satisfying the axioms of Maccheroni et al. (2006), agreeing

on Fc, and being represented on Fc by an unbounded utility function u,2 and let

J var
u be the set of functionals of the form (4) with utility u.

Consider aggregation rules for variational preferences, that is, functionsAvar :

(Pvaru )n → Pvaru ; as for the maxmin EU case considered previously, each such rule

generates a unique rule for aggregating functionals, which we call Avar as well.

2See Maccheroni et al. (2006, Axiom A7) for an axiom characterising unboundedness. The

assumption of unboundedness has the advantage of improving the uniqueness properties of the

representation (Maccheroni et al., 2006, Proposition 6) and facilitating the proof of Theorem 2

below; it remains to be ascertained whether similar results hold in the absence of this assumption.
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As is clear from the representation (4), such rules are characterised by how they

operate on the functions ci. An interesting aggregation rule is the following: for

a profile �= (�1, . . . ,�n) ∈ (Pvaru )n represented according to (4) by functions

c1, . . . , cn respectively, �Avar(�) is represented (according to (4)) by the function:

(5) cAvar(�)(p) = min
(λ,p1,...,pn)∈∆({1,...,n})×∆(Σ)n

s.t.
∑
λipi=p

(
n∑
i=1

λici(pi) + e(λ)

)

for some grounded, convex and lower semicontinuous function e :

∆({1, . . . , n}) → [0,∞]. Just like the set Λ in rule (1), the function e can be

thought of as representing the decision maker’s confidence in the different ex-

perts: uncertainty as to the calibre of the experts is represented by the different

values assigned to the possible weight vectors over them. Indeed (5) incorporates

the decision maker’s confidence according to the variational preference functional

(4): that is, by taking the minimum sum of the mix according to a weight vector

and the value that e gives to that weight vector. Rule (1) is the special case where

e is an indicator function, with the set of weights assigned the value 0 being used

in maxmin EU rule. As shown in the theorem below, rule (5) is the rule that one

must use if one wishes to satisfy weak independence and unanimity. Moreover,

and analogously with clauses (ii) and (iii) in Theorem 1, the rule corresponds to

using a variational preference representation over the experts’ functionals, with

function e.

Theorem 2. The following are equivalent:

(i) Avar : (Pvaru )n → Pvaru satisfies unanimity and weak independence

(ii) There exists a grounded, convex and lower semicontinuous function e :

∆({1, . . . , n}) → [0,∞] such that, for each J = (J1, . . . , Jn) ∈ (J var
u )n,

and every f ∈ F ,
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(6) Avar(J)(f) = min
λ∈∆({1,...,n})

(
n∑
i=1

λiJi(f) + e(λ)

)

(iii) There exists a grounded, convex and lower semicontinuous function e :

∆({1, . . . , n}) → [0,∞] such that, for each �= (�1, . . . ,�n) ∈ (Pvaru )n,

represented by the functions c1, . . . , cn respectively,�Avar(�) is represented

by the function

(5) cAvar(�)(p) = min
(λ,p1,...,pn)∈∆({1,...,n})×∆(Σ)n

s.t.
∑
λipi=p

(
n∑
i=1

λici(pi) + e(λ)

)

Moreover, there is a unique nonnegative, grounded, convex, lower semicontin-

uous function e satisfying (ii) and (iii).

4. Other related literature. Apart from Crès et al. (2011), the closest paper to

the current one is undoubtedly Wagner (1989), who considers the aggregation of

Dempster-Shafer belief functions in a non-preference setup (he assumes that the

agents’ belief functions are given). Using a condition similar to our weak indepen-

dence, and a weaker version of unanimity (on the values taken by belief functions,

rather than on preferences), he derives an equivalent of the linear pooling rule,

where the aggregated belief function is a mix of the experts’ belief functions, with

“precise” weights. Belief functions correspond to a special sub-class of the class

of sets of priors, and the rule he finds is a special case of rule (1), where the set Λ

is a singleton. As such, the present paper can be thought of as a generalisation of

his result to sets of priors in general.

