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Note pour le lecteur / Note for the Reader

Ce document est composé d’une introduction, ou Note de Synthèse (en français), et neuf
articles (en anglais). Chaque “chapitre” a ses propres annexe et références, ainsi qu’une
numérotation des pages, sections, théorèmes et ainsi de suite qui lui est spécifique. Pour
cette raison, chaque page, section, et ainsi de suite comporte le numéro de l’article : par
exemple, §V.2.2 est la section 2.2 de l’article V.

Malgré sa maladresse, cette numérotation est utilisée avec l’intention de faciliter la
lecture de et la référence au document. Même s’il y a un ordre naturel, exposé dans la
Note de Synthèse, les articles peuvent être lus indépendamment les uns des autres, et dans
n’importe quel ordre. Ainsi, pour le lecteur qui souhaite profiter de cette possibilité, une
numérotation des théorèmes, axiomes et ainsi de suite qui indique le contexte dans lequel
ils sont discutés nous a paru plus commode.

The document before you is composed of an Introduction, or Note de Synthèse (in
French), and nine papers (in English). Each of these ‘chapters’ is entirely self-sufficient,
with its own appendices and bibliography, and its own numbering of pages, sections, theo-
rems, axioms and so on. To ensure this, each page, section and so on is prefixed with the
paper number : for example, §V.2.2 is subsection 2 of section 2 from Paper V, Axiom
VII-A4 is the A4 Axiom in Paper VII, page III-13 is page 13 of Paper III.

Despite its clumsiness, this numbering has been adopted to facilitate reading and re-
ference to the document. Although there is a sort of natural order, explained in the Note

de Synthèse, each paper (and the Introduction) can be read independently of the others,
and they can be read in any order, if wished. Moreover, to aid quick and easy reference
to axioms, theorems and so on, it seemed easier to prefix them by their paper number to
indicate the context in which they are discussed.
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I Note de synthèse

I.1 Introduction

I.1.1 La décision comme recette

Imaginez que vous deviez choisir le plan pluriannuel de politique environnementale
pour un pays. Prendre une décision comme celle-ci est, à certains égards, comme cuisiner
un plat. Il y a des ingrédients : vos propres désirs et goûts et ceux des gens que vous
représentez en tant que décideur, mais aussi vos croyances, informées dans la mesure du
possible par les meilleures recherches scientifiques. Il y a un produit : la décision prise. Et
il y a des manières de traiter, manipuler, combiner les premiers pour produire le dernier :
la recette, si vous voulez. Une des préoccupations de la théorie de la décision, sinon sa
préoccupation majeure, est de comprendre ce passage des ingrédients à la décision, de
comprendre la recette de la décision.

On peut s’intéresser à ce passage à trois titres au moins. Tel le chef qui cherche la bonne
recette, on peut vouloir savoir quelle serait la meilleure façon de prendre des décisions. En
principe, la théorie de la décision peut fournir des réponses à cette question normative, sous
forme des recettes qui sont “bonnes”, accompagnées en tant que possible d’une explication
ou défense de leurs qualités. Par ailleurs, on peut vouloir savoir quelles recettes les cuisi-
niers ordinaires utilisent réellement. Plutôt que le chef qui veut cuisiner le meilleur plat, on
se met dans le rôle de l’anthropologue ou du psychologue, qui, sur la base des plats produits
(les décisions prises) veulent comprendre les recettes sous-jaçentes. Des théoriciens de la
décision affichent souvent l’ambition de fournir des éléments de réponse à cette question
descriptive. Enfin, même si les cuisiniers ordinaires utilisent une recette très compliquée,
une recette facile qui produise en fait plus ou moins la même chose est parfois désirable.

I-1
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L’économiste qui étudie l’assurance, les marchés financiers, ou l’organisation industrielle
réclame un modèle disant comment les acteurs économiques prennent des décisions. Pour
ses objectifs, il est prêt à sacrifier l’exactitude à la simplicité, et la théorie de la décision est
sensible à ce besoin. Pour ce qui concerne l’économie au moins, l’importance première du
domaine provient sans doute de cette dimension de modélisation ou d’application écono-

miques.

Une recette – un modèle de décision, ou une théorie comme on l’appelle parfois – ne
répond pas à elle seule à ces différentes questions. Il en faut aussi une défense, voire une
explication. D’un côté, on aimerait pouvoir évaluer le modèle, en particulier sur la base de
ses propriétés comportementales, et se servir d’une telle évaluation pour juger sa plausibi-
lité en tant que réponse à l’une ou l’autre des trois questions. D’un autre côté, on voudrait
que le modèle et ses composantes aient un fondement, notamment dans les comportements
observables. Il est souvent important de savoir comment identifier les différentes compo-
santes du modèle : comment mesurer leurs valeurs chez des décideurs particuliers, par
exemple. L’usage correct du modèle dans les applications économiques présuppose égale-
ment une interprétation suffisamment claire de ces composantes, et une compréhension de
leurs propriétés.

Dans le champ de la décision dans l’incertain – où, comme pour la décision environne-
mentale ci-dessus, les probabilités des résultats ne sont pas données de manière exogène –
les théoriciens de la décision ont prétendu fournir des réponses aux trois questions précé-
dentes, ainsi que des moyens pour évaluer leurs propositions. D’ailleurs, pendant un certain
nombre d’années, tout se passait comme s’il y avait la même réponse chaque fois : la théo-

rie de l’espérance d’utilité. Elle est importante non seulement en tant que point de départ
pour toute théorie concurrente, mais également en raison des outils d’évaluation et d’identi-
fication qu’on a développés pour elle, qui font toujours référence dans le domaine. Comme
pour toute présentation de la théorie de la décision dans l’incertitude, notre point de départ
est donc la théorie de l’espérance d’utilité.

I.1.2 L’espérance de l’utilité et ses atouts

Supposons que les objets de choix soient des actes : des options qui, pour chaque état
de la nature, donnent une conséquence particulière. Un pari hippique, par exemple, est une
option de ce genre – selon l’état de la nature (et en particulier le cheval qui gagne la course),
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il y aura des conséquences, monétaires en l’occurence, différentes. Plus formellement, si
l’on dénote l’ensemble des conséquences possibles par C et l’ensemble des états de la
nature par S, alors un acte est une fonction de S à C. Comme nous enseigne la théorie du
choix, sous certaines hypothèses on peut représenter les choix de l’agent par une relation
de préférence faible ® sur les actes. Quand il s’agit de décision dans l’incertain, on prend
souvent cette relation de préférence comme élément primitif, en supposant qu’il résume le
comportement du décideur. Cette convention est adoptée ici sans discussion.

La recette standard – la théorie de l’espérance d’utilité, qui va parfois aussi sous le
nom de Bayésianisme – a deux ingrédients. Le premier est une fonction (réelle) sur les
conséquences, qu’on appelle fonction d’utilité. On considère souvent qu’elle représente les
désirs du décideur relatifs aux conséquences. Le second est une mesure de probabilité sur
les états possibles de la nature. Elle aussi correspondrait à certains états mentaux du déci-
deur, à savoir ses croyances. Notons la fonction d’utilité par u et la mesure de probabilité
par p. La recette est simple : préférer l’acte dont l’espérance de l’utilité de la conséquence
résultante, calculée avec la mesure de probabilité, est la plus grande. En d’autres termes, la
préférence est représentée par une fonction V sur les actes – en ce sens standard où f ® g

si et seulement si V pfq § V pgq – qui, pour un acte f , est définie de manière suivante : 1

(I.1) V pfq “
ÿ

sPS

ppsqupfpsqq

La pierre angulaire de la théorie de l’espérance d’utilité est un résultat mathématique
(voire une famille de résultats) qu’on appelle théorème de représentation. Établi dans les
travaux novateurs de Ramsey (1931), de Savage (1954), mais aussi d’Anscombe and Au-
mann (1963), ce résultat fournit un ensemble de conditions sur les préférences – les axiomes

– et montre une équivalence entre la satisfaction de ces axiomes par une relation de pré-
férence et l’existence d’une fonction d’utilité et d’une mesure de probabilité qui les repré-
sentent selon (I.1). De plus, il affirme que cette fonction et cette mesure sont uniques en
un sens approprié. En d’autres termes, le résultat présente les conséquences comportemen-
tales d’utiliser la recette d’utilité espérée, mais permet également de repérer quand un plat
(un ensemble de décisions) peut avoir été fait selon cette recette et même d’identifier les
éventuels ingrédients (la fonction d’utilité et la mesure de probabilité).

1. Pour les besoins de cette présentation, on peut supposer que l’espace d’états S est fini.



Note de synthèse I-4

L’importance du théorème de représentation vient du fait qu’il fournit des outils d’éva-
luation et d’identification qui, comme nous l’avons constaté ci-dessus, sont très appréciés
dans un modèle de décision. D’un côté, puisqu’il repère précisément les propriétés compor-
tementales qui correspondent à la théorie de l’espérance d’utilité, le théorème contribue à
l’évaluation de cette théorie. Si l’on trouve que les gens satisfont les axiomes, ou qu’ils les
satisfont à peu près en général dans un certain type de situation, alors le modèle d’utilité es-
pérée, qui leur est équivalente, est validée pour des fins descriptives ou de modélisation éco-
nomique. Si, par contre, un axiome est violé de manière régulière, c’est une indication que
le modèle ne réussit pas à représenter le comportement. On peut répéter le même discours
mutatis mutandis pour la dimension normative. De l’autre côté, par sa clause d’unicité, le
théorème se prononce sur l’identification des composantes du modèle, en l’occurence l’uti-
lité et la probabilité. Il indique ce qu’il faut mesurer si l’on veut reconstruire les préférences
du décideur, et dans certains cas comment le mesurer. D’après certains, il donne ainsi un
sens, et même un fondement aux concepts de désir et de croyance que l’on peut relier à
l’utilité et à la probabilité (Cozic and Hill, forthcoming). Dans les applications, il suffit de
se référer au théorème pour déterminer s’il y a sens à faire varier tel ou tel aspect de l’utilité
ou de la probabilité, ou si cette variation ne correspond à rien dans les comportements.

La théorie de l’espérance d’utilité fut le seul plat servi pendant presque un demi-siècle ;
pourtant, elle a subi depuis quelques dizaines d’années des objections importantes. Celles-
ci ne touchent guère aux aspects fondationnels. En effet, la théorie de l’utilité espérée
continue à donner l’exemple en la matière, à ce point que, pour une nouvelle théorie, le
développement d’un théorème de représentation, avec une clause d’unicité qui serait idéa-
lement aussi forte que celle de l’utilité espérée, est quasi obligatoire dans le domaine. Les
objections à la théorie surviennent plutôt sur le plan de l’évaluation. La recette de l’utilité
espérée est la réponse à toutes les questions évoquées ci-dessus, à condition qu’on accepte
les axiomes. Pourtant, on sait depuis longtemps que certains axiomes sont violés par les
individus dans la pratique. De plus, ces violations semblent parfois tellement régulières
qu’on a commencé à renoncer à l’usage de la théorie au profit d’autres pour certaines ap-
plications économiques (il y aura des exemples par la suite). Enfin, il n’est pas clair que
toutes les violations soient à condamner sur le plan normatif ; tant et si bien que certains
ont mis en cause la prétention normative de la théorie de l’espérance d’utilité. Que ce soit
donc sur les plans normatif, descriptif ou de la modélisation, des voix s’élèvent contre le
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standard, et la recherche est lancée pour trouver d’autres recettes.

Un avantage des théorèmes de représentation est qu’ils structurent le débat pour ou
contre une théorie autour de ses propriétés comportementales, inscrites dans les axiomes.
Dans cette introduction, j’ai préféré une autre organisation, par les aspects de la représenta-
tion qui doivent être modifiés si l’objection est acceptée. Dans la gastronomie, une modifi-
cation de la recette pourrait entraîner un changement dans les ingrédients. La même chose
vaut pour la décision : les objections, qui peuvent être formulées comme des violations des
axiomes, impliquent de modifier l’un ou l’autre des composantes du modèle (l’utilité ou
la probabilité, en l’occurence). Une organisation sur cette base permet de rassembler des
modèles avec une communauté profonde, alors que leurs divergences par rapport à l’utilité
espérée portent sur des axiomes différents. Organisées de cette manière, les recherches pré-
sentées dans la suite s’occupent de deux critiques orthogonales de la théorie de l’espérance
d’utilité. Je présente brièvement la motivation et les enjeux de chacune, avant de résumer
mes contributions dans §§I.2, I.3 et I.4.

I.1.3 L’utilité dépendante des états

L’objection La première objection contre la représentation par maximisation d’espérance
d’utilité tient à l’indépendance supposée de l’utilité par rapport aux états. Comme il est
évident par (I.1), l’utilité d’une conséquence dépend d’elle seule et d’aucune manière de
l’état de la nature réalisé. Or, comme l’ont fait remarquer plusieurs théoriciens (dont par
exemple, Drèze et Aumann dans Drèze (1987), Arrow (1974) et Edi Karni dans plusieurs ar-
ticles qui seront discutés par la suite), cette hypothèse n’est pas toujours valide. Un exemple
banal où elle semble être violée concerne les décisions de santé :e100 000 n’a pas la même
valeur pour le décideur quand il est en bonne santé que quand il est malade, handicapé ou
mort. Prenant les e100 000 comme une conséquence et l’état de santé du décideur comme
un aspect de l’état de la nature, son utilité (pour les e100 000) est dépendante de l’état
(de santé). La littérature sur la dépendance de l’utilité à l’égard des états (state-dependent

utility) trouve son application la plus reconnue dans ce champ : après tout, dans les déci-
sions concernant l’assurance-maladie ou l’assurance-vie, il faut peser la valeur de l’argent
dans un état de santé contre sa valeur dans un état de maladie ou de mort. Il convient
de souligner cependant que la question est d’importance même dans les domaines où elle
est moins reconnue. Un exemple est fourni par les décisions concernant la politique envi-
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ronnementale mentionnées au tout début. La valeur de l’argent, et d’ailleurs de plusieurs
biens, est sans doute différente dans un climat normal et dans des situations de chaleur ou
de froid extrême, d’aridité, de déluges ou d’inondation. Comme dans le cas de la santé,
cette dépendance devrait être prise en compte dans les décisions prises ex ante en présence
d’incertitude concernant les facteurs climatiques.

Les propriétés comportementales La formulation précise des axiomes mis en cause
dans ces cas de dépendance de l’utilité à l’égard des états dépend du cadre adopté. Deux
cadres formels sont souvent pris comme repères dans la littérature. Celui de Savage, pro-
posé dans son ouvrage marquant (Savage, 1954), ne fait d’hypothèse ni sur la nature des
conséquences ni sur l’espace d’états. 2 Celui d’Anscombe-Aumann, développé quelques
années plus tard (Anscombe and Aumann, 1963) et devenu plus populaire grâce à sa fa-
cilité technique plus grande, suppose d’emblée que les conséquences sont des loteries au
sens de von Neumann et Morgenstern (des distributions de probabilité à support fini sur un
ensemble de résultats). 3 Voir par exemple l’article II pour plus de détails.

Chez Savage, deux axiomes ont trait à l’indépendance de l’utilité à l’égard des états
(voir l’article II pour leurs formulations et les détails techniques). L’un – souvent appelé
monotonie – garantit l’indépendance ordinale de l’utilité à l’égard des états ; c’est-à-dire il
assure que l’ordre sur les conséquences engendré par la fonction d’utilité est indépendant
de l’état (si l’utilité d’une conséquence x est supérieure à celle de y dans un état, il en va
ainsi dans tous les états non-nuls). Alors que cette propriété semble naturelle pour certains
types de conséquences, telles les conséquences monétaires, il y a des cas où elle n’est pas
raisonnable. On peut préférer vivre dans une maison de campagne plutôt qu’en ville quand
on est en bonne santé, la préférence étant renversée quand on est en mauvaise santé (pour
des raisons de proximité des services de santé, par exemple). L’autre axiome, appelé sou-
vent probabilité comparative faible, implique en plus l’indépendance cardinale de l’utilité
à l’égard des états : il fait que non seulement l’ordre sur les conséquences, mais aussi les va-
leurs d’utilité qui leur sont assignées sont indépendantes de l’état. Pour reprendre l’exemple

2. Par contre, ses axiomes, et notamment P6, impliquent une certaine richesse de l’espace d’états.
3. Dans plusieurs travaux récents, on suppose simplement que l’espace des conséquences est un sous-

espace convexe d’un espace vectoriel, le cadre d’Anscombe et Aumann pourant être considéré comme un cas
spécial. Pour cette raison, je continue où il est besoin de parler de cadre formel d’Anscombe-Aumann dans
ces cas.
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des conséquences monétaires, sans l’indépendance cardinale, l’attitude au risque (donnée,
comme on le sait depuis les travaux de Pratt (1964) et d’Arrow (1971) par la courbure de
la fonction d’utilité) peut différer selon l’état de la nature ; avec l’indépendance cardinale,
elle est indépendante de lui. Dans le cadre formel d’Anscombe-Aumann, un seul axiome
– appelé malheureusement monotonie aussi – garantit l’indépendance ordinale et cardinale
de l’utilité à l’égard des états. L’article II montre comment séparer la partie concernant
l’indépendance ordinale de la partie cardinale.

Le défi Si l’espérance d’utilité ne convient pas dans les circonstances où l’indépendance
de l’utilité à l’égard des états est mise en question, alors quelle représentation devrait-on
adopter ? À la différence de la littérature sur l’ambiguïté qui sera discutée par la suite, le
défi posé ici n’est pas de trouver la bonne règle de décision. Tous les théoriciens qui se
penchent sur la question sont d’accord, pour ce qui concerne la question de la dépendance
à l’égard des états, qu’une représentation comme la suivante ferait bien l’affaire (sur les
plans normatif, descriptif et de la modélisation) :

(I.2) V pfq “
ÿ

sPS

ppsqups, fpsqq

En d’autres termes, il suffit de rendre la fonction d’utilité dépendante des états. Le
défi est plutôt de nature fondationnelle : de proposer un théorème de représentation où la
probabilité p et l’utilité u sont fournies ou identifiées de manière (suffisamment) unique.
Comme il apparaîtra ci-dessous, il ne suffira pas d’enlever les axiomes qui viennent d’être
évoqués pour faire cela ; il faudra les remplacer par quelque chose d’autre.

I.1.4 Croyances et probabilités précises

L’objection La deuxième objection à la représentation des préférences par la maximisa-
tion de l’espérance d’utilité concerne la mesure de probabilité. Comme il a été dit pré-
cédemment, cette fonction peut être interprétée en termes des croyances du décideur ;
d’ailleurs, l’une des thèses derrière l’espérance d’utilité, souvent explicitée quand on traite
de l’approche dite bayésienne, est que les croyances peuvent être représentées par des pro-
babilités. Or, il y a des raisons de croire que cette thèse est fausse dans certaines situations.
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En référence à Knight (1921), qui a introduit une distinction entre le risque – où l’incerti-
tude peut être représentée ou mesurée par une probabilité – et l’incertitude proprement dite
– où ce n’est pas le cas –, on qualifie parfois ces situations d’incertitude knightienne. 4

À première vue, l’incertitude knightienne est partout. Il paraît difficile, sinon impos-
sible, de former des croyances ou des jugements probabilistes d’une certaine précision
concernant les cours des marchés (après une crise, par exemple), leurs propriétés sous-
jacentes (les vraies valeurs des sociétés, par exemple), la politique future (concernant les
guerres, par exemple). En décidant d’une politique climatique et énergétique, nous luttons
contre notre ignorance des effets de nos actes sur les variables climatiques futures, malgré
l’état avancé de la science sur la question. On peut aussi citer les incertitudes concernant
les OGM, les nanotechnologies et d’autres sujets à propos desquels on parle de “Principe
de Précaution”, comme étant des cas vraisemblables d’incertitude knightienne.

Bien sûr, ces intuitions ne suffisent pas à mettre dans l’embarras l’espérance d’utilité,
car il se peut que, dans de telles situations, on décide tout de même comme si l’on avait pour
croyances des probabilités précises. Pour ce faire, il faut, comme il est de tradition dans la
littérature, un phénomène comportemental qu’on puisse relier à ce genre de situations et
qui soit logiquement incompatible avec la maximisation de l’espérance d’utilité. Ellsberg
(1961) a proposé des contre-exemples qui satisfont ces critères et ils sont souvent pris
comme motivation pour explorer des modèles de décision qui affaiblissent les axiomes de
l’espérance d’utilité (voir par exemple l’article IX pour une brève présentation et discussion
de l’un d’entre eux).

Les propriétés comportementales Comme il en allait pour la dépendance de l’utilité à
l’égard des états, la formulation précise de l’axiome récusé dépend du cadre formel uti-
lisé. Dans celui de Savage, et selon la lecture habituelle des exemples d’Ellsberg, il s’agit
du principe de la chose sûre (P2 dans la numération de Savage (1954) ; voir §IV.2 pour la
formulation précise), dont la violation paraît évidente (voir l’article IX pour une discus-
sion plus approfondie). Dans le cadre formel d’Anscombe-Aumann, c’est – toujours selon
la lecture habituelle – l’axiome d’indépendance qui joue ce rôle (voir §I.3.2 ci-dessous
ou §III.2.1 pour la formulation précise). Ainsi, la littérature sur l’ambiguïté, qui est large-

4. Ici j’utilise le terme dans un sens assez vague, et d’ailleurs plus conforme à Knight, et non pour me
référer à un modèle précis, comme celui de Bewley (1989) qui est aujourd’hui parfois associé au nom de
Knight.
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ment motivée par les exemples ellsbergiens, peut être organisée selon l’affaiblissent retenu
pour l’un des deux axiomes. Le principe de la chose sûre et l’indépendance garantissent
effectivement l’existence d’une représentation additivement séparable par rapport aux états
(voir §I.2 ci-dessous et l’article IV), et comme c’est la propriété clef mise en cause par les
exemples d’Ellsberg, il est naturel qu’elle soit au centre des préoccupations.

Cette approche comportementale repose cependant sur l’hypothèse que, pour com-
prendre les choix des agents, il faut raisonner sur des relations de préférences complètes –
c’est-à-dire telles qu’entre tout couple d’options, le décideur préfère (faiblement) l’une à
l’autre. En présence de préférences complètes (et transitives), affaiblir l’axiome d’indépen-
dance est la seule manière de rendre compte des comportements ellsbergiens. Mais il est ici
possible de préserver l’indépendance en sacrifiant la complétude. Ainsi, on a proposé des
théories, inspirées par la même motivation de rendre compte des situations où le décideur a
du mal à former des croyances probabilistes précises, dans lesquelles on affaiblit l’axiome
de complétude mais garde l’indépendance.

Alors qu’elles sont parfois présentées comme concurrentes (voir notamment Levi
(1986)), ces deux approches sont largement complémentaires. Sur le plan technique, on
le sait depuis plus d’une décennie, les travaux de Nehring (2001) et Ghirardato et al. (2004)
ayant ouvert la voie. D’un côté, on peut retrouver des préférences incomplètes satisfaisant
l’indépendance au sein des relations de préférence ambiguë, c’est-à-dire en tant que sous-
relations ; de l’autre, ces dernières peuvent être retrouvées à partir des premières grâce à
des procédures de complétion appropriées. Sur le plan conceptuel, Gilboa et al. (2010) ont
thématisé le rapport en termes d’une distinction entre rationalité objective et subjective ;
pour une discussion d’autres approches, voir §VII.1.3.

Le défi Si l’espérance d’utilité ne convient pas en cas d’incertitude importante, vue la vio-
lation de l’indépendance ou de la complétude, alors quelle théorie de décision devrait-on
adopter ? À l’heure actuelle, les propositions ne manquent pas. Depuis les travaux nova-
teurs de Schmeidler (1989) et Gilboa and Schmeidler (1989), qui ont introduit et axioma-
tisé les modèles d’espérance d’utilité à la Choquet et de maximin des espérances d’uti-
lité, plusieurs modèles de choix dans l’ambiguité ont été développés ; pour ne prendre que
quelques exemples, Ghirardato et al. (2004); Klibanoff et al. (2005); Maccheroni et al.
(2006); Cerreia-Vioglio et al. (2011); Gajdos et al. (2008); Chateauneuf and Faro (2009);
Chateauneuf et al. (2007); Tversky and Kahneman (1992); Wakker (2010); Hansen and
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Sargent (2001). Quant aux théories qui affaiblissent la complétude, la variété est moins
grande ; on commence à développer d’autres modèles que celui de Bewley (2002), qui est
encore la référence (voir notamment la discussion dans §VII.1.3). Fidèle à l’exemple donné
par le théorème de Savage, on cherche généralement, pour chaque théorie proposée, une
caractérisation axiomatique avec une identification (c’est-à-dire une unicité appropriée) de
ses composantes ; pour la grande majorité de celles suscitées, et pour d’autres, on a fourni
les résultats désirés. Cette richesse remarquable, qui a permis une compréhension raffinée
de l’ensemble des possibilités théoriques, nous renvoie à la question initiale : quelle théorie
de décision adopter pour les situations d’incertitude knightienne ?

Une question, aussi naïve qu’elle soit, n’est jamais insatisfaisante en soi ; ce ne sont que
des présupposés sur les réponses qui nous égarent. Il convient donc de remarquer que rien
ne garantit que la nôtre puisse recevoir une réponse univoque. La théorie de l’espérance
d’utilité était censée remplir trois rôles, et l’a fait avec plus ou moins de succès. Dès qu’on
accepte de s’en éloigner, il faut également admettre la possibilité qu’une seule et même
théorie ne soit pas capable de bien remplir les trois rôles. Il se peut qu’une théorie qui décrit
bien le comportement des agents dans des situations d’incertitude ne soit pas adéquate
normativement, et, par ailleurs, ne soit pas suffisamment simple ou commode au point de
vue de la modélisation économique. D’ailleurs, un bref parcours des littératures touchant
à l’ambiguïté et consacrées aux dimensions descriptive et de la modélisation donne des
raisons de douter de l’existence d’une théorie capable de jouer ces deux rôles, sans même
parler du troisième. En outre, il se pourrait qu’il n’existe même pas de théorie qui remplisse
un seul des rôles correctement : différents individus dans des situations distinctes pourraient
être représentés par des modèles divers, ou certains modèles pourraient être plus commodes
dans un type d’application et d’autres plus faciles à utiliser ailleurs.

Pour avancer, il faut donc raffiner la question. Dans les travaux qui suivent, l’accent
est mis sur le rôle le moins bien représenté dans la littérature actuelle sur la décision dans
l’incertain. Comparée aux nombreux travaux descriptifs, et à la littérature importante et
croissante sur les applications, la question normative est peu traitée explicitement en ce
moment. Pourtant, elle n’est pas de moindre intérêt. Si les décideurs d’aujourd’hui et de
demain doivent prendre des décisions en situations d’incertitude extrême, et si l’économiste
veut informer, sinon aider à prendre, ces décisions, il se doit de commencer par une théorie
normative ou au moins un approfondissement normatif qui peut servir de guide. Alors que
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les travaux présentés pourraient être pertinents sur le plan descriptif ou pour des applica-
tions, la question qui les motive est normative : quelle théorie – ou théories – de la décision
devrait-on adopter face à l’incertitude knightienne ?

I.2 La dépendance de l’utilité à l’égard des états

Pourrait-on trouver un théorème de représentation qui serve de fondement à l’utilité dé-
pendante des états, comme les théorèmes classiques de Ramsey, de Savage et d’Anscombe-
Aumann l’ont fait pour l’utilité indépendante des états ? Il est connu de longue date qu’en-
lever les axiomes pertinentes ne fait pas l’affaire. Par exemple, chez Anscombe-Aumann,
si l’on supprime l’axiome de monotonie en gardant les autres, on obtient la représentation
suivante :

(I.3) V pfq “
ÿ

sPS

Ups, fpsqq

où la fonction U , qu’on peut appeler évaluation, a des propriétés d’unicité raisonnable
(voir par exemple Karni et al. (1983) et l’article II). Pourtant, il y a beaucoup de manières
de “factoriser” l’évaluation U en une utilité dépendant des états et une mesure de probabi-
lité : la question est de savoir laquelle est la bonne. En réponse à cette question, il faut un
théorème qui fournisse une représentation plus fine que (I.3), séparant U en une probabilité
et une utilité qui soient uniques en un sens approprié. Comme l’a souligné Karni (1996,
2011), ce défi se présente même quand les axiomes habituels d’indépendance de l’utilité à
l’égard des états sont satisfaits. Sous ces conditions, les théorèmes de représentation clas-
siques assurent qu’il existe une représentation par une fonction d’utilité indépendante des
états et une mesure de probabilité et que ces deux sont uniques par rapport à la propriété
annoncée de la fonction d’utilité. Ils n’éliminent pas la possibilité qu’il y ait d’autres repré-
sentations dans lesquelles la fonction d’utilité soit dépendante des états. Si, avec Karni (voir
les articles cités et les références qu’ils donnent), on considère la représentation standard
de l’espérance d’utilité comme une famille parmi toutes les représentations comportant une
probabilité et une utilité qui puisse dépendre des états, ni l’utilité ni la probabilité ne sont
en fait uniques.

Il est commode de poser le problème précédent comme suit : quels axiomes doit-on
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ajouter à ceux qui donnent la représentation (I.3) pour fournir la séparation désirée de U ?
Grosso modo, deux genres d’approche sont explorés dans la littérature.

I.2.1 Les actes “subjectivement” constants

Si les axiomes d’indépendance de l’utilité à l’égard des états – disons l’axiome de mo-
notonie chez Anscombe-Aumann – sont violés, alors les actes constants ne sont pas perçus
comme tels par le décideur. Recevoir e100 quel que soit l’état de la nature, bien que la
conséquence soit la même dans tous les états de la nature, n’est pas un acte “subjective-
ment” constant si le décideur n’associe pas la même utilité aux e100 dans un état (il est
vivant) et dans un autre (il meurt). Alors on peut se demander s’il y a des actes qui, sans
nécessairement donner les mêmes conséquences dans chaque état, sont tels que l’utilité
attribuée par le décideur aux conséquences est constante dans les différents états. Ainsi,
l’acte qui donne e200 si l’agent est vivant et e100 sinon conviendrait si l’utilité de e200
quand il est vivant était égale à celle de e100 en cas de mort. Karni (1993b,a) a montré que,
en présence d’un ensemble suffisamment riche de tels actes “subjectivement” constants –
qu’il appelle des actes à valuation constante –, on peut formuler un théorème de représen-
tation pour l’utilité dépendant des états, en remplaçant les actes constants ordinaires dans
les théorèmes classiques par ces nouveaux actes. Il reste à savoir quand un tel ensemble
d’actes existe.

Dans “When is there state independence ?” (l’article II) je propose une réponse, sous
la forme d’une condition, exprimée sur les comportements, nécessaire et suffisante pour
l’existence de l’ensemble d’actes recherché. À partir de cette caractérisation, en ajoutant
des axiomes d’indépendance cardinale au sens indiqué dans §I.1.3, mais formulés en termes
d’actes “subjectivement” constants, on peut facilement produire des théorèmes de repré-
sentation pour l’utilité dépendant des états qui aient les bonnes propriétés. Le résultat vaut
pour les deux cadres formels principaux, mais il s’applique seulement quand l’espace des
conséquences (ou des résultats dans le cadre formel d’Anscombe-Aumann) est fini ou dé-
nombrable.

Dans la mesure où la stratégie adoptée consiste à appliquer les théorèmes existants
sur l’espérance d’utilité, mais en utilisant un autre ensemble d’actes à la place des actes
constants, on peut lui opposer la même objection qu’à ces théorèmes : à savoir, que l’uti-
lité et la probabilité sont uniques seulement sous l’hypothèse que les actes utilisés à la
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place des actes constants ont vraiment une utilité constante à travers les états. Sans cette
hypothèse, on peut répéter l’argument de Karni et obtenir une famille entière d’utilités et
de probabilités qui représentent les mêmes préférences. L’article II propose, sous certaines
hypothèses, un résultat d’unicité pour l’ensemble d’actes “subjectivement” constants (Co-
rollary II.1), qui peut servir de réponse à cette critique : parmi les multiples représenta-
tions, une se distingue en étant la seule pour laquelle il existe des actes “subjectivement”
constants. En outre, puisque la condition de l’existence d’un ensemble d’actes “subjective-
ment” constants est comportementale, dès lors que les préférences la satisfont, on sait que
toute représentation par une fonction d’utilité dépendant des états et une autre mesure de
probabilité peut être transformée en la représentation de l’article (voir Karni (1996, 2011)
pour une transformation similaire). Considérons manitenant l’autre stratégie pour relever
le défi posé par la dépendance de l’utilité à l’égard des états.

I.2.2 L’ajout de “données supplémentaires”

Si les préférences ordinaires sur les actes ne suffissent pas à fournir la probabilité et
l’utilité au niveau d’unicité recherchée, peut-être faut-il augmenter les données initiales de
choix, de situations de choix ou de préférence. Cette stratégie a une longue histoire et peut
prendre plusieurs formes : pour ne prendre que quelques exemples, Luce et al. (1971) et
Fishburn (1973) prennent les préférences conditionnelles comme primitives et obtiennent
une représentation qui ressemble à une dépendance d’utilité à l’égard des états, Karni et al.
(1983) se servent de préférences hypothétiques (voir aussi Karni and Mongin (2000)), et
Karni (2011) introduit un cadre formel comportant des actions, des effets, des paris et des
observations, et considère le rapport entre les préférences avant et après l’observation.

La contribution de “Living without state-independence of utilities” (l’article III) s’ins-
crit dans cette tradition. Partant de la réponse de Savage dans sa correspondance avec Au-
mann, l’article développe l’idée que, alors qu’il y a sans doute des situations où l’utilité
dépend des états, il y a également des situations – avec d’autres états par exemple – où elle
est indépendante. L’utilité de e100 peut varier selon l’état de santé du décideur – donc dans
une situation où les états de la nature pertinents pour la décision, étant donné le niveau de
finesse nécessaire pour la formaliser, comprennent l’état de santé, l’utilité dépend de l’état.
Par contre, l’utilité de e100 ne dépend pas du cheval qui gagne le 15h15 à Longchamp
ce samedi – et donc dans le contexte d’une décision sur le pari à faire sur cette course, où
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les états pertinents spécifient son résultat, l’utilité est indépendante par rapport à ces états.
Mais s’il y a de telles situations, où l’utilité ne dépend pas des états (et donc où les axiomes
tels la monotonie sont satisfaits), pourquoi pas s’en servir pour révéler les probabilités et
les utilités du décideur ? Dans le cadre formel d’Anscombe-Aumann, cet article identifie
des conditions relatives à des situations différentes qui suffisent pour révéler une fonction
d’utilité unique (à une transformation affine près) et une mesure de probabilité unique qui
permettent de représenter les préférences du décideur. Il introduit un élément nouveau dans
la représentation – un facteur dépendant de la situation (situation-dependent factor) – qui
traduit les phénomènes comportementaux correspondant à la dépendance de l’utilité par
rapport aux états. Ce facteur permet une distinction entre l’utilité absolue, qui est indépen-
dante des états (et donc peut être employée dans n’importe quelle situation de décision, quel
que soit l’espace d’états pertinent) et l’utilité “relative à la situation”, issue de la combinai-
son de l’utilité absolue et du facteur en question. (Voir §III.3 pour une discussion du rapport
avec l’utilité dépendante des états habituelle ainsi que des autres approches proposées dans
la littérature.)

La dernière section de l’article (§III.4) montre comment éviter la notion de situation,
en formulant un résultat semblable dans une seule “grande” situation, où l’indépendance
par rapport aux états est cherchée dans des “fragments” (des sous-algèbres de l’ensemble
d’événements, par exemple).

I.2.3 La dépendance de l’utilité à l’égard des états dans le cadre de
Savage

Les articles précédents partent de la représentation (I.3) : le premier la suppose d’em-
blée, sans poser la question de sa caractérisation comportementale ; le second travaille dans
le cadre formel d’Anscombe-Aumann, où une telle caractérisation est connue. Toute exten-
sion de ces résultats, et d’ailleurs de certains autres dans la littérature (par exemple, Karni
et al. (1983)), au cadre formel de Savage nécessitera de formuler un équivalent de (I.3) pour
un ensemble de conséquences dénué de structure et pour un espace d’états infini, avec la
caractérisation axiomatique afférente. Le dernier article portant sur la dépendance de l’uti-
lité à l’égard des états, “An additively separable representation in the Savage framework”
(l’article IV), traite de cette question. Le théorème qu’il propose obtient la représentation
suivante, qui peut être considérée comme l’équivalent de (I.3) dans le cadre de Savage (voir
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§IV.3) :

(I.4) V pfq “
ª

f

dU

où U est une mesure (finiment additive) sur l’espace produit S ˆ C (avec une �-algèbre
appropriée). Le résultat est largement sans surprise : les axiomes comportementaux sont
ceux de Savage (moins les axiomes d’indépendance de l’utilité) et les axiomes techniques
sont des versions des axiomes de continuité proposés ailleurs dans la littérature, plus un
axiome spécifique. Comme discuté dans l’article, ce résultat peut s’appliquer au-delà de
la théorie de la décision dans l’incertitude, lorsqu’on veut une représentation additivement
séparable avec un ensemble d’indices continu (représentant le temps, par exemple) mais
sans hypothèses sur la structure des conséquences.

I.3 L’incertitude knightienne

Comment devrait-on choisir dans des situations d’incertitude extrême, notamment celles
où il est difficile de former des croyances probabilistes ? Parmi les questions qui constituent
le défi de l’incertitude knightienne, celle-ci a dirigé mes recherches sur le sujet. Bien que
la plupart des travaux présentés se concentrent sur l’incertitude relative à l’état de la nature
– le côté de la croyance visé par la distinction knightienne –, il convient de remarquer que
“l’incertitude” d’un décideur peut également planer sur ses propres préférences ou utilités
(si l’on peut toujours utiliser ces termes dans les cas où elles ne sont éventuellement même
pas formées).

Pour certains, la question qui motive ces travaux est superflue, car on connaît de longue
date la réponse : quels que soient ses défauts en tant que description du comportement des
individus, la théorie de l’espérance d’utilité fournit toujours la norme que les décideurs
devraient viser. Certains économistes (Gilboa et al., 2009, 2012), ainsi que plusieurs philo-
sophes (Levi, 1986; Bradley, 2009; Joyce, 2011), ont exprimés leur scepticisme à cet égard.
Le projet guidant l’essentiel de cette partie est de développer et défendre une théorie de la
décision qui pourrait concurrencer l’étalon bayésien sur le plan normatif.

Une pareille théorie doit alors rend compte de comportements, dont les fameux exemples
ellsbergiens mentionnés ci-dessus, qui peuvent être considérés comme acceptables du point
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de vue normatif. La proposition élaborée et explorée dans les travaux présentés est le fruit
de l’intuition que la confiance que nous avons dans nos attitudes – qu’elles soient des désirs
(ou utilités) ou des croyances (ou jugements de probabilité) – mérite d’avoir un rôle dans
la décision. La maxime inspiratrice est la suivante : plus importante est la décision, plus on
exige de confiance dans les jugements sur lesquels on s’appuie pour la prendre.

I.3.1 Le cadre général et premières contributions

“Confidence and Decision” (l’article V) développe le cadre général, discute certaines
de ses propriétés, et en explore les conséquences pour le choix dans l’incertain. Comme
il a été remarqué ci-dessus, la littérature sur l’ambiguïté se concentre sur des violations
de l’axiom d’indépendance (dans le cadre d’Anscombe-Aumann) et suppose généralement
une seule fonction d’utilité indépendante des états. Il va de même dans cet article, qui
concentre entièrement sur le rôle de la confiance dans les croyances, et propose un modèle
qui viole l’axiome d’indépendance. Celui-ci introduit trois nouveaux éléments :

— une représentation des croyances et de la confiance dans les croyances par un confi-

dence ranking (“classement par confiance”) 5 – une famille emboîtée d’ensembles
de mesures de probabilité – qu’on dénote par ⌅. Chaque ensemble dans la famille
correspond à un niveau de confiance et représente les croyances dans lesquelles le
décideur a, au moins, autant de confiance (voir §§V.1.3 et V.2.1).

— le cautiousness coefficient (“coefficient de sagesse”) – une allocation d’un ensemble
dans le confidence ranking à chaque décision – qu’on dénote par D. Cette fonction
donne le niveau de confiance approprié pour une décision, qui dépend de l’impor-
tance de la décision ou de ses enjeux. Cette composante endogène du modèle re-
présente le goût du décideur pour prendre des décisions sur la base d’une confiance
limitée.

— les enjeux dans une décision, ou en d’autres termes son importance. Cet article sup-
pose une notion particulière d’enjeu, qui est la pire conséquence possible si l’on
choisit l’acte. À la différence des éléments précédents, celle-ci est exogène au mo-
dèle, et constitue un facteur sur lequel différents modèles divergent.

5. Pour faciliter la mise en rapport de cette note et les articles qui sont rédigés en anglais, je continue
d’utiliser les terme anglais par la suite.
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Dans la représentation axiomatisée, les préférences sont représentées par la fonction-
nelle suivante sur les actes, où � est la notion d’enjeu donnée dans §V.2.1 :

V pfq “ min
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ÿ
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ppsqupfpsqq(I.5)

Ce modèle est une extension du modèle maximin EU de Gilboa and Schmeidler (1989),
la différence axiomatique entre les deux étant par ailleurs assez faible. En gros, l’affaiblis-
sement de l’indépendance respecté par le modèle maximin EU peut s’interpréter comme
exigeant que la préférence entre deux actes ne soit pas sensible aux enjeux impliqués dans
le choix entre eux. Bien entendu, du point de vue de l’intuition de départ, cet axiome est
trop fort. Le modèle proposé l’affaiblit de la manière qu’on attendrait : si les enjeux n’aug-
mentent pas, alors toute préférence pour un acte “ambigu’" par rapport à un acte qui ne
l’est pas est préservée, et de même pour la direction inverse. La relative plausibilité de ces
conséquences comportementales – qui, comme mentionné dans §§I.1.1 et I.1.2, constituent
un contrôle possible du modèle – pourrait être considérée favorablement dans l’évaluation
normative du modèle.

Une propriété bien prisée de la théorie de l’espérance d’utilité est la séparation appa-
rente entre les croyances, représentées par la mesure de probabilité, et les goûts ou les
désirs, représentés par la fonction d’utilité. Une séparation aussi nette est beaucoup moins
répandue parmi les modèles d’ambiguïté, largement en raison de la difficulté à séparer l’in-
certitude et l’attitude de choix en présence de cette incertitude. D’ailleurs, le modèle “lisse”
(smooth) de Klibanoff et al. (2005) est presque le seul qui prétende à cette séparation (voir
aussi Epstein (2010); Klibanoff et al. (2012)). Comme suggéré ci-dessus, le modèle ici pro-
posé paraît admettre une telle séparation, dans la mesure où elle comporte une composante
représentant les croyances (le confidence ranking) et une autre qui reflète une attitude vis-à-
vis de l’incertitude (le cautiousness coefficient). L’article propose des exercices de statique
comparative qui confortent ces interprétations (§V.3). Si ils sont jugés acceptables, ce sera
un autre point fort de l’approche, sur le plan normatif.