Among other related papers, Gajdos and Vergnaud (2011) study a rule similar

to (1), the sole difference being that the sets of priors of the experts (interpreted as

their information) may be transformed before being aggregated. They use a dif-

ferent setup, with only two experts and preferences defined over triples consisting
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of acts and the sets of priors of the two experts. Nascimento (2012) obtains a rule

similar to (5) in a single profile setting with a possibly infinite set of experts using

a richer domain of preferences, namely lotteries of acts.

A Proof of Theorem 1

Proof. Fact 1 implies that (ii) and (iii) are equivalent. That (ii) implies (i) is

immediate. We consider the direction (i) implies (ii).

Let B be the range of J(f) over J ∈ J n
u and f ∈ F , and assume without loss

of generality that 0 is in the interior of the range of u. Moreover, where required,

we use ba to denote the space of bounded signed charges on Σ, ∆(Σ) to denote the

subspace of probability measures, and B(S) to denote the space of bounded Σ-

measurable real-valued functions on S. The topology used is the weak∗-topology.

The proof proceeds as follows. Firstly, in Lemmas 1–3, we establish that,

for any profile J and act f , A(J)(f) is a function of J(f) alone. That is, there

exists φ : B → < such that A(J(f)) = φ(J(f)). Then we show that any pair

of elements in the positive quadrant of <n and whose sum is bounded above by

the unit element are in the range of some J̄ ∈ EUu. It follows in particular that

cone(B) is convex and has full-dimensionality. Borrowing results from Crès et al.

(2011), it can be shown that φ is homogeneous onB, that its extension to cone(B)

is homogeneous and constant additive, and that the cone is closed under addition

of constant vectors. Hence cone(B) is the whole space <n. Moreover, using the

property established previously, φ can be shown to be monotonic and concave.

Finally, the argument in Gilboa and Schmeidler (1989) is applied to show the

existence of a closed and convex set Λ and the representation (3).

We begin by noting that A(J(f)) is a function of f and J(f). To this end, let

F̂ ×B = {(f, b)| f ∈ F, b = J(f) for some J ∈ J n
u }.

Lemma 1. There is a function φ̂ : F̂ ×B → < such that, for every J ∈ J n
u and
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f ∈ F ,

A(J)(f) = φ̂(f, J(f))

Proof. Let f ∈ F and J1, J2 ∈ J n
u such that J1(f) = J2(f). So, for all c ∈ L

and 1 ≤ i ≤ n, J1
i (f) ≤ u(c) iff J2

i (f) ≤ u(c). By weak independence, it

follows that, for any d ∈ L, A(J1)(f) ≤ u(d) iff A(J2)(f) ≤ u(d), and hence, by

the continuity of the maxmin EU functional, that A(J1)(f) = A(J2)(f); hence

A(J)(f) is a function of f and J(f), ie. A(J)(f) = φ̂(f, J(f)).

The following lemma shall prove useful.

Lemma 2. Suppose that (f, b) ∈ F̂ ×B and let z ∈ Fc be such that u(z(s)) = 0

for every s ∈ S. Then, for every 0 < α < 1, (αf + (1 − α)z, αb) ∈ F̂ ×B and

φ̂(αf + (1− α)z, αb) = αφ̂(f, b).

Proof. Let J ∈ J n
u be such that J(f) = b, and consider the act g = αf + (1 −

α)z. Since u is affine, u(g(s)) = αu(f(s)) for all s ∈ S; it follows from the

homogeneity of the maxmin EU functional that J(g) = αJ(f) and A(J)(g) =

αA(J)(f). Hence (αf + (1 − α)z, αb) = (g, J(g)) ∈ F̂ ×B, and moreover,

φ̂(αf + (1− α)z, αb) = A(J)(g) = αA(J)(f) = αφ̂(f, b), as required.

We now establish that A(J)(f) is a function of J(f) alone, independently of

f .