Comme discuté dans la dernière section de l’article, le cadre proposé permet de définir
d’une famille de modèles, dont tous respectent plus ou moins la maxime “plus les enjeux
sont élevés, plus il faut de confiance dans les croyances pour se servir d’elles”. D’une part,
la règle de décision (maximin EU dans (I.5)) peut varier entre les différents membres de
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la famille ; d’autre part, la notion d’enjeu (qui est respectée par D) peut différer entre des
modèles.

Dans “Confidence in Preferences” (l’article VI), l’approche est étendue des croyances
aux préférences. L’article est ainsi le seul qui ne traite pas d’incertitude. Il montre com-
ment utiliser la même sorte de représentation (une famille emboîtée d’ensembles, mais de
préférences plutôt que de probabilités, un cautiousness coefficient et une notion d’enjeu,
appelée importance dans ce contexte) pour construire une théorie du choix dans le certain.
La maxime de base reste identique, même si sa réalisation est différente : là où le décideur
manifestait plus d’aversion à l’incertitude en absence d’une confiance suffisante, ici il peine
à former des préférences. D’ailleurs, l’introduction et le traitement de l’incomplétude des
préférences est une autre contribution par rapport à l’article précédent. Travaillant dans un
cadre où les éléments primitifs sont des fonctions de choix, qui donnent les options choisies
dans des menus, il propose une retraduction de l’incomplétude des préférences en termes
comportementaux par le fait d’éviter la décision, soit en la transmettant à quelqu’un d’autre
soit en l’ajournant. Il sera commode par la suite de se servir de l’anglais defer, qui désigne
à la fois le fait de déférer une décision à autrui et celui de la différer à un autre moment, et
qui reflète mieux la communauté entre ces cas. L’article représente le deferral en utilisant
des fonctions de choix qui peuvent ne donner aucun élément du menu, et en introduisant un
nouvel axiome qui peut être vu comme l’équivalent de l’axiome � de Sen pour les préfé-
rences incomplètes. Enfin, l’article approfondit certaines notions et hypothèses du modèle,
en particulier celles d’enjeu et de confiance (§§VI.3.1 et VI.3.3).

I.3.2 Développements et défense

I.3.2.1 Questions et défis

Les articles précédents ouvrent plusieurs questions. Si un manque de confiance peut en-
traîner l’aversion vis-à-vis de l’incertitude, mais aussi l’incomplétude ou le deferral, quel
est le rapport entre ces deux conséquences ? Plus généralement, si la confiance a vraiment
un rôle à jouer dans la décision, on s’attendrait à ce qu’il y ait des conséquences comporte-
mentales spécifiques : peut-on en trouver ? Mais plus importants encore que ces questions
sont les défis restants. Ils sont des deux types expliqués dans §I.1.1. D’une part, il y un défi
“fondationnel”. Malgré les arguments proposés dans l’article VI, la notion d’enjeu est plus
naturellement interprétée comme une attitude ou une représentation du décideur et, en tant
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que telle, ne devrait pas être supposée de manière exogène. Elle a donc besoin d’un fon-
dement : un théorème de représentation dans lequel elle est révélée de manière endogène.
D’autre part, il y a un défi “d’évaluation”. Des arguments connus cherchent à mettre dans
l’embarras tout modèle qui ne satisfait pas l’axiome d’indépendance standard en examinant
ses conséquences dynamiques. Descriptivement correct ou non, approprié à la modélisation
économique ou non, tout modèle d’ambiguïté, y compris celui proposé dans l’article V, se-
rait condamné par ces arguments sur le plan normatif. A ce point qu’ils constituent en
réalité la pierre angulaire de la défense de l’espérance d’utilité comme théorie normative
de la décision dans l’incertain. Tout projet de développer une autre théorie reste incomplet
si l’on ne les reconsidère pas.

I.3.2.2 Préférences incomplètes, choix et deferral

Les articles VII and VIII cherchent à répondre aux questions ouvertes et au premier défi
mentionnés ci-dessus. “Incomplete Preferences and Confidence” (l’article VII) explore les
effets de la confiance sur l’incomplétude des préférences en la rapportant au choix et à
l’ambiguité, cela dans un cadre standard de décision dans l’incertain. La représentation ob-
tenue est de la même forme générale que (I.5), mais utilise la règle d’unanimité de Bewley
plutôt que le maximin EU : pour tout couple d’actes f et g, g © f si et seulement si :
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Ainsi, la représentation appartient à la famille proposée dans l’article V. Du point de
vue comportemental, les axiomes sont tout à fait raisonnables dès qu’on introduit une nou-
velle distinction entre la violation et l’abstention d’un axiome. Pour illustrer, prenons le
cas de l’axiome d’indépendance, qui demande que pour tout couple d’actes f et g et toutes
mixtures f↵h, g↵h avec un autre acte h, f ® g si et seulement si f↵h ® g↵h. (Voir §VII.2
pour des détails.) Ainsi l’axiome exige que si un décideur préfère (faiblement) g à f , il
ne peut pas préférer (fortement) f↵h à g↵h, mais il ne lui est pas permis non plus d’avoir
des préférences indéterminées entre ces deux actes. La version de l’indépendance propo-
sée dans l’article VII – appelée l’indépendance pure – rejoint l’axiome classique sur le
premier point, mais diverge sur le deuxième. Elle condamne toute “violation” de l’axiome
de l’indépendance : c’est-à-dire, toute combinaison de préférences déterminées qui sont
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incompatibles avec l’axiome. Par contre, il permet des “abstentions” de l’axiome : des
combinaisons de préférences qui sont indéterminées sur des couples d’actes où l’axiome
standard interdit l’incomplétude. 6 Sur le plan de la plausibilité, l’indépendance pure n’a
rien à envier à l’axiome classique : les combinaisons de préférences (généralement déter-
minées) qui sont récusées par l’axiome standard le sont aussi par cette nouvelle version. 7

Au contraire, l’article propose des exemples où les deux axiomes divergent, et où seul le
traditionnel est critiquable.

L’article touche aussi au rapport entre préférences incomplètes et choix, et il tire cer-
taines conséquences du modèle pour les marchés financiers. (Remarquons au passage qu’il
reste relativement silencieux sur l’interprétation de l’incomplétude, et que les résultats
peuvent être lus dans des optiques descriptive et de modélisation économique, aussi bien
que normative.) Tout d’abord, la mise en jeu de la confiance met en lumière deux straté-
gies générales pour décider quand les préférences sont incomplètes (§VII.4). L’une retient
uniquement l’usage des croyances dans lesquelles le décideur a suffisamment confiance,
en utilisant une règle autre que celle impliquée dans (I.6) pour décider. L’autre permet au
décideur de mobiliser toutes ses croyances, y compris celles dans lesquelles il a peu de
confiance. À ma connaissance, cette distinction n’a pas été introduite clairement aupara-
vant dans la littérature. C’est un avantage de la notion de confiance qu’elle la fait bien
ressortir. Pour illustrer encore l’intérêt de cette notion, l’article aborde ses conséquences
dans des marchés financiers (§VII.5). Comparé au modèle standard de Bewley (2002), le
modèle intégrant la confiance ne diffère pas tant dans la forme des optima de Pareto que
dans la difficulté à les atteindre. La présence de la confiance – qui peut empêcher des déci-
deurs d’accepter des gros échanges alors qu’ils acceptent des petits – peut conduire à des
allocations qui ne sont pas des optima de Pareto mais où l’on ne peut pas facilement accé-
der à ceux qui les auraient dominés. Cette inertie ou ce conservatisme dus à la confiance
n’apparaît pas dans les modèles courants (bayésiens ou non) des marchés financiers.

L’article VIII, “Confidence as a Source of Deferral”, peut être considéré comme un

6. Il est évident que cette distinction s’écroule quand les préférences sont complètes.
7. En particulier, les arguments dynamiques qui critiquent les violations de l’indépendance ne touchent

pas à ce modèle, ce qui montre que les problèmes normatifs relevant de ces arguments ne sont pas inhérents
à la famille de modèles proposée dans l’article V, mais au pire concernent certains de ses membres. Comme
il sera clair par la suite, alors que c’est une réponse au défi posé par ces arguments, ce n’est pas celle que je
prônerai.
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développement technique du précédent qui explore quelques notions mises en avant dans
l’article VI, notamment celle de deferral. Sur le plan conceptuel, sa contribution est d’in-
troduire un autre rôle pour la confiance que celui développé antérieurement. Non seulement
on peut vouloir éviter de décider en absence de confiance, par le deferral par exemple, mais
le manque de confiance peut être relié qualitativement à la valeur que le décideur attribue
à l’option de ne pas devoir décider. Cette idée peut avoir des conséquences économiques
significatives. La grande majorité de la littérature sur le risque et l’information, en théorie
des contrats par exemple, néglige le rôle de la confiance comme raison éventuelle pour
différer un choix ou le déférer à autrui, en modélisant ces décisions uniquement par la dif-
férence d’information (concernant le monde, mais peut-être aussi les préférences futures)
entre agents. Les modèles existants de préférences incomplètes ont du mal à prendre en
compte le coût du deferral dans ces situations : alors qu’ils peuvent déterminer quand le
décideur ne veut pas décider, mais ils ne peuvent pas dire combien il est prêt à payer pour ne
pas devoir décider. L’article VIII cherche à combler ce manque en développant un modèle
qui intègre la confiance mais qui s’applique dans ces situations.

Outre sa contribution sur les plans conceptuel et économique – il développe non seule-
ment un modèle de deferral, mais esquisse une manière d’intégrer la confiance dans l’ap-
proche classique basée sur la différence d’information – l’article apporte une solution au
problème de fondements mentionné ci-dessus. Aucune notion d’enjeu ou d’importance
n’est maintenant supposée de manière exogène, et alors que le modèle n’explicite pas ces
notions, il est possible de le reformuler à l’aide d’une notion d’enjeu, qui serait alors révé-
lée de manière endogène (voir en particulier Remarques VIII.1, VIII.3 et §VIII.5). On peut
ainsi considérer que le théorème de représentation proposé ici fonde cette notion d’enjeux,
ce qui manquait aux articles précédents.

I.3.2.3 Le choix dynamique

Le dernier défi est celui posé par les arguments qui prétendent démontrer que tout mo-
dèle violant l’axiome d’indépendance (ou le principe de la chose sûre) est voué à avoir des
conséquences indésirables dans des situations dynamiques : il découlerait une violation de
l’un ou l’autre des principes dynamiques raisonnables, par exemple, le décideur refuserait
de l’information gratuite ou même choisirait des options dominées. Ces arguments mettent
donc en doute les prétentions normatives des modèles d’ambiguïté. La famille de modèles
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esquissée dans l’article V n’est pas touchée dans sa totalité par ce genre d’argument, du
moins dans sa forme la plus grave, car certains membres, notamment ceux avec des préfé-
rences incomplètes, ne violent pas l’axiome d’indépendance (voir la discussion de l’article
VII ci-dessus).

Pourtant, ce ne serait pas une manière adéquate de défendre la validité normative de
l’approche. Si l’ambition était de proposer une manière “rationnelle” de décider dans des
situations d’incertitude extrême, où les jugements exacts de probabilité sont difficiles à
former mais où il faut néanmoins faire un choix, une théorie qui ne s’applique pas dans
ces situations précisément ne serait guère utile. “Dynamic Consistency and Ambiguity :
A Reappraisal” (l’article IX) cherche donc à réfuter ces arguments. Dans la mesure où
ils touchent à tout modèle violant l’axiome d’indépendance, la réfutation, si elle réussit,
défendra non seulement l’approche élaborée ici mais toute théorie de l’ambiguité.

Un des arguments clefs consiste en un résultat mathématique portant sur deux principes
dynamiques : le conséquentialisme, qui demande que les préférences du décideur à un mo-
ment et dans une situation donnée soient indépendantes du passé et de ce qui aurait pu arri-
ver, et la cohérence dynamique, qui exige que ses préférences ex ante concernant les plans
pour les éventualités futures (contingent plans) soient en harmonie avec ses préférences
ex post. Le résultat en question affirme que, sous l’hypothèse de quelques propriétés de
base, toute violation de l’axiome d’indépendance entraîne une violation de l’un ou l’autre
de ces principes, ce qui, vu leur plausibilité, poserait un problème sur le plan normatif (voir
§IX.1). Certains autres problèmes soulevés à propos des modèles d’ambiguïté sont liés à
cet argument (voir par exemple la discussion de l’aversion à l’information, §IX.5).

L’article IX part du constat banal que tout principe dynamique concernant les éventua-
lités, telle la cohérence dynamique, devrait être formulé par rapport aux éventualités que
le décideur lui-même envisage, qui sont, après tout, les seules qu’il prenne en compte dans
la formation de ses plans. Pourtant, dans la formalisation traditionnelle de la cohérence
dynamique, il n’y a aucune considération des éventualités envisagées par le décideur. Par
conséquent, le résultat du paragraphe précédent s’appuie, au pire, sur une formalisation
erronée du principe de cohérence dynamique (et donc ne pose aucun problème sur le plan
normatif) ; au mieux, il repose sur une hypothèse cachée concernant les éventualités envi-
sagées (à savoir, qu’elles coincident avec celles posées par le théoricien). L’article décèle
les implications de cette hypothèse pour montrer que, dès qu’elle est prise en compte, les
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prétendus embarras pour les théories qui violent l’indépendance s’avèrent illusoires. D’un
côté, en l’absence de l’hypothèse, l’incompatibilité entre les principes dynamiques et la
violation de l’indépendance disparaît (§IX.3). De l’autre côté, sa présence implique une
forme spéciale des croyances ex ante, et il suffit de respecter cette implication pour dis-
soudre les prétendus problèmes pour les modèles d’ambiguïté. D’ailleurs, le constat qu’il y
a des implications propres à l’hypothèse fournit et justifie un conseil concret pour l’usage
de ces modèles dans des situations de choix dynamique (§IX.4). Enfin, l’article étaie la
notion d’éventualité envisagée par le décideur, notamment sur le plan “fondationnel”, avec
un théorème de représentation (§IX.6).

I.4 Au croisement de l’indépendance de l’utilité à l’égard

des états et de l’incertitude knightienne

Chacun des travaux précédents, comme la littérature à laquelle ils appartiennent, concentre
sur l’une des deux objections à la théorie de l’espérance de l’utilité discutées précédem-
ment, en faisant abstraction de l’autre. Or il y a manifestement des situations impliquant à la
fois la dépendance de l’utilité par rapport aux états et l’incertitude knightienne – l’exemple
déjà évoqué du choix de politique environnementale en est probablement une. Le dernier
article présenté, “Uncertainty aversion, multi utility representations and state independence
of utility” (l’article X) tente de prendre en compte les deux objections, en développant un
modèle de décision qui ne suppose ni la monotonie ni l’indépendance, mais qui représente
un décideur manifestant de l’aversion par rapport à l’incertitude. Il montre que cette pro-
priété bien connue dans la littérature sur l’ambiguïté, en présence de certains axiomes de
base et quelques conditions techniques, caractérise la représentation suivante :

(I.7) V pfq “ min

UPU
ÿ

sPS

Ups, fpsqq

où U est un ensemble d’évaluations. Cette représentation généralise plusieurs modèles dans
la littérature sur l’ambiguïté, dont celui de Gilboa and Schmeidler (1989) qu’elle évoque
directement, mais aussi la représentation (I.3), qui est un point de départ pour la littéra-
ture sur l’utilité dépendante des états (voir §I.2). Par ailleurs, elle aussi peut servir comme
base, mais cette fois pour le développement d’une théorie de l’utilité dépendante des états
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en présence de l’aversion par rapport à l’incertitude : pareillement au cas considéré dans
§I.2, la tâche serait de trouver une séparation convenable de l’ensemble U en un facteur
d’utilité et en un autre qui a trait aux probabilités. Remarquons qu’une telle séparation pro-
duirait éventuellement un ensemble de fonctions d’utilité plutôt qu’une seule fonction. De
tels ensembles peuvent s’interpréter par l’imprécision des désirs du décideur, de la même
manière que les ensembles de probabilités chez Gilboa and Schmeidler (1989) et Bewley
(2002) représenteraient des croyances qui manquent d’être des probabilités précises. Il est
parfois difficile de comparer les conséquences pertinentes – les décisions de politique en-
vironnementale, qui demandent souvent de mettre en balance le bien-être de générations
différentes, fournissent de nouveau un exemple –, et la représentation (I.7) a le mérite de
continuer à s’appliquer dans ces cas.

Il aurait été naturel de développer une théorie de l’utilité dépendante des états dans
l’ambiguïté à partir de représentation (I.7), mais l’article X ne le fait pas. Il met plutôt
en évidence une équivoque dans la notion d’utilité indépendante des états, qui surgit dès
que l’on renonce à l’hypothèse d’une seule fonction d’utilité. L’article identifie et carac-
térise deux notions d’indépendance de l’utilité par rapport aux états : l’une est l’analogue
de celle qui est en passe de s’imposer dans la littérature sur les préférences incomplètes
(Galaabaatar and Karni, 2013), et l’autre est impliquée par l’axiome de monotonie évoqué
ci-dessus. La découverte étonnante est grosso modo que ces notions sont incompatibles
quand les désirs sont imprécis. Ce qui laisse penser que le croisement entre les questions
de l’indépendance de l’utilité par rapport aux états et celles de l’incertitude ou de l’impréci-
sion relative aux croyances ou aux désirs est peut-être plus complexe que l’on n’a imaginé
jusqu’à présent.

I.5 Perspectives de recherche

Les travaux présentés dans §I.3 constituent le début d’un programme de recherche plu-
tôt que son aboutissement. Dans les années à venir, j’ai l’intention de développer le pro-
gramme en plusieurs directions, dont voici certaines.

La première, qui est plutôt de l’ordre du renforcement que de l’extension, concerne les
prétentions normatives des modèles proposés. Il s’agira d’examiner de plus près, et avec
un œil plus réflexif, ces prétentions, en se confrontant à la littérature philosophique sur la
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décision et la rationalité, par exemple. Une défense sur ce plan passera non seulement par
l’argumentation conceptuelle, mais également par la participation à certains débats actuels
pertinents. Le plus évident porte sans doute sur le fameux Principe de Précaution, qui,
alors qu’il implique des notions non évoquées ici, comme l’irréversibilité, est le genre
de questions sur lesquelles on s’attendrait à une contribution de la part des théoriciens
de la décision travaillant dans une perspective normative. Un développement dans cette
direction ira vers des préoccupations pratiques, en regardant les procédures utilisées par des
scientifiques ayant trait à des incertitudes extrêmes (climatologues, géographes, ingénieurs,
statisticiens) pour voir si le cadre développé ici aurait quelque chose à offrir.

Une autre direction consistera à développer une théorie dynamique pour la représenta-
tion de confiance proposée. L’article IX ouvre la voie, dans la mesure où il laisse ouverte
la possibilité d’une théorie normativement plausible de la dynamique. Une piste possible
part de l’idée que la confiance a un rôle non seulement dans la décision mais également
dans l’apprentissage ou le changement des croyances. Encore une fois, une maxime peut
nous guider. Quand on change de croyances, on retient certaines “veilles” croyances mais
souvent on en supprime d’autres pour permettre l’ajout des nouvelles. Il est raisonnable que
les croyances qui sont retenues soient celles dans lesquelles on a le plus confiance, et qu’on
retire seulement celles dans lesquelles on a le moins confiance. Appuyant sur les dévelop-
pements dans le cadre non-probabiliste de la révision des croyances en logique, philosophie
et informatique (voir par exemple Hill (2008) et les références là-dedans), où l’on trouve
une idée voisine, le but serait de proposer une théorie du changement de la croyance et de la
confiance pour la famille de modèles proposée dans l’article V, de la caractériser du point
de vue comportemental et d’en explorer les conséquences.

Une troisième direction, plus expérimentale, consistera à développer des procédures
pour révéler les composantes du modèle – en particulier la confiance dans les croyances
(le confidence ranking) et l’attitude à choisir sur la base d’une confiance limitée (le cau-

tiousness coefficient). Une question qui se pose naturellement concernant des éventuelles
applications est celle de la calibration de l’incertitude (ou des croyances). Les loteries
constituent une “échelle” naturelle pour la calibration des croyances probabilistes. En ef-
fet, un bayésien peut “situer” chaque croyance par rapport à toute probabilité donnée : par
exemple, il peut comparer sa croyance concernant l’éventualité d’une montée de tempé-
ratures globale de plus de 5˝C dans les prochains 50 ans à une quantité d’émissions de
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donnée à la chance que la prochaine boule tirée d’une urne avec 5 boules noires et
95 boules blanches soit noire. De telles comparaisons (ou plutôt leur version “comporte-
mentale”, en termes de paris) sont par ailleurs importantes pour certaines procédures de
révélation des croyances. Pourtant, il n’existe pas d’échelle de ce genre pour les croyances
non-probabilistes, et a fortiori pour la confiance dans les croyances. L’objectif serait d’en
proposer une ; une possibilité serait d’utiliser des urnes telles que le décideur ne connaisse
pas la proportion des différentes couleurs mais ait eu la possibilité d’apprendre. (Les at-
titudes des décideurs dans ce genre de situations sont étudiées expérimentalement dans
Abdellaoui et al. (2014).) En comparant les jugements concernant le climat futur à ceux
relatifs à la couleur de la prochaine boule tirée dans ces situations – par exemple, que la
prochaine boule soit noire après avoir observé trois boules noires et douze boules blanches
–, on pourrait calibrer la confiance dans les premiers jugements sur l’échelle formée par
les derniers. De plus, en s’appuyant sur l’article VIII, et en particulier sur l’idée que le
décideur est moins enclin à différer une décision quand il a plus de confiance, il pourrait
même être possible de développer une procédure de choix, dans lequel le prix qu’il est prêt
à payer pour différer les décisions révèle sa confiance.

Un certain nombre de ces recherches éventuelles seront entreprises dans le cadre du
projet ANR Jeunes Chercheurs “DUSUCA” (Decision Making and Belief Change in the
face of Severe Uncertainty : A Confidence-Based Approach), dont je suis le coordinateur,
et qui commence en janvier 2015.
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II When is there state independence?

Abstract

Whether a preference relation can be represented using state-independent utilities as op-
posed to state-dependent utilities may depend on which acts count as constant acts. This ob-
servation underlies an extension of Savage’s expected utility theory to the state-dependent
case that was proposed in this journal by Edi Karni. His result contains a condition re-
quiring the existence of a set of acts which can play the role of constant acts and support a
representation involving a state-independent utility function. This paper contains necessary
and sufficient conditions on the preference relation for such a set of acts to exist. Results
are obtained both for the Savage and the Anscombe and Aumann frameworks. Among
the corollaries are representation theorems for state-dependent utilities. Relationships to
Karni’s work and extensions of the results are discussed. 1

Keywords: Subjective expected utility; State-dependent utility; Monotonicity axiom

JEL classification: D81, C69.

1. This is slightly modified version of a paper of the same name that appeared in Journal of Economic
Theory, 144(3):1119-1134, May 2009.

II-1
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II.1 Introduction

There has been much discussion of representations of preferences with state-dependent
utilities Karni et al. (1983); Karni and Schmeidler (1993); Karni (1993b,a); Karni and Mon-
gin (2000); Drèze (1987); Schervish et al. (1990). In several of these discussions, it has
been noted that, by redefining which acts (ie. functions from states to consequences) count
as constant, one can transform a state-independent representation into a state-dependent
one, and conversely, a state-dependent representation into a state-independent one. To take
the example proposed in Schervish et al. (1990), if the acts are bets on the exchange rates
between dollars and yen, then a representation which is state-independent when the stakes
are formulated in one currency will be state-dependent when the stakes are formulated in
the other. Indeed, the idea that failures of Savage’s state-independence axioms may come
about because the consequences do not yield the acts which are “really” constant is behind
some theories of state-dependent utility. Most notably, the extension of Savage’s expected
utility theory Savage (1954) proposed several years ago by Edi Karni in this journal Karni
(1993b), and the extension he proposed of Anscombe and Aumann’s version of this theory
Anscombe and Aumann (1963); Karni (1993a) rely precisely on this idea. In particular,
he introduces the notion of constant valuation acts, which, although they are not constant
acts, play the role of constant acts in Savage- or Anscombe and Aumann-like representa-
tion theorems: state–independence holds with respect to the constant valuation acts instead
of the constant acts.

Under what conditions does there exist a set of acts that can play the role of constant
acts and that yield a state-independent utility representation of this sort? In Karni (1993b),
Karni simply poses the existence of such a set of acts as a condition in his theorem. How-
ever, standard economic methodology prefers non-technical conditions appearing in repre-
sentation theorems to be formulated directly in terms of the preference relation. This paper
provides conditions of this sort: that is, properties of the preference relation which are nec-
essary and sufficient for the existence of a set of acts which can play the role of constant
acts and support a state-independent utility representation. Results will be presented both
for the Savage framework and the Anscombe and Aumann framework.

To be more precise, state independence comes in two flavours: ordinal state indepen-
dence, according to which the preference order on constant acts is independent of the state,
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and the stronger notion of cardinal state independence, according to which the numerical
utilities assigned to the consequences of constant acts are independent of the state. So
the initial question can be understood in two ways, depending on which concept of state-
dependence is of interest. This paper is mainly concerned with conditions for the existence
of a set of acts that can play the role of constant acts and with respect to which there is
ordinal state independence; however, the results will yield as a corollary a further condition
which, in a large class of cases, guarantees that there is cardinal state independence with
respect to this set of acts. Monotonicity – the traditional axiom for ordinal state indepen-
dence – states that, for any pair of constant acts, the first is preferred to the second if and
only if, for any non-null event, the first is preferred to the second given that event (Defini-
tion II.3). We say that essential monotonicity holds if there is a set of acts which can play
the role of constant acts and which satisfies monotonicity (Definition II.4). The main result
of this paper will be conditions on the preference relation that are necessary and sufficient
for essential monotonicity to hold.

As an illustration, consider the tables in Figure II.1, each representing a simple decision
problem where there are three outcomes – c

1

, c
2

, c
3

– and two states – s
1

, s
2

; the entries in
the respective tables indicate the preference orders on the outcomes conditional on the
states. 2 The preference relation displayed in the left-hand table is not state independent.
Consider now the set containing the three acts f

1

, f
2

and f
3

, where f
1

ps
1

q “ c
1

, f
1

ps
2

q “ c
3

,
f

2

ps
1

q “ c
2

, f
2

ps
2

q “ c
2

, f
3

ps
1

q “ c
3

and f
3

ps
2

q “ c
1

. This set of acts does satisfy the
monotonicity condition: they lie in the same relation according to the preference order
conditional on s

1

as according to the preference relation conditional on s
2

. Furthermore,
this set of acts can play the role of constant acts, because it has the following property
(Section II.2.2): for each state and each outcome, there is a unique act in the set which
yields that outcome on that state. Hence, although monotonicity does not hold in this case,
essential monotonicity does: there is a set of acts which can play the role of constant acts
and which satisfies the monotonicity condition.

By contrast, essential monotonicity does not hold in the example the right-hand table.
There is no set of acts that has the property mentioned above and satisfies monotonicity.
Such a set of acts must take different values on each state. So, for each such set, there is a

2. We are assuming, for the sake of this example, the basic postulates of Savagean decision theory (weak
order and Savage’s sure-thing principle, or Anscombe and Aumann’s independence), under which there is a
well-defined concept of preference order conditional on a state.
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Figure II.1 – Essential state independence
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second equal

c
1

third

strict preference between any pair of acts in the set according to the preference order con-
ditional on s

1

. However, there exists a pair of acts of the set between which the preference
order conditional on s

3

is indifferent (those which take the values c
1

and c
2

). Hence, for
each set of acts which can play the role of constant acts, there are pairs of acts which lie in
different relations according to the preference orders conditional on s

1

and conditional on
s
3

. Essential monotonicity does not hold.

The problem in this case seems to be that the preference orders conditional on the
different states do not have sufficient structure in common for there to exist a set of acts that
could play the role of constant acts and satisfy the monotonicity property. The main results
of this paper exploit this observation. Monotonicity implies that, to support an ordinally
state-independent representation, a set of acts which may count as constant should be such
that one of these acts is preferred to another given a particular state if and only if the former
is preferred to the latter given any other state. This yields the condition that, for any two
states, the order on the outcomes given one state is isomorphic to the order on the outcomes
given the other.

This basic idea needs to be qualified. For one, the reasoning only applies to non-null
states. This qualification is all that one needs to obtain necessary and sufficient conditions
for essential monotonicity when working in the Anscombe and Aumann framework (The-
orem II.1, Section II.3). However, in the Savage framework, where all states are null, a
further technical condition is required; once again, a set of necessary and sufficient condi-
tions for essential monotonicity can be obtained (Theorem II.3, Section II.4).

A first corollary of the main results are representation theorems, comparable to the one
in Karni (1993b). The condition requiring the existence of a set of acts which satisfies
monotonicity is replaced by a condition requiring that the conditional preference orders
are isomorphic. One thus obtains new representation theorems, in both the Anscombe and
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Aumann and Savage frameworks (Theorems II.2 and II.4).

As a second corollary, the main results imply, in a large class of cases, a strong unique-
ness property on the sets of acts which satisfies monotonicity and can play the role of
constant acts. This yields, in such cases, necessary and sufficient conditions for there to be
a set of acts with respect to which there is cardinal state independence.

Section II.2 introduces the decision-theoretic frameworks and the basic notions. Neces-
sary and sufficient conditions for essential monotonicity will be then given in the Anscombe
and Aumann framework (Section II.3) and in the Savage framework (Section II.4). The
corollaries mentioned above will be drawn. Section II.5 discusses relationship with previ-
ous work, notably by Karni Karni (1993b,a), and possible extensions of the results. Proofs
of the main results are in the Appendix.

II.2 Preliminaries and Basic Concepts

II.2.1 The two frameworks

The basic notions and results of this paper apply both in the Anscombe and Aumann
framework and in the Savage framework. In both cases, S will designate the set of states

of nature and C the set of outcomes.

In the Anscombe and Aumann framework Anscombe and Aumann (1963), S is a finite
nonempty set. Subsets of S are called events. C is a nonempty finite or countably infinite
set; a consequence is a probability measure on C with finite support. �pCq is the set
of consequences. The set of consequences which assign weight 1 to one outcome is in
one-to-one correspondence with the set of outcomes; we denote the former set also by C,
with slight abuse of notation. Let H denote the set of mappings h : S Ñ �pCq. In this
framework, there is a mixture structure on H , ie. for h, h1 P H and ↵ P r0, 1s, there is
↵h ` p1 ´ ↵qh1 P H , which is defined by p↵h ` p1 ´ ↵qh1qpsq “ ↵hpsq ` p1 ´ ↵qh1psq. 3

We call the elements of H taking values in C acts, to allow simpler comparison with the
Savage framework. A is the set of acts. A preference relation § is assumed on H; we shall
refer to its restriction to A also by §.

3. Anscombe and Aumann’s Reversal of Order axiom (Anscombe and Aumann, 1963, p201) is assumed
here.
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In the Savage framework Savage (1954), S is an infinite set which is equipped with a
�-algebra S , such that, for any s P S, tsu P S . The elements of S are called events. C

is a nonempty finite or countably infinite set. Here, C is the set of consequences. An act is
a function f : S Ñ C which is measurable with respect to pS, S q. A is the set of acts; a
preference relation § is assumed on it.

For the remainder of Section II.2, everything said will apply to both frameworks.
Throughout this paper, f , g, and so on will designate members of A. As usual, f „ g

expresses indifference according to the preference order, and, for any event A, §A denotes
the preference order given A. 4 We write f §s g instead of f §tsu g. For any consequence
c P C (respectively p P �pCq), c will denote the element of A (resp. H) taking value c

(resp. p) for all s P S.

Definition II.1. An event A is null if, for any acts f, g such that fpsq “ gpsq for any s R A,
f „ g. A state s is said to be null if the event tsu is null.

II.2.2 Basis

We wish to consider a generalised monotonicity property involving not constant acts but
another set of acts. The set of constant acts has several important properties that any set
which can be used instead of it in a generalised monotonicity property should also possess.
In particular, for any state and any outcome, there is a unique constant act which, applied
to the state, yields the outcome. We call any set of acts with this property a basis.

Definition II.2 (Basis). A basis B is a set of bi P A, such that, for each s P S and for each
c P C, there exists bi P B with bipsq “ c and for all j ‰ i, bjpsq ‰ c.

Let BC be the basis of constant acts.
Bases span, in a unique way, the set of all acts: an act, as a measurable function from

states to outcomes, can equally be thought of as a measurable function from states to ele-
ments of the basis. This is the content of the following proposition.

Proposition II.1. Consider a basis B. For each f P A, there is a unique measurable

function f b
: S Ñ B such that fpsq “ f bpsqpsq.

4. For all f, g P A, f §
A

g iff, for any f

1
, g

1 P A with f

1psq “ fpsq and g

1psq “ gpsq for any s P A and
f

1psq “ g

1psq for s R A, f

1 § g

1. Since we assume independence and the sure-thing principle (see Sections
II.3 and II.4), this coincides with the ordinary notion of conditional preferences.
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Different bases afford different ways of expressing the same acts, just as different bases
of a vector space afford different ways of referring to the same vector.

An alternative way of understanding the notion of basis is as follows. For any pair
of states s and s1, the basis B associates to any outcome c a unique outcome d such that
obtaining c on s “corresponds” to obtaining d on s1. So, for any s and s1, B generates
a bijective (ie. one-to-one and onto) mapping  ss1

: C Ñ C. The family of mappings
t ss1

: s, s1 P Su generated by B is closed under composition (for any s, s1, s2 P S,
 s1s2 ˝  ss1 “  ss2) 5 and contains the identities ( ss is the identity, for each s P S). The
converse also holds: for any family ⌃ of bijective functions from C to itself, indexed by
pairs of elements of S, that is closed under composition and contains the identities, there
corresponds a unique basis. Formally:

Proposition II.2. Given a basis B, there is a unique family ⌃ of bijective functions  ss1
:

C Ñ C for each s, s1 P S which contains the identities and is closed under composition,

such that, for each s, s1 P S and every bi P B,  ss1pbipsqq “ bips1q. Conversely, given such a

family ⌃ of bijective functions containing the identities and closed under composition, there

exists a unique basis B such that, for every pair s, s1 P S and every bi P B,  ss1pbipsqq “
bips1q.

Thus, instead of thinking in terms of bases, one can equivalently think in terms of fam-
ilies of functions which identify which outcome given one state corresponds to a particular
outcome given another state. Whilst the former perspective is adopted in this paper, Karni
(1993b,a) use the latter. 6

II.2.3 Monotonicity

As stated in the Introduction, the axiom with which we are mainly concerned here is
monotonicity. Here is a formulation common to the Savage and Anscombe and Aumann
frameworks (it is visibly identical to Savage’s P3; the relation to Anscombe and Aumann’s
monotonicity in prizes axiom will be discussed in Section II.3.2).

Definition II.3. Monotonicity holds if for every non-null event A, and for all constant acts
c and d, c §A d iff c § d.

5. In words, this property says that if getting d given s

1 corresponds to getting c given s, and getting e

given s

2 corresponds to getting d given s

1, then getting e given s

2 corresponds to getting c given s.
6. Notwithstanding the remark on (Karni, 1993a, p192-193).
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Monotonicity refers to the basis of constant acts. The idea that the constant acts may
not be “really” constant, but that another set of acts may be instead, leads to the following
weakening of the axiom:

Definition II.4. Essential monotonicity holds if there exists a basis B such that, for every
non-null event A, and for all bi, bj P B, bi §A bj iff bi § bj . Such a basis is an essentially

monotonic basis.

Just as monotonicity is an ingredient in traditional representation theorems, essen-
tial monotonicity can be used in generalised representation theorems (Sections II.3.2 and
II.4.2). However, by contrast with many standard axioms of decision theory, essential
monotonicity, as stated, is not an immediate condition on the preference relation. The next
section presents a condition formulated directly in terms of the preference relation which
is equivalent to essential monotonicity in the Anscombe and Aumann framework and the
following section does the same for the Savage framework.

II.3 Characterising essential monotonicity: the Anscombe

and Aumann framework

II.3.1 Background assumptions

From the Anscombe and Aumann axioms other than those concerning state-
independence (ie. weak order, independence, continuity and reversal of order, but not
monotonicity in prizes), it follows that there is a representation of § by a function
U : S ˆ C Ñ < such that, for any h, h1 P H , h § h1 iff

(II.1)
ÿ

sPS

ÿ

cPsuppphpsqq
Ups, cqhpsqpcq §

ÿ

sPS

ÿ

cPsuppphpsqq
Ups, cqhpsqpcq

Further, this function is unique up to similar positive affine transformations (or, to use
the terminology in Karni et al. (1983), cardinal unit comparable transformations): U 1 satis-
fies (II.1) if and only if there is a positive real number a and real numbers bs for each s P S

such that U 1ps, cq “ aUps, cq ` bs for all s P S, c P C (Fishburn, 1970, Ch 13).
Throughout this section, it is assumed that § satisfies conditions sufficient for a repre-

sentation of the form (II.1).
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II.3.2 Ordinal and cardinal state independence

Given the background assumptions, the following is equivalent to Anscombe and Au-
mann’s axiom for state-independence of utility, mononiticity in prizes.

Definition II.5. Monotonicity in consequences holds if for every non-null event A, and for
all constant-valued p, q P H , p §A q iff p § q.

Monotonicity, as defined in Definition II.3, is monotonicity in outcomes (elements of
C) rather than monotonicity in consequences (elements of H). Monotonicity in outcomes
only ensures ordinal state independence, while the stronger monotonicity in consequences
is required to ensure cardinal state independence.

We thus propose factorising the monotonicity-in-consequences condition into an or-
dinal state-independence condition – the notion of monotonicity in Definition II.3 – and a
condition (to be stated below) which, given ordinal state independence, yields cardinal state
independence. Not only does this underline the common ground with the Savage frame-
work, where there are two axioms for state independence (Section II.4.2), but it also allows
a more precise delineation of the subject of this paper. We are considering the weakening
of ordinal state independence that can be obtained by choosing a new set of constant acts.

The condition for cardinal state independence must presuppose that the generalised
condition for ordinal state independence is satisfied; namely, that there is an essentially
monotonic basis. In the standard case this is assumed to be the set of constant acts, but in
the interests of generality, no assumptions will be made regarding it here, so it has to be
explicitly mentioned.

Definition II.6. Cardinal state independence holds with respect to an essentially mono-
tonic basis B if for any h, h1 P H which are mixtures of elements of B, ie. h “ ∞n

i“1

↵ibi

and h1 “ ∞m
j“1

�jbj with ↵i, �j • 0,
∞
↵i “ ∞

�j “ 1, and for any non-null event A,
h §A h1 iff h § h1.

Clearly, the conjunction of essential monotonicity with essentially monotonic basis B
and cardinal state independence with respect to B is equivalent to a generalised version
of monotonicity in consequences, where the implicit use of the basis of constant acts is
replaced by the essentially monotonic basis B. Anscombe and Aumann’s representation
theorem Anscombe and Aumann (1963) can thus be immediately generalised, replacing
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monotonicity in consequences by the conjunction of essential monotonicity and cardinal
state independence with respect to an essentially monotonic basis B, and the representation
by a probability and a utility function on the set of outcomes by a representation by a
probability and a utility function on the basis B. That is, there is a representation of the
following form:

(II.2)
ÿ

sPS

ÿ

biPB s.t.

bipsqP
suppphpsqq

ppsqupbiqhpsqpbipsqq §
ÿ

sPS

ÿ

biPB s.t.

bipsqP
suppph1psqq

ppsqupbiqh1psqpbipsqq

where p is unique, and u is unique up to positive affine transformations. This generalisation
can be thought of as a representation theorem for state-dependent utility, insofar as the
equation (II.2) can be reformulated as

ÿ

sPS

ÿ

cPC s.t.
cPsuppphpsqq

ppsqu1ps, cqhpsqpcq §
ÿ

cPC s.t.
cPsuppphpsqq

ppsqu1ps, cqh1psqpcq

with u1ps, cq “ upbiq, where bipsq “ c. This was one of the motivations of Karni (1993b,a).

II.3.3 Characterising essential monotonicity

The aim is to find a property of the preference relation which is necessary and sufficient
for the existence of an essentially monotonic basis. The major obstacle to the existence of
this sort of basis was illustrated in the introduction: if, for non-null states s and t, §s and
§t do not have a sufficient number of properties in common then no essentially monotonic
basis exists. Intuitively, it seems evident how much the two orders need to have in common:
they should be isomorphic. The main theorem of this section confirms that this is all that is
required. First a preliminary definition.

Definition II.7. Two ordered sets (or orders, for short) pX, ®Xq and pY, ®Y q are isomor-

phic if there exists a bijective function  : X Ñ Y such that, for all x, x1 P X , x ®X x1 iff
 pxq ®Y  px1q.

For any state s, let pC, §sq be the set C equipped with §s. The condition that the
preference orders conditional on states have the same structure only applies to non-null
states.
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Definition II.8. Isomorphic conditional preferences holds if for any non-null s
1

, s
2

P S,
pC, §s1q and pC, §s2q are isomorphic.

The necessity and sufficiency of this condition is expressed by the following theorem.

Theorem II.1. Essential monotonicity holds iff isomorphic conditional preferences holds.

Taken in tandem with the generalisation of Anscombe and Aumann’s theorem described
above, Theorem II.1 has the following representation theorem as an immediate corollary.

Theorem II.2. Suppose that there is a representation of § of sort specified in (II.1) which

is unique up to similar positive affine transformations. Then:

1. the following are equivalent:

(i) isomorphic conditional preferences holds and cardinal state independence

holds with respect to an essentially monotonic basis B

(ii) there exists a probability distribution p on S, a basis B and a real-valued

function u on B, such that, for h, h1 P H , h § h1 iff

(II.3)
ÿ

sPS

ÿ

biPB s.t.

bipsqP
suppphpsqq

ppsqupbiqhpsqpbipsqq §
ÿ

sPS

ÿ

biPB s.t.

bipsqP
suppph1psqq

ppsqupbiqh1psqpbipsqq

2. for a given B, p is unique, and u is unique up to positive affine transformations.