Lemma 3. There is a function φ : B → < such that, for every J ∈ J n
u and

f ∈ F ,

A(J)(f) = φ(J(f))

Proof. We show that φ̂ (from Lemma 1) is independent of f : that is, for any

f, g ∈ F and b ∈ <n with (f, b), (g, b) ∈ F̂ ×B, φ̂(f, b) = φ̂(g, b). If f, g ∈ Fc,
this is trivial, so we suppose that this is not the case. Consider [

∫
u(f)dp = bi] =

{p ∈ ∆(Σ)|
∫
u(f)dp = bi} (i.e. the restriction of the hyperplane in ba defined
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by
∫
u(f)dν = bi to ∆(Σ)) and [

∫
u(g)dp = bi], defined similarly. Note that,

since there exists J1, J2 ∈ J n
u with J1(f) = J2(g) = b, it follows from the form

of the maxmin EU functional that each of the [
∫
u(f)dp = bi] and [

∫
u(g)dp = bi]

are non-empty. As a point of notation, let b = max1≤i≤n bi and b = min1≤i≤n bi.

We now proceed by considering three cases.

Case (i). For each 1 ≤ i ≤ n, [
∫
u(f)dp = bi] ∩ [

∫
u(g)dp = bi] 6= ∅. It

follows that, for each 1 ≤ i ≤ n, there exists pi ∈ ∆(Σ) with
∫
u(f)dpi = bi

and
∫
u(g)dpi = bi. Letting Ji′ be the expected utility functional in EUu with

probability measure pi and J ′ = (J1
′, . . . , Jn

′), we have by construction that

J ′(f) = J ′(g) = b. By unanimity, it follows that A(J ′)(f) = A(J ′)(g), so

φ̂(f, b) = φ̂(g, b), as required.

Case (ii). For all s ∈ S, u(g(s)) = γu(f(s))+c for some γ > 0 and c ∈ <, and

[
∫
u(f)dp = bi]∩[

∫
u(g)dp = bi] = ∅ for some 1 ≤ i ≤ n. Note that [

∫
u(f)dp =

bi] is disjoint from the (relative) interior of ∆(Σ) (considered as a subset of the

space {ν|
∫
dν = 1} ⊂ ba) for at most one bi, and similarly for [

∫
u(g)dp =

bj]. Furthermore, if both [
∫
u(f)dp = bi] and [

∫
u(g)dp = bj] are disjoint from

the (relative) interior of ∆(Σ), then [
∫
u(f)dp = bi] = [

∫
u(g)dp = bj] and,

moreover, either bi = bj = b or bi = bj = b. It follows from these observations

and the fact that B(S) is dense in the dual of ba (Aliprantis and Border, 2007,

Theorem 6.24) that there exists r ∈ B(S) and points p1 ∈ [
∫
u(f)dp = b],

p2 ∈ [
∫
u(g)dp = b], p1 ∈ [

∫
u(f)dp = b], p2 ∈ [

∫
u(g)dp = b], with

∫
rdp1 =∫

rdp2 = x 6= y =
∫
rdp1 =

∫
rdp2, for some x, y ∈ <. Taking r′ = b−b

x−yr+ (b−
b−b
x−yy), we have a function with

∫
r′dp1 =

∫
r′dp2 = b and

∫
r′dp1 =

∫
r′dp2 = b.

By continuity and monotonicity of the linear functional, there exists, for each

1 ≤ i ≤ n, p1
i , p

2
i ∈ ∆(Σ) such that

∫
u(f)dp1

i =
∫
r′dp1

i = bi =
∫
r′dp2

i =∫
u(g)dp2

i . Take 0 < α ≤ 1 such that αr′(s) is in the range of u for all s ∈ S,

and take z ∈ Fc such that u(z(s)) = 0 for all s ∈ S. Then there exists h ∈ F

with u(h(s)) = r′(s) for all s ∈ S. Let J1
i be the expected utility functional in

EUu with probability measure p1
i and J1 = (J1

1 , . . . , J
1
n); similarly for J2, with
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J2
i being the expected utility functionals in EUu with probability measures p2

i . It

follows by construction that J1
i (h) = J1

i (αf + (1−α)z) = αbi for all 1 ≤ i ≤ n,

whence, by unanimity, A(J1)(h) = A(J1)(αf + (1 − α)z). Similarly, J2
i (h) =

J2
i (αg + (1 − α)z) = αbi for all 1 ≤ i ≤ n, whence, by unanimity, A(J2)(h) =

A(J2)(αg + (1 − α)z). So φ̂(αf + (1 − α)z, αb) = A(J1)(αf + (1 − α)z) =

A(J1)(h) = A(J2)(h) = A(J1)(αg + (1− α)z) = φ(αg + (1− α)z, αb) (where

the middle equality holds by Lemma 1), whence, by Lemma 2, φ(f, b) = φ(g, b)

as required.

Case (iii). Now consider the case where neither (i) or (ii) apply: [
∫
u(f)dp =

bi] ∩ [
∫
u(g)dp = bi] = ∅ for some 1 ≤ i ≤ n, but it is not the case that for all

s ∈ S, u(g(s)) = γu(f(s)) + c for some γ > 0 and c ∈ <. Define r, r′ ∈ B(S)

by r(s) = u(f(s)) and r′(s) = u(g(s)) for all s ∈ S. Pick γ, δ > 0, c, d ∈ <
such that, for each 1 ≤ i ≤ n, [

∫
rdp = 1

γ
(bi − c)] ∩ [

∫
r′dp = 1

δ
(bi − d)] 6= ∅.

(Such γ, δ, c, d exist since the set of [
∫
rdp = x] covers ∆(Σ) and similarly for

[
∫
r′dp = x].) Hence, given the linearity of the functionals, [

∫
(γr + c)dp =

bi] ∩ [
∫

(δr′ + d)dp = bi] 6= ∅ for each 1 ≤ i ≤ n. Take 0 < α ≤ 1 such that

α(γr + c)(s), α(δr′ + d)(s) belong to the range of u for all s ∈ S. Hence, there

exist h, h′ ∈ F with u(h(s)) = α(γr+ c)(s) and u(h′(s)) = α(δr′ + d)(s) for all

s ∈ S. For z ∈ Fc with u(z(s)) = 0 for all s ∈ S, we have φ(αf+(1−α)z, αb) =

φ(h, αb) = φ(h′, αb) = φ(αg + (1 − α)z, αb), where the first and last equalities

are obtained by applying case (ii), and the middle equality is an application of

case (i). By Lemma 2, we have φ(f, b) = φ(g, b) as required.

Now we show that φ can be extended to a monotonic, homogeneous, concave,

constant additive function on <n. To this end, the following lemma is central.

Lemma 4. For each a, b ∈ <n such that
−→
0 ≤ a, b and

−→
1 ≥ a + b, there exists

J̄ = (J̄1, . . . , J̄n) ∈ EUnu and f, g ∈ F with J̄(f) = a and J̄(g) = b.

Proof. Take any three disjoint non-empty events E1, E2, E3 with
⋃
Ej = S.
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(Such events exist since S contains at least three states.) Members of EUu are

fully characterised by a single probability measure. For each 1 ≤ i ≤ n, take J̄i to

be the expected utility functional with probability measure pi defined as follows:

pi(E1) = ai

pi(E2) = bi

pi(E3) = 1− ai − bi

Such measures exist since ai + bi ≤ 1 for all i. Let x, z ∈ L be such that

u(x) = 1, u(z) = 0, and define f, g ∈ F as follows: f(s) = x for s ∈ E1 and z

otherwise, and g(s) = x for s ∈ E2 and z otherwise. It is clear by construction

that J̄(f) = a and J̄(g) = b.