As noted above, this can be thought of as a representation theorem for state-dependent
utility.

A corollary of the proof of Theorem II.1 is the following uniqueness property for es-
sentially monotonic bases.

Corollary II.1. Suppose that essential monotonicity holds, and let B
1

and B
2

be two es-

sentially monotonic bases. Suppose furthermore that, for any non-null s, there is either

a minimal or a maximal element (or both) in pC, §sq. Then, for each bi
1

P B
1

, there is a

bj
2

P B
2

such that, for any non-null event A, bi
1

„A bj
2

. Furthermore, for each bi
1

P B
1

,

|tbj
2

P B
2

| for any non-null event A, bi
1

„A bj
2

u| “ |tbk
1

P B
1

| bi
1

„ bk
1

u|.
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In a word, if pC, §sq has a maximal or minimal element, the only differences between
essentially monotonic bases occur when there are several outcomes on which §s is indif-
ferent. For example, there could be essentially monotonic bases B and pB, with the first
containing elements bi, bj with bips

1

q “ c, bips
2

q “ d, bjps
1

q “ c1, and bjps
2

q “ d1 and the
second containing elements pbi, pbj with pbips

1

q “ c, pbips
2

q “ d1, pbjps
1

q “ c1, and pbjps
2

q “ d,
but only if c „s1 c1 and d „s2 d1.

The requirement that there is a maximal or minimal element is necessary, as can be seen
from the case where the preference orders conditional on states are isomorphic to the order
on the integers (pZ, §q). Any basis obtained from a given essentially monotonic basis by
“shifting” the values that the elements take on a particular state by a constant number of
rungs is also an essentially monotonic basis.

Corollary II.1 says that whenever C is finite or countably infinite with a maximal or
minimal element according to §s, there is a little degree of freedom in the choice of essen-
tially monotonic basis, supposing that essential monotonicity holds. In such cases, there
is thus no degree of freedom in whether cardinal state independence holds: cardinal state
independence holds with respect to a particular essentially monotonic basis if and only if it
holds with respect to any essentially monotonic basis. In such cases, Theorem II.2 can be
strengthened: “an essentially monotonic basis” in Clause 1. (i) can be replaced with “any
essentially monotonic basis”. Furthermore, the relativity to the basis in the uniqueness
clause (Clause 2.) can be effectively removed, since the same probabilities and utilities (up
to positive affine transformations) are obtained for all essentially monotonic bases. This is
not so in cases of unbounded §s. Consider a development of the previous example where
the consequences are the set of integers and the utility of a consequence c given any state
s is 2.c if c ° 0 and c if not. There is cardinal state independence with respect to the basis
of constant acts, BC ; however, for any basis obtained from BC by “shifting” in the way
described above, although it is essentially monotonic, cardinal state independence does not
hold with respect to it.
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II.4 Characterising essential monotonicity: the Savage

framework

II.4.1 Background assumptions

We want to assume an equivalent of the representation (II.1) for the Savage framework.
Since the set of states S is infinite, the double sum must be replaced by an integral over the
product space S ˆC. Accordingly the function U is replaced by a measure on pS ˆC, T q,
where the �-algebra T is the the product of S and the power set of C. Finally, an act
f P A is replaced by its graph (tps, cq|fpsq “ cu); since f is a measurable function, its
graph is a measurable set in pS ˆC, T q. (We use the symbol f to refer both to the function
and its graph.) We assume here that § satisfies conditions sufficient for the existence of a
measure U on pS ˆ C, T q such that, for any f, f 1 P A, f § f 1 iff

(II.4)
ª

f

dU §
ª

f 1
dU

and such that this measure is unique up to similar positive affine transformations: U 1 sat-
isfies (II.4) if and only if there exists a ° 0 and a measurable function b : S Ñ < such
that U 1 “ aU ` b. Sufficient conditions for this representation have been proposed in Hill
(2010): they correspond more or less to the basic Savage axioms except for those concern-
ing state-independence (in particular, weak order, the sure-thing principle and continuity
axioms, but not monotonicity and weak comparative probability).

II.4.2 Ordinal and cardinal state independence

As in the Anscombe and Aumann framework, monotonicity (Definition II.3) only en-
sures ordinal state independence, but not cardinal state independence (see also Karni
(1993b); Karni and Mongin (2000)). The further condition proposed by Savage is his P4
(also known as weak comparative probability), which we shall call cardinal state indepen-

dence, to underline the analogy with the Anscombe and Aumann framework. The tradi-
tional formulation assumes that the set of constant acts is an essentially monotonic basis;
in the interests of generality, assumptions regarding the appropriate essentially monotonic
basis are dropped in the formulation used here.
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Definition II.9. Cardinal state independence holds with respect to an essentially mono-
tonic basis B if for every pair of events A and B and every bi, bj, bk, bl P B such that bi † bj

and bk † bl, bi
Abj § bi

Bbj iff bk
Abl § bk

Bbl, where bi
Abj is the act which takes the values of bi

on A and the values of bj on Ac.

Just as there is an immediate generalisation of Anscombe and Aumann’s theorem (Sec-
tion II.3.2), there is an immediate generalisation of Savage’s representation theorem Savage
(1954), where his state-independence axioms are replaced by essential monotonicity and
cardinal state independence with respect to an essentially monotonic basis B, and these
are necessary and sufficient, given the background assumptions, for a representation of the
following form:

ª

S

upf bpsqqdp §
ª

S

upf 1bpsqqdp

where f b and f 1b are as in Proposition II.1 and p and u have the ordinary uniqueness prop-
erties. As for the Aumann and Anscombe case, this generalisation of Savage’s theorem can
be thought of as a representation theorem for state-dependent utility.

II.4.3 Characterising essential monotonicity

The isomorphic conditional preferences condition used in the Anscombe and Aumann
framework (Definition II.8) cannot be directly applied in the Savage framework, because
in Savage’s theory, where the state space is atomless, all states are null, so the condition is
trivial. Instead, the existence of essentially monotonic bases will be characterised in terms
of preferences conditional on non-null events belonging to a particular set of events. These
non-null events play the role that states did in the previous section: the new isomorphic
conditional preferences condition states that the preference orders conditional on these non-
null events agree. However, for there to be an essentially monotonic basis, the preference
orders conditional on all non-null events need to agree (Definition II.4). To guarantee this,
the non-null events used in the isomorphic conditional preferences condition need to have
the appropriate stability property: the preference order conditional on any subevent must
coincide with the preference order conditional on the event itself.

Definition II.10. A non-null event E is stable for c, d P C if the following condition holds:
c §E d iff for every non-null event A such that A Ñ E, c §A d. E is said to be stable if it
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is stable for all c, d P C.

The following technical condition guarantees that an appropriate set of stable events
exists.

Definition II.11. Local stability holds if, for any f, g P A, there exists events E
1

, E
2

and
E

3

, such that the non-empty Ei form a partition of S and such that: for any non-null event
A Ñ E

1

, f †A g; for any non-null event A Ñ E
2

, f „A g; and for any non-null event
A Ñ E

3

, f °A g.

Proposition II.3. Suppose that local stability holds. Then there exists a partition P of S

such that each non-null E P P is stable.

The partition in this proposition is exactly of the sort needed to characterise essential
monotonicity. Where the condition proposed in the previous section concerns preference
orders conditional on non-null states, the condition relevant here involves preference orders
conditional on the non-null elements of the partition of stable events.

Definition II.12. Assume that local stability holds and let P be a partition of S such that
each E P P is stable. Then isomorphic conditional preferences holds if for any non-null
E, E 1 P P , pC, §Eq and pC, §E1q are isomorphic. 7

It turns out that local stability is implied by essential monotonicity, so we have the fol-
lowing necessary and sufficient conditions for essential monotonicity in the Savage frame-
work.

Theorem II.3. Essential monotonicity holds iff local stability and isomorphic conditional

preferences hold.

As in the Anscombe and Aumann case, this has a representation theorem as an imme-
diate corollary.

Theorem II.4. Suppose that there is a representation of § of the sort specified in (II.4)

which is unique up to similar positive affine transformations. Then:

7. Given that, for any pair of partitions with stable elements, each element of one will have a non-null
overlap with at least one element of the other, isomorphic conditional preferences holds independently of the
partition chosen, and so is well-defined.
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1. the following are equivalent:

(i) local stability and isomorphic conditional preferences hold and cardinal state

independence holds with respect to an essentially monotonic basis B

(ii) there exists a probability distribution p on S, a basis B and a real-valued

function u on B, such that, for f, f 1 P A, f § f 1 iff

(II.5)
ª

S

upf bpsqqdp §
ª

S

upf 1bpsqqdp

where f b and f 1b are as in Proposition II.1.

2. for a given B, p is unique, and u is unique up to positive affine transformations.

A version of Corollary II.1 continues to hold in the Savage framework, with mention of
states s replaced by elements E of a partition of S consisting entirely of stable events. The
remarks concerning Theorem II.2 and Corollary II.1 also apply here.

II.5 Discussion

As mentioned above, the idea of replacing the set of constant acts by a set of “really”
constant acts has already been employed by Edi Karni, both in the Anscombe and Aumann
framework Karni (1993a) and in the Savage framework Karni (1993b). Leaving aside
the technical differences between this paper and Karni’s – Karni employs state-specific
transformations of outcomes, whereas we use bases (Proposition II.2 states that they are
equivalent), Karni considers equivalence classes of outcomes whereas until now we have
considered the outcomes themselves (but see below) 8 – there are fundamental differences
between the goals of Karni’s papers and this one.

In his work on the Anscombe and Aumann framework, Karni makes assumptions which
are essential to his theorem and which imply that the set of outcomes is uncountably infi-
nite; 9 by contrast, this paper only considers the finite and countably infinite cases. More-
over, his focus seems to be cardinal state independence, whereas the main concern here is

8. (Karni, 1993a, p191) explicitly states this. Karni (1993b) uses transformation functions that are onto
though not necessarily one-to-one; these can be seen as bijective functions on equivalence classes.

9. He assumes the existence of a “conditional certainty equivalent” outcome for every consequence
(p191).
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ordinal state independence. Indeed, in the main result of his paper, he assumes monotonic-
ity (Definition II.3), and then constructs a basis which would be capable of supporting a
state-independent representation; in the presence of monotonicity, the condition he places
on this basis – state-invariance – corresponds to what we have called cardinal state inde-
pendence (Definition II.6). 10 These differences are perhaps not unrelated. When the set
of outcomes is finite or countably infinite, the problem of finding a cardinally state in-
dependent basis is trivial in many cases, once the problem of finding an ordinally state
independent basis has been solved (Corollary II.1); ordinal state dependence thus seems a
more natural subject of concern in the finite and countably infinite cases.

In the Savage case Karni (1993b), Karni lays down some conditions on a basis; his main
theorem states that, if there exists a basis satisfying these conditions, then there is a repre-
sentation similar to (II.5).The main contrast between Karni’s result and the representation
theorem in Section II.4 (Theorem II.4) is the use of a condition requiring the existence of
a particular basis in the former and the use of a condition requiring isomorphism of con-
ditional preferences in the latter. From the viewpoint of standard economic methodology,
there are two significant differences between these conditions.

Firstly, it is not immediately clear what property of the preference relation is demanded
by the condition requiring the existence of a particular basis: it says that there is a set of
acts such that the preferences over these acts have certain properties, but it does not spec-
ify which preference relations admit the existence of such sets of acts. By contrast, the
condition on conditional preferences is formulated directly as a property of the preference
relation: it says that the preference order given one stable event is the same as the prefer-
ence order given any other stable event (in the sense of “the same” which is relevant for
orders). This difference is significant if one supposes that the preference comparisons are
observable from choices: it is not obvious what constraints Karni’s condition implies on the
agent’s behaviour, whereas it can be straightforwardly checked, by comparing the agent’s
preferences conditional on different events, whether the condition proposed here is satisfied
or not.

Secondly, the condition requiring the existence of a particular basis involves existential
quantification over the objects of the theory: it quantifies across sets of acts, and the theory

10. He notes in the final section of his paper that the monotonicity assumption is not required for his
theorem.
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is dealing with preferences over a given set of acts. By contrast, the condition requiring
isomorphic conditional preferences does not involve existential quantification over objects
of the theory. At most, it involves existential quantification over technical constructions,
insofar as the definition of isomorphism given above (Definition II.7) involves quantifi-
cation over mappings between orders. However, the notion of isomorphism can in fact
be defined without using existential quantification at all, if one employs the machinery of
modern logic: two orders are isomorphic if everything you can say about the first (in an ap-
propriately formalised language) holds for the second. 11 This difference has consequences
for how the conditions are to be understood. Conditions which involve existential quan-
tification over objects of the theory are usually thought of as “technical” or “structural”:
continuity axioms, which normally involve existential quantification over acts or events,
are standard examples. Therefore, the condition requiring the existence of an appropriate
basis is most naturally thought of as a technical condition, whereas the condition requiring
isomorphic conditional preferences is not. As far as standard economic methodology is
concerned, the result in Section II.4 differs from that in Karni (1993b) with respect to the
possibility of applying the central conditions to agents’ behaviour, and the interpretation of
these conditions as technical or not.

Let us conclude by noting two extensions of the proposal made here. Firstly, since
nothing in the isomorphic conditional preferences condition demands that the orders which
are isomorphic are orders on the same set C, the results apply if it is assumed that there
is a set Cs of outcomes for each state s. 12 If the orders pCs, §sq are isomorphic (and thus
have the same cardinality), one can define a basis which “ties together” the different sets
of outcomes and is essentially monotonic, so that, if cardinal state-independence holds as
well, there is a representation of the form (II.3). A special case is when Cs is taken to
be the set of equivalence classes of C under „s. There may be cases where isomorphic
conditional preferences does not hold for the initial set of outcomes, but does hold on
the equivalence classes. The results above can be applied, yielding a representation of
preferences over functions from states to equivalence classes of outcomes (or lotteries over
equivalence classes of outcomes), which can be translated back into a representation of

11. An earlier version of this paper presented the result in this form. See any logic textbook, such as Chang
and Keisler (1990), for details.

12. This is the sort of setup proposed in (Hammond, 1998, §6), for example. In the text, the Anscombe
and Aumann framework is discussed, but similar points hold for the Savage framework.
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preferences over acts. This is the technique used in Karni Karni (1993b,a).
Secondly, other results may be extended by weakening the monotonicity axiom in much

the same way that Savage’s and Anscombe and Aumann’s theorems have been extended
here. For example, several state-dependent utility theories have been proposed which as-
sume monotonicity but drop the cardinal state independence axiom Karni and Schmeidler
(1993); Wakker and Zank (1999). The characterisation theorems proved here provide an
immediate generalisation of these results: monotonicity is replaced by isomorphic con-
ditional preferences (and, in the Savage framework, local stability), and any weakened
version of the cardinal state independence axiom is reformulated in terms of essentially
monotonic bases.
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II.A Appendix

Proof of Proposition II.1. Set f bpsq “ bi where bi is the unique element of the B such that
bipsq “ fpsq. It remains to show that f b is measurable. For each i and for each c P C,
ts | fpsq “ c “ bipsqu “ ts | fpsq “ cuXts | bipsq “ cu and hence is measurable. For each
i, ts | fpsq “ bipsqu “ î

cPCts | fpsq “ c “ bipsqu is a countable union of measurable sets
and thus measurable. Hence f b is measurable.

Proof of Proposition II.2. Let B be a basis. For s, s1 P S, define  ss1
: C Ñ C as follows:

for each c P C, take the unique bi P B such that bipsq “ c and set  ss1pcq “ bips1q.
It is readily checked that this is a well-defined bijective function and that the set ⌃ “
t ss1 | s, s1 P Su has the required properties.

Let ⌃ be a family of the sort required. Pick any t P S. Define the basis B as follows:
the elements bc are indexed by C, and bcpsq “  tspcq. Since  ss1 are bijections, B is a basis;
moreover, it is readily checked that it has the required properties.

Proof of Proposition II.3. For each cj, ck P C, there exists by local stability a partition into
at most three elements which are stable for cj, ck. Call the partition Pcjck .

Let Q be the coarsest common refinement of Pcjck for all cj, ck P C. 13 Since C is at
most countable, each element of Q is the intersection of at most countably many events; so
it is an event. Furthermore, by construction, each non-null element of Q is a subevent of
an event of Pcjck , for each cj, ck P C. Since each element of Pcjck is stable for cj and ck,
each element of Q is also stable for cj and ck. This holds for all cj, ck P C, hence every
non-null element of Q is stable for all cj, ck P C.

The following lemma shall be useful in the proof of Theorem II.3.

Lemma II.A.1. Suppose the Savage framework, so that S is infinite. If essential mono-

tonicity holds, then local stability holds.

13. That is, the coarsest partition each of whose elements are contained in a single element of Pcjck for
each c

j

, c

k

.
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Proof. Let f, g P A. By Proposition II.1, there are corresponding measurable f b, gb
: S Ñ

B; hence there are partitions Pf , Pg of S such that f b (respectively, gb) takes constant
values on each of the elements of Pf (resp. Pg). Let Q be the coarsest common refinement
of Pf and Pg. On each element E of Q, both f b and gb take constant values in B; hence,
since B is an essentially monotonic basis, f §E g iff, for any non-null event A Ñ E,
f §A g. The partition required for local stability is readily constructed from Q.

The following lemma is at the heart of Theorems II.1 and II.3.

Lemma II.A.2. Suppose either the Ancombe and Aumann or the Savage framework, and

suppose that there exists a partition P of S such that each non-null element of P is stable.

Then essential monotonicity holds iff pC, §Eq and pC, §E1q are isomorphic for all non-null

E, E 1 P P .

Proof. Left to right. Suppose that essential monotonicity holds. Then there is a basis B
such that, for any non-null event A and all bi, bj P B, bi § bj iff bi §A bj . So, for each
non-null E, E 1 P P and all bi, bj P B, bi §E bj iff bi §E1 bj . The identity map on B is an
isomorphism between pB, §Eq and pB, §E1q. 14 We show that, for any E P P , pB, §Eq and
pC, §Eq are isomorphic. This will be sufficient to prove the result, because it follows that,
for any E, E 1 P P , pC, §Eq is isomorphic to pB, §Eq, which is isomorphic to pB, §E1q,
which is isomorphic to pC, §E1q.

Fix E P P . Since each bi P B is measurable, the set ts P E| bipsq “ cu is measurable,
for all c P C. So, to each bi, there is an associated partition of E, Pbi “ tts P E| bipsq “
cu| c P Cu. Since C is at most countable, B is, and thus the coarsest common refinement
of the Pbi exists; call it Q. By construction, for each non-null A P Q and each bi P B,
bipsq “ bips1q for all s, s1 P A. So  A : B Ñ C, where  Apbiq “ bipsq for any s P A, is
a well-defined function. Since B is a basis,  A is bijective; moreover, it trivially preserves
the order §A. So, for each non-null A P Q, pB, §Aq and pC, §Aq are isomorphic. Since B
is a basis, for each non-null A P Q, pB, §Aq is isomorphic to pB, §Eq; moreover, since E

is stable, pC, §Aq is isomorphic to pC, §Eq. Hence, pB, §Eq is isomorphic to pC, §Eq.

Right to left. Suppose that pC, §Eq to pC, §E1q are isomorphic for any E, E 1 P P .
There thus exists a family ⌃

1 of bijective order-preserving functions  EE1
: C Ñ C for

14. Just as for the case of pC, §q, pB, §1q is the set B equipped with the order §1.
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each E, E 1 P P which is closed under composition and contains the identities. Construct
a family ⌃ of bijective functions  ss1

: C Ñ C, for all s, s1 P S, as follows. If s, s1 P E

for some E P P ,  ss1 is the identity. If s P E, s1 P E 1 for some E, E 1 P P ,  ss1 “  EE1 .
It follows immediately that ⌃ is closed under composition and contains the identities. By
Proposition II.2, there is a unique basis B corresponding to ⌃. It remains to show that B is
an essentially monotonic basis.

For any non-null E, E 1 P P and every bi, bj P B, bi §E bj iff bipsq §E bjpsq for any
s P E (since bi, bj are constant on E) iff  EE1pbipsqq §E1  EE1pbjpsqq (since  EE1 preserves
order) iff bips1q §E1 bjps1q for any s1 P E 1 (since  ss1 “  EE1 and  ss1pbipsqq “ bips1q) iff
bi §E1 bj . So, for each bi, bj P B, either bi §E bj for all E P P or bi °E bj for all E P P .
By (Savage, 1954, Ch 2, Theorem 2), it follows, in the former (respectively, latter) case,
that bi § bj (resp. bi ° bj); 15 in other words, bi §E bj for all E P P iff bi § bj . It remains
to show that this is the case for any non-null event A. Since the events of P are stable, for
every E P P , bi §E bj iff bi §EXA bj when E X A is non-null. So, bi §E bj for all E P P
iff bi §EXA bj for all non-null E XA with E P P . Applying (Savage, 1954, Ch 2, Theorem
2) again, we have bi § bj iff bi §A bj; so B is an essentially monotonic basis.

Remark II.1 (Corollary II.1). The proof of the left-to-right direction has an immediate
corollary that, for any two essentially monotonic bases B

1

and B
2

and for any non-null
event E, pB

1

, §Eq and pB
2

, §Eq are isomorphic. If the order has a maximal or minimal
element, it follows that, for each bi

1

P B
1

, there exists bj
2

P B
2

, such that, for any non-null
event E, bi

1

„E bj
2

. This implies Corollary II.1.

Proof of Theorem II.1. Immediate from Lemma II.A.2, noting that, in the Anscombe and
Aumann framework, the partition into singleton events has the required properties.

Proof of Theorem II.3. Suppose that essential monotonicity holds. By Lemma II.A.1, local
stability holds. Hence, by Proposition II.3, there exists a partition of the sort required for
Lemma II.A.2 to hold; by the lemma, isomorphic conditional preferences holds. Suppose
now that local stability and isomorphic conditional preferences hold. By Proposition II.3, a

15. Although the theorem is stated by Savage, it is readily seen to apply in the Anscombe and Aumann
framework.



II-23 When is there state independence?

partition of the sort required for Lemma II.A.2 exists; by the lemma, essential monotonicity
holds.
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III Living without state-independence of
utilities

Abstract

This paper is concerned with the representation of preferences which do not satisfy the
ordinary axioms for state-independent utilities. After suggesting reasons for not being sat-
isfied with solutions involving state-dependent utilities, an alternative representation shall
be proposed involving state-independent utilities and a situation-dependent factor. The lat-
ter captures the interdependencies between states and consequences. Two sets of axioms
are proposed, each permitting the derivation of subjective probabilities, state-independent
utilities, and a situation-dependent factor, and each operating in a different framework.
The first framework involves the concept of a decision situation – consisting of a set of
states, a set of consequences and a preference relation on acts; the probabilities, utilities
and situation-dependent factor are elicited by referring to other, appropriate decision sit-
uations. The second framework, which is technically related, operates in a fixed decision
situation; particular “subsituations” are employed in the derivation of the representation.
Possible interpretations of the situation-dependent factor and the notion of situation are
discussed. 1

Keywords: Elicitation; Subjective Probability; Subjective Expected Utility; State-
dependent utility; Small worlds.

JEL classification: D81, C60.

1. This is slightly modified version of a paper of the same name that appeared in Theory and Decision,
67(4):405-432, October 2009.

III-1
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III.1 Introduction

It has been known for many years that the axioms implying the state-independence of
utilities which appear in many classical theories of decision under uncertainty, such as those
of Savage (1954) and Anscombe and Aumann (1963), do not hold in many important situa-
tions, such as cases of life insurance or health insurance (Arrow, 1974; Cook and Graham,
1977). The conclusion normally drawn is that a representation involving state-dependent

utilities is required; thus the work on this subject (for example Karni et al. (1983); Karni
and Mongin (2000); Karni and Schmeidler (1993); Karni (2011); Drèze (1987); Drèze and
Rustichini (2004)). However, this is not the only option; in this article, an alternative rep-
resentation shall be proposed, and a representation theorem for it proved.

To introduce the problems posed by violations of the traditional state-independence
axioms, and the motivation for representation theorems for state-dependent utility, consider
an example closely related to that proposed by Aumann in his correspondence with Savage
(reproduced in Drèze (1987, pp76-81); this version is taken from Karni (1996)). A woman
is to undergo a potentially fatal operation, with 50-50 chances of survival. Her husband,
who knows the odds, is offered two bets: one pays $100 if the operation is successful and
nothing if not; the other pays $100 if the operation is not successful and nothing if it is.
A common representation of the bets is given in Figure III.1. They are considered to be
acts: functions from a set of states – taken to be success and failure of the operation – to a
set of consequences (elements to which the husband allocates utility values) – taken to be
winning $100 and winning $0. Although the chances of winning the money are equal in
both cases, the husband would apparently choose the former bet, because the $100 would
be more precious to him if his wife were with him to enjoy it.

Such behaviour may pose two distinct challenges for state-independent utility theo-
ries. First of all, it may cast doubt on the accuracy of such theories as representations of
behaviour. Secondly, it may cast doubt on the claim that such theories elicit the agent’s
beliefs and desires, in the form of probabilities and utilities. The second challenge is more
widespread and more serious than the first.

Consider, firstly, the extent of the challenges. There are many cases where agents who
make the choices described in the example have preferences which do not satisfy some
axioms of the standard theory – most notably, cases where the axioms ensuring state-
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Figure III.1 – 2-consequence formulation of decision problem

Success Failure

A Bet on success $100 $0

B Bet on failure $0 $100

independence of utility (P3 and P4 in Savage (1954), Monotonicity in Anscombe and
Aumann (1963); see Section III.2.1) are violated. Such cases pose problems for the be-
havioural and the elicitation claims of the theory: on the one hand, these are cases where
the theory is shown to be behaviourally inaccurate; on the other hand, since the axioms need
to be satisfied for the theorems to apply, and for the probability and utility to be elicited
using them, these are cases where the theory cannot be used to elicit the agent’s attitudes.

However, although Aumann and Savage assumed in their discussion that the state-
independence axioms are violated, the pattern of choices is not in fact incompatible with
satisfaction of these axioms. Karni (1996) gives a development of Aumann’s example
where all the standard Savage axioms are satisfied, so that probabilities and utilities can be
elicited using Savage’s theorem. The probability function elicited assigns more weight to
the success of the operation than to its failure; given that the utilities are state-independent,
this is the only way to account for the husband’s strict preference over the bets. Such ex-
amples do not pose a particular challenge for Savage’s theory on the behavioural front:
to the extent that all the axioms are satisfied, the theory adequately describes the agent’s
behaviour. However, as Karni points out, they seem to pose a challenge to the theory’s pre-
tension to elicit the agent’s beliefs (and desires). The probability function elicited allocates
different probabilities to the success and failure of the operation, and this contradicts the
intuition that the husband believes success to be as likely as failure – an intuition which is
sustained not only by the assumption that he is fully cognizant of the odds of survival, but
also by some of his other actions (for example, he advises a friend, who is offered the same
pair of bets, that the odds of winning are the same). Karni concludes that the probabilities
furnished by Savage’s theorem do not properly represent the husband’s beliefs. This is a
case where Savage’s theory applies and provides a probability and utility function, but it is
doubtful whether these accurately represent the agent’s attitudes.

The behavioural problem is also less serious than the elicitation problem. Strictly speak-
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ing, one could reply to the former problem by resorting to a representation which does not
rely on the state-independence axioms. In the case of expected utility, one obtains an addi-
tively separable representation, that is, a representation in terms of a real-valued function
on pairs of states and consequences – which we shall call the evaluation function 2 – that is
of the following form:

(III.1) f ® g iff
ÿ

sPS

Ups, fpsqq §
ÿ

sPS

Ups, gpsqq

At a push, one could decompose the evaluation function U into a probability and state-
dependent utility (Ups, xq “ ppsq.ups, xq). However, such a decomposition is entirely
arbitrary: any (reasonable) probability function could be used, for example. Representa-
tions such as this, perhaps with arbitrary decompositions, are sufficient for many economic
applications (though not all: see Karni and Schmeidler (1993, §4), for example). However,
they do not provide a viable solution to the elicitation problem: here, one needs a (prefer-
ably principled) way to decompose the evaluation function U into a unique probability
function and a (suitably) unique utility function.

As regards this problem, which is doubtless the main challenge posed by the failure
of state-independence axioms, two strategies have been proposed. The first is promoted
by theorists working on state-dependent utilities. The intuition is that, in the example
above, the utility of the consequences depends on the states: $100 is more desirable if the
wife survives than if she does not. Thus the representation should feature state-dependent
utilities. Many state-dependent utility theorems are supposed to provide an answer to the
elicitation question: they yield a unique probability and a (suitably) unique state-dependent
utility function, the uniqueness being necessary for the claim that these functions represent
the agent’s beliefs and utilities (Karni et al., 1983; Karni and Schmeidler, 1993; Karni,
1993a,b, 2007, 2011).

The second strategy is that proposed by Savage in his reply to Aumann. He suggests
representing the decision by the same set of states, but using as consequences the following
four elements: $100 with survival, $100 with demise, $0 with survival, $0 with demise
(Figure III.2). He then evokes the “make-believe” situation where the husband considers
that any act (function from states to consequences) taking values in this set of consequences

2. Thanks to Mark Machina and Edi Karni for suggesting this term.
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Figure III.2 – 4-consequence formulation of decision problem

Success Failure

A Bet on success $100 with wife alive $0 without wife

B Bet on failure $0 with wife alive $100 without wife

C Bet on success (but
wife murdered)

$100 without wife $0 without wife

D Bet on failure (but
wife resuscitated)

$0 with wife alive $100 with wife alive

E Bet on failure (but
wife murdered or re-
suscitated)

$0 without wife $100 with wife alive

is an available option – and in particular, the acts which, in the case where the operations
fails, would yield $100 and the wife returned to him in good health (acts D and E). In
this situation, the axioms of state-independent utility apply and the classical representation
theorems can be employed. These yield, according to a proponent of this strategy, the
agent’s beliefs and utilities (it is easy to show, in particular, that the problem raised by
Karni’s aforementioned development of the example no longer applies).

Each of these strategies has its price. Under the state-dependent utility approach, the
agent’s utilities for the consequences depend on the states involved: it thus becomes im-
possible to use these utilities in decision situations where the same set of consequences
are on offer, but the states of the world are different. Consider the case where the agent
is offered a bet on a horse race, with the consequences being appropriate combinations of
$100 and $0: wouldn’t one expect him to have the same utilities in this situation as in the
one described in the story above? Under the state-dependent analysis, this cannot be the
case, since the states on which the utilities are dependent (success and failure of the oper-
ation) are not involved. This naturally casts doubt on whether these theorems are yielding
his “real” utilities, for one would expect him to have the same utilities for the same con-
sequences considered in different situations (when betting on his wife’s operation, when
betting on a horse race, when making investment decisions, when taking out life insurance
and so on), and this is not a property of the utilities that the state-dependent utility theorems



Living without state-independence of utilities III-6

provide. 3

To understand the weakness of Savage’s strategy, note that it operates in two stages. In
the first stage, one rewrites the decision problem with an enlarged set of consequences; this
corresponds to moving from Figure III.1 to Figure III.2. In the second stage, one asks the
decision maker to make his choice as if a certain number of the acts – such as acts involving
murder or resuscitation (acts C, D and E in Figure III.2) – were not fantastic or ridiculous.
The first stage of the strategy involves a simple change in the formulation of the decision
problem and no behavioural change on the part of the agent. By contrast, the second stage
involves an explicit request that the agent alter his behaviour. This can be seen by the fact
that the agent, answering in the “as if” mode, is indifferent between the the acts A and E in
Figure III.2, whereas in reality he would never consider picking act E.

In the terminology which will be introduced in the next section, we will say that the
second stage involves two different decision situations: both the decision situations have
the same states and consequences (and thus acts), but the decision maker’s preferences
differ between the two. One of the decision situations is the one the agent is actually in
(those are the preferences he actually has); the challenge is to understand his behaviour and
attitudes in this situation. The other decision situation is “make-believe” – the preferences
he has in that situation are hypothetical, and conflict with his real preferences. This is
the situation where one can elicit his beliefs and utilities using standard state-independent
utility results.

Although these are behaviourally distinct decision situations, for the beliefs and utilities
in the former situation to be elicited in the way that Savage suggests, it needs to be assumed
that the agent has the same attitudes in the two situations. What permits this assumption?
An adequate answer to this question should make clear the relationship between the two
situations. The simplest and most intuitive response is that the former situation is as the
latter, with an added restriction on the set of acts available (namely, that the fantastic or
ridiculous acts are not available). However, the status of this restriction is problematic. First
of all, it is posed exogenously to the decision theory used. Furthermore, it is known that
one cannot incorporate such restrictions endogenously into representation theorems such
as Savage’s, since these depend on the availability of a full set of acts (that is, all functions
from states to consequences). Indeed, such restrictions generally lead to representations

3. See Section III.3 for further discussion of the relationship between attitudes in different situations.
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in terms of state-dependent utilities, which is exactly what Savage’s strategy was meant
to avoid (Hammond (1998, §6) considers the case, pertinent for this example, where the
consequences attainable from different states are distinct). To sum up, the strategy proposed
by Savage relies on a decision situation where the agent shows preferences which differ
from those he actually has; the weakness in the strategy is that, although the strategy relies
on assumptions about the relationship between this situation and the situation the decision
maker is actually in (his real preferences), this relationship is poorly understood. Indeed,
any attempt to account for the relationship in the theory leads us back to state-dependent
utilities.

Two morals can be drawn from these considerations. The discussion of Savage’s strat-
egy makes it clear that there is an (inevitable) interdependence between states and con-
sequences in situations such as the one in the example. However, given what has been
said about the solution offered by state-dependent utility theorems, it is not clear that this
interdependence should be built into the utilities. This seems to suggest that, if there is
interdependence of states and consequences, then it must be specific to situations where
these states and consequences are involved. A natural suggestion is to represent the inter-
dependence by a situation-dependent factor expressing the relationship between states and
consequences. The representation would then be as follows. For S the set of states involved
in the situation, C the set of consequences and ® a preference relation on acts (functions
from S to C) there is a probability function p on S, a (state-independent) utility function u

on C and a function � on S ˆ C – the situation-dependent factor – such that, for any acts
f, g,

(III.2) f ® g iff
ÿ

S

ppsq.�ps, fpsqq.upfpsqq §
ÿ

S

ppsq.�ps, gpsqq.upgpsqq

The main aim of this paper is to propose a representation theorem for this sort of repre-
sentation: that is, to propose a set of conditions under which there is a unique probability
and a (suitably) unique utility and situation-dependent factor such that (III.2) holds. This
can be considered as another reply to the behavioural problem posed by examples such as
Aumann’s, insofar as it represents correctly the preferences of the agent, using not only
the probabilities and utilities, but also the situation-dependent factor. It constitutes a reply
to the elicitation problem, insofar as it yields (suitably) unique probabilities and utilities,
which feature in the representation of preferences and can be thought of as capturing the
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agent’s beliefs and desires. Indeed, the representation theorem relies on an elementary but
attractive intuition on how to elicit probabilities and utilities: for elicitation, use situations
which are as simple as possible. To elicit the probabilities and utilities in a situation where
there is interdependence between states and consequences, the technique will be to look in
situations where either the sets of states or sets of consequences are different, but where
there is no interdependence between the states and the consequences, so that the traditional
(state-independence) results can be applied.

In Section III.2, a formal notion of situation shall be defined, postulates and axioms
shall be proposed and a representation theorem shall be stated. In Section III.3, the concepts
and techniques introduced, as well as possible interpretations, applications and relations to
existing approaches, shall be considered at length. It turns out that the use of other decisions
situations is, to a large extent, an artifice of the way the decision problem is modelled; in
Section III.4, a representation theorem for (III.2) which operates in a single situation shall
be stated. Proofs are to be found in the Appendix.

III.2 Situational version

III.2.1 Preliminaries and axioms

A decision situation is characterised by a set of states and a set of consequences, with a
preference on the acts.

Definition III.1. A decision situation � consists of a set S� (of states in the situation), a
set C� (of consequences in the situation) and a binary relation ®� on the set of functions
A� from S� into C� (preferences in the situation over the acts in the situation).

A set of situations S is assumed to be given; this is the set of decision problems which
the agent might have faced at the current moment, with his preferences over the acts he
would have faced. Two sorts of conditions will need to be proposed on S to obtain the
representation. On the one hand, there will be general, more or less standard conditions
guaranteeing that the agent’s choices are consistent and that he is an expected utility max-
imiser (rather than a non-expected utility maximiser, for example). On the other hand,
there will be particular conditions regarding the existence of specific types of situations,
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which are required for the elicitation technique. The two postulates stating the former con-
ditions will be presented first; then we will turn to the axioms corresponding to the latter
conditions.

Basic Postulates According to the definition above, S may contain two situations with
the same states and consequences but different preferences. This represents an agent whose
preferences are inconsistent: they may differ on the same set of acts. The theorem below
does not apply to such agents. It employs a minimal consistency constraint on the agent’s
preferences which implies that he is not of this type: namely, that he can only have one
order of preference on any set of acts envisaged.

Postulate III.1. For all �
1

, �
2

P S , if S�1 “ S�2 and C�1 “ C�2 , then ®�1“®�2 .

This constraint allows the situations to be thought of extensionally; that is, any two
distinct situations differ either in their sets of states or in their sets of consequences (or
both).

Remark III.1. There is another consistency condition which may be imposed, and which
relates to the possibility of “identifying” acts between situations. An act is a function from
states to consequences: there is thus no (evident) way of saying that two acts are the same
if they belong to situations with different sets of states (they have different domains). By
contrast, it does seem that one could identify acts which belong to situations with the same
set of states and which give the same consequences (they have the same domain and the
same image), although the sets of consequences available in the situations to which they
belong differ (they have different ranges). Consider for example � “ pS�, C�, ®�q and
�1 “ pS�1 , C�1 , ®�1q, where S� “ S�1 and C� Ä C�1: it seems intuitive to identify an act in
� with the act in �1 that gives the same consequences for each state, and thus to demand that
the preferences over the acts in � are the same as the preferences over the corresponding
acts in �1. This is expressed by the following axiom.

Axiom III-A1. For any pair of situations �
1

“ pS�1 , C�1 , ®�1q and �
2

“ pS�2 , C�2 , ®�2q
with S�1 “ S�2 “ S and C�1 X C�2 ‰ H, ®�1 |A�1XA�2

“®�2 |A�1XA�2
.

(Standard mathematical notation shall be employed whereby, for an order § on a set Y

and Y 1 Ñ Y , § |Y 1 is the restriction of § to Y 1.)
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This axiom shall not be necessary for the results in this section, and shall not be assumed
to hold unless explicitly stated. However, we shall have reason to discuss it in Sections III.3
and III.4.

The decision-theoretic framework used here is that proposed in Anscombe and Aumann
(1963), which shall now be briefly summarised.

For a given situation �, S� is assumed to be finite, and C� is assumed to be the set of
lotteries over a finite set X� – the set of outcomes. Acts – functions from states to lotteries
– are thought of as functions from S� ˆ X� Ñ <; that is, the set of acts is A� “ tf :

S� ˆ X� Ñ <| ∞
xPX fps, xq “ 1u. 4 Under these assumptions, A� is a mixture set with

the mixture relation defined pointwise: for f , h in A� and a P <, 0 † a † 1, the mixture
af ` p1 ´ aqh is defined by paf ` p1 ´ aqhqps, xq “ afps, xq ` p1 ´ aqhps, xq (Fishburn,
1970, Ch 13). So the von Neumann-Morgenstern axioms can be stated for the preference
orders ®�.

Axiom III-A2 (Weak order). (a) For all f , g in A�, f ®� g or g ®� f . (b) For all f , g and
h in A�, if f ®� g and g ®� h, then f ®� h.

Axiom III-A3 (Independence). For all f , g and h in A�, and for all a P <, 0 † a † 1, if
f ®� g then af ` p1 ´ aqh ®� ag ` p1 ´ aqh.

Axiom III-A4 (Continuity). For all f , g and h in A�, if f ®� g and g ®� h, then there
exist a, b P p0, 1q such that af ` p1 ´ aqh ®� g and g ®� bf ` p1 ´ bqh.

Anscombe and Aumann (1963) add the following axiom:

Axiom III-A5 (Monotonicity). For any elements c
1

and c
2

of C�, any f in A� and any s in
S�, if c

1

®� c

2

then f c1
s ®� f c2

s

where c is the constant act taking value c (for all s P S�, fps, xq “ cpxq) and f c
s is

identical to f , except on s, where it takes value c (that is, f c
s ps, xq “ cpxq and, for s1 ‰ s,

f c
s ps1, xq “ fps1, xq).

4. In thinking of acts in this way, Anscombe and Aumann’s “Reversal of Order” axiom is assumed to
hold (Anscombe and Aumann, 1963). As is standard in much work with this framework, this axiom shall
be assumed to hold in all situations, throughout this paper. The consequences of rejecting it are explored by
Drèze (1987), for example.
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Fishburn (1970, p146) has shown that Weak Order, Independence and Continuity imply
that there is an additively separable representation of ®� (a representation of form (III.1);
see Section III.1), such that the evaluation function is unique up to simple positive affine
transformation: for any pair of functions U and U 1 representing ®�, there is a positive real
number a and real numbers bs for each s P S� such that U 1ps, xq “ aUps, xq ` bs for
all s P S� and x P X�. Anscombe and Aumann (1963) show furthermore that adding the
Monotonicity axiom yields a decomposition of this function into a unique probability func-
tion over the set of states and a state-independent utility function over the set of outcomes
which is unique up to positive affine transformation. Indeed, the Monotonicity axiom is
so closely connected to state independence that it is often simply called the axiom of state
independence (in Hammond (1998), for example).

The current work will follow much of the literature on state dependence of utilities and
suppose that the expected utility axioms other than those yielding state independence hold
in every situation. This is expressed by the following postulate.

Postulate III.2. For any situation � P S , ®� satisfies Weak Order, Independence and
Continuity.

In the light of what has been said above, this postulate implies that the agent always
maximises an additive evaluation function, whether or not this function can be decomposed
(in a non-arbitrary manner) into a probability function and a utility function. Behaviourally,
an agent satisfying this postulate always acts as if he is an expected utility maximiser (rather
than a non-expected utility maximiser), but, from an elicitation point of view, satisfying the
postulate is not enough to allow identification of his probabilities and utilities.

The situations where there exists a decomposition of the evaluation function into a
probability and state-independent utility function are of special importance.

Definition III.2. � is called a simple situation if and only if ®� also satisfies Monotonicity.

The simple situations are those which permit the application of the Anscombe and
Aumann representation theorem. Let us state this explicitly.