Lemma 5. For all b ∈ B and 0 < α < 1, αb ∈ B. Moreover φ is homogenous on

B. Furthermore, the extension of φ to cone(B) by homogeneity is homogeneous

and constant additive (that is, for all c ∈ <, φ(b + −→c ) = φ(b) + c). Finally,

cone(B) is closed under addition of constant acts (ie. cone(B) +−→c ⊆ cone(B)

for all c ∈ <).3

Proof. The first two clauses are an immediate consequence of Lemma 2; as con-

cerns the latter clauses, it is straightforward to check that the arguments in the

proof in Crès et al. (2011, Lemma 4) apply in the current setting.

It follows from Lemmas 4 and 5 that cone(B) = <n. Henceforth, we use φ to

denote the extension of φ to <n.

Lemma 6. φ is monotonic.
3Crès et al. (2011) use the terminology “Shift” instead of constant additivity.
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Proof. First consider a, b ∈ <n with a ≤ b and suppose that
−→
0 ≤ a, b and

−→
1 ≥ a + b. By Lemma 4, there exists J̄ ∈ EUnu and f, g ∈ F with J̄(f) = a

and J̄(g) = b. Since a ≤ b, J̄(f) ≤ J̄(g), whence, by unanimity, A(J̄)(f) ≤
A(J̄)(g). It follows that φ(a) ≤ φ(b), as required.

Now consider a, b ∈ <n with a ≤ b, not satisfying the conditions in the

previous case. There exists x ∈ < such that a+−→x , b+−→x ≥ −→0 ; moreover, there

exists 0 < α ≤ 1 such that α(a + b + 2−→x ) ≤ −→1 . Since α(a +−→x ) ≤ α(b +−→x ),

by the previous case, φ(α(a+−→x )) ≤ φ(α(b+−→x )), whence, thanks to Lemma 5,

φ(a) ≤ φ(b) as required.

Lemma 7. φ is concave.

Proof. Consider first a, b ∈ <n such that
−→
0 ≤ a, b and

−→
1 ≥ a + b and φ(a) =

φ(b). We will show that φ(1
2
a + 1

2
b) ≥ 1

2
φ(a) + 1

2
φ(b) = φ(a). By Lemma

4, there exists J̄ ∈ EUnu and f, g ∈ F with J̄(f) = a and J̄(g) = b. Since

J̄ ∈ EUnu, J̄(1
2
f + 1

2
g) = 1

2
J̄(f) + 1

2
J̄(g) = 1

2
a + 1

2
b. Since φ(a) = φ(b),

A(J̄)(f) = A(J̄)(g), and since the functional A(J̄) ∈ Ju and hence is concave,

A(J̄)(1
2
f + 1

2
g) ≥ A(J̄)(f). It follows that φ(1

2
a + 1

2
b) = φ(J̄(1

2
f + 1

2
g)) =

A(J̄)(1
2
f + 1

2
g) ≥ A(J̄)(f) = φ(a), as required.

By the homogeneity and constant additivity of φ, it follows that, for any a, b ∈
<n with φ(a) = φ(b), we have that φ(1

2
a+ 1

2
b) ≥ 1

2
φ(a) + 1

2
φ(b) = φ(a). Finally,

consider a and b with φ(a) 6= φ(b) and suppose without loss of generality that

φ(a) < φ(b) and that x = φ(b) − φ(a). By the previous result and constant

additivity of φ, we have that φ(1
2
a + 1

2
b) + 1

2
x = φ(1

2
(a + −→x ) + 1

2
b) ≥ 1

2
φ(a +

−→x ) + 1
2
φ(b) = 1

2
φ(a) + 1

2
φ(b) + 1

2
x, hence the desired result.

φ is thus a monotonic, homogeneous, concave, constant additive function on

<n, and the Gilboa and Schmeidler (1989) reasoning can be applied, precisely as

in Crès et al. (2011, Lemma 8), to obtain representation (3). Moreover, since u
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is non-degenerate and cone(B) = <n, the uniqueness clause of the Gilboa and

Schmeidler (1989) result applies, and implies that Λ is the unique convex closed

set satisfying (3).

B Proofs of other results

Proof of Proposition 1. Evidently, strong independence is equivalent to the exis-

tence of a function ψ : B → < such that, for every J = (J1, . . . , Jn) ∈ J n
u and

f ∈ F ,

A(J)(f) = ψ(J(f))

By Lemma 3, weak independence and unanimity imply strong independence.

It is evident that strong independence implies weak independence. Now we show

that strong independence implies unanimity.

Note firstly that the arguments in Lemma 5 go through using only the proper-

ties if the maxmin EU functional. Hence ψ is homogeneous and constant additive.

Now consider acts f, g ∈ F and J = (J1, . . . , Jn) ∈ J n
u such that Ji(f) ≤

Ji(g) for all 1 ≤ i ≤ n. Let a = J(f) and b = J(g) respectively; by hypothesis,

a ≤ b. We need to show thatA(J)(f) ≤ A(J)(g), or, in other terms, φ(a) ≤ φ(b).

It suffices to consider the case where a, b ≥ −→0 , and b ≤ −→1 ; other cases are derived

by the homogeneity and constant additivity of ψ. Consider the vector b− a ∈ <n;

since b ≥ a, b − a ≥ −→0 . Take three disjoint non-empty events E1, E2, E3 whose

union is S, and define the n-tuple of probability measures (p1, . . . , pn) on S as

follows:

20



Unanimity and the aggregation of multiple prior opinions

pi(E1) = bi − ai
pi(E2) = ai

pi(E3) = 1− bi

By the definition of the case, these are all well-defined (the values are between

0 and 1 and sum to 1). Take J̄i to be the expected utility functional in EUu with

probability pi. Let x, z ∈ L be such that u(x) = 1, u(z) = 0, and define h, h′ ∈ F
as follows: h(s) = x for s ∈ E1 ∪ E2 and z otherwise, and h′(s) = x for

s ∈ E2 and z otherwise. It is clear by construction that J̄(h) = b and J̄(h′) = a.

Moreover, since h(s) � h′(s) for every s ∈ S, by the monotonicity of the maxmin

EU functional, A(J̄)(h) ≥ A(J̄)(h′). Hence φ(b) ≥ φ(a), as required.

Proof of Theorem 2. That (ii) implies (i) is immediate. The proof that (i) implies

(ii) is of a similar structure to the proof of Theorem 1. (We use the notation intro-

duced in that proof.) First of all, since u is unbounded, Lemma 2 is not required

to establish Lemma 3: the arguments (notably in cases (ii) and (iii)) go through

with no need to scale the functions in B(S) by some α ∈ (0, 1).4 Moreover, since

the maxmin EU model is a special case of the variational preference models, these

arguments imply that Avar(J)(f) = φ(J(f)) for some φ : B → <. To establish

(6), we show that φ is monotonic, concave, normalized (that is, φ(−→c ) = c for any

c ∈ u(X)) and vertically invariant (that is, φ(αa+(1−α)−→c ) = φ(αa)+(1−α)c

4The proof given here is for a u that is unbounded above and below. However the arguments

continue to apply if u is only unbounded above or unbounded below, because, given the constant

additivity of the variational preference functional (4), φ̂ and φ are constant additive (by an argu-

ment similar to that establishing Lemma 5), and constant additivity can play the role played by

homogeneity and constant additivity in Theorem 1 (in particular in Lemmas 3, 6 and 7).
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for all c ∈ u(X) and α ∈ (0, 1)). To this end, the following lemma will play a

similar role to Lemma 4.

Lemma 8. For each a, b ∈ <n, there exists J̄ = (J̄1, . . . , J̄n) ∈ EUnu and f, g ∈ F
with J̄(f) = a and J̄(g) = b.