Theorem III.1 (Anscombe and Aumann (1963)). For a simple situation �, there is a unique

probability distribution p� on S� and a utility function u� on X� which is unique up to

positive affine transformation, such that, for f, g P A�

(III.3) f ®� g iff
ÿ

S� ,X�

p�psqu�pxqfps, xq §
ÿ

S� ,X�

p�psqu�pxqgps, xq
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An unsympathetic reading of the literature would have it that all situations are simple,
so that theorems such as this one can always be applied (Savage (1954, §5.5), for example,
seems to assume that his axioms apply in all “small world” decision situations). This
cannot assumed here, for the challenge is to elicit probabilities and utilities in non-simple
situations (i.e. situations where the state-independence axioms do not apply). A milder
assumption will be made: that there are enough simple situations to permit elicitation of
(unique) probabilities and utilities. The axioms in the representation theorem will cash
out this assumption in formal terms. First it is necessary to introduce some preliminary
definitions.

Definition III.3. For a set of consequences C, let ⌃C “ t� P S| C “ C�, � simpleu. This
is the set of simple situations with C as set of consequences.

Define k⌃Ck “ tu| D� P ⌃C , p on S�, s.t. p, u represent ®�u, the set of utilities in-
volved in the representation of the preferences (according to (III.3)) in the simple situations.
By Theorem III.1 and Definition III.2, k⌃Ck is non-empty if ⌃C is. The elements of this
set will be considered up to positive affine transformation, to avoid unnecessary repetitions.

Similarly, for a set of states S, define ⌅S “ t�| S “ S�, � simpleu, and k⌅Sk “
tp| D� P ⌅S, u on C�, s.t. p, u represent ®�u.

The idea is to use the representations of the preferences in simple situations to ascertain
the utility in non-simple situations which have the same set of consequences; similarly for
probabilities. For this several existence and uniqueness constraints are required on the set
of simple situations; these will be the main axioms in the representation theorem. The
axioms are presented here; further discussion is left for Section III.3.

Main axioms Let us first deal with the situations sharing the same consequences. Con-
sider the following two axioms.

Axiom III-A6 (Consequence Richness). For all C, ⌃C is non-empty.

Axiom III-A7 (Conative Consistency). For all C, for any �
1

, �
2

P ⌃C , ®const
�1

“®const
�2

,
where ®const is the restriction of ® to the constant acts.

Consequence Richness states that there are enough situations such that, for each set of
consequences, an “independent” set of states can be found – independent in the sense that
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the Anscombe and Aumann’s state-independence axiom, and thus their expected utility
result, applies. As such, it can be considered to be a structural or technical axiom: its
behavioural consequences are negligible, and, due to the existential quantifier, it is difficult
to refute. From a technical point of view, this axiom guarantees that k⌃Ck has at least one
element. See Section III.3 for an extended discussion of the plausibility of the axiom.

Conative Consistency is equivalent to the existence of at most one element in k⌃Ck
(Lemma III.A.1 in the Appendix). By contrast to the previous axiom, it does have some
behavioural content: it demands that the agent’s preferences over constant acts – acts which
give the same result on all states – is independent of what the states are (and thus, given
Definition III.1 and Postulate III.1, of what the situation is). An agent who prefers $50 to a
50-50 objective lottery yielding $100 when in the context of a horse race (states: winners of
the race) but prefers the objective lottery to the sure amount in the context of investment on
the markets (states: stock price tomorrow) violates this axiom. Certainly, such preferences
do not seem particularly consistent: he prefers receiving the sure amount, no matter who
wins the horse race, to the playing objective lottery, no matter who wins the horse race, but
he prefers the lottery, no matter what the stock price is tomorrow, to the getting the sure
amount, no matter what the stock price is tomorrow.

One proceeds in a similar way for states and probabilities; once again, there are two
axioms.

Axiom III-A8 (State Richness). For all S, ⌅S is non-empty.

Axiom III-A9 (Doxastic Consistency). For all S, for any �
1

, �
2

P ⌅S , for any a, b P X�1

and c, d P X�2 with a †�1 b and c †�2 d, let ⌧ : Lpta, buqS Ñ Lptc, duqS be the bijection
between the set of acts in �

1

with values in the set of lotteries on ta, bu and the set of
acts in �

2

taking values in the set of lotteries on tc, du, defined by ⌧pfqps, cq “ fps, aq
and ⌧pfqps, dq “ fps, bq for all s P S. 5 Then, for all f, g P Lpta, buqS , f ®�1 g iff
⌧pfq ®�2 ⌧pgq.

State Richness is the equivalent for states of Consequence Richness (III-A6): it ensures
that k⌅Sk has at least one element. As for III-A6, this is a largely structural assumption.

5. LpXq is the set of lotteries on the set X; LpXqS is the set of functions from S into LpXq – that is, the
set of acts taking values in these lotteries. Recall that the acts are considered as functions from pairs of states
and outcomes to the real numbers.
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Doxastic Consistency is the equivalent of Conative Consistency (III-A7): it is true if
and only if k⌅Sk has at most one element (Lemma III.A.2). As for Conative Consistency,
it does have behavioural content: more or less, it demands that, to compare probabilities of
events (sets of states) using acts which differ in their consequences depending on whether
the event holds, it does not matter if one uses consequences in C�1 or C�2 – the answer will
be the same. Consider two situations: one where the agent is betting on a horse race (states:
results of the race; consequences: monetary prizes) and another where he is advising his
friend how to bet on the race (states: results of the race; consequences: monetary prizes for
the friend). Suppose furthermore that the agent prefers a sure $100 to a sure $0 in the first
situation, and that he prefers that his friend wins $100 for sure to his friend winning nothing
for sure in the second situation. Then, according to Doxastic Consistency, he should prefer
a bet of $100 on horse ↵ over a bet on horse � if and only if he prefers advising his friend
to take the bet on ↵ to advising his friend to take the bet on �. Indeed, an agent who did
not have such preferences would seem rather inconsistent.

Given the preceding remarks, there is a resemblance between Doxastic Consistency
(III-A9) and Savage’s P4, which states that the preferences over bets on events are inde-
pendent of the consequences of the bets. But P4 holds within simple situations, whereas
Doxastic Consistency holds between different simple situations. So, if Doxastic Consis-
tency holds between situations having different sets of consequences, one might expect
P4 to hold in the situation having the union of these sets as consequences. This is essen-
tially what is expressed by the following axiom, which implies Doxastic Consistency, in
the presence of III-A1 (Proposition III.1 in the Appendix).

Axiom III-A10. For any S, if �
1

, �
2

P ⌅S , then there is a situation �
12

P ⌅S with C�12 “
C�1 \ C�2 , where C

1

\ C
2

is the set of lotteries on X
1

Y X
2

.

This axiom is not required for the result stated below; it shall however prove relevant in
Section III.4.

Null events One final axiom is required to deal with the possibility of null events. In
the state-independent representation, null events are generally those which are allocated
probability 0: it follows that the order is indifferent between any pair of acts which differ
only on such events. For the probabilities elicited in simple situations to be valid in non-
simple situations, the preference order in these non-simple situations must show the same
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sort of indifference. Thus the following axiom is posed as a consistency constraint. Recall
the classic definition of a null event (Savage, 1954; Karni et al., 1983): an event A in a
situation � is null iff, for any pair of acts f, g P A� such that fpsq “ gpsq for s R A,
f „� g. (Null states are those whose singletons are null events.) The axiom is as follows.

Axiom III-A11 (Null Consistency). For any situation � and any event A Ñ S�, if A is null
in every �1 P ⌅S� , then A is null in �.

III.2.2 Theorem

The postulates and axioms give the following representation theorem.

Theorem III.2. Assume Postulates III.1 and III.2. Moreover, let Consequence Richness,

Conative Consistency, State Richness, Doxastic Consistency and Null Consistency hold.

Then, for any situation � P S , there exists a probability distribution p on S�, a utility

function u on X�, and a function � : S� ˆ X� Ñ < such that,

— for all f, g P A�

(III.4) f ®� g iff
ÿ

sPS�
xPX�

ppsq.�ps, xq.upxq.fps, xq §
ÿ

sPS�
xPX�

ppsq.�ps, xq.upxq.gps, xq

— for each �
1

P ⌃C� , there exists a probability p
1

such that, for all f
1

, g
1

P A�1

(III.5) f
1

®�1 g
1

iff
ÿ

sPS�1
xPX�1

p
1

psq.upxq.f
1

ps, xq §
ÿ

sPS�1
xPX�1

p
1

psq.upxq.g
1

ps, xq

— for each �
2

P ⌅S� , there exists a state-independent utility u
2

such that, for all

f
2

, g
2

P A�2

(III.6) f
2

®�2 g
2

iff
ÿ

sPS�2
xPX�2

ppsq.u
2

pxq.f
2

ps, xq §
ÿ

sPS�2
xPX�2

ppsq.u
2

pxq.g
2

ps, xq

Furthermore, if p1, u1, �1 is another representation satisfying (III.4–III.6), then there

exist positive real numbers a and c, and real numbers b and ds for each s P S�, such that

p1psq “ ppsq, u1pxq “ a.upxq ` b and �1ps, xq “ c.�ps, xq ´ b.c
u1pxq .�ps, xq ` ds

u1pxq , for all

s P S�, x P X�, and ds “ 0 if s is null.
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Remark III.2. The probability p and utility u have the same uniqueness properties as in typ-
ical state-independent utility theorems (for example Theorem III.1); to this extent, they can
be said to be elicited in Theorem III.2. � has new degrees of freedom which arise largely
from the fact that, whereas state-independent utilities are unique up to positive affine trans-
formation, state-dependent utilities are unique up to simple positive affine transformation
(see for example Karni et al. (1983), who call these transformations “cardinal unit compara-
ble transformations”). Indeed, the representation (III.4) naturally yields a state-dependent
utility function as the product of � and u (see Section III.3.1), and it is easy to see that this
function is unique up to simple positive affine transformation, just as for the state-dependent
utilities elicited by Karni et al. (1983). That is, for another triple p1, �1, u1 satisfying the
conditions of Theorem III.2, there is a positive real number a1 and real numbers b1

s for each
state s P S� such that �1ps, xq.u1pxq “ a1�ps, xq.upxq ` b1

s.

Remark III.3. The theorem does not assume III-A1, and so allows differences between
the preferences on acts taking the same set of states to the same consequences, but which
are elements of different situations (notably, situations having the same sets of states and
different but overlapping sets of consequences). In such cases, the representations of the
preferences in the different situations may differ in � and u.

On the other hand, if III-A1 holds, the preferences agree (on common acts) between
such situations; it follows that u takes the same values in situations with at least two out-
comes in common and � takes the same values in all situations which share the same set of
states and which have at least two outcomes in common (up to the transformations given in
Theorem III.2).

III.3 Discussion

III.3.1 The situation-dependent factor

The factor � is a function of states and consequences. Since different situations nec-
essarily have different states and consequences, they will necessarily involve different �’s.
Thus � is properly thought of as a situation-dependent factor: particular to the decision
situation under consideration, rather than applicable in different decision situations, as,
say, utilities and probabilities are. Put succinctly, � captures the contextual factors of the
decision situation.
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It should be noted that a single decision problem can sometimes be rewritten in several
ways. The discussion in Section III.1 provides an example: the problem the husband faces
can be formulated either as a choice between acts yielding one of two consequences (Figure
III.1) or as a choice among acts yielding one of four consequences (Figure III.2). These
formulations of the decision problem are two different situations, in the sense of Defini-
tion III.1, with different sets of consequences; therefore, the representations will involve
different factors �.

Consider, for example, under the 4-consequence formulation (Figure III.2), 50-50 (sub-
jective) probabilities, a utility of 150 for $100 with the wife alive, of 50 for $100 with the
wife dead, of 75 for $0 with the wife alive and of 25 for $0 with the wife dead, with �
taking value 1 when the state and consequence are compatible, and 0 when they are not.
This is a typical representation of the husband’s preferences, which explains the prefer-
ence for the bet on success (bet A in Figure III.2) over failure (bet B) by a larger utility
of $100 with the wife alive, and the preference of the bet on success (bet A) over a bet
on resuscitation (bet E) by a low value of � which represents the fact that the latter bet is
unbelievable. However, it is equally possible to represent the husband’s preferences when
the 2-consequence formulation is used (Figure III.1), just this will require a different utility
function (because the consequences are different) and a different situation-dependent factor
�. For example, 50-50 probabilities, a utility of 100 for $100 and 50 for $0, and a � with
�psuccess, $100q “ 1.5, �pfailure, $100q “ 0.5, �psuccess, $0q “ 1.5, �pfailure, $0q “ 0.5

represents “the same” preferences as described above in the 4-consequence formulation. 6

Notably, they account for the preference for the bet on success, whilst retaining the 50-50
beliefs about the result of the operation. The use of the 2-consequence formulation or the
4-consequence formulation is largely a decision for the theorist; as this example indicates,
the proposed representation (III.2) applies whatever choice is made.

As for all theorems treating decision under uncertainty, Theorem III.2 elicits the prob-
abilities and utilities; moreover, it also elicits the situation-dependent factor �. The latter is
thus to be thought of as “subjective” rather than “objectively” given. It represents aspects
of the way that the agent thinks of the decision problem and the contextual factors involved,

6. Naturally, any claim that the preferences are the “same” has to be qualified by the fact that, because
of the different sets of consequences, the objects of preference – the acts – differ between the two formula-
tions. For further discussion of the relationships between the situation-dependent factors and utilities in such
different but related situations, see Section III.3.2.
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rather than the contextual factors “really” involved. For example, if the decision maker did
not realise that resuscitation was impossible, the � described above (for the 4-consequence
formulation of the example) would not feature in an accurate description of his preferences
(for he would be indifferent between bet A and bet E in Figure III.2), even if it is an ob-
jectively accurate representation of the relationship between states and consequences. The
topic of objective situation-dependent factors is beyond the scope of this paper.

A situation-dependent factor of this sort, and a representation of the form (III.2) proves
useful in the analysis of the phenomenon of adaptive preferences. In particular, it allows a
distinction between the agent’s “absolute” utility u – which is independent of the situation
in which he finds himself – and his “situation-relative” utility or “utility in practice”. The
latter is the state-dependent utility function obtained as the product of the factor � and the
absolute utility u. See Hill (2009) for an extended discussion of this distinction and the
importance for the problem of adaptive preferences. 7

The role of � as characterising the interdependence between states and consequences,
or the difference between the “absolute” and “situation-relative” utilities may prove useful
in other areas of economic analysis. It is known that the agent’s attitude to risk may differ
depending on the state realised: his attitude to risk is different in the case of illness as
opposed to health, or in the case of life as opposed to death (Karni (1983), Drèze (1987,
Ch 8)). Under state-dependent utility representations of his preferences, this difference is
built into the utility function: the function has different properties (form, curvature, and
so on) on each state. Under the proposed representation, by contrast, it is separated from
his general attitude to risk. The “absolute” utility represents the agent’s general attitude to
risk (in the standard way), whereas the situation-dependent factor � captures the aspects
which are specific to the interdependence between states and consequences involved in the
particular decision situation.

Consider the example of health insurance, to which state-dependent utilities are often
applied: the states are states of health and the consequences are monetary outcomes. �
represents the differences in utility and risk attitude with respect to change in state of health,
whereas the utility function measures his utility for money (and the risk attitude associated)
and applies even beyond decisions regarding health insurance (to investment decisions,

7. Another possible interpretation is to think of u as the “intrinsic” utility and the product with the
situation-dependent factor as the “experienced” utility. The author wishes to thank a referee for pointing
out this interpretation, and the relation to the distinction drawn by Kahneman et al. (1997).
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career decisions, and so on). For an agent who is more risk averse in case of ill health than
good health, this fact would be represented by the fact that � is more concave when the
state is ill health than when it is good health. Future research would investigate whether
tools for the analysis of risk attitude in cases where there is interdependence between states
and consequences can be developed employing the situation-dependent factor proposed
here. One would expect to obtain techniques for doing comparative statics on the situation-
dependent factor: one could thus compare the different attitudes to health insurance of
individuals with the same beliefs about their future health and the same general utility for
money. 8

It should be clear from the discussion so far that, beyond the observation that � is a
contextual or situation-dependent factor, there are several ways to give it a more concrete
interpretation. A full discussion of the range of interpretations is beyond the scope of
this paper; we shall just present one further interpretation which is perhaps applicable in
some if not all cases, and which has already been suggested in the discussion of adaptive
preferences (Hill, 2009).

Consider once again the 4-consequence formulation of Aumann’s example. As noted
above, the situation-dependent factor which corresponds to the described preferences typi-
cally takes lower values on pairs of states and consequences which are inconsistent (failed
operation and $100 with wife alive, for example) than on pairs which are consistent. A nat-
ural interpretation of this is in terms of reliability. The act purporting to take the state where
the operation fails to the consequence where he wins $100 and his wife is healthy is not pos-
sible. If offered such an act (or such a bet), the agent would not trust the bookey. The act is
unreliable (or, more precisely, the part of the act purporting to send this state to this conse-
quence in unreliable). The expected utility should take this into account, and it is precisely
the situation-dependent factor � that does this. An interpretation of the situation-dependent
factor which seems plausible in at least some cases is as a measure of the reliability of acts
purporting to take particular states to particular consequences. It should be noted finally
that under this interpretation it is most natural to expect � to have maximum and minimum
values (utterly reliable and utterly unreliable). It is not too difficult to show, by scaling the

8. It may be perhaps be possible to use differences in the situation-dependent factor to account for the
observation that agents’ risk aversion depends on the circumstance or domain (MacCrimmon and Wehrung,
1990; Weber et al., 2002); if so, the notion might also prove useful in studies of such differences in risk
aversion.
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utilities so that they are positive, that Theorem III.2 can always yield a representation with
� P r0, 1s. This form of the theorem is not given here, for such a range of � may not be nat-
ural for other interpretations. Indeed, it is worth re-emphasising that this interpretation is
one of many: to the extent that � represents the effect of contextual or situation-dependent
aspects on the agent’s preferences, there may be as many interpretations are there are sorts
of contextual or situation-dependent factors.

III.3.2 The elicitation technique

The elicitation technique is based on a simple idea: instead of trying to elicit attitudes in
cases which are complicated (for example, where there is interdependence between states
and consequences), use cases which are straightforward (where there is no such interdepen-
dence). Such a technique invokes situations other than the one in question; it thus involves
not a single situation, but a set of situations, S .

The situations in S are the decision problems the agent could have been facing at the
particular moment in question (given by the sets of states and consequences) and the pref-
erences he would have had were he faced with these problems (given by the preference
relation). One of the situations is actual: that is the situation which he is really facing at a
given moment. The others are hypothetical: he could have faced them, and would have had
the preferences specified if he had, but he is not actually facing them (see below for further
discussion of the notion of hypothetical choice involved here). Some of these situations are
simple, insofar as they do not involve interdependence between states and consequences:
they are used to elicit the agent’s probabilities and utilities. The method of elicitation relies
on a basic assumption: that the agent’s attitudes (probabilities and utilities) have a certain
degree of stability or constancy. For it to make sense to elicit the agent’s probabilities and
utilities in the actual situation by looking in other situations, it must be assumed that the
same probabilities and utilities are involved in different situations.

This assumption is not only natural, but a necessity for the task of elicitation or mea-
surement to make any sense. First of all, one would expect rational agents to have proba-
bilities and utilities which are stable enough not to be excessively dependent on the precise
decision problem with which they are faced; and many real agents’ attitudes do have this
property. Secondly, if one does not suppose such constancy, one cannot use the measure-
ments of an agent’s probabilities and utilities in any situation other than that in which it was
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measured. For example, probabilities and utilities measured in an experiment could not be
used in models of agents’ behaviour in the market. There is a risk that this problem does
indeed affect some experimental work (Harrison et al., 2007); nevertheless, for there to be
any interest in measuring attitudes, an assumption such as constancy seems to be necessary.

Furthermore, many elicitation techniques do in fact seem to make implicit use of an
assumption like the constancy assumption. Often different sorts of questions are used to
elicit different components of the representation (probabilities, utilities, decision weights
and so on); these different questions correspond, in the terminology of this section, to
different situations (see Section III.4 for a construal of these situations as subsituations
of a single fixed situation). One must thus assume that the probability function elicited
in one situation is the same as the one involved in the other situation. Naturally, were
an experimental setup to be proposed based on Theorem III.2, it would use exactly this
method. First the agent’s probabilities would be elicited using standard techniques but in
situations which do not necessarily involve the consequences in the decision problem of
interest. Then the same would be done for utilities. Finally, by eliciting his evaluation
function in the situation of interest, the situation-dependent factor would be derived.

Beyond being essential to the elicitation technique employed in the theorem, the con-
stancy assumption does have some behavioural content. Indeed, the Conative and Doxastic
Consistency axioms (III-A7 and III-A9) – which constitute, along with the requirement of
basic consistency of preferences (Postulate III.1) and the requirement that the agent’s pref-
erences have an additive representation (Postulate III.2), the main behavioural content of
the theorem – follow from the constancy assumption. If the probabilities and utilities are
the same in all situations, then in those situations where they can be elicited, one obtains
the same answer. The axioms imply that this is the case: that the utility and probability
elicited in any simple situations are always the same, for a given set of consequences and
states.

The elicitation technique rests upon another assumption, regarding the richness of the
set of situations S . To elicit the agent’s probabilities in a given non-simple situation, the
technique looks in other situations, which have the same states, but different and inde-
pendent consequences, so that elicitation of probabilities is simple. Hence it needs to be
assumed that such situations exist. Similarly, to elicit utilities, it needs to be assumed that
simple situations with the same consequences but perhaps different states exist. This is ba-
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sically the content of the Consequence and State Richness axioms (III-A6 and III-A8). As
noted in Section III.2.1, these can be thought of as structural or technical; nevertheless, they
are not unreasonable. To take the example discussed in Section III.1 (in the 2-consequence
version), consider the decision situation where the states of the world are results of a horse
race and the consequences are $100 or $0. In this situation the consequences are most likely
independent of the states (assuming the husband does not know any of the horse-owners or
jockeys), so that the state-independence axioms apply and the utility of the money can be
elicited using standard techniques. This situation has the same consequences but different
states from the situation where the agent bets on the outcome of the operation, so that the
former situation can be used to elicit the utilities in the latter one. Hence Consequence
Richness (III-A6) is satisfied in this case. Similar examples can be given for states and
the axiom State Richness (III-A8). All that is required are situations with the same states
(success or failure of the operation) but consequences which are independent, so that the
state-independent axioms and results apply. Examples include situations were the conse-
quences are gains and losses for a friend, and the husband has a choice about the advice he
gives (see also Karni (1996, p256)), or situations where the consequences of the husband’s
bet will be “ethical” issues, such as differing numbers of deaths in Myanmar. 9 In cases
such as these, the utility of the consequence does not depend on the outcome of the oper-
ation (the state of the world), and so the state-independence axioms apply; they show that,
for the example in Section III.1, State Richness is satisfied.

The same points hold for the 4-consequence formulation of the decision problem. The
utility function elicited in the 4-consequence formulation will be different from that elicited
in the 2-consequence formulation because the sets of consequences on which these func-
tions are defined differ. Equally, the situations used to elicit them will differ: in one case,
bets on a horse race yielding monetary prizes will be involved, in the other case, bets
yielding combinations of monetary prizes with a deceased or healthy wife will be used.
Naturally, one might sometimes expect there to be relations between the utility functions
in these different situations, just as one might expect there to be relations between the
situation-dependent factors, which also differ between the situations because of their dif-
ferent consequences (Section III.3.1). Candidate relations would ideally come in the form
of equations which connect the utilities, probabilities and state-dependent factor in one sit-

9. Thanks to Itzhak Gilboa for suggesting this example.
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uation to those in the other situation, and which correspond to behavioural conditions on
the agent’s preferences – notably relations between his preferences in the two situations.
A simple example of such a relation has already been mentioned. Axiom III-A1 presents
a condition on the preferences of the agent in situations with different but overlapping sets
of consequences; as noted in Remark III.3, it ensures that the utilities on common conse-
quences, and the values of the situation-dependent factors on common states–consequence
pairs are the same in the different situations. A direction for future development would
consist in finding and assessing such conditions on preferences in different situations, and
the corresponding consequences for the relation between utilities, probabilities and state-
dependent factors in these situations.

Such a project requires a clear idea of the interpretation of the situations, and of the
differences between them. Consider once again Aumann’s example and the elicitation of
utilities by reference to situations where the agent is betting on a horse race. In the situation
with 4 consequences, the outcome of the wife’s operation is explicit in the consequences,
whereas in the situation with 2 consequences, it is not – if it plays a role in the evaluation
of the consequences, this role is at most implicit. The explicitness or implicitness is an
important aspect of the relationship between the two situations, and may be interpreted in
at least two ways.

Firstly, it may be understood as a difference in the way the problem is posed to the agent:
he has his wife’s health in mind at all times, but has to make choices where the health of his
wife is not explicitly at issue. In such cases, one might expect a principled relationship be-
tween his utilities in the 2-consequence situation and those in the 4-consequence situation.
For example, he might be expected to consider each consequence in the 2-consequence sit-
uation (say, $100) as a bet over pairs of consequences in the 4-consequence situation ($100

with the wife alive and $100 with the wife dead), so that his utility for the 2-consequence
outcome is the expected utility of $100 over his subjective probabilities about the outcome
of the operation (Savage, 1954, §5.5).

Alternatively, the implicitness and explicitness could be interpreted as properties of the
way the agent himself sees the problem. The 4-consequence formulation corresponds to
the case where he is aware of the effect of the operation’s success or failure on his utility
for money; the 2-consequence formulation represents the case where he is not aware of
the issue of the operation. In this case, it is possible that his utilities, probabilities and
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situation-dependent factor are related in the sort of principled way just described: although
he is unaware, he evaluates the options in the same way as if he were aware. On the other
hand, it more likely under this interpretation that the relationships between the utilities,
probabilities and state-dependent factors in the 2- and 4-consequence situations are more
complicated. 10

A further point should be made about this last interpretation. There are many things
about which the agent is not necessarily certain and which could affect his utility for money:
the health of himself and his family, his plans and ambitions, his current and future state of
wealth, the relation to the state of the economy, and so on. It cannot be asked of him that
he be aware of all these issues when he chooses acts yielding monetary consequences; at
most, they play an implicit role. So one cannot reject the 2-consequence formulation of the
husband’s decision, the situation required for elicitation of the utility in this formulation,
and the utility elicited, on the basis that a relevant factor – the outcome of the operation
– was “left out”; for there are more relevant factors than could ever feasibly be explicitly
“brought in”. The elicitation of utility described yields a utility function in which these
factors are, so to speak, implicitly present.

Let us remark finally that this is not the first time that situations other than the one of
immediate interest have been used in representation theorems. Examples include Karni
(2007, 2011) and Karni et al. (1983); Karni (1985). In the former cases, reference is made
to the situation the agent finds himself in after having made a Bayesian update; in the latter
cases, the situations involved are hypothetical. To this extent, the latter cases resemble
the proposal here, where, as stated above, the natural interpretation of the other situations
involved is as hypothetical. Indeed, some of the arguments presented by Karni and Mongin
(2000) in favour of the use of hypothetical data in elicitation carry over to the current result;
see Hill (2009) for other arguments which are particular to sort of data involved here.

However, beyond this surface resemblance, there is an important difference between
the approaches just cited and the one taken here. There, the other situations which are used
involve the same decision problem (states and consequences) but different (hypothetical
or updated) beliefs, whereas in this paper, we have (to the extent that the states and con-
sequences are shared) the same beliefs and utilities but different decision problems. This

10. Awareness has recently been recognised as important in decision and game theory (Dekel et al., 2001;
Heifetz et al., 2006). So far, no accepted theory exists of the relationship between the agent’s attitudes when
he is aware and those when he is not. See Hill (2010) for an approach.
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difference is crucial, for it means that the papers mentioned above involve elicitation of at-
titudes with reference to preferences which are incompatible with the preferences the agent
actually has, just as for Savage’s strategy in the example discussed in Section III.1. Here,
by contrast, there is no incompatibility between the preferences in the situations involved
in the elicitation: as the previous discussion of the constancy assumption makes clear, this
point is at the core of the present approach. The sense in which there is something hypo-
thetical at issue is thus milder here: whereas previous approaches have considered what
would happen with a different decision maker (with hypothetical beliefs) faced with the
same decision problem, we are considering what would happen if the same decision maker
were faced with a different decision problem. As suggested above, the second sense of hy-
pothetical is easier to overcome in practice: it suffices to get the decision maker to choose
in a decision problem in which it is easier to elicit his attitudes.

A further consequence of this difference is that, since there is no incompatibility among
his preferences, they can all in principle be considered as “fragments” of a (consistent) set
of general preferences. From the point of view of the general preferences, the decision sit-
uations we have defined are just fragments of a large decision problem. Since this decision
problem is actual, the distinction between the hypothetical and actual decision situations
disappears – they are just subsituations of one, large, actual situation. One thus obtains a
version of Theorem III.2 which makes no reference at all to hypothetical situations: a relief
for those who are not convinced by the preceding arguments in favour of the mild notion of
hypothetical situation employed here. In the final section of the paper, we detail this setup
and prove a simple version of this result.

III.4 Non-situational version

III.4.1 Preliminaries and Axioms

The use of situations other than the one in which the decision maker is choosing may
be shunned. Fortunately, they are not strictly necessary for the result given above: instead
of thinking of the situations used in the result as different situations, one could consider
the sets of states, consequences and acts of each situation to be appropriate subsets of the
elements (events, consequences, acts) of some large, fixed situation in which the decision
maker is making his choice. Situations would thus be considered to be like the “micro-
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cosms” of Savage (1954, §5.5), so the relation of their “small world” states and conse-
quences to any fixed “grand world” states and consequences can be understood. Whereas
the bets on the success and failure of the operation and the bets on the horse race were
considered as acts belonging to different situations in the previous sections, here they are
considered as being part of one grand world situation, whose states specify both the out-
come of the operation and the results of the race. In this way, it is possible to formulate
equivalents to Theorem III.2 in terms of one “grand world” situation. In this section, a
simple theorem of this sort is stated. It gives a flavour of how the technique introduced in
the previous sections continues to apply in a single, grand world situation.

Let S designate the set of states of the grand world situation, X the set of outcomes, C

the set of lotteries on X , and ® the preference order on the set of acts A (functions from S

to C). S and X are assumed to be finite.
To obtain a representation of the preferences and elicit unique probabilities and utilities,

the idea presented and discussed in Sections III.2 and III.3 will be employed: elicit the
probabilities and utilities in related, simple, situations. By contrast to the previous sections,
the situations used here will be “small world” situations with respect to the fixed grand
world situation, or if you prefer subsituations of the grand world situation. That is, they
will be situations of the form pS�, C�, ®�q where S� is a set of events which partition S,
C� is the set of lotteries on X� for some X� Ñ X and ®� is the restriction of ® to acts
which are constant on the elements of S� and which take values in C�. A small world state
is a grand world event; the same notation will be used when it is treated as the former as
when it is thought of as the latter. An act f in the (small world) situation pS�, C�, ®�q is
considered as a (grand world) act ˆf , where, for each s P S, ˆfps, xq “ fps�, xq, for s� the
element of S� such that s P s�. 11

Axioms Beyond the axioms introduced in Section III.2, the following axioms will be
required.

Axiom III-A12. There exists a set of sets of events on S, tSiuiPI , such that,

(i) for each s P S, there is a set tss
i u, with one element ss

i from each Si, such that
ì

iPI ss
i “ tsu;

11. This interpretation differs from Savage’s interpretation of microcosms (Savage, 1954, §5.5); thus the
difference in the interpretation of small consequences, which are not grand world acts, as in Savage.
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(ii) for each Si, there exists X 1 Ñ X such that pSi, C 1, ®1q is simple (where, as above,
C 1 is the set of lotteries on X 1);

(iii) for each s P S, the set tss
i u is minimal: there is no proper subset A Ä tss

i u such that
ì

s1PA s1 “ tsu.

Axiom III-A13. For each set of events S 1 which partition S, if there exists X 1 Ñ X such
that pS 1, C 1, ®1q is simple, then there is a unique such X 1 which is maximal under inclusion
– that is, such that there is no X2 Å X 1 with pSi, C2, ®2q simple.

For each Si from III-A12, the set of outcomes described by III-A13 is denoted by Xi,
the corresponding set of consequences by Ci, and the preference order by ®i.

Axiom III-A14. For any simple small world situation pS 1, C 1, ®1q, if A Ñ S 1 is a null event
in pS 1, C 1, ®1q, then

î
sjPA sj is a null event in pS, C, ®q.

Discussion Just as for the result in Section III.2, two sorts of conditions are required.
On the one hand, there are standard conditions guaranteeing that the agent is a consistent
expected utility maximiser. As in the previous sections, the axiom for state-independence
(Monotonicity) is not assumed to hold in the grand world situation, but the von Neumann-
Morgenstern axioms (Weak Order, Independence and Continuity) are (see Theorem III.3).
This assumption is logically stronger than the equivalent in the situational setup (Postulate
III.2): the former implies the latter, because it implies that the axioms hold in individual
situations; but the former is not implied by the latter because it involves inter-situational
comparisons. Note furthermore, that, since the preference orders in the small world situa-
tions are restrictions of a grand world preference order, they agree on the acts they have in
common, so Postulate III.1 and the stronger III-A1 hold automatically.

The other conditions involved in Theorem III.2 guarantee that the set of situations is
suitable for elicitation of probabilities and utilities. In the theorem presented below, there
are no assumptions or axioms regarding consequences and utilities. This is because the
preference relations in the small world situations are derived from the preference relation
in the grand world situation, so that they agree on constant acts, and the restriction to
constant acts yields, by the von Neumann-Morgenstern theorem, a utility function which
applies in all (small world and grand world) situations. So the use of small world situations
is not required to elicit utilities; by contrast, they are required for probabilities, and here
supplementary conditions have to be imposed.
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Axiom III-A12 is the equivalent of State Richness (III-A8) in the grand world situation
framework, and, as for State Richness, it is a largely structural or technical axiom. Recall
that State Richness guarantees the existence of simple situations with the same set of states
as the situation of interest; the probabilities elicited in the former situations is used to de-
duce the probability in the latter. However, in the grand world version, it is not elicitations
in situations with the same set of states which are used to obtain the probabilities in the
grand world situation, but rather elicitations in subsituations; thus one needs the existence
of a set of simple small world situations which is rich enough that, by eliciting the prob-
abilities in the small world situations, one can deduce the grand world probabilities. This
is the role of III-A12. Clause (ii) implies that probabilities can be elicited on each of the
sets Si, which are the sets of states of simple small world situations. Clause (i) implies
that these sets of small world states “cover” the set of grand world states. Formally, this
clause implies that the Boolean algebra of events of the grand world situation is the smallest
Boolean algebra containing the Boolean algebras generated by the tSiuiPI . In other words,
every grand world event can be obtained by taking appropriate intersections and unions of
events in the small world situations. If this were not the case, it would never be possible to
ascertain the probabilities of some of grand world events using just the probabilities elicited
in these small world situations.

Clause (iii) translates a simplifying assumption which is made in this section: namely,
that one can work with small world situations whose states are stochastically independent.
This assumption is at work in the proof of the theorem, although, as is generally the case for
central assumptions in representation theorems, it cannot be stated explicitly: after all, the
most natural way to express stochastic independence is in terms of the probability function,
and such a function is exactly what is to be elicited. Nevertheless, this assumption has
some formal consequences, and clause (iii) of III-A12 is one of them. If the states are
stochastically independent, then they are logically independent (for each state sj P Si,
s1

j P Si1 , the intersection sj Xs1
j is non-empty), and clause (iii) guarantees this. Technically,

it implies that the set of states of the grand world situation is the Cartesian product of the
sets Si.

The supplementary assumption that there exists not only a set of simple small world
situations whose states cover the grand world state space but that there exists such a set
of situations whose states are stochastically independent is made here largely for conve-
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nience. First of all, versions of the result stated below continue to hold mutatis mutandis

when this assumption is weakened appropriately. Furthermore, given that the aim here is
merely to indicate that the results in the previous sections can be reformulated in the con-
text of a single situation, rather than enter into complicated technical details, the simplicity
permitted by the assumption justifies its use. Finally, the assumption is quite plausible in
many contexts. Naturally, one can always invent a grand world situation (set of states, set
of consequences and preference on acts) where the assumption of the existence of sim-
ple small world subsituations with stochastically independent states will not hold (and in
particular, where III-A12 is violated). However, if, as is more often the case, one knows
some of the acts, consequences and events involved in a decision problem and one wishes
to elicit attitudes, then it is usually possible to find a model of the problem as a single grand
world situation which has the required property. Note, for example, that most of the simple
situations considered in the previous sections have stochastically independent states: the
state of health of the wife is stochastically independent of the result of the horse race, for
example. The grand world situation generated by these simple situations has a set of states
which is covered by stochastically independent sets of events. 12 Indeed, what was done
in previous sections can be thought of as operating in this, single, grand world situation.
For these cases, which concern us here insofar as they show that the interpretation in terms
of hypothetical situations is unnecessary, the assumption of stochastic independence is not
implausible.

Axiom III-A13 does the job of Doxastic Consistency (III-A9); in fact, given the frame-
work, it is equivalent to the stronger III-A10 (Proposition III.2). The comments made in
Section III.2 regarding Doxastic Consistency largely hold for III-A13. In particular, it has
behavioural content, demanding that the agent have a certain consistency: the probabili-
ties which can be deduced from his preferences in simple situations do not depend on the
consequences and thus the simple situation used.

Finally, III-A14 is the equivalent in the current framework of Null Consistency (III-
A11). It just says that, if A as an event in the simple situation pS 1, C 1, ®1q is null, then it is
null as an event in pS, C, ®q.

12. For details on how to generate a grand world state space from small world ones, see Hill (2008).
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III.4.2 Theorem

One can thus obtain an (essentially) unique representation of the preference relation of
the form (III.2) which agrees with the probabilities and utilities elicited in the simple small
world situations.

Theorem III.3. Let S be a set of states, X a set of outcomes, C the set of lotteries over X

and ® an order on A. Suppose that III-A2-III-A4 hold on ®. Suppose furthermore that III-

A12 holds with set tSiuiPI and that III-A13-III-A14 hold. Then, there exists a probability

distribution p on S, a utility function u on X , and a function � : S ˆ X Ñ < such that,

— for all f, g P A

(III.7)
f ® g iff

ÿ

sPS,xPX

ppsq.�ps, xq.upxq.fps, xq §
ÿ

sPS,xPX

ppsq.�ps, xq.upxq.gps, xq

— There exist positive ↵ and real � such that, for each x P X

(III.8)
ÿ

sPS

ppsq.�ps, xq.upxq “ ↵upxq ` �

— For each i P I , there exists positive ↵i and real �i such that, for each sj P Si, for

each x P Xi,

(III.9)
ÿ

sPsj

ppsq.�ps, xq.upxq “ ↵ippsjq.upxq ` �ippsjq

Furthermore, if p1, u1, �1 is another representation satisfying (III.7–III.9), then there

exist positive real numbers a and c, and real numbers b and ds for each s P S, such that

p1psq “ ppsq, u1pxq “ a.upxq ` b and �1ps, xq “ c.�ps, xq ´ b.c
u1pxq .�ps, xq ` ds

u1pxq , for all

s P S, x P X , and ds “ 0 if s is null.

Remark III.4. (III.8) corresponds to (III.5) of Theorem III.2 insofar as it states that the
preferences on constant acts is represented by u (and that this representation is unique up
to positive affine transformation).

(III.9) corresponds to (III.6) of Theorem III.2 insofar as it reflects the fact that the pref-
erence order in situations pSi, Ci, ®iq is represented by p and u (and that this representation
is unique up to positive affine transformation of u).
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III.A Appendix

Lemma III.A.1. III-A7 holds if and only if, for all C, k⌃Ck has at most one element (up

to positive affine transformation).

Proof. For any C, if there is at most one element of k⌃Ck, then all simple situations ac-
cord the same utilities to consequences (up to positive affine transformation), and thus to
constant acts, so III-A7 holds.

On the other hand, if III-A7 holds, then using the von Neumann-Morgenstern theorem
on the preferences on constant acts, one obtains a utility function on constant acts, and
thus consequences, which applies in all situations. However, in each situation, the utility
provided by Theorem III.1 must also represent the preference over constant acts, by (III.3);
by the uniqueness properties, such utilities must agree up to positive affine transformation.

Lemma III.A.2. III-A9 holds if and only if, for all S, k⌅Sk has at most one element.

Proof. Take any S, and suppose that there is at most one element of k⌅Sk. Consider
situations �

1

, �
2

P XiS and elements a, b P X�1 and c, d P X�2 satisfying the condi-
tions of III-A9. The utilities u

1

and u
2

representing the orders in these situations can
be scaled so that u

1

paq “ u
2

pcq and u
1

pbq “ u
2

pdq. But then, for any f P Lpta, buqS ,
∞

S,X�1
ppsqu

1

pxqfps, xq “ ∞
S,X�2

ppsqu
2

pxq⌧pfqps, xq: so the preference orders behave
as in III-A9.

Suppose now that III-A9 holds. For any �
1

, �
2

P ⌅S and any a, b P X�1 and c, d P
X�2 satisfying the conditions of III-A9, take the representations p

1

, u
1

and p
2

, u
2

with
u

1

paq “ 0, u
1

pbq “ 1 and u
2

pcq “ 0, u
2

pdq “ 1. Consider the following acts in �
1

: for
each A Ñ S fA, with fAps, bq “ 1 for s P A, fAps, aq “ 1 for s R A (and fps, xq “ 0

elsewhere); for each element y of Lpta, buq, the constant act gy taking the value y. Note
that p

1

pAq “ ∞
S,X�1

p
1

psqu
1

pxqfAps, xq “ infyPLpta,buq,fA®�1gy

∞
X�1

ypxqu
1

pxq. However,
the image of each of these acts under ⌧ is of the same type (respectively, f 1

A, g1
y1), and u

2

takes the same value as u
1

on the images of the elements involved, so, for all A Ñ S,
p

1

pAq “ p
2

pAq.

Proposition III.1. In the presence of III-A1, III-A10 implies III-A9.
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Proof. Suppose there is more than one element in k⌅Sk for some S. Then there are simple
situations �

1

, �
2

P ⌅S , with representations involving p
1

and p
2

, where p
1

‰ p
2

. By III-
A10, the situation �

12

with set of states S and set of consequences C�1 \ C�2 is simple,
and so has representation with probability p

12

. By III-A1, ®�1 coincides with ®�12 on the
acts common to both situations; so by the uniqueness properties of Theorem III.1, they
must be represented using the same probability on S. The same goes for ®�2: so p

1

“ p
2

,
contradicting the supposition. By Lemma III.A.2, III-A9 must hold.

Proof of Theorem III.2. Existence. If � is simple, the existence of the representation (III.4),
with �ps, xq “ 1 for all s, x, is given immediately by Theorem III.1. By III-A7, III-A9 and
Lemmas III.A.1 and III.A.2, this representation satisfies the other two clauses.

Suppose � is not simple. By III-A6, III-A7, III-A8, III-A9 and Lemmas III.A.1 and
III.A.2, there is a unique probability function p and a utility function u, unique up to positive
affine transformation, satisfying (III.5) and (III.6).

By Postulate III.2, a version of the von Neumann-Morgenstern theorem applies in �
(Fishburn, 1970, p176), giving a representation by an evaluation function U : S�ˆX� Ñ <,
unique up to simple positive affine transformation; that is, for all f, g P A�,

(III.10) f ®� g iff
ÿ

S� ,X�

Ups, xq.fps, xq §
ÿ

S� ,X�

Ups, xq.gps, xq

Pick U such that Ups, xq “ 0 on the null states (if ®� has any).

Define � the function on S� ˆ X� such that

�ps, xq “
#

Ups,xq
ppsq.upxq if ppsq ‰ 0

1 if ppsq “ 0

By construction and by III-A11, (III.4), (III.5) and (III.6) hold.

Uniqueness. The uniqueness properties of p and u follow from the application of Theorem
III.1 to the situations in ⌅S and ⌃C . Moreover, as noted above, U is given up to simple
positive affine transformation. So, for another representation p1, u1, �1, there are a, b, a1 and
b1
s for each s P S�, with a and a1 positive, such that, for all s P S�, x P X�, p1psq “ ppsq,

u1pxq “ a.upxq ` b and ppsq.�1ps, xq.u1pxq “ a1.ppsq.�ps, xq.upxq ` b1
s. Substituting for u
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and solving for �1, one obtains the required result, with c “ a1
a

and ds “ bs
ppsq when ppsq ‰ 0

and ds “ 0 when ppsq “ 0.

Proposition III.2. III-A13 holds if and only if III-A10 does.

Proof. Suppose III-A10 but not III-A13. Since X is finite, for each S 1 partitioning S, there
is no infinite ascending chain X0 Ä X1 Ä . . . with Xj Ñ X for all j and pS 1, Cj, ®jq
simple for all j. So, if III-A13 is not satisfied, there must be a S 1 partitioning S and X

1

and
X

2

with X
1

‰ X
2

such that pS 1, C
1

, ®
1

q and pS 1, C
2

, ®
2

q are simple, and X
1

and X
2

are
maximal. But, by III-A10, X

12

“ X
1

Y X
2

also yields a simple situation pS 1, C
12

, ®
12

q,
contradicting the maximality of X

1

and X
2

.

Suppose III-A13, and consider any pair of simple small world situations pS 1, C 1
1

, ®1
1

q
and pS 1, C 1

1

, ®1
1

q, for sets of outcomes X 1
1

and X 1
2

. Since X 1
1

, X 1
2

Ñ X 1, the maximal set
mentioned in III-A13, X 1

3

“ X 1
1

Y X 1
2

Ñ X 1, and since ®1
3

coincides with ®1 on common
acts, pS 1, C 1

3

, ®1
3

q is simple; so III-A10 holds.

Proof of Theorem III.3. The proof proceeds in much the same way as that of Theorem III.2.

Existence. By III-A2-III-A4, a version of the von Neumann-Morgenstern theorem can be
applied (Fishburn, 1970, p176), yielding an evaluation function U : S ˆ X Ñ < which is
unique up to similar positive affine transformation. If ® has null states, then pick U such
that Ups, xq “ 0 on the null states. Let u be the restriction of U to constant acts. That is,
upxq “ ∞

sPS Ups, xq. Note that u is unique up to positive affine transformation.

By III-A12-III-A13 and Theorem III.1, for each Si, there is a unique pSi, Xi, ®iq with
Xi maximal, and a unique pi and ui, unique up to positive affine transformation, represent-
ing ®i. That is, for all f, g P Ai,

(III.11) f ®i g iff
ÿ

sjPSi,xjPXi

pipsjq.uipxjq.fpsj, xjq §
ÿ

sjPSi,xjPXi

pipsjq.uipxjq.gpsj, xjq

Since both ui and u represent the constant acts taking values in Ci, they are positive
affine transformations of each other. The orders ®i are thus represented (in the sense of
equation (III.11)) by pi and u.
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By III-A12, for each s P S, there exists a unique set tss
i uiPI , si P Si, with s “ ì

iPI ss
i .

Define p on S as follows:

(III.12) ppsq “
π

iPI

pipss
i q

Finally, define � to be the function on S ˆ X such that

�ps, xq “
#

Ups,xq
ppsq.upxq if ppsq ‰ 0

1 if ppsq “ 0

By construction and by III-A14, p, u and � satisfy (III.7). Therefore
∞

sPS ppsq.�ps, xq.upxq represents the restriction of ® to constant acts. By the uniqueness
properties of u, as a representation of this order, there is a positive real number ↵ and a
real number � such that

∞
S ppsq.�ps, xq.upxq “ ↵upxq ` � for all x P X . Thus (III.8) is

satisfied.
In a similar way, for each i P I , both p, � and u, and pi and u represent ®i: the first

via (III.7), the second with (III.11). But, by construction of p, pipsiq “ ∞
sPsi

ppsq “
ppsiq. Thus, by the uniqueness the probability and the uniqueness, up to positive affine
transformation, of the utility in the representation of ®i, there exists a positive real number
↵i and a real number �i such that, for each sj P Si, x P X:

∞
sPsj

ppsq.�ps, xq.upxq “
↵i.pipsjq.upxq ` �ipipsjq “ ↵i.ppsiq.upxq ` �ippsjq. So (III.9) is satisfied.
Uniqueness. The uniqueness properties of p follow from Theorem III.1 and III-A13, and the
uniqueness properties of u from the von Neumann-Morgestern theorem applied to constant
acts. Moreover, as noted above, U is unique up to simple positive affine transformation.
So, for another representation p1, u1, �1, there are a, b, a1 and b1

s for each s P S, with a

and a1 positive, such that, for all s P S, x P X , p1psq “ ppsq, u1pxq “ a.upxq ` b and
ppsq.�1ps, xq.u1pxq “ a1.ppsq.�ps, xq.upxq ` b1

s. Substituting for u and solving for �1 as in
the proof of Theorem III.2, one obtains �1ps, xq “ a1

a
�ps, xq´ b.a1

a
.�ps,xq

u1pxq ` b1
s

ppsq.u1pxq , and thus
the required result, with c “ a1

a
and ds “ bs

ppsq when ppsq ‰ 0 and ds “ 0 when ppsq “ 0.
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IV An additively separable representation
in the Savage framework

Abstract

This paper proposes necessary and sufficient conditions for an additively separable repre-
sentation of preferences in the Savage framework (where the objects of choice are acts:
measurable functions from an infinite set of states to a potentially finite set of conse-
quences). A preference relation over acts is represented by the integral over the subset
of the product of the state space and the consequence space which corresponds to the act,
where this integral is calculated with respect to an evaluation measure on this space. The
result requires neither Savage’s P3 (monotonicity) nor his P4 (weak comparative probabil-
ity). Nevertheless, the representation it provides is as useful as Savage’s for many economic
applications. 1

Keywords: Expected utility; additive representation; state-dependent utility; monotonic-
ity.

JEL Classification: D81.

1. This is a modified version of a paper of same name that appeared in the Journal of Economic Theory,
145(5): 2044-2054, September 2010. The main modifications involve the main result, which contained an
error (it claimed countable additivity where only finite additivity can be obtained) and in the introduction
of the Constant act-free Monotone Continuity axiom as a condition for countable additivity. Further details
available on request.

IV-1
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IV.1 Introduction

According the standard theory of decision under uncertainty, first proposed and axioma-
tised by Savage (1954), a rational agent’s preferences over acts (measurable functions from
an infinite set of states to a potentially finite set of consequences) are represented by a prob-
ability measure over states and a state-independent utility function on consequences. This
representation assumes ordinal state-independence: that if one prefers one consequence to
another, one will retain this preference no matter what event is realised. Moreover, it also
assumes cardinal state-independence: that one’s utility for a particular consequence is the
same no matter what event is realised. These assumptions may been challenged.

On the one hand, it has long been recognised that cardinal state-independence does
not hold in certain cases: for example, people’s risk attitudes many depend on their state
of health, and this may affect their choices regarding health and life insurance. On the
other hand, although less commonly noted in the literature, ordinal state-independence
also seems to fail in many cases, especially when the consequences are commodities. One
might prefer a herbal tea at home to a dinner in an expensive restaurant next Saturday if
tired, but the dinner to the tea if not. When in ill health, one might prefer living in a built-
up area (to be close to the necessary services), whereas in good health, one might prefer
the isolation of the countryside. These latter preferences inform one’s decisions regarding
investment in one’s home, which, like health insurance decisions, require one to consider
what one’s state of health might be in the future and what preferences one would have in
different possible states of health.

In such cases, the axioms corresponding to ordinal and cardinal state-independence –
monotonicity (Savage’s P3) and weak comparative probability (Savage’s P4) respectively
– are not satisfied. To account for such cases, a weakening of Savage’s theory is required;
namely, a set of axioms, including neither monotonicity nor weak comparative probability,
which are necessary and sufficient for the following sort of additively-separable represen-
tation: 2 for all acts f , g,

2. In this formula, we assume that there are finitely many states. This assumption is made entirely for
expositional purposes: it is not true in the Savage framework, nor in the result proposed here. See Sections
IV.2 and IV.3.
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(IV.1) f § g iff
ÿ

sPS

Ups, fpsqq §
ÿ

sPS

Ups, gpsqq

where U is a real-valued function of states and consequences which we call the evalua-

tion. 3 Under the standard theory, and in particular in the presence of the state-independence
axioms, this function can be obtained as the product of the probability and the state-
independent utility. However, in cases of possible state-dependence, probability and state-
independent utility functions do not always exist, and even when they do, they lack eco-
nomic and empirical meaning because they are not unique in the appropriate sense (see
Karni (1996, 2011)). By contrast, the evaluation U exists even in cases of state-dependence
and it does have the appropriate uniqueness properties; in cases of state-dependence, it is
the more solid economically meaningful concept.

Moreover, it can fill many of the roles traditionally played by probability and utility
in economic applications. Consider, for example, the decision maker’s choice today about
whether to book a table at the restaurant next Saturday or not. To determine what he will
choose, only his evaluation U is needed: a factorisation into a probability measure and a
utility function adds no useful information. Furthermore, the representation of preferences
by an evaluation is entirely sufficient for most standard exercises of comparative statics.
For example, the evaluation is all that is needed to determine the effect of changes in the
restaurant’s prices on the decision maker’s choice.

To date, the only axiomatisation of the form (IV.1) in the Savage framework Wakker
and Zank (1999) drops weak comparative probability but retains monotonicity, and hence
does not apply in the cases mentionned above. In this paper, we provide an axiomatisation
in the Savage framework which relies neither on monotonicity nor on weak comparative
probability. The theorem is stated in Section IV.2 and is discussed, along with related
literature, in Section IV.3. The proof is to be found in the Appendix.

IV.2 Axioms and theorem

Let S be a set of states, with a �-algebra of events FS which contains tsu for each
s P S, and let C be a set of consequences, with a �-algebra FC . C can be finite or infinite:

3. Thanks to Mark Machina and Edi Karni for suggesting this terminology.



An additively separable representation in the Savage framework IV-4

if it is finite or countable, FC will just be the set of subsets of C; if it is uncountable, this
need not be the case. Let A be the set of measurable functions from S to C – they are
called the acts – and let § be a binary relation on A; †, „, ° and • are defined from § in
the usual way.

Let Ap be the set of partial measurable functions 4 from S to C; that is, measurable
functions from A to C, where A Ñ S. Elements of Ap are called partial acts, and the set
A on which a partial act is defined is called its domain. Note that, since A can be S, every
act belongs to Ap. For any act f and event A, fA will denote the partial act with domain
A which agrees with f on this domain. To each partial act fA, there corresponds a subset
of S ˆ C: namely its graph tps, fApsqq| s P Au. This subset shall also be called fA. FSC

is defined to be the �-algebra on S ˆ C generated by Ap. Note that, when C is finite or
countable, FSC coincides with the product of FS and FC ; however, if C is uncountable,
this need not be the case. 5

For A and B disjoint, fAgB is the partial function taking the values of f on A and the
values of g on B. Given an event A, Ac is the set SzA; since it is measurable, it is also an
event. As is standard, §A will denote the order § on acts, given the event A. The traditional
notion of null event shall be employed: an event A is null iff, for any pair of acts f, g P A,
f „A g.

We assume two of the basic axioms of Savagean decision theory.

Axiom IV-A1 (Weak order). § is a weak order: (a) for all f , g in A, f § g or g § f ; and
(b) for all f , g and h in A, if f § g and g § h, then f § h.

Axiom IV-A2 (Sure-thing principle). For any acts f , g, h, h1 in A and any non-null event
A, fAhAc § gAhAc iff fAh1

Ac § gAh1
Ac

Following Gilboa (1987); Abdellaoui and Wakker (2005), we factorise Savage’s P6 ax-
iom into two elements: the standard Archimedean axiom (see for example (Krantz et al.,
1971, p204-205)) and solvability (which differs slightly from the solvability axioms pro-

4. Henceforth all functions, partial functions and sets of states shall be assumed to be measurable.
5. Suppose that S “ C “ < with F

S

and F
C

the Borel sets: on the one hand, the graphs of strictly
monotonic measurable functions are F

SC

-measurable but not F
S

ˆ F
C

-measurable; on the other hand,
subsets tps, cq| s P ps1, s2q, c P pc1, c2qu for s1 † s2 and c1 † c2 are F

S

ˆ F
C

-measurable but not
F

SC

-measurable.
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posed in the articles mentioned, in so far as they suppose monotonicity, and this is not
assumed here).

Axiom IV-A3 (Archimedean axiom). For each pair of acts f and g, if A
1

, . . . , Ai, . . . is a
sequence of disjoint non-null events such that fAigAc

i
„ fAjgAc

j
° g for all i, j, then it is a

finite sequence.

Axiom IV-A4 (Solvability). For acts f , g, h in A with f † g † h, there exists an event
A Ñ S such that fAhAc „ g.

A final technical condition is required, which was first proposed in Hill (2009).

Axiom IV-A5 (Local stability). For any f, g in A, there exists events A
1

, A
2

and A
3

, such
that the non-empty Ai form a partition of S and such that: for any non-null event B Ñ A

1

,
f †B g; for any non-null event B Ñ A

2

, f „B g; and for any non-null event B Ñ A
3

,
f °B g.

This axiom is required because the set of states is infinite; it is automatically satisfied
on finite sets of states.

Theorem IV.1. For a given S, C, §, suppose that IV-A4 and IV-A5 are satisfied. Then the

following are equivalent:

(i) § satisfies IV-A1–IV-A3

(ii) there exists a finitely additive measure U on pS ˆ C,FSCq which takes finite values

on A and is such that, for every f, g P A,

(IV.2) f § g iff
ª

f

dU §
ª

g

dU

Furthermore, let U 1 be any other finitely additive measure satisfying (IV.2). Then there

exists a ° 0 and a finitely additive measure b on pS,FSq such that U 1 “ aU ` b.

U is the evaluation and can be thought of as the analogue of the function U in (IV.1).
For further discussion of this representation, see Section IV.3.

Like the probability measure obtained by Savage (1954), U is only finitely additive. It
is known, since the work of Villegas (1964) and Arrow (1971), that adding a Monotone
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Continuity axiom is necessary and sufficient to ensure countable additivity. The same is
true for U , with respect the following version of Monotone Continuity, formulated without
using constant acts.

Axiom IV-A6 (Constant act-free Monotone Continuity). For any f, g, h in A such that
f ° g and sequence of events tA

1

ui•1

with A
1

Ö A
2

Ö . . . and Y8
i“1

An “ H, there exists
n • 1 such that hAnfAc

n
° g and f ° hAngAc

n
.

Proposition IV.1. For a given S, C, §, suppose that IV-A4 and IV-A5 are satisfied. Then

§ satisfies IV-A1–IV-A3 and IV-A6 if and only if it is represented according to (IV.2) by a

countably additive measure U on pS ˆ C,FSCq taking finite values on A.

The only difference between Constant act-free Monotone Continuity and the standard
axiom is the use of a constant act in the place of h. Given that no state-independence axioms
are assumed here, constant acts cease to have any particular status, and so it is not surprising
that the reference to them in the Monotone Continuity axiom needs to be dropped. Indeed,
in the presence of monotonicity (Savage’s P3), Constant act-free Monotone Continuity is
equivalent to the standard Monotone Continuity axiom.

IV.3 Discussion

Axiomisations for representation (IV.1) have been obtained long ago in frameworks
involving a finite number of states and an infinite set of consequences endowed with a rich
structure: for example, where the set of consequences is the set of lotteries over a set of
outcomes (the so-called Anscombe and Aumann framework) or a connected topological
space. However little work has been done on how such a representation can be got in the
Savage framework, which assumes a possibly finite set of consequences and an infinite set
of states. The main paper in the literature dealing with this problem is Wakker and Zank
(1999). We shall bring out the pertinent aspects of Theorem IV.1 via the comparison with
their proposal. 6

The most important difference between the two papers lies in the use of monotonicity:
Wakker and Zank need this axiom, whereas Theorem IV.1 does not assume it. As noted in

6. The main points made below also hold for Castagnoli and LiCalzi (2006), which proposes results
similar to those in Wakker and Zank (1999), though with a different motivation.
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the Introduction, this axiom is violated in several interesting cases, and any full reply to the
problem of state-dependent utilities should be able to deal with such cases. The theorem
proposed here does apply in such cases, whereas Wakker and Zank’s does not.

Another important difference is in the assumptions on the set of consequences. Wakker
and Zank require that the set of consequences is a connected topological space, whereas no
structure is assumed on the set of consequences here. In particular, Theorem IV.1 applies
to finite, as well as infinite, consequence spaces. Not only is this closer to Savage’s original
theory, where the structural burden is borne by the state space alone, but there are many
cases, in particular those involving indivisible goods, where the assumptions on the set of
consequences made by Wakker and Zank may be difficult to justify, but where the theorem
proposed here continues to apply.

One final difference between the two papers lies in the presentation of the result. It is a
non-trivial conceptual problem to find an analogue of (IV.1) when the set of states is infinite
(see Wakker and Zank (1999) for an excellent discussion). Wakker and Zank consider two
solutions of this problem, both of which are different from, though of course equivalent
to, the solution proposed here. To illustrate the relationship, consider Wakker and Zank’s
second solution (Wakker and Zank, 1999, Theorem 12), which represents preferences by a
functional of the form

≥
S

ups, fpsqq dµpsq, where µ is a non-unique measure on the state
space, and u is a function on state-consequence pairs which is not unique up to positive
affine transformations. Firstly, the representation proposed here, which involves a single
measure U on the Cartesian product of the state space and the consequence space retains a
closer analogy with (IV.1), the only difference being the replacement of sums by integrals
and a function by a measure. Moreover, given the uniqueness of the evaluation U and
the lack of uniqueness of the functions featuring in Wakker and Zank’s representation, the
former reflects more accurately the economic and empirical content of the representation.

The first two differences mentionned above render Theorem IV.1 more useful in the
construction of new theories of state-dependent utilities. The goal of much of the literature
on state-dependence is to find necessary and sufficient conditions for the existence of a
unique probability function and a suitably unique state-dependent utility function which
represents the decision maker’s preferences. A popular technique is to assume axioms
necessary and sufficient for a representation of the form (IV.1), and then search for new
supplementary conditions which guarantee a unique decomposition of the evaluation U
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(for example Karni et al. (1983); Karni (2011)). To date, most of this research has had
to adopt a framework with a finite state space and a rich consequence space, because, as
noted above, these are the only frameworks in which (IV.1) has been axiomatised without
relying on monotonicity. Using Theorem IV.1, one can now expect to be able to extend
these theories to the Savage framework.

Finally, the result may have useful applications to time preferences. If one interprets
S as a set of time points (say, an interval on the real line) and C as a set of consumption
bundles, then the objects of choice (acts) are consumption streams of the sort introduced
by Strotz (1955). Theorem IV.1 applies, yielding a representation of the form (IV.2). This
representation bears the same relationship to the functional form proposed by Strotz as rep-
resentation (IV.1) bears to the representation proposed by state-dependent utility theorists
such as Karni et al. (1983): the single measure on consumption bundle-time point pairs
is decomposed into a discount factor and a time-dependent “instantaneous” utility function
(Strotz, 1955, p167). And just like for the case of state-dependent utility, all that is required
to obtain Strotz’s representation are supplementary axioms which guarantee the decompo-
sition. To the knowledge of the author, this is the first axiomatisation in the continuous-time
setting of a functional form close to that proposed by Strotz: in particular, contrary to much
of the recent literature on time-discounting, it does not suppose that “instantaneous utili-
ties” are time-independent (an assumption which corresponds to state-independence).
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IV.A Appendix

Preliminary notions

The proof relies heavily on Theorem 4 in (Krantz et al., 1971, Ch 2). It is worth repro-
ducing the essential definition and the statement of the theorem.

Definition IV.1 (Krantz et al. (1971), p44). Let A be a nonempty set, B and Á nontrivial
binary relations on A and ˝ a binary operation from B into A. The quadruple xA, Á, B, ˝y
is an Archimedean, regular, positive, ordered local semigroup iff, for all a, b, c, d P A, the
following eight axioms are satisfied:

1. xA, Áy is a total order: that is, an anti-symmetric weak order (a weak order such that,
if a • b and b • a, then a “ b).

2. if pa, bq P B, a Á c, and b Á d, then pc, dq P B.

3. if pc, aq P B and a Á b, then c ˝ a Á c ˝ b.

4. if pa, cq P B and a Á b, then a ˝ c Á b ˝ c.

5. pa, bq P B and pa˝b, cq P B iff pb, cq P B and pa, b˝cq P B; and when both conditions
hold pa ˝ bq ˝ c “ a ˝ pb ˝ cq.

6. if pa, bq P B, then a ˝ b ° a.

7. if a ° b, then there exists c P A such that pb, cq P B and a Á b ˝ c.

8. tn| n P Na and b ° nau is a finite set.

where Na, a subset of the positive integers, and na, an element of A for each n P Na, are
defined inductively as follows:

(i) 1 P Na and 1a “ a;

(ii) if n´1 P Na and ppn´1qa, aq P B, then n P Na and na is defined to be ppn´1qaq˝a;

(iii) if n ´ 1 P Na and ppn ´ 1qa, aq R B, then for all m • n, m R Na.

The importance of this definition is expressed by the following theorem (Theorem 4 in
Krantz et al. (1971)).

Theorem IV.2. Let xA, Á, B, ˝y be an Archimedean, regular, positive, ordered local semi-

group. Then there is a function � from A to <` such that for all a, b P A,
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(i) a Á b iff �paq • �pbq;

(ii) if pa, bq P B, then �pa ˝ bq “ �paq ` �pbq.

Moreover, if � and �1 are two functions from A to <` satisfying conditions (i) and (ii),

then there exists ↵ ° 0 such that, for any nonmaximal a P A, �1paq “ ↵�paq.

Proof of Theorem IV.1

The proof employs several propositions and lemmas which are proved separately below.
The (ii) to (i) direction is straightforward, so we will restrict attention to the (i) to (ii)
direction. Henceforth we assume that IV-A1–IV-A5 hold.

Pick any act e P A, which shall remain fixed throughout the proof. Let A` “ tfA P
Ap | A non-null event and for any non-null event A1 Ñ A, fA1eA1c ° eu and A´ “ tfA P
Ap | A non-null event and for any non-null event A1 Ñ A, e ° fA1eA1cu. Consider the rela-
tion „ on A` defined by fA „ gB if fAeAc „ gBeBc; by A1, this is an equivalence relation.
Let A„̀ be the set of equivalence classes of A` under „. A„́ is defined similarly. rfAs shall
denote the equivalence class (element of A„̀) containing fA. 7 Define the order §„̀ on A„̀
as follows: rfAs §„̀ rgBs iff, for any fA P rfAs and gB P rgBs, fAeAc § gBeBc . Define
B`, a relation on A„̀, as follows: prf 1

A1
s, rf 2

A2
sq P B` iff there exists, for each i P t1, 2u,

f i
Ai

P rf i
Ai

s such that the Ai are pairwise disjoint. Then define ˝`, a binary operation from
B` into A„̀, as follows: rf 1

A1
s ˝` rf 2

A2
s “ rf 1

A1
f 2

A2
epA1YA2qcs where for each i P t1, 2u,

f i
Ai

P rf i
Ai

s and the Ai are pairwise disjoint.

Let us first consider the trivial cases. If A„̀ and A„́ are both empty, then define U to be
the measure on pS ˆC,FSCq which is 0 everywhere. If one or both of A„̀ and A„́ are non-
empty, but B` and B´ are empty, then A„̀ (resp. A„́) has one element if it is non-empty
(Lemma IV.A.2). In such cases, define the measure U on pS ˆ C,FSCq, by UpfAq “ 0 if
fAeAc „ e, UpfAq “ 1 if fAeAc ° e and UpfAq “ ´1 if fAeAc † e for any fA P Ap. It is
straightforward to show in both these cases that U represents • according to (IV.2).

For the rest of the proof it will be assumed that one or both of B` and B´ are non-empty.
The proof for this case rests on the following proposition.

7. So if f

A

„ g

B

then rf
A

s “ rg
B

s. Often, below, we shall need to chose an arbitrary element from an
equivalence class rf

A

s; for notational convenience we shall often call the element f

A

.
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Proposition IV.2. xA„̀, •„̀,B`, ˝`y and xA„́, §„́,B´, ˝´y are Archimedean regular pos-

itive ordered local semigroups (Definition IV.1).

It follows from Theorem IV.2 that there is a function U`
: A„̀ Ñ <` which respects the

order •„̀ (for rfAs, rgBs P A„̀, U`prfAsq • U`prgBsq iff rfAs •„̀ rgBs) and represents the
operation ˝` by addition (for rfAs, rgBs P B`, U`prfAs ˝` rgBsq “ U`prfAsq `U`prgBsq);
moreover, this function is unique up to a positive multiplicative factor. Similarly there is a
function U´

: A„́ Ñ <` inversing order (for rfAs, rgBs P A„́, U´prfAsq • U´prgBsq) iff
rfAs §„́ rgBs and representing ˝´ by addition, which is unique up to a positive multiplica-
tive factor. (Equivalently, ´U´ respects the order •„́ and represents ˝´ by addition.) These
naturally induce real-valued functions on A` and A´ sharing the same properties; to ease
notation, these functions will also be called U` and U´ (so we have U`pfAq “ U`prfAsq).

It remains to “calibrate” the functions U` and U´; that is, to ensure that the positive
and negative utilities add correctly. This only needs to be done if both A„̀ and A„́ are
non-empty; henceforth we suppose that this is indeed the case.

Definition IV.2. rfAs P A„̀ and rgBs P A„́ cancel if there exist fA P rfAs, gB P rgBs, such
that A and B are disjoint and fAgBepAYBqc „ e.

Let I` “ trfAs P A„̀ | there exists rgBs P A„́, rfAs and rgBs cancelu and let I´ “
trgBs P A„́ | there exists rfAs P A„̀, rfAs and rgBs cancelu. These are non-empty, given
that A„̀ and A„́ are (Lemma IV.A.3). Moreover, there is a natural mapping � : I` Ñ I´,
taking rfAs to the rgBs such that rfAs and rgBs cancel. It is straightforward to show that
this mapping is well-defined, and that it is one-to-one and onto.

We shall refer to the restrictions of B` to I` by BI
` and the restrictions of •„̀ and ˝`

by •„̀ and ˝` respectively; similarly for I´. Note that BI
` is non-empty if and only if

BI
´ is, so there are two cases.
Case 1. BI

` and BI
´ are empty. In this case, I` and I´ contain one element each

(the proof of this is a simple extension of the proof of Lemma IV.A.2); let the elements
be yrfAs and �p yrfAsq respectively. So for rgBs P I´, U´prgBsq “ ↵U`p�´1prgBsqq, where
↵ “ U´p�pzrfAsqq

U`pzrfAsq .
Case 2. BI

` and BI
´ are non-empty. By inspection of the proof of Proposition IV.2,

it is easily seen that xI`, •„̀,BI
`, ˝`y and xI´, §„́,BI

´, ˝´y are Archimedean regular
positive ordered local subgroups, so Theorem IV.2 applies. U´ represents the restriction of
§„́ to I´; however, U`.�´1 does as well.
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Proposition IV.3. For rgBs, rg1
B1s P I´, U`p�´1prgBsqq • U`p�´1prg1

B1sqq iff rgBs §„́
rg1

B1s.

Since, by Theorem IV.2, any two representations of the restriction of §„́ to I´ are related
by a positive multiplicative transformation, there exists an ↵ ° 0 such that, for all rgBs P
I´, U´prgBsq “ ↵U`p�´1prgBsqq.

Define U : Ap Ñ < as follows. Firstly define it on A`YA´YtfA P Ap | for any event A1 Ñ
A, fA1eA1c „ eu:

(IV.3) UprfAsq “

$
’’&

’’%

U`pfAq if fA1eA1c ° e for all non-null events A1 Ñ A

´ 1

↵
U´prfAsq if fA1eA1c † e for all non-null events A1 Ñ A

0 if fA1eA1c „ e for all events A1 Ñ A

For any fA P Ap, IV-A5 applied to fAeAc and e ensures that there is a partition of A

into three events A
1

, A
2

, A
3

such that, on each event, one of the three conditions in (IV.3)
holds. So U can be defined for any fA P Ap by UpfAq “ UpfA1q ` UpfA2q ` UpfA3q.

Given that FSC is the �-algebra generated by Ap, this suffices to define U on FSC . By
construction, U is a finitely additive measure on pS ˆ C,FSCq, which is finite-valued on A
and represents • according to (IV.2).

Uniqueness. Assume that • is non-trivial and let U 1 be any other measure on pS ˆC,FSCq
taking finite values on A and representing •. Define b : FS Ñ < by bpAq “ U 1peAq,
where e is the act used in the construction of U (e is such that, for any event A, UpeAq “
0). By the additivity properties of U 1, b is a finite-valued finitely additive measure on
pS,FSq. Consider the measure U 1 ´ b.p

1

on pS ˆ C,FSCq, where p
1

is the projection
onto S: p

1

pfAq “ A. For any fA P A` and for all non-null A1 Ñ A, fA1 ° eA1 , so
U 1pfA1q ° U 1peA1q and hence pU 1 ´ b.p

1

qpfA1q ° 0. U 1 ´ b.p
1

is thus strictly positive
on A`. Furthermore, U 1 ´ b.p

1

is well-defined on the set of equivalence classes A„̀; we
now show that U 1 ´ b.p

1

represents •„̀. Let rfAs, rgBs P A„̀ and suppose that rfAs •„̀
rgBs. By Lemma IV.A.1, there exists non-null A1 Ñ A such that fA1 P rgBs. But pU 1 ´
b.p

1

qprfAsq ´ pU 1 ´ b.p
1

qprgBsq “ pU 1 ´ b.p
1

qpfAq ` pU 1 ´ b.p
1

qpeAcq ´ pU 1 ´ b.p
1

qpfA1q ´
pU 1 ´ b ˝ p

1

qpeA1cq “ U 1pfAzA1q ´ U 1peAzA1q • 0 since fAzA1epAzA1qc • e. Similarly,
if pU 1 ´ b.p

1

qprfAsq ´ pU 1 ´ b.p
1

qprgBsq • 0 then U 1pfAeAcq • U 1pgBeBcq and hence
rfAs •„̀ rgBs, since U 1 represents •. So U 1 ´ b.p

1

represents •„̀; a similar argument holds
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for §„́ and A„́. By the uniqueness clause in Theorem IV.2, pU 1 ´ b ˝ p
1

q “ a.U for some
a ° 0.

This completes the proof of Theorem IV.1.

Proof of Proposition IV.1

The right-to-left entailment is straightforward. As concerns the left-to-right direction,
due to a well-known result, it suffices to show that for any f P A and sequence Ai P FS

with Ai Ó H, UpfAiq Ñ 0 for U representing § according to (IV.2). By IV-A5, to establish
this, it suffices to show that, for any Ai Ó H and fA1 P A`, either there exists n • 1 such
that Ai are null for all i • i, or U`pfAiq Ñ 0 (where A` and U` are as defined in the proof
of Theorem IV.1 above); and likewise for U´. We consider the case of U`; U´ is treated
similarly. Consider any such fA1 P A` and Ai Ó H. If there exists n • 1 with Ai null for
all i • n, then the result is immediate, so suppose that this is not the case.

As is clear from the proof of Theorem IV.2 (Krantz et al., 1971, §2.2.2), we can distin-
guish two cases concerning its application to the derivation of U` and U´ in the proof of
Theorem IV.1 (see in particular Proposition IV.2). Either there is a smallest element rhCs
of A„̀ (for all rfAs P A„̀, rhCs §„̀ rfAs), and every element of A„̀ is of the form nrhCs
for some positive integer n (Krantz et al., 1971, §2.2.2), or there is no smallest element of
A„̀. In the first case there are no infinite decreasing sequences of elements of A„̀, whereas
in the latter there are.

If A„̀ has a smallest element, then there exists n • 1 such that Ai is null for all i • n,
contradicting the assumption above. We now consider the case where A„̀ has no smallest
element. By Lemma IV.A.1 and the fact that there exist infinite decreasing sequences of
elements of A`, there exists n • 1 and gB P A` such that B is disjoint from An, and
a sequence of non-null Bk, k • 1 such that gBk

• gBk`1
, Bk Ñ B for all k • 1, and

U`pgBk
q Ñ 0 as k Ñ 8. For each such k, since gBk

eBc
k

° e (where e is as stated in
the proof of Theorem IV.1), by IV-A6 there exists i • N such that gBk

eBc
k

° fAieAc
i
.

If follows from the fact that U` is order preserving (Proposition IV.2 and Theorem IV.2)
that U`pgBk

q ° U`pfAiq • limiÑ8 U`pfAiq. Taking the limit as k Ñ 8 it follows that
limiÑ8 U`pfAiq “ 0. So U is countably additive, as required.
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Proofs of Auxiliary Propositions and Lemmas

The following lemmas will be used below or have been mentioned above.

Lemma IV.A.1. For fA, gB P A`, if rfAs •„̀ rgBs, then there exists a non-null event

A1 Ñ A, such that fA1 P rgBs.
Proof. If fAeAc „ gBeBc , let A1 “ A. If not, fAeAc ° gBeBc ° e, so, by IV-A4, there is
an event A2 Ñ A such that fAzA2eAcYA2 „ gBeBc . Setting A1 “ AzA2 yields the required
result. If A1 were null, then gBeBc „ fA1eA1c „ e, contradicting gB P A`.

Lemma IV.A.2. If A„̀ (resp. A„́) is non-empty and B` (resp. B`) is empty, then A„̀ (resp.

A„́) has just one element.

Proof. Suppose not, and take fA, gB P A` with rfAs °„̀ rgBs. By Lemma IV.A.1, there is
a non-null event A1 Ñ A such that fA1 P rgBs, but by IV-A2 and the fact that rfAs ‰ rgBs,
AzA1 must also be non null. prfA1s, rfAzA1sq P B`, contradicting the assumption that it was
empty.

Lemma IV.A.3. If A„̀ and A„́ are non-empty, then I` and I´ are non-empty.

Proof. Consider arbitrary fA P A` and gB P A´. If A and B have non-null intersection,
then Axiom IV-A4 applied to fAeAc ° e ° gBeBc yields fA1gB1epA1YB1qc „ e, where
A1 Ñ A, B1 Ñ B are non-null events; so rfA1s and rgB1s cancel. If A and B have null
intersection then they can be assumed to be disjoint (remove the intersection from one).
Consider fAgBepAYBqc : if fAgBepAYBqc „ e then rfAs and rgBs cancel; if fAgBepAYBqc ° e,
then applying IV-A4 to fAgBepAYBqc ° e ° gBeBc gives fA1gB1epA1YB1qc „ e where A1 Ñ A

and B1 Ñ B so rfA1s and rgB1s cancel; similarly for fAgBepAYBqc † e.

Proof of Proposition IV.2. Since the cases are similar, we shall only treat the case of xA„̀, •„̀
,B`, ˝`y here. We shall show that the clauses of Definition IV.1 are satisfied.

1. §„̀ is a total order. The order §„̀ on A„̀ inherits the properties of connectedness and
transitivity from the order § on A: so axiom IV-A1 guarantees that §„̀ is a weak order.
Furthermore, since A„̀ is obtained by quotienting by „, §„̀ is anti-symmetric. It is thus a
total order.

2. If prfAs, rgBsq P B`, rfAs •„̀ rf 1
A1s and rgBs •„̀ rg1

B1s, then prf 1
A1s, rg1

B1sq P B`. Since
prfAs, rgBsq P B`, there are elements fA P rfAs, gB P rgBs, with A and B disjoint. Using
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Lemma IV.A.1, choose events A2 Ñ A and B2 Ñ B such that fA2 P rf 1
A1s and gB2 P rg1

B1s.
Since A and B are disjoint, so are A2 and B2, and hence prf 1

A1s, rg1
B1sq P B`.

3. and 4. Note that, since ˝` is commutative, Clause 3. is satisfied if and only if Clause
4. is. So it suffices to establish that: If prfAs, rgBsq P B` and rfAs •„̀ rhCs, then rfAs ˝`

rgBs •„̀ rhCs ˝` rgBs. Since prfAs, rgBsq P B`, there are elements fA P rfAs, gB P rgBs,
with A and B disjoint. Using Lemma IV.A.1, choose an event A1 Ñ A such that fA1 P rhCs.
By the definition of A„̀, fA1eA1c § fAeAc; by Axiom IV-A2, it follows that fA1gBepA1YBqc §
fAgBepAYBqc . Hence rhCs ˝` rgBs §„̀ rfAs ˝` rgBs.
5. prfAs, rgBsq P B` and prfAs ˝` rgBs, rhCsq P B` iff prgBs, rhCsq P B` and prfAs, rgBs ˝`

rhCsq P B`; and when both conditions hold prfAs˝` rgBsq˝` rhCs “ rfAs˝` prgBs˝` rhCsq.

If prfAs, rgBsq P B` and prfAs ˝` rgBs, rhCsq P B`, then there are fA, gB and hC , members
of rfAs, rgBs and rhCs respectively, such that A, B and C are disjoint. It follows that
prgBs, rhCsq P B` and prfAs, rgBs ˝` rhCsq P B`; furthermore prfAs ˝` rgBsq ˝` rhCs “
rfAgBhCs “ rfAs ˝` prgBs ˝` rhCsq. The same argument works in the other direction.

6. If prfAs, rgBsq P B`, then rfAs ˝` rgBs °„̀ rfAs. Since prfAs, rgBsq P B`, there are
elements fA P rfAs, gB P rgBs, with A and B disjoint. fAgBepAYBqc and fAeAc differ solely
on B; by IV-A2, it is their comparison on this set that decides the preference ordering
between them. Furthermore, by definition of A`, gBeBc ° e; hence the required result.

7. If rfAs °„̀ rgBs, then there exists a rhCs P A„̀ with prgBs, rhCsq P B` and rfAs •„̀
rgBs ˝` rhCs. By Lemma IV.A.1, there is an A1 Ñ A such that fA1 P rgBs. Since fAeAc °
fA1eA1c , AzA1 is a non-null event; take C to be an arbitrary non-null subevent of AzA1.
Since fA P A` and C is non-null, fC P A`; since A1 Y C Ñ A, fA1YCepA1YCqc § fAeAc .
Taking rhCs “ rfCs gives the result.

8. For all rfAs, rgBs P A„̀, tn | n P N and rgBs ° nrfAsu is finite, where NrfAs and nrfAs
as in Definition IV.1. Suppose not. Then there exists an infinite sequence f i

Ai
P A` such that

for all i, j, f i
Ai

eAc
i

„ f j
Aj

eAc
j

° e and the Ai are disjoint. The acts f “ f 1

A1
. . . f i

Ai
. . . epîAiqc

and e, and the infinite sequence of disjoint non-null events Ai violate IV-A3.

This concludes the proof of Proposition IV.2.

Proof of Proposition IV.3. Suppose not: there are rgBs, rg1
B1s P I´ with U`p�´1prg1

B1sqq •
U`p�´1prgBsqq but rg1

B1s °„́ rgBs. Pick fA P �´1prg1
B1sq and let A2 Ñ A be such that
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fA2 P �´1prgBsq (such an A2 exists by Lemma IV.A.1). Similarly, pick gB P rgBs with B

disjoint from A, and let B2 Ä B be such that gB2 P rg1
B1s. Since rg1

B1s ‰ rgBs, BzB2 is
non null. By definition, fAgB2epAYB1qc „ e „ fA2gBepA2YBqc , and fA • fA2 . By IV-A2, it
follows that gBzB2epBzB2qc „ fAzA2epAzA2qc • e, contradicting the fact that gB P A´. The
assumption that U`p�´1prg1

B1sqq • U`p�´1prgBsqq but rg1
B1s °„́ rgBs is thus false.
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V Confidence and decision

Abstract

Many real-life decisions have to be taken on the basis of probability judgements of
which the decision maker is not entirely sure. This paper develops a decision rule for tak-
ing such decisions, which incorporates the decision maker’s confidence in his probability
judgements according to the following maxim: the larger the stakes involved in a decision,
the more confidence is required in a probability judgement for it to play a role in the de-
cision. A formal representation of the decision maker’s confidence is proposed and used
to formulate a family of decision models conforming to this maxim. A natural member of
this family is studied in detail. It is structurally simpler than other recent models of de-
cision under uncertainty, which may make it easier to apply to practical decisions, whilst
being axiomatically sound, permitting the separation of beliefs and tastes, and allowing
comparative statics analysis of attitudes to choosing in the absence of confidence. 1

Keywords: Confidence; multiple priors; confidence ranking; cautiousness coefficient;
ambiguity.

JEL classification: D81, D83.