Proof. Take any r ∈ <+ with |ai| + |bi| ≤ r for all 1 ≤ i ≤ n. Take any three

disjoint non-empty events E1, E2, E3 with
⋃
Ej = S, and, for each 1 ≤ i ≤ n,

take J̄i to be the expected utility functional with probability measure pi defined as

follows:

pi(E1) =
|ai|
r

pi(E2) =
|bi|
r

pi(E3) = 1− |ai|
r
− |bi|

r

Such measures exist by the choice of r. Let x, y, z ∈ L be such that u(x) = r,

u(y) = −r and u(z) = 0 (such elements exist since u is unbounded), and define

f, g ∈ F as follows: if ai ≥ 0, f(s) = x for s ∈ E1 and z for s /∈ E1, and if

ai < 0, f(s) = y for s ∈ E1 and z for s /∈ E1; similarly, if bi ≥ 0, g(s) = x for

s ∈ E2 and z for s /∈ E2, and if bi < 0, g(s) = y for s ∈ E2 and z for s /∈ E2. It

is clear by construction that J̄(f) = a and J̄(g) = b.

Given Lemma 8, B = <n, and, moreover, the arguments in the proofs of Lem-

mas 6 and 7 go through without any need for homogeneity or constant additivity

of φ, establishing that φ is monotonic and concave. The fact that A(J) and the Ji
are represented by the same utility function implies that φ is normalized. Vertical

invariance is established in the following lemma.
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Lemma 9. φ is vertically invariant: for any a ∈ <n, c ∈ < and α ∈ (0, 1),

φ(αa+ (1− α)−→c ) = φ(αa) + (1− α)c.

Proof. By Lemma 8, there exists J ∈ EUnu with J(f) = a. Let x, z ∈ Fc with

u(x(s)) = c, and u(z(s)) = 0 for all s ∈ S, and consider the acts g = αf + (1−
α)x and h = αf + (1 − α)z. Since u is affine, u(g(s)) = αu(f(s)) + (1 − α)c

for all s ∈ S and u(h(s)) = αu(f(s)) for all s ∈ S, and since the functionals

Ji are expected utility, J(h) = αJ(f) = αa. Moreover, since A(J) ∈ J var
u ,

A(J)(g) = A(J)(h) + (1 − α)c. Hence φ(αa + (1 − α)−→c ) = A(J)(g) =

A(J)(h) + (1− α)c = φ(αa) + (1− α)c, as required.

So φ is a concave normalized niveloid (Maccheroni et al., 2006, Lemma 25)

and, by Maccheroni et al. (2006, Lemma 26), we obtain the representation (6) as

required. The uniqueness clause is an immediate consequence of the aforemen-

tioned lemma and the assumption that u is unbounded.

It remains to show that (ii) and (iii) are equivalent. Let J be the func-

tional defined by (5) (ie. J(f) = minp∈∆(Σ)(
∫
u(f)dp + cAvar(�)(p)) with

cAvar(�) as in (5)) and let J ′ be the functional defined by (6) (ie. J ′(f) =

minλ∈∆({1,...,n})(
∑n

i=1 λiJi(f) + e(λ))). Choose λ to minimise the expression

in (6), choose, for each 1 ≤ i ≤ n, pi to minimise
∫
u(f(s))dpi(s) + ci(pi),

and let p =
∑n

i=1 λipi. It follows immediately that J(f) ≤
∫
u(f)dp +∑n

i=1 λic(pi) + e(λ) =
∑n

i=1 λi(
∫
u(f)dpi + c(pi)) + e(λ) = J ′(f). Con-

versely, let p ∈ ∆(Σ) be such that J(f) =
∫
u(f)dp + cAvar(�)(p). By (5),

there exists (λ, p1, . . . , pn) ∈ ∆({1, . . . , n}) × ∆(Σ)n such that p =
∑n

i=1 λipi.

So J ′(f) ≤
∑n

i=1 λiJi(f) + e(λ) ≤
∑n

i=1 λi(
∫
u(f)dpi + c(pi)) + e(λ) =∑n

i=1 λi
∫
u(f)dpi +

∑n
i=1 λic(pi) + e(λ) = J(f). Hence J(f) = J ′(f). The

required equivalence is an immediate consequence of the uniqueness clause in the

Maccheroni et al. (2006) result (in particular Proposition 6).
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