1. This is a slightly modified version of a paper of same name that appeared in Games and Economic
Behavior, 82: 675-692, November 2013

V-1



Confidence and decision V-2

V.1 Introduction

V.1.1 General motivation

A regional governor is faced with the decision whether to permit the construction of a
factory in his area. To evaluate a major uncertainty in the choice – the possibility of damage
to the district farming area (which specialises in maize) – he commissions meteorologists
to estimate the probability that the gases emitted by the proposed factory, which are known
to damage crops, reach the farming area. Although there is a fair amount of disagreement
among the experts, the governor considers that a value of at most 10

´5 for the probability
is quite representative of the opinions. On the basis of this probability estimate and his util-
ities for the relevant consequences, which he determines using standard decision-analysis
techniques, he decides to grant permission for the construction. However, the project falls
through, and a different project comes before him for the same land, namely to use it for
GM maize crops (which are wind pollinated). Evaluating the possible consequences as
before, it becomes clear that, while many aspects are analogous to those for the factory, the
orders of magnitude are far greater: both the advantages of allowing the development and
its main potential undesirable consequence – cross-pollination of GM crops with non-GM
crops – are larger by a factor of a thousand, in the governor’s opinion. As concerns the
probability that pollen from the GM crops arrives at the non-GM farming area, the experts
guarantee that this is the same as the probability of fumes from the factory arriving at the
maize fields, since both depend on the same meteorological factors. Were the governor
to decide as before, using his utilities and the 10

´5 estimate adopted previously, he would
approve the GM project. However, he is uncomfortable with this choice. Although he was
happy to rely on the probability estimate of at most 10

´5 for the decision involving the fac-
tory, he is not sure enough in this estimate when it comes to deciding about the GM crops:
after all, given the potentially grave consequences of GM infection, the stakes are higher in
the latter decision.

At first glance, it may seem that the governor is violating one of the tenets of deci-
sion theory, namely the separation of beliefs and tastes. The standard normative theory of
decision prohibits altering the beliefs, or probability judgements, used depending on the
decision faced. However, this theory ignores the fact that decision makers may be more
or less confident in the beliefs which inform their decisions, and that confidence in beliefs
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is potentially relevant for decision making. Rather than using different beliefs in the two
decisions, the governor could be understood as demanding different levels of confidence in
the beliefs he uses. When the stakes are mediumly high – at worst the agricultural yield
suffers for a (relatively) short period due to pollution – he allows himself to rely on a judge-
ment – that the probability is at most 10

´5 – which he is not confident enough in to invoke
when the stakes are higher – when the worst that can happen is that the GM genes infect
the non-GM population. In the light of these considerations, the governor ceases to appear
irrational. Indeed, he can be understood as invoking the following, perfectly reasonable
maxim: the more important the decision, the more confidence is required in a belief for it
to play a role in that decision.

The main aim of this paper is to develop a decision rule based on this maxim. This
rule should be normatively plausible, as well as simple and tractable, and hence applicable
to decisions such as the one considered above. Such a decision rule would be able to
incorporate the intuitions just mooted, without violating general principles of rationality,
such as the separation of beliefs and tastes.

A decision rule of this sort may be useful for prescriptive purposes in several domains.
In decisions about policies to adopt in the face of climate change, for example, the stakes
are high and the probabilities are uncertain; the same goes for other domains where the
Precautionary Principle has been an object of debate. 2 A decision rule of the sort con-
sidered here naturally applies in such cases, and recommends only relying on probability
judgements in which one has enough confidence to match the gravity of the potential con-
sequences.

Moreover, the rule may have implications for the use made of conclusions of statistical
studies (in classical statistics). Often, confidence intervals at a standard fixed level (for
example, the 95% level) are used to inform decisions. The proposed decision rule would
suggest that one may vary the confidence intervals one uses in decisions: whereas if rela-
tively little is at stake one may use confidence intervals at, say, the 90% level, if there is a
lot at stake one might insist on relying only on intervals that are at, say, the 99% level.

Finally, the theory developed below may be descriptively relevant. Consider the case
of an investor who invests in a start-up drug firm whose major product is a new vaccine

2. One specificity of such decisions, which plays a role in many analyses, is the irreversability of the
consequences of actions. This of course implies that the stakes are higher than they otherwise would be: one
cannot undo tomorrow what has been done today.
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which has just come out on the market amid some controversy, though he refuses to let his
daughter take the vaccine. This is naturally taken account of under the proposed rule: the
investor is confident enough in his judgement about the probability that the drug will be a
success to take the investment decision on the basis of that judgement, but not confident
enough to rely on it in the more important personal decision.

In this paper, we propose a formal model of a decision maker’s confidence in his beliefs
and use it to develop a decision rule that adheres to the maxim that the higher the stakes
involved in a decision, the more confidence is required in a probability judgement for it to
play a role in that decision. In reality, a family of such decision rules can be defined on the
basis of the model of confidence proposed, and the main purpose of the paper is to promote
this family. To this end, and for the sake of concreteness, we perform an in-depth axiomatic
study of a single, natural member of the family. Perhaps surprisingly given the simplicity of
the model and the maxim on which it is based, it corresponds to relatively attractive prop-
erties of preferences, which are essentially stakes-corrected versions of standard axioms.
Moreover, it provides a full separation of utilities, belief attitudes (including confidence in
beliefs) and attitude to choosing in the absence of confidence. Relations to the standard
criteria for comparative ambiguity aversion are also examined. Prior to the formal analysis,
we further motivate the need for a new model to capture the role of confidence in beliefs in
decision by relating it to a well-known behavioural axiom, and present informally the main
aspects of our proposal, as well as connections with existing literature.

V.1.2 Confidence and behaviour: an example

The relevance of confidence in beliefs for decision making in accordance with the
maxim mentioned above is particularly evident behaviourally in certain violations of Gilboa
and Schmeidler’s (1989) C-independence axiom. Under the assumption of linear utility for
money, this axiom basically states that preferences between a pair of acts (that is, functions
from states to consequences) are unaffected by multiplying the values of the consequences
delivered by the acts by a positive number and by adding a constant to them. In order to
see the relevance of this property for confidence, let us consider a precise example that can
be thought as a stylized version of the governor’s decision described at the beginning of the
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paper. 3

Suppose that the governor has linear utility, 4 and consider an urn in which he is told
that there are one million balls, each of which is coloured either red or blue. He knows
for sure that at least 990 000 balls in the urn are blue, and that at least one ball in the
urn is red. Moreover, his advisers (who are experts on urns, but have not been able to
count the balls in this urn) estimate that at most ten of the balls in the urn are red. Given
this situation, consider how he prices the bet f given in Figure V.1 – that is, consider the
value for which he is indifferent between receiving that value for sure and playing the bet.
Suppose for example that he prices the bet at ´$0.1M (this is given in Figure V.1 in the
line pf ). It follows from C-independence that the governor should be indifferent between
↵f ` ⌘ and ↵pf ` ⌘ in Figure V.1 for any positive ↵ and any ⌘. 5 For example, to satisfy
this axiom, he must price the bet g, which yields $10000 if the ball is blue and ´$1M if
the ball is red, at ´$100 (take ↵ “ 10

´3 and ⌘ “ 0). More generally, C-independence
implies that whenever the governor gives f a negative price (and so prefers p

0

in Figure
V.1, which yields $0 for sure, to f ) then he must do the same for the bet g. This is at
odds with the behavioural pattern described in the previous section. The urn could be
thought of as a stylized representation of the meteorological conditions and the governor’s
information concerning them, the bet g could be considered as a stylized version of the
option of allowing the construction of the factory, and the bet f could be considered as
analogous to the option of allowing planting of GM crops. As noted previously, it does not
seem unreasonable for the governor to reject the GM project (ie. to prefer p

0

to f ), whilst
accepting the construction of the factory (ie. preferring g to p

0

), and this is incompatible
with C-independence.

Since the governor’s pattern of choice in this example violates C-independence, it can-
not be captured by decision models satisfying this axiom, such as the standard expected

3. Formal definitions and technical details in a general framework, as well as related discussion, are given
in Section V.2.

4. Of course, this assumption is not essential to the example, but is made for ease of presentation. To
dispense with it, it suffices to interpret the values of consequences presented below as given in utiles, or
consider that the ball drawn from the urn determines the composition of a second urn in such a way that the
utility values of the second lottery coincide with those given.

5. Under the assumption of linear utility, these acts correspond to mixture of f (resp. p) with ⌘

1´↵

, in the
sense that will be defined in Section V.2.1.
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utility model and the maxmin expected utility model of Gilboa and Schmeidler (1989). 6

Indeed, for the purposes of gaining intuition, it may be useful to consider the choices in the
light of the latter model, which evaluates an act by the lowest expected utility calculated
over a fixed set of probability measures. In the example considered, the lowest expected
utility is attained with the highest probability of the ‘bad’ event, namely the drawing of a
red ball. The indifference between f and pf is consistent (under the assumption that utility
is linear) with the use of 0.01 as the highest possible probability of getting a red ball. So,
in pricing the bet this way, the governor takes the worst probability out of those that, for all
he knows, may be relevant; in doing so, he ignores his advisers’ estimates. (Recall that he
knows for sure that there are at most 10 000 red balls in the urn.) If, on the other hand, he
gives g a positive price, this would correspond in the maxmin expected utility model to him
taking as worst-case probability of drawing a red ball a value which is lower than 0.01 (and
more precisely, lower than 10

1010

). This does not seem unreasonable: indeed, if he relied on
his advisers’ estimates in that decision, the worst-case probability would be 10

´5, and he
would price the bet at $9989.90. Hence, although the maxmin expected utility representa-
tion does not allow the use of different worst-case probabilities for different decisions, one
can understand why one might want to use them: in the high-stakes decision (concerning
f ), one is not confident enough in the advisers’ estimates of the worst-case probability to
rely on them, whereas in the lower-stakes decision (concerning g), one is confident enough
in the estimates to use them, and hence to work with a lower worst-case probability for the
‘bad’ event.

Although some more recent decision models do not satisfy C-independence, it is not
clear that they can capture the sorts of violations that appear to be related to confidence as
just described. To illustrate this, consider the popular smooth ambiguity model proposed
by Klibanoff et al. (2005) and others (see Section V.1.4), and the following extension of
the example given above. Suppose that, beyond the preferences detailed above, the gov-
ernor is indifferent between ↵f ` ⌘ and ↵pf ` ⌘ whenever the worst consequence of the
bet ↵f ` ⌘ is below ´$10M . As noted, this can be understood as him ignoring his ad-
visers’ estimates and evaluating the bet using the worst probability value out of those that
may be relevant given what he knows for sure about the urn. Moreover, such preferences

6. A large class of models satisfying this axiom – those of invariant biseparable preferences – is studied
in Ghirardato et al. (2004). As they note, C-independence essentially corresponds to a property of functional
representations called constant linearity.
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Figure V.1 – Bets (values in dollars, ‘M’ stands for ‘million’)

Colour of ball drawn from urn
Blue Red

f 10 M -1 000 M
pf -0.1M -0.1M
↵f ` ⌘ 10 M ˆ↵ ` ⌘ -1 000 M ˆ↵ ` ⌘

↵p ` ⌘ - 0.1 M ˆ↵ ` ⌘ - 0.1 M ˆ↵ ` ⌘

g 10 000 -1 M
p

0

0 0

Preferences incompatible with the maxmin EU model: f † p
0

and g ° p
0

.
Preferences incompatible with the smooth model: above, f „ pf and ↵f ` ⌘ „ ↵pf ` ⌘

whenever ´1000M ˆ ↵ ` ⌘ † ´10M

appear to be coherent with his other behaviour: decisions where he could lose more than
$10M are considered to involve very high stakes, and he is not confident enough in his
advisers’ estimates to rely on them in such decisions. However, as shown in Appendix V.B,
whenever the decision maker is ambiguity averse, the set of preferences just described (see
Figure V.1) is inconsistent with the smooth ambiguity model. To the extent that these pref-
erences do not seem prima facie unreasonable, and may even match some basic intuitions
about confidence, this suggests that the smooth ambiguity model, although it allows for
some violations of C-independence, cannot fully capture the role of confidence in decision
making.

As we shall see in Section V.2.2, the weakening of the C-independence axiom, in a
sense compatible with the considerations made above, turns out to be the central axiomatic
difference between the model proposed here and comparable models. It is to this proposal
that we now turn.

V.1.3 The Proposal

The first part of the proposal consists of a representation of a decision maker’s confi-
dence in probability judgements, that is, in statements concerning probabilities, such as ‘the
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probability of failure of a central element in a nuclear installation is greater than 0.0002’.
For this, we use a nested family of sets of probability measures, which we call a confi-

dence ranking. The sets in the nested family can be thought of as corresponding to levels
of confidence – the larger sets correspond to higher levels of confidence. To each set in the
confidence ranking, there corresponds a set of probability judgements, namely those which
hold for all probability measures in the set. This can be thought of as the set of probability
judgements which the decision maker holds with the corresponding level of confidence.
So for each level of confidence, the confidence ranking delivers a set of probability judge-
ments in which the decision maker has this much confidence. Note that the larger the
confidence level in question, the larger the corresponding set of probabilities measures and
thus the fewer probability judgements hold for all probability measures in this set. Hence,
under this representation, for higher confidence levels, fewer probability judgements are
held with those levels of confidence, as one would expect. A probability judgement that
holds for some set in the confidence ranking is endorsed by the decision maker, although
he may have only very little confidence in it. Conversely, for a given probability judge-
ment, the more sets in the family which are such that the probability judgement holds for
all probability measures in the set, the more confident the agent is in that judgement. Just
like the probability measure in the standard Bayesian theory of decision under uncertainty,
a natural reading of a confidence ranking is as a subjective element capturing the decision
maker’s beliefs and his confidence in them.

To illustrate, suppose that a decision maker has data to estimate the probability that a
certain element in a nuclear reactor will fail under extreme conditions. Upon calculation,
he finds that the confidence interval is r0.0002, 0.0005s at the 95% level, and that it is
r0.00005, 0.00065s at the 99% level. If he forms his judgements solely on the basis of these
data, one might expect him to be more confident that the probability of failure (ppF q) is
less than 0.00065 than that the probability is greater than 0.0002. This can be represented
by a confidence ranking where, for every set in the ranking such that ppF q is greater than
0.0002 for all probability measures in the set, ppF q is less than 0.00065 for all probability
measures in the set. Such a confidence ranking is illustrated in Figure V.2: the points are
probability measures, the concentric circles represent the sets of probability measures in the
confidence ranking and the shaded areas are the sets of probability measures where ppF q
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Figure V.2 – Confidence ranking and confidence in probability judgements

ppF q § 0.00065

�p⌃q

ppF q • 0.0002

is greater than 0.0002 and less than 0.00065 respectively. 7 The fact that ppF q § 0.00065

holds for more of the sets in the confidence ranking that ppF q • 0.0002 captures the higher
confidence in the former probability judgement than in the latter one.

A noteworthy property of this representation of confidence in beliefs is that it involves
only an ordinal structure on the space of probability measures. 8 In this sense, the model
is simpler than other recent models of decision under uncertainty, which, as discussed in
Section V.1.4, require a structure on the set of probability measures with a certain degree
of cardinality. Consequently, if one wished to use the model to aid decision making, one
need only elicit an ordinal structure from a decision maker to capture his confidence, rather
than deal with cardinal confidence comparisons.

The second part of the current proposal is a decision rule which uses this representation
of confidence and which translates the maxim that the higher the stakes, the more confident
one must be in a probability judgement for it to play a role in the decision. Consider a
function that associates to each possible value of the stakes involved in a decision a set in
the confidence ranking. We call such a function a cautiousness coefficient. Since a set in
the confidence ranking corresponds to a level of confidence, this function can be thought of

7. It would have been more accurate to represent these latter sets of probability measures by half-planes;
the current diagram is preferred because it makes the comparison between them clearer and more suggestive.

8. As shown in Proposition V.2 in Appendix V.A, a confidence ranking corresponds to an order on the
space of probability measures. See also Section V.2.1.
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as representing the level of confidence required for a probability judgement to play a role
in a decision with given stakes. (As will be shown in Section V.3, this function captures the
decision maker’s attitude to taking decisions in the absence of confidence.) In particular, for
any probability judgement that holds throughout the set of probability measures picked out
by the cautiousness coefficient, the decision maker is confident enough in that judgement
to use it in a decision with the given stakes. Hence a decision rule that uses such a function
to pick out a set of probability measures and uses this set of probability measures in the
decision captures the maxim mooted above.

What has been said so far constitutes the nub of the current proposal. It does not yield a
single decision model but rather a recipe for generating models. In particular, two elements
remain to be specified: the decision rule that the decision maker uses once he identifies
the appropriate set of probability measures, and the notion of stakes he uses to assign to
a decision the stakes involved in it. Different choices of decision rules and notions of
stakes yield different decision models conforming to the maxim proposed above. As stated
previously, the main concern here is to promote this family; however, for concreteness, we
shall focus the analysis on one particular member. Namely, we concentrate on the simplest
and most common decision rule using sets of probability measures, the maxmin expected
utility rule (Gilboa and Schmeidler, 1989). We take as the stakes involved in the choice of
an act the worst consequence that the act could yield. Both of these choices are reasonable:
on the one hand, the maxmin expected utility rule has been widely vaunted as characterising
careful decision making, whereas on the other hand it seems reasonable that the worse the
worst consequence of an act, the more the decision maker has to lose on choosing it, and
so the higher the stakes. Section V.4 contains a brief discussion of other possible decision
rules and notions of stakes.

Concretely, for a cautiousness coefficient D, and a function � assigning to each act a
level of stakes that varies inversely with the worst potential consequence of choosing the
act, we consider a decision rule such that the agent (weakly) prefers act g to act f if and
only if:

min

pPDp�pfqq

ÿ

sPS

upfpsqq.ppsq § min

pPDp�pgqq

ÿ

sPS

upgpsqq.ppsq(V.1)

To illustrate this rule, consider the decision about the sort of technology to use in a nu-
clear installation. To decide according to the rule, a decision maker has to first ascertain the
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stakes involved in the choice, which, in the specific model considered here, correspond to
the worst possible consequence. For example, the stakes could correspond to a major nu-
clear accident. Then he needs to determine how much confidence to require in a probability
judgement to use it in a decision of such gravity. If his confidence over probability mea-
sures is calculated solely on the basis of data using confidence intervals (as in the example
above), this corresponds to assigning a confidence level which he will use. For example,
he may decide that the appropriate set of probability measures will be those corresponding
to the confidence interval at the 99.9% level. Then he would evaluate a technology by the
minimum expected utility taken over this set, which, given the very low utility of a nuclear
accident, boils down to using the worst-case probability for an accident in the interval.

Note that, were the decision maker considering whether to use a similar technology
in another installation with extreme conditions – a smelting plant, for example – this pro-
cedure allows him to use the same data differently. For example, if the consequences of
failure in the smelting plant are deemed less serious than the consequences of failure in a
nuclear installation, then he might allow himself to use probability judgements in which he
is less confident. Concretely, this would translate into using, say, the confidence interval at
a 95% level, which may lead to different choices of technology.

It is clear that this sort of rule can capture the sort of behaviour mentioned in the ex-
ample given at the beginning of the paper and developed in Section V.1.2. Since the worst
consequence of allowing the planting of GM crops (or of bet f in Figure V.1) is worse than
that of allowing the construction of the factory (respectively, of g), the stakes are higher, so
more confidence is required, which implies the use of a larger set of probability measures.
As noted in Section V.1.2, the use of a more pessimistic probability estimate, which is an
immediate consequence of a larger set of probability measures in the context of the maxmin
expected utility rule, is entirely consistent with the behaviour described in these examples.

V.1.4 Related literature

The proposed model can be thought of as a refinement of the maxmin expected utility
model of Gilboa and Schmeidler (1989), according to which the decision maker maximises
the minimum expected utility over a single, fixed set of probability measures. This model
is too simple to capture the role of confidence in decision: were it to be thought of as
a model of confidence in probability judgements, confidence would be an all-or-nothing
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affair – for any probability judgement, either the decision maker is fully confident of it
or entirely unsure about it. Something more than a single set of probability measures
is required to capture different levels of confidence; the model proposed here goes ‘one
level up’ and takes a family of sets. One consequence of using a single set of probability
measures is that the maxmin model cannot capture the relation between the confidence in
the probability judgements used and the stakes involved in the decision, which is central
here; another consequence is that it does not admit a clean separation of beliefs and attitude
to ambiguity, whereas, as shall be shown in Section V.3, the model proposed here does.
Finally, as noted in Section V.1.2, the maxmin expected utility representation implies that
preferences satisfy C-independence, which appears incompatible with certain patterns of
behaviour that are naturally related to confidence; by contrast, the proposed model only
satisfies a weakened version of C-independence (see Section V.2.2), and can comfortably
account for such patterns. 9

By contrast with the maxmin model, other, more recent models in the literature do in-
volve a notion of ‘degree’ on probability measures, but they are all structurally richer than
the one proposed here. For example, Klibanoff et al. (2005); Nau (2006); Seo (2009); Ergin
and Gul (2009) propose models that use a probability measure over the set of probability
measures rather than a nested family of sets. In this sense, their models are cardinal at the
second-order level, whereas ours is ordinal. As anticipated above, the structural parsimony
of the current model may be seen as an advantage, in particular for prescriptive applica-
tions. For someone who wishes to decide using the rules just cited, he needs to fix upon
a probability measure over the set of probability measures and a transformation function
(above and beyond the utility function) that assigns to each expected utility value a real
number. By contrast, all that is required under the proposed model is to pick out, given
the stakes involved in the option, the set of probability measures that corresponds to the
confidence level that the agent deems appropriate for those stakes.

Similar points hold for the variational preferences model of Maccheroni et al. (2006) as
well as the confidence preferences model of Chateauneuf and Faro (2009). Like the second-
order probability models mentioned above, these models require some cardinal structure
on the space of probability measures, whereas only an ordinal structure is needed here.

9. The maxmin expected utility model is discussed here because it is the closest to representation (V.1).
Many of the points hold for similar models, such as the ↵-maxmin model, which can be used to develop other
members of the family of decision models described above. See also Section V.4.
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Hence, for application in decision analysis, the model proposed here promises to be more
tractable. Moreover, these models fail to separate beliefs from tastes for ambiguity, whereas
the model proposed here does.

None of the models discussed above explicitly propose a dependence between the prob-
ability judgements used in a decision and the stakes involved in the choice; the role of var-
ious probability measures is always determined in some more complicated way. It is thus
not surprising that the current model is not a special case of the aforementioned ones, as
can be seen from the axiomatisation and the discussion in Section V.1.2. The same holds
for the models proposed in the literature on robustness and in particular for the multiplier
and constraint preferences models proposed by Hansen and Sargent (2001) (which can be
thought of as special cases of the variational and maxmin models discussed above). Gajdos
et al. (2008) propose an extension of the Gilboa and Schmeidler (1989) model that allows
different sets of probability measures to be used in the evaluation of acts, but these sets are
derived from an ‘objective’ set of probability measures (modelling information) which is
given exogeneously, rather than being generated endogeneously from the stakes involved
in the act, as is the case under the current proposal.

V.2 Representation

V.2.1 Preliminaries

We use the standard Anscombe-and-Aumann framework, as adapted by Fishburn (1970).
Let S be a non-empty finite set of states, with ⌃ the algebra of all subsets of S, which are
called events. �p⌃q is the set of probability measures on pS, ⌃q. Where necessary, we use
the Euclidean topology on �p⌃q. X is a nonempty set of outcomes; a consequence is a
probability measure on X with finite support. �pXq is the set of consequences. Acts are
functions from states to consequences; A is the set of acts. So, for an act f , and a state s,
fpsq is a lottery over X with finite support; for a utility function u over X , we will denote
the expected utility of this lottery by upfpsqq “ ∞

xPsupppfpsqq fpsqpxqupxq. A is a mixture
set with the mixture relation defined pointwise: for f , h in A and ↵ P <, 0 § ↵ § 1, the
mixture ↵f ` p1 ´ ↵qh is defined by p↵f ` p1 ´ ↵qhqps, xq “ ↵fps, xq ` p1 ´ ↵qhps, xq
(Fishburn, 1970, Ch 13). We will often write f↵h as short for ↵f ` p1 ´ ↵qh. With slight
abuse of notation, a constant act taking consequence c for every state will be denoted c and
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the set of constant acts will be denoted �pXq.
We assume a preference relation ® on A; „ and † are defined to be the symmetric and

asymmetric components of ®. Null events and null states are defined in the usual way. 10

We use the following notation.

Definition V.1. For f P A, ˆf P �pXq is any fpsq that is ®-minimal over the non-null
s P S.

Intuitively, ˆf is a constant act that is ®-equivalent to the worst consequence that f takes
on non-null states. 11 Recall that this corresponds to one way of fleshing out the notion of
the stakes involved in the choice of an act f : the worse the worst possible consequence of
the act, the more the decision maker has to lose in choosing it and the higher the stakes
involved in the choice. The particular decision rule considered below will take the stakes
involved in the choice of an act to be the lowest utility that could result from the act after
resolution of the uncertainty about the state of the world (that is, the utility of ˆf ). 12 As
noted in the Introduction, we consider this notion of stakes solely for the purposes of con-
creteness, and with no intention to suggest that it be considered the best or only reasonable
notion of stakes; see Section V.4 for discussion of other possible notions. In the exposition
below, we shall say that f has higher, lower or the same stakes as g if ˆf ® ĝ, ˆf © ĝ or
ˆf „ ĝ respectively.

The following notion is central.

Definition V.2. A confidence ranking ⌅ is a nested family of closed, convex subsets of
�p⌃q. A confidence ranking ⌅ is continuous if, for every C P ⌅, C “ î

C1àC C 1 “
ì

C1âC C 1. 13 It is centered if it contains a singleton set.

As mentioned in the Introduction, confidence rankings represent decision makers’ be-
liefs, and in particular their confidence in probability judgements. The sets in the confi-
dence ranking can be thought of as corresponding to levels of confidence. The higher the

10. An event A is null if, for any acts f and f

1 differing only on A, f „ f

1. A state s is null if the singleton
event tsu is null.

11. Although ˆ

f is not uniquely defined, it is defined up to „, which is all that is required for the axioms
to have unambiguous meaning. This allows us to speak of ˆ

f in the singular, which is useful for expositional
purposes.

12. The non-nullness clause in Definition V.1 ensures that acts that differ only on null states are considered
as having the same stakes, as seems reasonable.

13. For a set X , X is the closure of X . Note that the union of a nested family of convex sets is convex.
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level of confidence in question, the larger the set: this translates the fact that one is con-
fident of fewer probability judgements to that level of confidence. Confidence rankings
are ordinal structures; indeed, Proposition V.2 in Appendix V.A shows that, to any confi-
dence ranking there corresponds a weak order on the space of probability measures with
appropriate properties and to any such order there corresponds a confidence ranking.

The convexity and closedness of the sets of probability measures in the confidence
ranking are standard assumptions in decision rules involving sets of probabilities. The
continuity property guarantees a continuity in one’s confidence in probability judgements:
it ensures, for example, that one cannot be confident at a certain level that probability of
an event A is in r0.3, 0.7s and then only confident that the probability is in r0.1, 0.9s at the
‘next’ confidence level. 14

The centredness property of the confidence ranking implies that, if the decision maker
were forced to give his best estimate for the probability of any event, he could come up
with a single value (and these values satisfy the laws of probability), although he may not
be very confident in this value. In some situations this assumption may seem reasonable,
whereas in others it may be less acceptable; in the representation result (Theorem V.1),
there is an axiom that is necessary and sufficient for this property, so the property receives
a behavioural characterisation.

Finally, we define a cautiousness coefficient for a confidence ranking ⌅ to be a surjec-
tive function D : < Ñ ⌅ that preserves order, that is, such that for all r, s P <, if r § s,
then Dprq Ñ Dpsq. D assigns to a given level of stakes involved in the choice of an act
a level of confidence that is required in probability judgements in order to use them in the
evaluation of the act. This level of confidence corresponds to the appropriate set of proba-
bility measures in the confidence ranking. The fact that D is order-preserving corresponds
to the intuition that the higher the stakes, the higher the confidence level required of proba-
bility judgements for them to play a role in the choice (and so the larger the relevant set of
probability measures). Surjectivity of D basically attests to the behavioural nature of the
confidence ranking: it implies that for each set of probability measures in the ranking, there
will be a level of stakes, and hence an act, for which it is the relevant set for evaluating that
act.

14. The continuity property used in the definition has been recognised as the appropriate notion of conti-
nuity for nested families of closed sets in Kuratowski (1938, pp 19-20). We thank Massimo Marinacci for
this reference.
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We consider a decision rule according to which the decision maker ranks acts f by the
following criterion:

min

pPDp�pfqq

ÿ

sPS

upfpsqq.ppsq

where �pfq “ ´up ˆfq is the stakes involved in the choice of f . As noted in the Introduction,
this translates the idea that for each level of stakes (�pfq), the decision maker selects those
probability judgements which he believes with confidence corresponding to those stakes
(the judgements which hold for all probability measures in Dp�pfqq) and only uses those
in evaluating the act (he takes the maxmin over Dp�pfqq).

V.2.2 The Representation

Consider the following axioms.

Axiom V-A1 (Weak order). For all f, g, h P A: if f ® g and g ® h, then f ® h; and f ® g

or g ® f .

Axiom V-A2 (S-Independence). For all f P A, c, d P �pXq and ↵ P p0, 1q,

(i) if d © ˆf , then f © c implies f↵d © c↵d

(ii) if d ® ˆf , then f ® c implies f↵d ® c↵d

Axiom V-A3 (Continuity). For all f, g, h P A, the sets t↵ P r0, 1s| f↵h ® gu and t↵ P
r0, 1s| f↵h © gu are closed in r0, 1s.

Axiom V-A4 (S-Monotonicity). For all f, g P A, c, d P �pXq and ↵ P p0, 1s with ˆf „ yg↵d

and g↵d „ c↵d, if fpsq ® gpsq for all s P S, then f ® c, and if fpsq © gpsq for all s P S,
then f © c.

Axiom V-A5 (S-Uncertainty Aversion). For all f, g P A, c, d P �pXq and ↵, � P p0, 1q
with ˆf „ ĝ „ {pf↵gq�d, if f „ g „ c then pf↵gq�d © c�d.

Axiom V-A6 (Non-degeneracy). There exist f, g P A such that f ° g.

Axiom V-A7 (Centering). There exists c, d P �pXq with d ° c such that, for all f, g, h P A
with ˆf, ĝ, ˆh © c and all ↵ P p0, 1q, f ® g iff f↵h ® g↵h.
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The axioms V-A1, V-A3 and V-A6 are standard. To motivate and explain the axioms
V-A2, V-A4 and V-A5, it is helpful to compare them to the corresponding axioms for the
maxmin expected utility model (Gilboa and Schmeidler, 1989), which are as follows:

Axiom V-A2’ (C-Independence). For all f, g P A, d P �pXq and ↵ P p0, 1q, f ® g iff
f↵d ® g↵d.

Axiom V-A4’ (Monotonicity). For all f, g P A, if fpsq ® gpsq for all s P S, then f ® g.

Axiom V-A5’ (Uncertainty Aversion). For all f, g P A, ↵ P p0, 1q, if f „ g then f↵g © f .

Gilboa and Schmeidler (1989) established that V-A1, V-A3, V-A6, A2’, A4’ and A5’
characterise maxmin expected utility preferences (which differ from representation (V.1)
only in that the set of priors over which the decision maker is minimising is fixed rather
than variable according to the stakes). As suggested in Section V.1.2, the central axiomatic
difference between the standard maxmin model and the model considered here lies in the
independence axiom. 15 Note firstly that mixing an act f with a constant act d is a way
of changing the stakes involved: in particular, if d is below the worst consequence of f

( ˆf ), then mixing with d raises the stakes (the worst consequence of f↵d is worse than the
worst consequence of f ); conversely, if d is preferred to ˆf , then mixing with d lowers
the stakes. In the light of this, C-independence (A2’) basically states that the evaluation
of an act is independent of the stakes involved. In particular, it implies that if f „ c

for some constant act c, then f↵d „ c↵d for all ↵ and d, which is tantamount to saying
that if f is considered as indifferent to c, then they will be considered as indifferent even
if evaluated after shifting the stakes up or down by any amount (by taking appropriate
mixtures). However, the maxim which guides the proposal made here consists precisely in
the idea that the evaluation of acts, and thus preferences between acts, may change upon
changes in the stakes involved. From the point of view of this maxim, the C-independence
axiom establishes an unwarranted independence of preferences from stakes, and as such
must be weakened.

The S-independence (for Stakes-corrected independence) axiom V-A2 captures exactly
the sort of weakening one would expect. The first clause basically says that if one lowers

15. Since C-independence is weaker than many of the independence axioms in the literature on decision
under uncertainty, such as the standard independence axiom (Anscombe and Aumann, 1963) and comono-
tonic independence (Schmeidler, 1989), the discussion here also applies to the comparison with those models.
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the stakes, by mixing an act with a constant act that is preferred to its worst consequence,
then the act cannot be evaluated any worse than it was before (if it is preferred to a constant
act, its mixture is preferred to the appropriate mixture of the constant act). The second
clause deals with the other case: it says that if one raises the stakes, by mixing an act
with a constant act that is less preferred than its worst consequence, then the act cannot be
evaluated any better than it was before (if it is less preferred than a constant act, its mixture
is less preferred than the appropriate mixture of the constant act). If one endorses the
maxim proposed above and the caution inherent in the maxmin expected utility rule, this
axiom is eminently reasonable: as stakes increase, acts may be evaluated as worse because
one may no longer rely on probability judgements in which one does not have the required
level of confidence, and likewise as stakes fall, acts may be considered as better, because
one allows oneself to invoke probability judgements in which one did not previously have
sufficient confidence.

To illustrate the difference between S-independence (V-A2) and C-independence (A2’),
note that both imply that, for a risk-neutral decision maker, 16 if he weakly prefers a bet
yielding a $1000 loss if event A occurs and nothing if not to a sure $250 loss (acts f and
c in Figure V.3), then he would weakly prefer the bet yielding a $50 loss if event A occurs
and nothing if not to a sure $12.5 loss (because the latter two acts are obtained from the
former two by taking a 0.05-mix with the constant act yielding $0). This is equivalent to
saying that if he strictly prefers the sure loss to the bet where he could lose $50, then he
strictly prefers the sure loss when the amounts at stake are twenty times larger. However, C-
independence also imposes the converse relationship: if the decision maker strictly prefers
the sure loss when he could lose $1000 by betting, then he strictly prefers the sure loss if he
could only lose $50 by betting. This is not necessarily reasonable, for the fact that he avoids
the bet when the stakes are high (when he could lose $1000) does not imply that he will
not be willing to bet when the stakes are lower (when he has less to lose). S-independence
only implies a relationship between the preferences in one direction, but not in this other,
more controversial, direction.

As anticipated above, this axiom is the main difference between the proposed decision
rule and many of the standard rules in the literature on decision under uncertainty. In par-

16. Alternatively, the example can be reformulated in terms of utiles instead of dollars, or using an urn
whose composition is determined by whether the event occurs or not, so that it holds irrespective of risk
attitudes.
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Figure V.3 – S-independence

A Ac

f -1000 0
c -250 -250
g -50 0
d -12.50 -12.50

C-independence: d ° g ô c ° f .
S-independence: d ° g ñ c ° f .

ticular, if S-independence is replaced by C-independence, the representation (V.1) reduces
to the standard maxmin expected utility representation.

The S-monotonicity (for Stakes-corrected monotonicity) axiom V-A4 can be under-
stood as a distilled version of the standard monotonicity axiom A4’, extracting the aspects
that are independent of stakes. The standard axiom establishes an implication from a (state-
wise) dominance relation between a pair of acts to the appropriate preference over them;
however, in the light of the intuitions mooted above, there are two considerations supporting
it. One involves a possible difference in stakes: since g dominates f , the stakes involved in
g can only be lower than those involved in f , and this might contribute to it being preferred.
The other is independent of this difference: even if g had the same stakes as f , it would be
preferred. S-monotonicity (V-A4) separates out the latter reason – which corresponds more
closely to the standard intuition behind the monotonicity axiom – from the former. Indeed,
it states, in essence, that if g dominates f then g is preferred to f when evaluated as if it had
the same stakes as f , and likewise for the case where g is dominated by f . To see this, note
that, since mixing acts with constant acts may shift the stakes, one can use such mixtures to
glean information about preferences at different levels of stakes. For example, for an act g

and a constant act c, the preferences over the mixtures g↵d and c↵d indicate the preferences
between g and c at the stakes level given by the worst consequence of g↵d. We can thus
speak of preferences over g and c at a given stakes level, understanding this as shorthand
for speaking of preferences over appropriate mixtures of g and c. Read in this way, the
assumption in the S-monotonicity axiom states that g is indifferent to c at the stakes level
corresponding to f ; in other words, c can be thought of as the ‘certainty equivalent’ of g
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when evaluated at the stakes level corresponding to f . And so the first clause of the axiom
states that if g dominates f , then it is preferred to f when it is evaluated at the stakes level
of f , whereas the second clause states that if g is dominated by f , then f is preferred to it
when it is evaluated at the stakes level of f . Hence S-monotonicity can indeed be thought
of as encapsulating the intuition behind the standard monotonicity axiom, whilst refining it
to account for the issue of stakes. In the presence of the other axioms (notably V-A2), it is
easily seen to be a strengthening of the standard axiom.

Similar remarks apply to the S-uncertainty aversion (for Stakes-corrected uncertainty
aversion) axiom V-A5: it can be read as stating essentially the same thing as the standard
uncertainty aversion axiom A5’, but for a fixed stakes level. In this case, the restriction
on the stakes level enters twice. On the one hand, the standard axiom applies to acts that
are indifferent, whereas the acts may have different stakes (and would not necessarily be
indifferent if evaluated as if they had the same stakes). S-uncertainty aversion only applies
to acts f and g that have the same stakes. On the other hand, the standard axiom demands
that the mixture f↵g be preferred to f ; but, as in the case of the monotonicity axiom,
such preferences could be defended by appeal to the stakes involved in the acts (the stakes
involved in the mixture can only be lower than those involved in the initial acts), or by
appeal to the preferences after having been ‘corrected for’ stakes. S-uncertainty aversion
isolates the second aspect, only demanding that f↵g be preferred to f at the stakes level
corresponding to f (where the notion of preference at a given stakes level is cashed out in
terms of mixtures as explained above). Summing up these two points, the axiom basically
states that whenever two acts having the same stakes are indifferent, then any mixture is
weakly preferred to the two acts when evaluated as if it had their stakes level; as claimed,
this is essentially the content of the standard uncertainty aversion axiom, restricted to a
single stakes level. As such, V-A5 is faithful to the principal intuition behind the standard
axiom, which concerns preference for hedging. Indeed, the main cases where it differs
from the standard axiom involve no hedging. An example is given in Figure V.4: whilst the
standard axiom implies that if a risk-neutral decision maker 17 is indifferent between acts
f and g in Figure V.4, then he prefers h (which is a 3

4

-1

4

mixture of f and g) to both, S-
uncertainty aversion is more liberal – it allows this pattern of preferences, without requiring

17. As above, the example could be reformulated in terms of utiles instead of dollars to avoid assumptions
about risk attitudes.
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Figure V.4 – Uncertainty aversion

A Ac

f 400 -100
g 50 -25
h 312.50 -81.25

Standard uncertainty aversion: f „ g ñ h © f .

it. As such, the axiom proposed here seems more reasonable: whilst the preference pattern
seems perfectly permissible, it is hard to see why it should be an obligatory constraint
on preferences, as the standard axiom demands. Certainly, given the absence of hedging
considerations in this example, the normal intuition behind uncertainty aversion cannot
explain why a decision maker who shows indifference between the first pair of acts must

prefer the mixture in this case.

Like their counterparts elsewhere in the literature on decision under uncertainty, V-A2,
V-A4 and V-A5 are fully behavioural, and in principle testable.

The final axiom, Centering (V-A7), states that the standard independence axiom is sat-
isfied on a subset of acts where one cannot do worse that a certain consequence. (The
condition of existence of a d ° c guarantees that this subset is non-trivial.) That is, it states
that, for low enough stakes, the independence axiom is satisfied. As will be clear from the
theorem, the axiom is not required for the representation, but if added guarantees that the
confidence ranking representing the preferences is centered.

These axioms are necessary and sufficient for a representation of preferences by a de-
cision rule featuring confidence, as represented by an confidence ranking.

Theorem V.1. The following are equivalent:

(i) ® satisfies V-A1–V-A6,

(ii) there exists a nonconstant utility function u : X Ñ <, a continuous confidence

ranking ⌅ and a cautiousness coefficient D : < Ñ ⌅ such that, for all f, g P A,

f ® g iff
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min

pPDp�pfqq

ÿ

sPS

upfpsqq.ppsq § min

pPDp�pgqq

ÿ

sPS

upgpsqq.ppsq(V.1)

where �pfq “ ´up ˆfq for all f P A.

Furthermore, for any other nonconstant utility function u1, continuous confidence rank-

ing ⌅

1 and cautiousness coefficient D1 representing ® as in (ii), there exists a positive real

number a and a real number b such that u1 “ au ` b, ⌅

1 “ ⌅ and D1pxq “ Dpx
a

´ b
a
q for

all x P <.

Finally, under the conditions above, ® satisfies V-A7 iff ⌅ is centred.

Proofs of all results are in Appendix V.A.

V.3 Confidence, cautiousness and ambiguity

The proposed model involves a strict separation of beliefs and tastes. Of the three el-
ements in the model – the utility function, the confidence ranking and the cautiousness
coefficient – the first, as is standard, captures the decision maker’s tastes over outcomes.
As discussed above, the confidence ranking represents not only the probability judgements
endorsed by the decision maker (his beliefs) but also the confidence with which he endorses
them (his confidence in his beliefs). The third element, the cautiousness coefficient, cap-
tures the decision maker’s attitude to choosing in the absence of confidence. The aim of
this section is to demonstrate that these interpretations are indeed valid.

First, let us consider whether the confidence ranking has separate behavioural meaning
from the cautiousness coefficient, by asking when two preference relations satisfying the
axioms in Theorem V.1 are represented by the same utility functions and confidence rank-
ings (though potentially different cautiousness coefficients). The following definition and
proposition provide an answer.

Definition V.3. Let ®1 and ®2 be preference relations satisfying the axioms V-A1–V-A6.
®1 and ®2 are confidence equivalent if (i) for all c, d P �pXq, c ®1 d iff c ®2 d and (ii)
for each d P �pXq, there exists d1 P �pXq and ↵ P p0, 1q such that, for all f P A and
c P �pXq with ˆf „ d, f ©1 c iff f↵d1 ©2 c↵d1.
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Proposition V.1. Let ®1 and ®2 be preference relations satisfying the axioms V-A1–V-

A6 and represented by utility functions, confidence rankings and cautiousness coefficients

pu
1

, ⌅
1

, D
1

q and pu
2

, ⌅
2

, D
2

q respectively. ®1 and ®2 are confidence equivalent if and only

if u
1

is a positive affine transformation of u
2

and ⌅

1

“ ⌅

2

.

Confidence equivalence can be understood as the behavioural translation of the fact for
two decision makers to have the same confidence in preferences. If f is preferred to c

at a given stakes level but g is not preferred to d at that level, whilst it is preferred to d

at a lower stakes level, then this can be interpreted as indicating that the decision maker
is more confident in his preference for f over c than in his preference for g over d. In
light of the interpretation of preferences at a given stakes level in terms of preferences
between mixtures introduced in Section V.2.2, confidence equivalence thus states that the
two decision makers share the same relative judgements of confidence in their preferences:
one is more confident in the preference for f over c than in the preference for g over d

if and only if the other one is. To the extent that confidence in preferences is determined
by confidence in beliefs and confidence in utilities (which is trivial in this model, due to
the use of a single utility function), one would expect that if two decision makers have the
same confidence in preferences, then they have the same confidence in beliefs and utilities.
Proposition V.1 is the formal confirmation of this intuition. 18

Confidence equivalence guarantees that the decision makers’ confidence rankings are
the same, but it does not guarantee that they are used in the same way. In particular, it says
nothing about which sets in the confidence ranking are used to evaluate acts with given
stakes. This is exactly where their attitudes to choosing in the absence of confidence comes
in. To introduce this notion, consider the standard approach to risk attitudes.

18. The notion of confidence equivalence is sufficient for the purposes of this section, where the focus is
on separating attitudes towards choosing in the absence of confidence from confidence itself. Nevertheless, it
is possible to behaviourally separate utility from confidence in beliefs in much the same way as, for example,
Savage (1954) does. Under his theory, decision makers 1 and 2 have the same beliefs if, for any consequences
c, c

1
, d, d

1 such that c †1 d and c

1 †2 d

1, 1’s preferences over acts whose outcomes are in tc, du are the
same as 2’s preferences over ‘corresponding’ acts whose outcomes are in tc1

, d

1u. (More precisely, if f, g

take values in tc, du and f

1
, g

1 are defined by: for all s P S, f

1psq “ c

1 if fpsq “ c and f

1psq “ d

1 if
fpsq “ d, and likewise for g

1, then f

1 ®2 g

1 iff f ®1 g.) A similar condition, extended to consequences
in t↵c ` p1 ´ ↵qd|↵ P r0, 1su and t↵c

1 ` p1 ´ ↵qd1|↵ P r0, 1su respectively, and relativised to stakes as in
Definition V.3, ensures that decision makers have the same confidence rankings, although potentially different
utilities.
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In one standard treatment of risk attitude (Pratt, 1964), risk attitude is explored by
considering the decision maker’s attitudes to the adding of small risks to a sure amount.
This sort of approach is not usually followed in the case of decision under uncertainty
because of the difficulty of getting a clean notion of what it would be to add a particular
‘uncertainty’, especially given the dependence of the perceived uncertainty on the decision
maker’s beliefs. However, in the context of the current theory, where confidence enters into
play via the stakes involved in the act, there is a simple analogue to adding risks: increasing
the stakes.

Consider two decision makers, 1 and 2, with the same utility function and confidence
ranking, and consider an act f and a constant act c. Since 1 and 2 have the same confidence
rankings, at sufficiently small stakes they will both agree on the preferences between f

and c; suppose that f is preferred to c at small stakes. As the stakes increase, the decision
makers may switch and cease to prefer f to c; the difference between them lies in the stakes
at which they cease to exhibit this preference. For example, if there is a stakes level where
1 no longer prefers f to c but 2 still does, this means that at this stakes level, 1 does not
have enough confidence in his probability judgements to sustain the preference, whereas 2
does. But since they have the same confidence ranking over probability judgements, this
must be because 1 is demanding more confidence in probability judgements for them to
play a role at these stakes than 2. In other words, he is less comfortable than 2 in choosing
with limited confidence at this stakes level; he is exhibiting more aversion to choosing in
the absence of confidence than 2. If this is the case for all acts f and constant acts c, we
say that 1 is more averse to choosing in the absence of confidence than 2. This leads to the
following comparative notion of aversion to choosing in the absence of confidence.

Definition V.4. Suppose that ®1 and ®2 satisfy axioms V-A1–V-A6 and that they are con-
fidence equivalent. Then ®1 is more averse to choosing in the absence of confidence than
®2 if, for all f P A, c, d, e P �pXq and ↵ P p0, 1s, if f↵d ©1 c↵d whenever yf↵d ©1 e, then
f↵d ©2 c↵d whenever yf↵d ©2 e.

This definition translates formally the motivation above: it states that 1 is more averse
to the absence of confidence if whenever he prefers f to c for a given level of stakes and
lower, then so does 2.

As noted in Section V.1.4, the model proposed here can be thought of as a contribution
to the literature on ambiguity. In this literature, discussions of comparative ambiguity
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aversion are generally motivated by considerations of the sets of acts that are preferred
to particular constant acts (as in Yaari (1969)). This often leads to notions of comparative
ambiguity aversion where, under assumptions guaranteeing that the agents have the same
beliefs, a decision maker is more ambiguity averse than another if, every time the former
prefers an act to a constant act, then the latter does too. The following is a definition of
comparative ambiguity aversion which is true to the spirit of those notions. 19

Definition V.5. Let ®1 and ®2 be preference relations satisfying the axioms V-A1–V-A6
and suppose that they are confidence equivalent. Then ®1 is more ambiguity averse than
®2 if, for any f P A and c P �pXq, if f ©1 c then f ©2 c.

The two comparative notions of aversion – to choosing in the absence of confidence
and to ambiguity – are equivalent. Moreover, they are characterised entirely in terms of the
cautiousness coefficient.

Theorem V.2. Suppose that ®1 and ®2 satisfy axioms V-A1–V-A6 and are confidence

equivalent. Suppose that they represented by pu, ⌅, D
1

q and pu, ⌅, D
2

q respectively. The

following are equivalent:

(i) ®1 is more averse to choosing in the absence of confidence than ®2

(ii) ®1 is more ambiguity averse than ®2

(iii) D
1

prq Ö D
2

prq for all r P <.

We conclude that the cautiousness coefficient captures the attitude to confidence and
ambiguity, and that analysis of such attitudes can be carried out in the proposed model.

V.4 Variants and related models

Reduced to the essentials, the current proposal consists of two features: firstly, a repre-
sentation of confidence in beliefs by an ordinal structure on the space of probability mea-
sures, and secondly, the idea that in the evaluation of options the decision maker uses the

19. This literature is too rich to be discussed in detail here. Schmeidler (1989) and Epstein (1999) are early
treatments of the question; Ghirardato and Marinacci (2002) is closest to that used here. The assumption
about beliefs is used by those whose models admit separation of beliefs and tastes (for example, Klibanoff
et al. (2005)), but not by those whose models do not (for example, Maccheroni et al. (2006) and Chateauneuf
and Faro (2009)).
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set of probability measures in this structure which corresponds to the stakes involved. As
noted in the Introduction, this delineates not a single decision model but a family of models,
which differ according to the decision rule and the notion of stakes used. The principal aim
of this paper is to promote this family, rather than any particular member. In the previous
sections, we have considered one member with an eye to illustrating the intuitiveness of
models in the family, and the interesting and attractive properties that they may have. Let
us now briefly consider some other members of the family.

On the one hand, there are decision models that use a rule other than the maxmin ex-
pected utility rule employed in representation (V.1). As is well-known, this rule yields
an ambiguity-averse model of decision, and the representation (V.1) is ambiguity averse
for the same reason. One can obtain an ambiguity-seeking model of the sort proposed
here by replacing the maxmin expected utility rule with the maxmax expected utility rule
(where the minimum in representation (V.1) is replaced by a maximum). An analysis sim-
ilar to that carried out in Section V.3 would apply to such a model, yielding a relation of
‘more absence-of-confidence seeking’. Other decision models are obtained by replacing
the maxmin expected utility rule with the ↵-maxmin or Hurwicz rule, which evaluates acts
by a mix of maximum and minimum, or by a generalisation of that rule with non-constant
↵, such as that studied by Ghirardato et al. (2004).

Such modifications in the decision rule change relatively little as regards the main points
made in the previous sections. Conceptually, the same representation of confidence in be-
liefs (confidence ranking) is used, and the set of probabilities is determined on the basis
of the stakes via the cautiousness coefficient. Accordingly, there continues to be the same
strict separation of beliefs (represented by the confidence ranking) and tastes (represented,
at least, by the utility function and the cautiousness coefficient 20). Practically, in the appli-
cation of such rules to real-life decisions, one still needs to determine a set of probabilities
on the basis of the stakes involved in the act; the difference is in how this set is used.

It is also worth noting other potentially interesting members of the family that can be
seen as special cases of the model considered in the previous sections. For example, adding
the appropriate analogue of co-monotonic independence would force the sets of probabil-
ities in the confidence ranking to correspond to convex capacities (Schmeidler, 1986). In

20. For certain decision rules, there may be additional factors on the taste side; this is the case for example
for the a function in the rule proposed by Ghirardato et al. (2004).
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this case, the representation (V.1) would be equivalent to a stakes-sensitive Choquet ex-
pected utility representation, where the decision maker chooses according to the Choquet
expected utility rule, but with a capacity that varies with the stakes. This model is partic-
ularly interesting from an operational point of view, since standard techniques that have
been developed for eliciting capacities could perhaps be applied here to elicit the confi-
dence ranking. Another potentially interesting specification involves confidence rankings
where the sets are balls of different sizes around a fixed probability measure (ie. the sets
are of the form tq P �p⌃q|dpp, qq § ✏u for different ✏, where d is the metric on the space of
probability measures). These easily-parametrised models can be thought of as confidence
versions of ✏-contamination models studied elsewhere in the literature (Gajdos et al., 2008;
Kopylov, 2009).

On the other hand, other members of the family of decision models may differ in the
notion of stakes used. The motivation for the notion of stakes employed here is obvious,
if not beyond controversy, and there are a myriad of other notions of stakes which could
be considered: for example, the best consequence of the act, the difference between the
best and worst consequences of the act, the minimum (or maximum) probability that the
act takes values below a certain threshold (calculated with the respect to smallest or alter-
natively the largest set of probability measures in the confidence ranking) or the minimum
expected utility of values below the threshold (calculated with the respect to smallest or
the largest set of probability measures in the confidence ranking). This is not to mention
notions of stakes that are not functions of individual acts but of the menu of available acts;
for example, one could take as stakes the worst consequence out of all the acts on the menu.
A full discussion of all the options is beyond the scope of this paper. However, many of
the points made above continue to hold for other notions of stakes. Changing the notion of
stakes used makes little difference conceptually: confidence in beliefs, represented by con-
fidence rankings, continues to play a role in choice via the cautiousness coefficient, with
only the allocation of stakes to acts (the function � in (V.1)) changing. Accordingly, the
strict separation of beliefs and tastes is retained. Finally, the application of the model in
practice proceeds as described above, the only difference being the properties of acts that
are relevant in determining the set of probabilities used.

Let us close with two remarks. First of all, notice that, in principle, the decision rule
on sets of probabilities and the notion of stakes can be varied independently. For example,
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any combination of maxmin expected utility and maxmax expected utility rule with stakes
as worst consequence and stakes as best consequence is possible. Whilst this yields a very
large family of decision models, only some will be of interest. For example, one might
wonder whether there is any interest for someone who takes as stakes the best consequence
to be so pessimistic as to use the maxmin expected utility rule. Secondly, notice that both
of these issues are behaviourally meaningful. Both the specific decision rule used and the
particular notion of stakes employed will have consequences for properties of preferences
and so may, in principle, be gleaned from choices. It remains a largely open question how
to axiomatise different combinations of decision rule and notion of stakes or whether there
is a general axiomatic framework in which all models in the family can be treated.

V.5 Conclusion

This paper proposes a model of a decision maker’s confidence in his probability judge-
ments in terms of a confidence ranking – a nested family of sets of probability measures.
This model can be used to formulate a family of decision rules which allow the probability
judgements that play a role in a decision to depend on what is at stake. Under each of
the decision models in this family, the decision maker evaluates acts using a set of proba-
bility measures that is determined by the stakes involved and his cautiousness coefficient.
Models in this family differ according, firstly, to the way the set of probability measures
is used in the evaluation and, secondly, to the notion of stakes employed. However, all
share the advantages of the general framework: structural simplicity of the representation
of confidence, relative tractability in application to aiding decision making, and separation
of beliefs and tastes. A particular model in the family is studied in detail and found to have
a reasonable axiomatisation. Finally, a notion of comparative aversion to choosing in the
absence of confidence is defined, characterised in terms of the cautiousness coefficient and
related to standard notions of ambiguity aversion.



V-29 Confidence and decision

V.A Proofs of results

Throughout the Appendix, B will denote the space of all real-valued functions on S,
and bapSq will denote the set of real-valued set functions on S, both under the Euclidean
topology. Recall that, under this topology, bapSq is locally convex (Aliprantis and Border,
2007, §5.12). B is equipped with the standard order: a § b iff apsq § bpsq for all s P S.
For a P B, we define �paq “ ´ minnon´nullsPS apsq, and for x P <, we define x˚ to be the
constant function taking value x. Finally, for any a P B and r P <, let er

a P B be such that
er

apsq “ apsq ` �paq ´ r for all s P S and let xr
a P < be r ´ �paq. By definition, �per

aq “ r

and a “ er
a ` xr˚

a .

Proof of Theorem V.1

The main part of the result is the sufficiency of the axioms for the representation (the
direction (i) to (ii)), the proof of which proceeds as follows. As is standard, the axioms
imply the existence of a utility function u on �pXq, with image K, and a functional I on
BpKq such that, for any f, g P A, f ® g iff Ipu ˝ fq § Ipu ˝ gq. The main lemma, Lemma
V.A.3, establishes that for any stakes level there exists a closed and convex set of probability
measures such that each act with these stakes is evaluated by the maxmin expected utility
over this set. By Lemma V.A.4, these sets form a nested family, with larger stakes yielding
larger sets, and hence is a confidence ranking. By Lemma V.A.5, this confidence ranking
is continuous.

We now proceed with the proof of the Theorem. We assume first (i); we will show (ii).
Consider firstly the following lemmas, all of which are under the assumption of axioms
V-A1–V-A6.

Lemma V.A.1. There exists a non-constant utility function u representing the restriction

of ® to the constant acts. Moreover, for K “ up�pXqq and BpKq the set of functions in

B taking values in K, there exists I : BpKq Ñ < such that, for any f, g P A, f ® g iff

Ipu ˝ fq § Ipu ˝ gq.

Proof. First note that, for all c, d P �pXq, if c „ d then 1

2

c` 1

2

e „ 1

2

d` 1

2

e for all e P �pXq.
If e © c „ d, then, by the first clause of V-A2, it follows that 1

2

c` 1

2

e © 1

2

d` 1

2

e; moreover,
by the symmetric argument, 1

2

d ` 1

2

e © 1

2

c ` 1

2

e, whence 1

2

c ` 1

2

e „ 1

2

d ` 1

2

e, as required.
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If e ® c „ d, then the second clause of V-A2 can be applied in a similar way to obtain
1

2

c ` 1

2

e „ 1

2

d ` 1

2

e, as required. Given V-A1, V-A3 and V-A6, it follows that the axioms
of the Herstein and Milnor (1953) mixture theorem are satisfied, hence the existence of the
required utility function.

Moreover, by V-A1, V-A3 and V-A4, for any act f there exist constant acts c, c1 such
that with c ® f ® c1. (If fpsq „ ˆf for all non-null s P S, then take c “ c1 “ ˆf . Now
suppose that this is not the case. Take any c, c1 P �pXq such that c ® fpsq ® c1 for all
s P S. By V-A3, there exists ↵ P p0, 1s such that ˆf „ c↵c1; V-A4 implies that f © c.
Moreover, if c † ˆf , then ↵ P p0, 1q, so V-A4 implies that f ® c1. Finally, if c „ ˆf , then
applying the previous argument on f�c1 yields that f�c1 ® c1 for all � P r0, 1q; by V-A3,
f ® c1.) By V-A3 and V-A1, using a standard argument, u can be extended to a function
J : A Ñ < such that, for any f, g P A, f ® g iff Jpfq § Jpgq. It also follows from
V-A4 that Jpfq “ Jpf 1q whenever fpsq „ fps1q for all s P S, so there exists a function
I : BpKq Ñ < such that Ipu ˝ fq “ Jpfq for all f P A, as required.

Without loss of generality, it will be assumed that 0 P K but not on its boundary. So
K is an interval on the real line containing 0 and such that 0 is not on its boundary. Let
´K “ tr P <| ´ r P Kuo. 21 Note finally that, by construction, Ipx˚q “ x.

The following lemma will prove useful.

Lemma V.A.2. For all a, a1, b P B and ↵ ° 0, such that a1 ´ �pbq˚, a ´ �pbq˚ P BpKq,

�paq “ �pa1q “ 0 and a “ ↵a1, Ipa ´ �pbq˚q ` �pbq “ ↵pIpa1 ´ �pbq˚q ` �pbqq.

Proof. Consider the case of ↵ P p0, 1s (the case of ↵ ° 1 follows as a consequence). Take
g P A such that a1 ´ �pbq˚ “ u ˝ g, x, y P �pXq such that upxq “ ´�pbq and g „ y, and
f P A such that f “ ↵g`p1´↵qx. So u˝f “ ↵u˝g`p1´↵qu˝x “ ↵pa1 ´�pbq˚q´p1´
↵q�pbq˚ “ a´�pbq˚. Then V-A2 applies, yielding that f “ ↵g`p1´↵qx „ ↵y`p1´↵qx,
whence Ipa ´ �pbq˚q “ Ipu ˝ fq “ ↵Ipu ˝ yq ` p1 ´ ↵qIpu ˝ xq “ ↵Ipa1 ´ �pbq˚q ` p1 ´
↵qIp´�pbq˚q, and so Ipa ´ �pbq˚q ` �pbq “ ↵pIpa1 ´ �pbq˚q ` �pbqq as required.

The following is the central lemma of the proof.

Lemma V.A.3. For every r P ´K, there exists a closed convex set Cr Ñ �p⌃q such that,

for every a P BpKq such that �paq “ r, Ipaq “ minpPCr
∞

sPS apsqppsq.

21. For a set X , X

o is its interior.
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Proof. For each b P BpKq with �pbq P ´K, we construct a probability measure pb such
that Ipbq “ ∞

sPS bpsqpbpsq and Ipaq • ∞
sPS apsqpbpsq for all a with �paq “ �pbq. To this

end, take any b P BpKq with �pbq P ´K and define Ib : B Ñ < as follows:

(i) Ibpx˚q “ x for all x P <;

(ii) Ibpaq “ Ipa´�pbq˚q`�pbq for all a P B such that a´�pbq˚ P BpKq and �paq “ 0;

(iii) Ibpaq “ ↵Ibpa1q for all a P B such that �paq “ 0 and a “ ↵a1 with a1 ´ �pbq˚ P
BpKq.

(iv) Ibpaq “ Ibpe0

aq ` Ibpx0˚
a q for all a P B such that �paq ‰ 0.

Lemma V.A.2 guarantees that Ib is well-defined (and in particular, that there is no
contradiction between the clauses (ii) and (iii)), and that it is homogeneous of degree
one on ta P B| �paq “ 0u. Moreover, it is superadditive: that is, for all a, ā P B,
Ibp1

2

a ` 1

2

āq • 1

2

Ibpaq ` 1

2

Ibpāq. This can be seen as follows.
Consider firstly the case where �paq “ �pāq “ 0. If Ibpāq “ 0, then the desired in-

equality holds by V-A2, V-A4 and the definition of Ib, and similarly for Ibpaq “ 0; so we
may henceforth suppose that Ibpaq, Ibpāq ° 0. Without loss of generality, it can assumed
that a´�pbq˚, ā´�pbq˚, �p�a` p1 ´�qāq˚ ´�pbq˚ P BpKq; if not, multiply the non-�pbq
terms below through by a small positive factor and use the fact that Ib is homogenous of
degree one on ta P B| �paq “ 0u. If Ibpaq “ Ibpāq, then, for any � P p0, 1q, Ibp�a ` p1 ´
�qāq “ 2Ibp1

2

p�a ` p1 ´ �qāq ` 1

2

p�p�a ` p1 ´ �qāqq˚q ` Ibpp´�p�a ` p1 ´ �qāqq˚q “
2I

`
1

2

p�pa ´ �pbq˚q ` p1 ´ �qpā ´ �pbq˚qq ` 1

2

p�p�a ` p1 ´ �qāq˚ ´ �pbq˚q˘ ` �pbq ´
�p�a`p1´�qāq • 2

`
1

2

Ipa ´ �pbq˚q ` 1

2

Ip�p�a ` p1 ´ �qāq˚ ´ �pbq˚q˘`�pbq´�p�a`
p1 ´ �qāq “ Ibpaq, where the first, second and last equalities follow from the defini-
tion of Ib and its homogeneity of degree one on ta P B| �paq “ 0u, and the middle
inequality results from an application of V-A5 (with acts corresponding to a ´ �pbq˚,
ā ´ �pbq˚, �p�a ` p1 ´ �qāq˚ ´ �pbq˚, and Ipa ´ �pbq˚q˚ in the place of f , g, d and
c respectively). If Ibpaq ° Ibpāq, let ↵ “ Ibpāq

Ibpaq , so that �p↵aq “ �pāq “ 0 and
Ibp↵aq “ Ibpāq. It follows, by the reasoning for the case where Ibpaq “ Ibpāq, that
Ibp� ¨ ↵a ` p1 ´ �qāq • Ibp↵aq “ �Ibp↵aq ` p1 ´ �qIbpāq “ � ¨ ↵Ibpaq ` p1 ´ �qIbpāq
for every � P p0, 1q. Substituting 1

1`↵
for � and multiplying both sides by 1`↵

2↵
yields the

desired inequality. The case where Ibpaq † Ibpāq is treated similarly.
Consider finally any a, ā P B. Note that, by the definition of �, �p1

2

a ` 1

2

āq “ 1

2

�paq `
1

2

�pāq `�
`

1

2

pa ` �paqq ` 1

2

pā ` �pāqq˘
. So e0

1
2a` 1

2 ā
“ 1

2

a` 1

2

ā`�p1

2

a` 1

2

āq “ 1

2

a` 1

2

ā`
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1

2

�paq ` 1

2

�pāq `�
`

1

2

pa ` �paqq ` 1

2

pā ` �pāqq˘ “ 1

2

e0

a ` 1

2

e0

ā `�p1

2

e0

a ` 1

2

e0

āq “ e0

1
2 e0a` 1

2 e0ā
.

By the definition of Ib and x0

a, we thus have that Ibp1

2

a` 1

2

āq “ Ibpe0

1
2a` 1

2 ā
q ´�p1

2

a` 1

2

āq “
Ibpe0

1
2 e0a` 1

2 e0ā
q´�p1

2

e0

a` 1

2

e0

āq´ 1

2

�paq´ 1

2

�pāq “ Ibp1

2

e0

a` 1

2

e0

āq´ 1

2

�paq´ 1

2

�pāq. By the result
established above, Ibp1

2

e0

a ` 1

2

e0

āq ´ 1

2

�paq ´ 1

2

�pāq • 1

2

Ibpe0

aq ` 1

2

Ibpe0

āq ´ 1

2

�paq ´ 1

2

�pāq.
So Ibp1

2

a ` 1

2

āq • 1

2

Ibpaq ` 1

2

Ibpāq, as required.

To construct the required probability measure, there are two cases to consider.

Case i: Ipbq ° Ipp´�pbqq˚q. For ¯b “ b ` �pbq˚, let Db
1

“ ta P B | Ibpaq ° Ibp¯bqu and
Db

2

“ copta P B | a § Ibp¯bq˚u Y t¯buq. 22 Evidently, both sets are convex and nonempty (in
the case of Db

1

, convexity is ensured by the superadditivity of Ib).

We now show that Db
1

and Db
2

are disjoint; that is, for any a P B and � P r0, 1s,
if a § Ibp¯bq˚, then �a ` p1 ´ �q¯b R Db

1

, ie. Ibp�a ` p1 ´ �q¯bq § Ibp¯bq. The result
is immediate for � “ 0, 1, so consider � P p0, 1q. Let a1 P B, x P < be such that
�a ` p1 ´ �q¯b “ a1 ` x˚, with �pa1q “ 0. Without loss of generality, it can assumed that
a1 ´ �pbq˚, p1 ´ �qp¯b ´ �pbq˚q ` �pIbp¯bq ´ �pbq ´ x

�
q˚, p´�Ibp¯bq ´ �pbq ` xq˚ P BpKq; if

not, multiply the non-�pbq terms below through by a small positive factor and use the fact
that Ib is homogenous of degree one on ta P B| �paq “ 0u. Since a § Ibp¯bq˚, a1 ` x˚ §
�Ibp¯bq˚ `p1´�q¯b. Hence a1 ´�pbq˚ § p1´�qp¯b´�pbq˚q`�pIbp¯bq´�pbq´ x

�
q˚. Moreover,

1

2

´
p1 ´ �qp¯b ´ �pbq˚q ` �pIbp¯bq ´ �pbq ´ x

�
q˚

¯
` 1

2

p´�Ibp¯bq´�pbq`xq˚q “ 1´�
2

¯b´�pbq˚

and �p1´�
2

¯b ´ �pbq˚q “ �pa1 ´ �pbq˚q. By Lemma V.A.2, Ip1´�
2

¯b ´ �pbq˚q “ 1´�
2

Ip¯b ´
�pbq˚q´ 1`�

2

�pbq. Given the preceding facts, and the fact that 1´�
2

Ip¯b´�pbq˚q´ 1`�
2

�pbq “
1

2

´
p1 ´ �qIp¯b ´ �pbq˚q ` �pIbp¯bq ´ �pbq ´ x

�
q˚

¯
` 1

2

p´�Ibp¯bq´�pbq`xq˚q, V-A4 can be
applied (with the acts corresponding to a1 ´�pbq˚, p1´�qp¯b´�pbq˚q`�pIbp¯bq´�pbq´ x

�
q˚,

p1 ´ �qIp¯b ´ �pbq˚q ` �pIbp¯bq ´ �pbq ´ x
�

q˚ and p´�Ibp¯bq ´ �pbq ` xq˚ in the place of f ,
g, c and d respectively) to yield the conclusion that Ipa1 ´ �pbq˚q § p1 ´ �qIp¯b ´ �pbq˚q `
�pIbp¯bq ´ �pbq ´ x

�
q. Since p1 ´ �qIp¯b ´ �pbq˚q ` �pIbp¯bq ´ �pbq ´ x

�
q “ Ibp¯bq ´ �pbq ´ x,

it follows that Ibpa1q ` x § Ibp¯bq; so Ibpa1 ` x˚q § Ibp¯bq, as required.

Given the aforementioned properties, a separation theorem (Aliprantis and Border,
2007, Theorem 7.30) implies that there is a nonzero linear functional on B, Pb, and a
real number ↵ such that Pbpcq § ↵ § Pbpaq for all a P Db

1

and c P Db
2

.

Ibp¯bq is strictly positive, by the choice of b and the definition of Ib; it follows by the

22. For a set X , copXq is the convex hull of X .
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definition of Db
1

and Db
2

that ↵ is strictly positive. Without loss of generality, it can be
assumed that ↵ “ Ibp¯bq. Since Ibp¯bq˚ P Db

2

, PbppIbp¯bqq˚q § Ibp¯bq; but since pIbp¯bqq˚ is a
limit point of Db

1

, PbppIbp¯bqq˚q • Ibp¯bq and so PbppIbp¯bqq˚q “ Ibp¯bq. Hence, by linearity of
Pb, Pbp1˚q “ 1. Moreover, for all E P ⌃, pIbp¯bqqEc

0 § pIbp¯bqq˚ (where xEy is the function
taking value x on E and y elsewhere) since Ibp¯bq is positive; so pIbp¯bqqEc

0 P Db
2

and hence
PbppIbp¯bqqEc

0q § Ibpbq. Since PbppIbp¯bqqE0q ` PbppIbp¯bqqEc
0q “ PbppIbp¯bqq˚q “ Ibp¯bq, it

follows that PbppIbpbqqE0q • 0. Hence, by the linearity of Pb, that Pbp1E0q • 0. By a
classic duality result, there is a probability measure pb such that Pbpaq “ ∞

sPS apsqpbpsq
for all a P B.

We now show that, for all a P BpKq such that �paq “ �pbq, Pbpaq • Ipaq, with equality
for a “ b. For any such a, and for all x ° Ibp¯bq ´ Ibpa ` �pbq˚q, Ibpa ` �pbq˚q ` Ibpx˚q °
Ibp¯bq, and so Ibppa ` �pbq˚q ` x˚q ° Ibp¯bq by the definition of Ib; hence pa ` �pbq˚q ` x˚ P
Db

1

. By construction of Pb, we thus have Pbppa ` �pbq˚q ` x˚q • Ibp¯bq; by linearity
of Pb, it follows that Pbpa ` �pbq˚q ` Pbpx˚q • Ibp¯bq. By the continuity of Pb (letting
x Ñ Ibp¯bq ´ Ibpa ` �pbq˚q), it follows that Pbpa ` �pbq˚q • Ibpa ` �pbq˚q. By the linearity
of Pb and definition of Ib, this implies that Pbpaq • Ipaq. Since ¯b P Db

2

, Pbp¯bq § Ibp¯bq, so
Pbp¯bq “ Ibp¯bq and hence Pbpbq “ Ipbq as required.

Case ii: Ipbq § Ipp´�pbqq˚q. Let ¯b “ b ` �pbq, and take Db
1

“ ta P B | Ibpaq ° 0u
and Db

2

“ t�¯b| � P r0, 1su. Evidently, both sets are convex and nonempty (in the case of
Db

1

, convexity is ensured by the superadditivity of Ib). Note furthermore that, by V-A4,
Ipbq “ Ipp´�pbqq˚q, so Ibp¯bq “ 0; moreover, it follows from Lemma V.A.2 that Ibpcq “ 0

for all c P Db
2

, so Db
1

and Db
2

are disjoint.

By a separation theorem (Aliprantis and Border, 2007, Theorem 7.30), there is a nonzero
linear functional on B, Pb and a real number ↵ such that Pbp¯bq § ↵ § Pbpaq for all a P Db

1

.
Since 0

˚ P Db
2

and it is a limit point of Db
1

, ↵ must be 0.

For all E P ⌃, 0

˚ § 1E0 (where xEy is the function taking value x on E and y

elsewhere), so, by V-A4 and V-A2, 0 § Ibp1E0q, hence Pbp1E0q • 0. By a classic duality
result, there is a probability measure pb such that Pbpaq “ ∞

sPS apsqpbpsq for all a P B.

Using a similar argument to that used in case (i), it can be shown that, for all a P BpKq
such that �paq “ �pbq, Pbpaq • Ipaq, with equality for a “ b.

For every r P ´K, define Cr to be the closure of the convex hull of tpb | �pbq “ ru.
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By construction, Ipaq “ minpPCr
∞

sPS apsqppsq for any a P BpKq such that �paq “ r, as
required.

The following two lemmas guarantee that the sets of probability measures mentioned
in Lemma V.A.3 have the properties needed to constitute a continuous confidence ranking.

Lemma V.A.4. For all r, s P ´K, Cr Ñ Cs if r § s.

Proof. For any a P BpKq and for any r, s P ´K such that r § s, there exists
x P K and ↵ P p0, 1s such that �p↵pes

aq ` p1 ´ ↵qx˚q “ r. Since x • ´s,
V-A2 implies that, for any y P K, if Ipes

aq • y, then Ip↵pes
aq ` p1 ´ ↵qx˚q •

↵y ` p1 ´ ↵qx. By the linearity of the maxmin functional, it follows that
minpPCr

∞
sPS apsqppsq “ 1

↵
minpPCr

∞
sPS p↵pes

aq ` p1 ´ ↵qx˚q psqppsq ` pxs
a ´ 1´↵

↵
xq •

1

↵
p↵minpPCs

∞
sPSpes

aqpsqppsq ` p1 ´ ↵qxq ` pxs
a ´ 1´↵

↵
xq “ minpPCs

∞
sPS apsqppsq.

Similarly, by considering a multiple of the reflexion of a in 0

˚ (a1 P BpKq such that, for
some ↵, apsq “ ´↵a1psq for every s P S), we have that maxpPCr

∞
sPS apsqppsq §

maxpPCs
∞

sPS apsqppsq. So rminpPCr
∞

sPS apsqppsq, maxpPCr
∞

sPS apsqppsqs Ñ
rminpPCs

∞
sPS apsqppsq, maxpPCs

∞
sPS apsqppsqs for all a P BpKq. It follows, by

Ghirardato et al. (2004, Proposition A.1), that Cr Ñ Cs, as required.

Lemma V.A.5. For any r P ´K, Cr “ ì
r1°r Cr1 “ î

r1†r Cr1 .

Proof. We show that Cr “ ì
r1°r Cr1; the proof that Cr “ î

r1†r Cr1 is similar. By Lemma
V.A.4, Cr Ñ Cr1 for all r1 ° r. Suppose, for reductio, that Cr à ì

r1°r Cr1 for some
r P ´K, so that there exists a point (probability measure) p R Cr, but p P ì

r1°r Cr1 . By
a separation theorem (Aliprantis and Border, 2007, 5.80), there is a nonzero (continuous)
linear functional � on bapSq and ↵ P < such that �ppq § ↵ † �pqq for all q P Cr. Since
S is finite (so B is finite-dimensional), B is reflexive, and, by the standard isomorphism
between bapSq and B˚, it follows that bapSq˚ is isometrically isomorphic to B (Dunford
and Schwartz, 1958, IV.3); hence there is a real-valued function a P B such that �pqq “
∞

sPS apsqqpsq for any q P bapSq. Without loss of generality �, a and ↵ can be chosen so
that ↵ P K, a P BpKq and �paq “ r. Taking f P A such that u ˝ f “ a and c P �pXq
such that upcq “ ↵, we have, by construction, that c † f but for any d P �pXq with d † c

and �pdq ° r and any ↵ P p0, 1q, f↵d ® c↵d † c, contradicting V-A3.
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Conclusion of the proof of Theorem V.1. To conclude the direction (i) to (ii), note that, by
Lemma V.A.1, there exists a utility function u representing preferences over constant acts,
and a functional I representing ® as specified. Consider the case where K is bounded
above and below; the other cases are treated similarly. Lemma V.A.3 guarantees that there
exists sets Cr for all r P ´K, such that Ipaq “ minpPCr

∞
sPS apsqppsq for all a P BpKq

such that �paq “ r. Define ⌅ “ tCr| r P ´Ku Y tìrP´K Cru Y tîrP´K Cru. Since Cr is
closed and convex for all r P ´K, and since, by Lemma V.A.4, the sets Cr are nested, ⌅

is a confidence ranking. By Lemma V.A.5, ⌅ is continuous. D is defined as follows: for
r P ´K, Dprq “ Cr, for r † s for all s P ´K, Dprq “ ì

sP´K Cs and for r ° s for all
s P ´K, Dprq “ î

sP´K Cs. Order preservation and surjectivity of D are immediate from
the definition and Lemma V.A.4.

Finally, for any c P �pXq having the property described in the centering axiom V-A7,
the restriction of ® to tf P A | ˆf © cu is non-trivial and satisfies independence. By
standard results, in the presence of independence, this implies that C´upcq is a singleton. So
V-A7 implies that ⌅ contains a singleton, as required.

The direction from (ii) to (i) is generally straightforward. The only interesting cases
are S-monotonicity (V-A4) and continuity (V-A3). As regards S-monotonicity (V-A4),
let f, g P A, c, d P �pXq and ↵ P p0, 1s satisfy the conditions of the axiom. Since
ˆf „ yg↵d, Dp�pfqq “ Dp�pg↵dqq; let us call this set C. Since g↵d „ c↵d, it follows
from the representation (V.1) that minpPC

∞
sPS upg↵dpsqqppsq “ upc↵dq and hence that

minpPC
∞

sPS upgpsqqppsq “ upcq. If fpsq ® gpsq for all s P S, then minpPC
∞

sPS upfpsqqppsq §
minpPC

∞
sPS upgpsqqppsq; so minpPC

∞
sPS upfpsqqppsq § upcq and f ® c as required. A

similar argument establishes the case where fpsq © gpsq for all s P S. We now consider
continuity (V-A3). Take any f, g, h P A and consider the set t↵ P r0, 1s| f↵h ® gu; the
other case is shown similarly. Suppose that ↵˚ is a limit point of this set, and consider a
sequence p↵iq of elements in the set with ↵i Ñ ↵˚. If there is a subsequence of p↵iq tend-
ing to ↵˚ such that zf↵in

h © zf↵˚h for all ↵in in this subsequence, then the result follows
from the fact that D is order-preserving and the continuity of the maxmin EU representa-
tion (with a fixed set of probability measures). Suppose now there is no such sequence.
In this case, there exists c P �pXq, c † zf↵˚h; moreover, for any such c, there exists an
interval I containing ↵˚ with yf�h © c for any � P I . Hence, for each such c, there exists
a subsequence p↵c

jnq of p↵iq, tending to ↵˚, with zf↵c
jn

h © c for all n P N. By the fact that
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D is order-preserving and the continuity of the maxmin EU representation, it follows that
minpPDp´upcqq

∞
sPS upf↵˚hpsqq.ppsq § minpPDp´upĝqq

∞
sPS upgpsqq.ppsq. Since this holds

for every c † zf↵˚h, and since, by the continuity of the confidence ranking and the surjec-
tivity of D, Dp´upzf↵˚hqq “ ì

c†{f↵˚h Dp´upcqq, it follows that f↵˚h ® g as required.

Finally consider the uniqueness clause. Uniqueness of u follows from the Herstein-
Milnor theorem. As regards uniqueness of ⌅, proceed by reductio; suppose that u, ⌅

1

, D
1

and u, ⌅
2

, D
2

both represent ® according (V.1), with ⌅

1

‰ ⌅

2

. By surjectivity of
the cautiousness coefficient, for some r, D

1

prq ‰ D
2

prq. Suppose, without loss of
generality, that p P D

1

prqzD
2

prq. By a separation theorem (Aliprantis and Border,
2007, 5.80), there is a nonzero linear functional � on bapSq and ↵ P < such that
�ppq § ↵ † �pqq for all q P D

2

prq. As in the proof of Lemma V.A.5, there is
a real-valued function a P B such that �pqq “ ∞

sPS apsqqpsq for any q P bapSq.
Without loss of generality �, a and ↵ can be chosen so that ↵ P K, a P BpKq and
�paq “ r. Taking f P A such that u ˝ f “ a and c P �pXq such that upcq “ ↵,
we have that minpPD1p�pfqq

∞
sPS upfpsqqppsq § minpPD1p�pfqq

∞
sPS upcqppsq, whereas

minpPD2p�pfqq
∞

sPS upfpsqqppsq ° minpPD2p�pfqq
∞

sPS upcqppsq, contradicting the assump-
tion that both u, ⌅

1

, D
1

and u, ⌅
2

, D
2

represent ®. A similar argument establishes the
uniqueness of D on ´K; outside of ´K, the value of D is determined (to be the smallest
or largest set in ⌅), since D is order-preserving.

Proofs of other results

Proposition V.2. For ⌅ a (continuous) confidence ranking, §
⌅

“ tpp, qq P
�p⌃q2| for all C P ⌅, q P C implies p P Cu is a quasi-convex, lower semi-continuous

(and locally non-satiated except at the extremes) weak order on �p⌃q . 23

Likewise, for § a quasi-convex, lower semi-continuous (and locally non-satiated except

at the extremes) weak order on �p⌃q, ⌅§ “ ttq| q § pu|p P �p⌃qu is a (continuous)

confidence ranking.

23. An order § is quasi-convex if the lower contour sets (tq P �p⌃q| q § pu) are convex for all p P �p⌃q;
it is lower semi-continuous if the lower contour sets tq P �p⌃q| q § pu are closed for all p P �p⌃q; and it
is locally non-satiated except at the extremes if, for any p P �p⌃q such that there exists p

1 ° p and for every
neighbourhood around p, there exists q in the neighbourhood such that q ° p.
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Proof. Straightforward.

Proof of Proposition V.1. The right to left direction is evident. For the left to right direc-
tion, the clause concerning utilities follows immediately from clause (i) of Definition V.3.
The clause concerning confidence rankings follows from clause (ii) of the definition, in the
light of the construction and uniqueness result in the proof of Theorem V.1.

Proof of Theorem V.2. Let the assumptions of the theorem be satisfied.
(i) implies (iii). Suppose that D

1

prq á D
2

prq for some r P p´up�pXqqqo, and that
p P D

2

prqzD
1

prq. Since D
1

prq is a closed convex set, by a separating hyperplane theo-
rem (Aliprantis and Border, 2007, 5.80) and as in the proof of Lemma V.A.5, there is an
f P A and a c P �pXq such that ´up ˆfq “ r, minpPD2prq

∞
sPS upfpsqq.ppsq † upcq and

minpPD1prq
∞

sPS upfpsqq.ppsq • upcq. So for all f↵d with yf↵d © ˆf f↵d ©1 c↵d whereas
this is not the case for ®2 (taking ↵ “ 1), contradicting (i); hence (iii) is established for
r P p´up�pXqqqo. It follows from the order-preserving and surjectivity properties of D

1

and D
2

that (iii) holds on r R p´up�pXqqqo.
(ii) implies (i). Straightforward.
(iii) implies (ii). Consider f P A, with up ˆfq “ r. Since D

1

prq Ö D
2

prq, minpPD1prq
∞

sPS upfpsqq.ppsq §
minpPD2prq

∞
sPS upfpsqq.ppsq, from which it follows that if f ©

1

c, then f ©
2

c, as re-
quired.

V.B The example in Section V.1.2 and the smooth ambigu-

ity model

The smooth ambiguity model (Klibanoff et al., 2005) evaluates acts by the following
functional:

(V.2) V pfq “
ª

�p⌃q
�

ˆª

S

upgpsqqd⇡psq
˙

dµ

where u is a von Neumann-Morgenstern utility function, µ is a countably additive proba-
bility measure on �p⌃q, and � is a continuous, strictly increasing real-valued function on
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the image of u, which is sometimes called the transformation function. As Klibanoff et al.
(2005) show, under appropriate assumptions (and with an appropriate notion of ambiguity
aversion), a smooth ambiguity decision maker is ambiguity averse if and only if his � is
concave. Note that, if � is linear, then representation (V.2) reduces to standard expected
utility, and hence satisfies the C-independence axiom.

To establish the claim in Section V.1.2 that the preferences in Figure V.1 are inconsis-
tent with (V.2) if the decision maker is ambiguity averse, we use Proposition V.3 below.
This proposition states that, under certain conditions, an ambiguity averse smooth ambi-
guity decision maker’s transformation function � must be linear on a particular interval. It
follows in particular that he satisfies C-independence on that interval.

Proposition V.3. Let ® be represented according to (V.2) with a continuous utility function

u, a continuous, strictly increasing and concave transformation function � and countably

additive probability measure µ. Suppose that, for some non-constant f P A and b, c, c P
�pXq, we have that f „ b iff f↵c „ b↵c for all ↵ P p0, 1s and c ® c ® c. Let x “
inftx| D⇧ Ñ �p⌃q with µp⇧q ° 0 and such that @⇡ P ⇧,

≥
S

upfpsqqd⇡psq § xu and

x “ suptx| D⇧ Ñ �p⌃q with µp⇧q ° 0 and such that @⇡ P ⇧,
≥
S

upfpsqqd⇡psq • xu.

Then � is linear on pmintx, upcqu, maxtx, upcquq.

Proof. For any act g, define the real-valued measurable function on �p⌃q, g̃, by g̃p⇡q “
≥
S

upgpsqqd⇡psq (this is close to the definition of second-order act given in Klibanoff et al.
(2005)); with slight abuse of notation, for a constant act b, we also use ˜b to denote upbpsqq.
Noting that É↵f ` p1 ´ ↵qc “ ↵ ˜f ` p1 ´ ↵qc̃, it follows from representation (V.2) and the
assumptions in the proposition that

≥
�p⌃q �p↵ ˜fp⇡q`p1´↵qc̃qdµp⇡q “ �p↵˜b`p1´↵qc̃q for

all c P �pXq with c ® c ® c and all ↵ P p0, 1s. We first show that ˜b “ ≥
�p⌃q ˜fp⇡qdµ. As

noted in Hardy et al. (1934, §3.18), the derivative of a continuous convex function exists
except at most enumerably many points. There thus exists ↵ P p0, 1s and c ® c ® c such
that c ® b↵c ® c and such that the derivative of � exists at ↵˜b`p1´↵qc̃. By the assumption
in the proposition, for such ↵ and c we have that

ª

�p⌃q
�p�p↵ ˜fp⇡q ` p1 ´ ↵qc̃q ` p1 ´ �qp↵˜b ` p1 ´ ↵qc̃qqdµp⇡q “ �p↵˜b ` p1 ´ ↵qc̃q

for every � P r0, 1s. It follows that
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ª

�p⌃q

�
´
�p↵ ˜fp⇡q ` p1 ´ ↵qc̃q ` p1 ´ �qp↵˜b ` p1 ´ ↵qc̃q

¯
´ �

´
↵˜b ` p1 ´ ↵qc̃

¯

�↵p ˜fp⇡q ´ ˜bq .p ˜fp⇡q ´ ˜bqdµ “ 0

and so, taking the limit as � Ñ 0,

ª

�p⌃q
d�

dx
p↵˜b ` p1 ´ ↵qc̃q.p ˜fp⇡q ´ ˜bqdµ “ 0

Where the derivative exists in the light of the remarks above. Since � is strictly increasing,
it follows that ˜b “ ≥

�p⌃q ˜fp⇡qdµ, as required. Therefore �˜b ` p1 ´ �q ˜d “ ≥
�p⌃q � ˜fp⇡q `

p1 ´ �q ˜d dµ for all � P r0, 1s and all d P �pXq.

We thus have that
≥
�p⌃q �p ˜fp⇡qqdµ “ �p˜bq “ �

´≥
�p⌃q ↵ ˜fp⇡qdµ

¯
. Hence McShane

(1937, Theorem 5) can be applied to ˜f , the set of second-order acts (in the sense of
Klibanoff et al. (2005)), the integral with respect to µ and the function � to conclude that,
for all ⇡ P ⌃p�q except at most those belonging to a set S such that µpSq “ 0, ˜fp⇡q
belongs to an interval I on which � is linear. It follows from the definition of x and x that
� is linear on px, xq. Moreover, by the same argument applied to f↵c and b↵c for ↵ P p0, 1q
and c ® c ® c, we have that � is linear on p↵x ` p1 ´ ↵qupcq,↵x ` p1 ´ ↵qupcqq. Since
these intervals overlap, for appropriate choices of ↵ and c, we have that � is linear on
pmintx, upcqu, maxtx, upcquq, as required.

We use this proposition to establish the claim in Section V.1.2 as follows. (Recall that,
for ease, we are assuming that u is linear.) As a point of notation, let s

1

be the state where
the ball drawn is blue and s

2

the state where it is red (other notation is taken from Section
V.1.2; see in particular Figure V.1). First of all, since g „ d for some constant act d yielding
$d with d ° 0, 24 it follows from representation (V.2) that µ must give non-zero weight to
the set of probability measures ⇡ for which

≥
S

upgpsqqd⇡psq • updq. Since d ° $0, there
exists ↵ ° 0 and ⌘ such that p↵g ` ⌘qps

2

q † ´$10M and ↵d ` ⌘ ° $15000. (It suffices
to take ⌘ “ 0 and ↵ sufficiently large.) It follows from the properties established above
that µpt⇡ P �p⌃q | ≥

S
upp↵g ` ⌘qpsqqd⇡psq ° up$15000quq ° 0. We shall now apply

Proposition V.3 on ↵g ` ⌘; note that the fact just established implies that x • up$15000q
24. Recall that we are using the same symbol for the constant act and the consequence it yields. Giving

that utility is linear, we further abuse of notation we use d to also denote the monetary value yielded by the
constant act d.
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(where x is as defined in the statement of the proposition, for the act ↵g ` ⌘). Since
↵g ` ⌘ “ p10

´3 ˆ↵qf ` ⌘, the preferences specified in Section V.1.2 (see Figure V.1), and
notably the fact that ↵1f ` ⌘1 „ ↵1pf ` ⌘1 whenever p↵1f ` ⌘1qps

2

q † ´$10M , imply that
p↵g ` ⌘q�c „ p↵p´$100q ` ⌘q�c whenever c is a constant act with c † ´$10M . Hence the
assumptions of Proposition V.3 are satisfied for ↵g`⌘ with any c † c † ´$10M . It follows
from the Proposition that � is linear on rup´$1000Mq, up$10000qs. So representation (V.2)
reduces to expected utility – and in particular satisfies constant linearity – for acts taking
values in that interval. The act 10

´3 ˆ f ` p´$10Mq takes values in the interval just
described; moreover, since p10

´3 ˆ f ` p´$10Mqqps
2

q † ´$10M , it follows from the
preferences specified in Section V.1.2 that 10

´3 ˆ f ` p´$10Mq „ ´$10000100. Since
g also only takes values in the interval described, and g “ 10

´3 ˆ f , it follows from
constant linearity of the representation in this interval that g „ ´$100, contradicting g °
$0. So the preferences specified are indeed incompatible with representation (V.2), under
the assumption that the decision maker is ambiguity averse, as claimed.
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VI Confidence in preferences

Abstract

Indeterminate preferences have long been a tricky subject for choice theory. One reason
for which preferences may be less than fully determinate is the lack of confidence in one’s
preferences. In this paper, a representation of confidence in preferences is proposed. It
is used to develop and axiomatise an account of the role of confidence in choice which
rests on the following intuition: the more important the decision to be taken, the more
confidence is required in the preferences needed to take it. This theory provides a natural
account of when an agent should defer a decision; namely, when the importance of the
decision exceeds his confidence in the relevant preferences. Possible applications of the
notion of confidence in preferences to social choice are briefly explored. 1

Keywords: Incomplete preferences; indeterminacy of preference; confidence in prefer-
ences; deferral of decisions; importance of decisions; choice-theoretic axiomatisations;
social choice

JEL classification: D01, D71.

1. This is a modified version of a paper of same name that appeared in Social Choice and Welfare, 39(2):
273-302, July 2012. The main modifications concern Theorems VI.1 and VI.2, which incorrectly omitted the
sing

˚ (respectively sing) axioms in the original version.

VI-1



Confidence in preferences VI-2

Under the standard economic model, a rational agent’s preferences can be represented
by a complete order on the alternatives, but this has been famously and repeatedly chal-
lenged. Preferences may be fuzzy, imprecise or vague (Aumann, 1962; Salles, 1998). Pref-
erences may be incomplete because the agent has not yet settled on the preferences which
he deems appropriate, perhaps due to unresolved conflict (Levi, 1986; Morton, 1991). Or
still, preferences may be incomplete because the agent does not see that some options will
ever be comparable: after all, there is no reason to always expect them to be (Sen, 1997).
From both a descriptive or a normative point of view, the assumption of completeness or
determinacy of preferences is highly questionable.

We consider here the case of choice under certainty; the agent will be assumed to know
the consequences of choosing each of the alternatives, and there will be no question of
beliefs or probabilities over “states”. The only relevant attitude is the agent’s preferences
(which, as standard, are taken to be subjective). If an agent settles on a preference for one
alternative over another or decides on determinate indifference between the alternatives,
we will say that he has emitted a value assessment: an assessment of the relative value of
the alternatives for him. 2 In situations of choice under certainty, the agent’s choices are
standardly taken to be guided entirely by his preferences, or, to put the same point in other
terms, by his value assessments. Conversely, his preferences are traditionally taken to be
derivable from his choices.

Many of the challenges to the standard model mentioned above relate to the fact that
agents do not always endorse clear, categorical value assessments on every pair of alter-
natives. One intuitive reason for this, which has been hardly emphasised though tacitly
invoked at times in the literature, is that people often have differing degrees of confidence

in their value assessments. Sometimes, they are not sure which of the alternatives is best
(by their own lights). Consider moral dilemmas: an agent might be confident that he would
prefer to sacrifice the life of one to save the lives of a hundred than not to; although he
thinks that he would prefer to sacrifice the life of one to save the lives of five others than
not to, he may be less confident in this value assessment; finally, he may be totally unsure
about whether it is preferable to sacrifice the life of a gifted musician for that of a talented
economist or not. The goal of this paper is to get a grip on the intuitive notion of confidence

2. Although we use the term ‘value’, we in no way intend to break with the tradition in the economic
literature of considering preferences to be entirely subjective; thus the qualification that we are considering
only the value of options for the agent and by his lights.
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in one’s preferences.
We first propose a representation of confidence in preferences (Section VI.1.1) and an

account of its role in choice (Section VI.1.2). Although they may turn out to be descrip-
tively valid, the focus is normative: assuming that it is rational to have different levels of
confidence in one’s preferences, the goal is to say something about what sorts of confi-
dence one can allow oneself to have and on the role confidence should play in choice. In
Section VI.2, an axiomatisation of the notion of choice on the basis of confidence in pref-
erences is developed. Under the proposal, confidence is related to two aspects of choice
situations, which though apparently relevant in many cases, have received little attention
in the choice-theoretic literature to date: the importance of the decision to be taken, and
the question of when and whether to defer the decision. In Section VI.3, we discuss these
two issues in detail, as well as the relationship with existing literature in economics and
philosophy. In Section VI.4, we turn to the possible application of the notion of confidence
in social choice, attempting a preliminary investigation into the question, and proposing a
social choice rule which takes into account voters’ confidence in their preferences. Proofs
are relegated to the Appendix.

VI.1 Preference, confidence and choice

VI.1.1 Representing confidence in preferences

Let X be a finite set of alternatives, with at least three members. Henceforth, we use
the generic terms x, y and so on to refer to elements of X , and the generic terms S, T and
so on to refer to subsets of X . A weak ordering on a set is a complete, reflexive, transitive
binary relation on that set. The standard model represents an agent’s preferences by a weak
ordering on the set of alternatives X . Let P be the set of weak orderings on X; we use
the generic terms R, Ri, and so on to refer to elements of P and the generic term R to
refer to subsets of P . The generated strict ordering and indifference relation are defined as
standard.

Weak orderings represent determinate preferences: for each pair of alternatives, either
the agent strictly prefers one to the other or is determinately indifferent. The most common
way of representing preferences that are not determinate in this way is by weakening the
completeness assumption (Sen, 1970, 1997). Reflexive, transitive relations which do not
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necessarily satisfy completeness are called quasi-orderings. If Q is a quasi-ordering, then
there may be alternatives x and y such that neither xQy nor yQx; these are cases where
the agent does not have any determinate preference – including determinate indifference –
between the alternatives x and y. In other words, he does not endorse any value assessment
concerning the comparison between x and y.

This is however not the only way to represent an agent who does not have determinate
preferences over all pairs of alternatives. Another possibility is to use sets of weak order-

ings. 3 For a set of weak orderings R, there may be alternatives z and w such that zRw

for all R P R; in this case, the agent has a determinate weak preference for z over w. By
contrast, there may be alternatives x and y such that neither xRy for all R P R nor yRx

for all R P R. This represents an agent who does not have any determinate preference
over x and y; he endorses no value assessment concerning the comparison between these
alternatives.

The representation by sets of weak orderings is strictly more expressive than the repre-
sentation by a quasi-ordering in the following sense: for each set of weak orderings there
is a unique quasi-ordering which represents the same preferences, but there are generally
several sets of weak orderings which correspond to a given quasi-ordering. As regards the
first point, given a set of weak orderings R, define the quasi-ordering Q as follows: for all
alternatives x, y, xQy if and only if xRy for all R P R. It is straightforward to see that Q

is a quasi-ordering and that Q and R represent the same preferences: the agent has weak
preference, strict preference, indifference or indeterminacy according to one if and only if
he does according to the other. By contrast, Figure VI.1 shows two different sets of weak
orderings, both of which correspond to the empty quasi-ordering (for all x, y, neither xQy

nor yQx); this illustrates the fact that there may be no unique set of weak orderings corre-
sponding to a given quasi-ordering. One can regain uniqueness by adding a constraint on
the set of orderings. We say that a set of weak orderings R is full if, for any weak ordering
R, R P R if, for all alternatives x and y, if xR1y for all R1 P R, then xRy. This condition
basically says that, if an ordering R agrees with what all orderings in R have in common,
then R is in R. It can be shown that to each quasi-ordering Q one can associate a unique
full set of weak orderings, namely, the set containing all weak orderings R such that xRy

if xQy, for all alternatives x and y. 4

3. This method is related to that used by Sen (1973) and Levi (1986).
4. Donaldson and Weymark (1998) show that the intersection of this set of weak orderings is the initial
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Figure VI.1 – Two sets of ordering corresponding to the same quasi-ordering

a d

b c

c b

d a

a b d c
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c d b a

d c a b

Both of these representations can be interpreted as representations of the agent’s confi-
dence in his preferences. He is confident in his preference for x over y if xQy, or if xRy for
all R P R. And he has no preference concerning x and y in which he is confident if neither
xQy nor yQx, or it is not the case that xRy for some R P R and it is not the case that yRx

for another R P R. As a representation of the agent’s confidence in his preferences, these
proposals have an evident defect: they are binary. Either the agent is completely confident
in a value assessment concerning two alternatives, or he is completely unsure about any
value assessment concerning them.

In reality, it seems that one can, rationally, have different degrees of confidence in one’s
preferences or value assessments. Take the example of moral dilemmas. An agent may be
pretty confident that he prefers to sacrifice the life of one to save the lives of a thousand
than to let the thousand perish. He also thinks that he prefers to sacrifice the life of one to
save the lives of ten than not to, but he is less confident in this value assessment. And he is
more confident in that assessment than in the following assessment which he still, perhaps
cautiously, endorses: that he prefers to sacrifice the life of one “ordinary” person for the
lives of ten petty criminals than not to. There thus appear to be degrees of confidence in
one’s value assessments or preferences; a model of confidence in preferences should be
able to account for this.

This can be done by a simple extension of the second representation presented above:

quasi-ordering Q. Note that the “expressivity” of the notion of quasi-ordering is more appropriate for choice
theory, since the information given by a choice function (under an appropriate axiomatisation) is only suf-
ficient to pick out a unique quasi-ordering. To pick out a unique set of weak orderings, more “Boolean”
information about preferences is required (for example: a is preferred to b if a is preferred to c). To stay
closer to the traditional framework of choice theory, throughout this paper we work with the expressiveness
corresponding to quasi-orderings; accordingly, everything done with sets of weak orderings will be unique
only up to fullness of the sets. See also Section VI.3.3.
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instead of representing preferences by a set of weak orderings, use a nested family of weak
orderings. 5 Let ⌅ be such a nested family of subsets of P . ⌅ represents confidence in
preferences in the following way. If there is a set of weak orderings R P ⌅ such that xRy

for all R P R, then the agent (weakly) prefers x to y. But he may not be very confident in
this value assessment: his confidence in the assessment is captured by the size of the biggest
set R1 in ⌅ such that xRy for all R P R1. So he is at least as confident in his preference
for z over w than in his preference for x over y if for every set of weak orderings R P ⌅

such that xRy for all R P R, zRw for all R P R; and he is more confident in the former
preference if there is a set R1 P ⌅ such that zRw for all R P R1 but there are some R1 P R1

for which it is not the case that xR1y.

Figure VI.2 illustrates the idea diagrammatically. The plane is the set of weak orderings:
the points are weak orderings, so for each point and for every pair of alternatives, the
alternatives are ordered one way or another according to the weak ordering corresponding
to that point. The (filled) circles represent the sets in the nested family of sets representing
confidence in preference; the fact that a value assessment holds in a circle means that it
holds for all points (weak orderings) in that circle. Finally, the fact that a value assessment
holds in a bigger circle than another represents the fact that the agent is more confident in
the former than in the latter.

It is evident from the diagram that to any nested family of sets of weak orderings in
P there corresponds a unique weak ordering on the set P of weak orderings on X . For
weak orderings R and R1 on X , R is lower than R1 according to the weak ordering on P
if the smallest set in the nested family containing R1 contains the smallest set in the nested
family containing R. 6 Intuitively, the order represents how implausible the weak orderings
are as candidates for the “right” notion of preference (by the agent’s lights): the higher a
weak ordering is on the order, the “farther out” it is on the diagram in Figure VI.2, and
the less the agent feels that he has to consider it as an appropriate reflection of his prefer-
ences. Implausibility is a sort of dual notion to confidence: the agent is more confident in

5. That is, a set of sets of weak orderings such that, for each pair of distinct sets, one is strictly contained
in the other.

6. Formally: for ⌅ a nested family of subsets of P , define § as follows: for any R, R

1 P P , R § R

1 if,
for all R P ⌅, if R

1 P R then R P R. And for any weak order § on P , define the nested family of subsets ⌅
to be that family containing all and only tR1| R

1 § Ru for all R P R. It is straightforward to see that this is
a bijection from nested families of subsets of P to weak orderings on P .
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Figure VI.2 – Implausibility on the set of orderings

zRw

P

xRy

a value assessment if it holds for all weak orderings up to a higher level of implausibility,
and conversely, a highly implausible weak ordering will only be taken into account if the
agent demands a high level of confidence. This leads to the following representation of
confidence in preferences.

Definition VI.1. An implausibility order § is a weak ordering on P . ⌅§ “ ttR1| R1 §
Ru|R P Pu is the nested family of subsets of P associated with §.

The implausibility order § is said to be centred if there exists a single element R with
R § R1 for all R1 P P . This element is called the centre.

Henceforth, we use I to denote the set of implausibility orders on P .
The rest of this paper will develop a theory of choice based on this representation of

confidence in preferences. Note that the representation does impose some non-trivial con-
ditions on the concept. In particular, it implies that for a given level of confidence, the
preferences in which the agent is at least that confident are transitive and reflexive (this fol-
lows from the points made above). This is reasonable: if one is confident to a certain degree
in one’s preference for x over y, and one is confident to that degree in one’s preference for
y over z, then one is confident to at least that degree that x is preferred to z.

Centred implausibility orders have a single weak ordering as the least implausible or-
dering on the set of alternatives. (Equivalently, the nested family of sets contains a single-
ton set.) This represents the agent as having a “best guess” as to which value assessment
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is “right” for any pair of alternatives, though he may have very little confidence in this
assessment in many cases (as represented by the rest of the implausibility order). We do
not wish to take any specific position on whether this is a reasonable normative constraint
on rational agents, or on whether it is descriptively accurate. The centering property of
implausibility orderings will not be a requirement for most of the results presented here.

Finally, by analogy with the property of fullness of sets of weak orderings we say that
an implausibility order § is full if all the sets in ⌅§ are full. 7

VI.1.2 Confidence and choice

A representation of the agent’s confidence in his preferences is of little use on its own;
an account of the role of confidence in choice is also required. In this section, we outline
the principal ideas and notions involved in this account; in Section VI.2, we axiomatise
the notion of rationalisability proposed here, and in Section VI.3 we discuss in more detail
some of the central notions, as well as the comparison with related literature.

The basic intuition is simple: the more important the decision to be taken, the more
confident one should be in the value assessments required to take that decision. If a choice
between x and y is to be made, but the choice is not particularly important, one can choose
x on the basis that, on one’s appraisal, x is better than y, even though one is not very
confident in this value assessment. But if the choice is very important, then one needs to
be a lot surer of the value assessments underlying one’s decision to take it, or certainly
to take it responsibly. This intuition is intended to be normative – it is intended to say
something about how people should decide on the basis of value assessments in which they
may be more or less confident – although a full defence is beyond the scope of this paper. It
may also describe the way that people actually do make decisions in several cases, though
experimental work would be required to determine to what extent this is indeed the case.

To formalise this intuition, a first requirement is a notion of the importance of a choice.
We thus assume that there exists a set I of possible importance levels, and that this set is
equipped with a linear ordering (that is, an antisymmetric weak ordering) §: i § j means
that the importance level j is “higher” than the level i.

The importance levels are related to two factors in a choice problem. On the one hand,

7. This can be formulated just in terms of the order itself as follows: § is full if, for any R, R

1 P P , if
ì

Ri§R

1 R

i

Ñ R, then R § R

1.
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they are related to the degree of confidence required in a value assessment for it to play a
role in the choice, via the maxim that the more important a decision, the more confident
one needs to be in a value assessment for it to play a role in the choice. So to each level of
importance can be associated the value assessments in which the agent has enough confi-
dence to use for choices of this importance. Since, as discussed above, a set of such value
assessments can be represented by the appropriate set of weak orderings, the relationship
between importance level and confidence can be naturally represented by a function which
associates to each importance level a set in the nested family of sets ⌅§. Moreover, when
the importance rises, the required degree of confidence rises, so the set of value assess-
ments in which there is sufficient confidence becomes smaller; in the representation, this
corresponds to the fact that the set of weak orderings corresponding to a higher importance
level contains the set corresponding to a lower importance level. Technically, this can be
captured by a function D : I Ñ }pPq such that (i) for all i P I and all R, R1 P P with
R1 § R, if R P Dpiq, then R1 P Dpiq, and (ii) Dpiq Ñ Dpjq if i § j.

Such a function captures the agent’s attitude to choosing in the absence of confidence:
for two agents with the same implausibility order but different D, the one with smaller Dpiq
requires less confidence in a value assessment to use it in a decision of importance level i

than the agent with higher Dpiq. This is a subjective factor, the agent’s taste for choosing
in important decisions on the basis of limited confidence, or, to put it in another way, his
cautiousness when it comes to choosing on the basis of value assessments in which he has
limited confidence. The function is called the cautiousness coefficient.

On the other hand, importance levels are supposed to capture an aspect of the choice
situation or decision the agent is faced with. Some decisions are more important than
others; to the former are associated importance levels that are higher (according to the
order §) than the importance levels associated to the latter. So, to each choice situation
will be associated not only a set of available alternatives (sometimes called the menu) but
also an importance level. The pair pS, iq represents the choice offered among the elements
in S, with importance i. We return to this representation of choice situations and the notion
of importance level in Section VI.3.1.

This only leaves the definition of choice functions. Under the standard definition, a
choice function c is a function from the set of non-empty subsets of X (which we denote
by }pXqzH) to the set of subsets of X (denoted }pXq) such that (i) for every non-empty
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S Ñ X , cpSq Ñ S; and (ii) for every non-empty S Ñ X , cpSq is non-empty. According
to the maxim proposed above, an agent should chose based on value assessments which
he is confident enough in given the importance of the decision; this implies that there may
be decisions of such importance that he does not have sufficient confidence in the relevant
value assessments to make a choice. We thus weaken the second condition and allow the
choice function to yield empty choice sets. We define a choice˚ function to be a function
c : }pXqzH Ñ }pXq such that cpSq Ñ S for every non-empty S Ñ X . cpSq is called the
choice set, and if x P cpSq then x is said to be admissible. For a detailed consideration and
defence of this notion of choice function, see Section VI.3.2.

The object of study are variants of choice˚ functions which account for importance. An
importance-indexed choice˚ function is a function c : p}pXqzHq ˆ I Ñ }pXq such that
cpS, iq Ñ S for every non-empty S Ñ X and every i P I .

Having introduced this new sort of choice function, a corresponding notion of ratio-
nalisability is required. The idea is simple: for each choice situation, the importance level
picks out, via the cautiousness coefficient D, a set of weak orderings which represent all the
value assessments in which the agent is confident enough to use in his choice. He chooses
on the basis of this set of weak orderings in a specified way. We thus propose a notion of
rationalisability of a choice˚ function by a set of weak orderings, which is then extended to
a notion of rationalisability of an importance-indexed choice˚ function by an implausibility
order.

Definition VI.2. For any S P X and R Ñ P , let suppS,Rq “ tx P S| xRy for all y P
S and all R P Ru.

A choice˚ function c is rationalisable by a set of weak orderings if there exists R Ñ P
such that, for all non-empty S Ñ X , cpSq “ suppS,Rq.

An importance-indexed choice˚ function c is rationalisable by an implausibility order

if and only if there exists an implausibility order § and a cautiousness coefficient D such
that, for all non-empty S Ñ X and i P I , cpS, iq “ suppS, Dpiqq.

The set suppS,Rq contains those elements of S which are at least as good as all the
other elements of S according to all the weak orderings in R. Rationalisability by a set of
weak orderings R says that an element is in the choice set if and only if it is at least as good
as all other elements on the menu according to all the weak orderings in R. Rationalisabil-
ity by an implausibility order says that, for every importance level i, an element is in the
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choice set if it is at least as good as all the other alternatives according to all orderings in
the set corresponding to that importance level, Dpiq.

The notion of rationalisability by a set of weak orderings proposed above has received
little attention in the choice-theoretic literature. Much more popular is the notion according
to which the choice set contains those elements which are best according to at least one
ordering, rather than according to all orderings; in other words, where the choice set is the
union of the sets of best elements according to each of the weak orderings, rather than the
intersection (Moulin, 1985). 8 The intersection notion proposed above is of course stronger
than the union notion, but it is traditionally seen as problematic, because, unlike the union
notion, it does not always yield non-empty choice sets. However, this property, though it
may be unwanted if one is interested in rationalising choices by a single ordering or by a
single set of orderings, is less problematic for implausibility orders. All that the emptiness
of the choice set indicates is that there are degrees of confidence such that the agent is not
confident of any particular choice to that degree. This does not imply that he cannot make
a choice – he could always choose, but in doing so he would have to rely on preferences
in which he may not be very confident. We shall return to this issue in detail in Section
VI.3.2.

VI.2 Representation

In this section we give necessary and sufficient conditions for rationalisability by an
implausibility order. To this end, consider the following properties of importance-indexed
choice˚ functions c.

For all x, y P X , S, T Ñ X and i, i1 P I ,

8. Translated in terms of quasi-orderings, the notion of rationalisibility proposed here picks out the set of
optimal elements, to use Sen’s (1997) terminology, whereas the union notion picks out the set of maximal
ones. As noted in the text, maximal elements of quasi-orderings always exist, whereas this is not the case for
optimal elements.
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↵˚ If x P S Ñ T and x P cpT, iq, then x P cpS, iq
⇡˚ If x P S, y P S X T , y P cpT, iq and x P cpS, iq, then x P cpS Y T, iq

sing˚ x P �ptxu, iq
Consistency If x P cpS, iq and i • i1, then x P cpS, i1q

Centering There exists j P I such that cpS, jq is non-empty

We have the following result.

Theorem VI.1. An importance-indexed choice˚ function is rationalisable by an implau-

sibility order if and only if it satisfies ↵˚, ⇡˚, sing˚ and Consistency. Moreover, it is

rationalisable by a centred order if and only if it satisfies Centering. In both cases, there is

a unique coarsest full rationalising implausibility order and cautiousness coefficient. 9

The proof is to be found in the Appendix. It relies heavily on a representation result for
choice˚ functions, which involves the following two properties.

↵ if x P S Ñ T and x P cpT q, then x P cpSq
⇡ if x P S, y P S X T , y P cpT q and x P cpSq, then x P cpS Y T q
sing x P �ptxuq

Theorem VI.2. A choice˚ function c is rationalisable by a set of weak orderings if and

only if it satisfies ↵, ⇡ and sing. Moreover, in this case, there is a unique full rationalising

set of weak orderings. Finally, if c always takes non-empty values, then the rationalising

set of weak orderings is a singleton.

Evidently, the properties ↵˚, ⇡˚ and sing˚ in the representation of importance-indexed
choice˚ functions are just the importance-indexed versions of ↵, ⇡ and sing. They state that
↵, ⇡ and sing hold whenever the importance level is the same. As concerns the properties
themselves, the first is Sen’s ↵ (also called Chernoff’s property) and requires no further
discussion. The last merely demands that when there is no real choice to be made – the
menu is a singleton – there is an admissible alternative – namely, the element in the menu.
Of course, this property is automatically satisfied by standard choice functions. By contrast,

9. Recall that an implausibility order § is coarser than §1 if, for any R, R

1 P P , R §1
R

1 implies that
R § R

1, but R †1
R

1 does not necessarily imply that R † R

1. For a definition of fullness, and a discussion
of its relevance here, see Section VI.1.1 and in particular footnote 4.
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to our knowledge, there has been little study of choice˚ functions; accordingly, the property
⇡ and Theorem VI.2 are new.

To illustrate, ⇡ says that if x is a best candidate for a position from a European uni-
versity and y is a best candidate from an American university, and if y is also affiliated
to a European university, then x is a best candidate from among European and American
universities. ⇡˚ says that this consequence holds whenever the choices all have the same
importance level. It follows from the final clause in Theorem VI.2 that, on choice functions,
⇡ is equivalent to Sen’s �. However, in the absence of the non-emptiness condition, ⇡ is
strictly stronger than �. On the one hand, ⇡ implies �: for x, y P cpSq, S Ñ T and y P cpT q,
⇡ applies to x, y, S “ S X T and T , yielding that x P cpS Y T q “ cpT q as required.
On the other hand, here is an example where � is satisfied but ⇡ is not: X “ tx, y, zu,
cptx, yuq “ txu, cpty, zuq “ tyu, cptx, zuq “ txu and cptx, y, zuq “ tu. It follows from
the theorem above that � is too weak to guarantee rationalisation of choice˚ functions by
sets of weak orderings; ⇡ is the appropriate property for choice˚ functions.

Among the properties in Theorem VI.1, consistency is doubtless the one which differs
most from the traditional ones in the literature. For good reason: it concerns the com-
parison between choices at different levels of importance. It says that any option which
is admissible when the importance is high will continue to be admissible when the menu
remains the same but the importance level drops. In other words, as the importance de-
creases, more alternatives become admissible – and so may be chosen – but no previously
admissible alternatives cease to become admissible. Of course, as is standard in choice the-
ory, the fact that an alternative is admissible does not mean that it will actually be chosen.
So this property is compatible with (concrete) cases where the option actually chosen when
the decision is important is not that which is chosen when it becomes less important: it
only demands that the alternative could (rationally) have been chosen in the less important
situation.

The final property, Centering, states that one can always make a choice from any menu,
provided the importance level is low enough. In many cases, this might seem reasonable:
although one is not confident enough in one’s relevant value assessments to pick out an
option when the decision is important, one has no trouble selecting some “best guesses”
when little rests on the decision. This property is only required for the implausibility order
to be centered (Theorem VI.1); as noted in Section VI.1.1, we do not wish to take any po-
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sition here on the centredness of the implausibility order, and correspondingly on whether
the Centering property on importance-indexed choice˚ functions is normatively advisable
or descriptively acceptable in general.

Note finally that this representation, and Theorem VI.1, is a strict generalisation of
the standard theory of choice and the axiomatisation by Sen’s properties ↵ and �. If
cpS, iq “ cpS, jq for all importance levels i and j and all non-empty subsets S, then the
four properties above equivalent to the conjunction of ↵ and �. The cautiousness coeffi-
cient sends all the importance levels to the same, singleton, set of weak orderings, so the
representation collapses into the traditional representation by a weak ordering. As the cau-
tiousness coefficient indicates, this captures the case of an agent who is insensitive to his
confidence in his preferences and to the importance of the decision.

VI.3 Discussion

In this section, we first discuss in more detail two of the less standard elements of the
proposal outlined above: the notion of importance level and the permissibility of empty
choice sets. Then we consider the relationship, both technical and conceptual, between the
current proposal and related economic and philosophical literature.

VI.3.1 The importance level

A major element of the current proposal is the extension of the ordinary representation
of a choice situation from a set of available alternatives (the menu) to a set of alternatives
and an importance level. The latter is exogenous, insofar as it is not derived from the
menu, but taken as given along with it. 10 This extra structure might make some readers
uncomfortable.

The supplementary assumptions on which this representation of choice situations relies
are as follows: (i) to each choice that the agent is faced with, one can associate a set of
elements from X and an importance level from I; and (ii) any pair consisting of a subset of
X and an importance level from I represents a choice which the agent could conceivably

10. In choice theory, little structure is assumed on the alternatives. If more structure is assumed, it becomes
possible to define an equivalent of the importance level in terms of the set of alternatives on offer; see Hill
(2013) for an example of how this may be done in the case of decision under uncertainty.
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be faced with.

Both of these assumptions are just versions of assumptions that are involved in the tra-
ditional representation of choice situations as subsets of a set of alternatives X . On the one
hand, this representation supposes that the element x when it belongs to the menu tx, yu
is in a relevant sense “the same” as the element x in tx, y, zu. This corresponds to the
first assumption above, (i), which we call identification. On the other hand, the represen-
tation permits that all sets of elements of X represent choice situations in which the agent
might conceivably find himself; this is the second aspect, (ii), which we call richness. 11 In
practice, the choice of the set of alternatives X is at the modeller’s discretion, and he has
to find a balance between these two “structural” assumptions, which, though necessary in
some form or other for every theory of choice, are often in tension. Consider, for instance,
some of the examples Sen raises against the most natural notion of identification among
alternatives (1993; 1997), such as the choice between taking tea and going home, and the
extension by the offer of cocaine. 12 As Sen notes, one could reply to such examples by
refining the set of alternatives to distinguish between the option of tea with cocaine not be-
ing on the menu and the option of tea with cocaine also being on the menu. However, this
defence of identification leaves richness in a sorry state, for it demands that one can find
situations in which the agent has the choice between some rather strange alternatives, such
as between having tea with cocaine also being on the menu and going home with cocaine
not being on the menu. 13

In the light of this it is not necessarily unreasonable to impose extra structure on the
representation of the choice situation: as we shall see below, this sometimes allows an
improvement in identification whilst limiting the damage done by richness. Of course, to
the extent that such extra structure may not be easily discernable in all decision situations,
it may not be appropriate in all cases; however, this does not imply that they are no cases

11. Of course, only weaker versions of this are needed, but they all require at least that for any two elements
there exists menus containing them both and representing a conceivable choice situation, and this is all that
is needed for the points made below to be relevant.

12. When offered the choice between taking tea with an acquaintance and going home, the agent chooses
the tea, whereas when the choice is between tea with the acquaintance, cocaine with the acquaintance and
going home, he chooses home; these choices violate the property ↵.

13. Broome (1991, Ch. 5) discusses a related but distinct worry concerning the tension between what
we have called identification and the extent to which there can exist non-empty consistency constraints on
preferences.
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where it is a relevant, and indeed useful, compromise between identification and richness.
Here are some examples where a modelling of the sort proposed above seems reasonable:

— a governing body is considering policies for encouraging recycling in the popula-
tion. It seems reasonable to say that in general the “same” policies are available
(for example, advertising, fines, bonuses, nudging etc.), but that the importance of
the decision differs according to whether the governing body is the head of a house-
hold or an office, local government, regional government, national government or
an international body.

— a young academic is to present his work to a public of peers. The occasion could be
an in-house closed seminar, an open seminar, an international conference, an occa-
sion where only people who know his work are present, an occasion where potential
employers could be in the audience and so on (the academic profile of the audience
is the same in all cases). It seems that the “same” options are available concerning
how to present his material, but the importance differs between the different cases.

— consider a classic moral dilemma where you have the choice between killing one
person, thus saving ten, or refusing to kill the one, thus sacrificing the ten. There is a
sense in which this is the “same” choice as that between killing ten people or letting
a hundred die, and as that between killing hundred people and letting a thousand
die, and so on; 14 but the gravity of the choices differs among these cases.

In all these cases, there is certainly a sense in which the same options are available, but
the importance of the choice to be taken differs. They are thus cases to which the repre-
sentation of choice situations proposed above can be applied. To show that the importance
level is a factor which needs to be taken into account, it suffices to establish that the ad-
missible choices may differ depending on the importance level. This certainly seems to be
true. Although the academic may try out a less standard organisation of his presentation or
incorporation of material he is less sure about on a “friendly” audience, when the impor-
tance of the event is higher it would not be unreasonable to revert to an organisation and a
choice of material he is more confident in. And although it may be acceptable to try new
methods of encouraging recycling on a local level, on a global level one needs to be much

14. If you prefer, replace this example with the choice between killing 0.0001% (respectively, 0.001%,
0.01% and so on) of the human population, and letting 0.001% (respectively, 0.01%, 0.1% and so on) die, or
any other scaling between the cases that is deemed appropriate.
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more confident to adopt them. Indeed, one sometimes hears people say that, although a
policy “worked” when tried out on a local level, more reflection is needed before deciding
whether to apply it nationally. Such assertions seem to rely on the tacit assumption that the
national decision is more important than the local one, and so requires more deliberation.
In fact, there are quite a few cases where people cite the importance of a decision as a rele-
vant factor in the choice made. To take an example from moral theory, Rawls (1971, p169)
explicitly raises the question of the importance of the agreement made under the “veil of
ignorance” as a point in favour of his principles of justice; he thus admits that importance
(of the choice behind the veil of ignorance as opposed to a choice taken in front of it, for
example) may be relevant for the choices one takes. 15

In many of these cases, one might have the impression that the choice is the same, but
that the context differs. To take the first example, the same decision has to be taken about
recycling, but in a household, local, regional, national or global context. This intuition can
be captured by modelling the context by a function (call it �) which associates to every
menu an importance level: this is the importance attached to the choice among these alter-
natives in this context. The choice situations will thus be represented by pairs consisting of
a menu (the alternatives on offer) and a context function (the context of the choice). This
representation of choice is visibly equivalent to that proposed, and a notion of rationalis-
ability for choice functions on pairs consisting of a set of alternatives and a context can be
proposed and axiomatised as above (replacing appearances of i by �pSq).

We take examples such as those given above to indicate that the representation of choice
situations proposed in Section VI.1.2 may be relevant in several cases. Nevertheless, it is
worthwhile noting that the result obtained in Section VI.2 remains valid even if the choice
situation is represented in the traditional way, as a set of alternatives. Were one to represent
the choice situations in the examples above in the standard way, then, as already noted, one
would have to revert to “finer” alternatives. A natural choice would be to replace the set of
alternatives X by the set X ˆI of pairs consisting of an alternative and an importance level.
px, iq is the alternative of choosing x in a choice of importance i. The importance-indexed
choice˚ function generates a choice˚ function which is defined on a subset of the menus
generated by this set of alternatives: namely, on those menus consisting of elements with
the same importance level. In that sense, Theorem VI.1 can alternatively be thought of as

15. Thanks to Thibault Gajdos for suggesting this example.
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an axiomatisation of a rationalisation of a partially-defined choice˚ function on more or
less standard menus. The menus on which the function is not defined are those with mixed
importance levels: examples include the choice between choosing advertising to promote
recycling on a national level (for example, for the whole of France), and using “nudging”
techniques on a local level (for the city of Caen). As noted above, it is not always easy to
make sense of such choices; indeed, the fact that a (fully defined) choice function on this
set of alternatives requires choices to be made on such menus is an example of the problems
which too fine an identification can pose in terms of the required richness.

Of course, the representation proposed in the previous sections does not require any
choices to be made on such menus, and the information gained from the choices on which
it is defined does not imply any particular choices on these peculiar menus. Nevertheless, if
desired, it is possible to extend the notion of rationalisation proposed above to such menus:
to take just one of several possibilities, one could choose those alternatives which are best
for all preference orderings singled out by the highest importance level among the alter-
natives on the menu. 16 Representation theorems for such notions of rationalisability can
be obtained, by making appropriate modifications to Theorem VI.1 above. Depending on
one’s view on these sorts of mixed-importance menus, one might be more or less attracted
by such theorems.

Before closing the discussion of importance levels, let us make a remark concerning the
assumption that the importance levels can be linearly ordered. Basically, this boils down
to assuming that the order of “higher importance” (§) is transitive and complete. Whilst
transitivity is very intuitive, completeness, though a natural assumption in many situations,
may not seem to be satisfied in certain cases. To take the second example given above, it
may not be possible to determine whether the talk given as an invitee to a seminar in one
department (where, say, the person in question intends to apply for a position) is of higher,
lower or equal importance than the talk given as an invitee in another department (which
the person in question also intends to apply to); that is, it might not be possible to rank one
importance level relative to the other. There is a natural generalisation of Theorem VI.1
which can deal with such cases. All that is required is a relaxation of the assumption that
implausibility orders are complete: that is, that every pair of weak orderings on X can be
ranked according to implausibility. 17 If the order on the importance levels § is transitive

16. Formally: px, iq P cpSq if and only if x P suppS, Dpsuppy,jqPS jqq.
17. Note that, under this relaxation, ⌅§ (defined as in Definition VI.1) ceases to be a nested family of sets
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but not complete, then the properties ↵˚, ⇡˚ and Consistency are necessary and sufficient
for a rationalisation of the sort given in Definition VI.2, where the implausibility order
is transitive, reflexive but not necessarily complete. The other clauses of Theorem VI.1
continue to hold.

VI.3.2 Choice˚ functions

It has long been recognised that indifference and indeterminacy of preferences are dif-
ficult to distinguish on the basis of choice; accordingly, the problem of “deducing” prefer-
ence from choice is particularly thorny in cases where preferences may be indeterminate.
Recently proposed solutions have involved weakening the Weak Axiom of Revealed Pref-
erence (Eliaz and Ok, 2006), looking at sequential choice (Mandler, 2009) or invoking
choices over opportunity sets and supposing preference for flexibility (Danan, 2003). The
method employed in this paper is different, and very simple: it employs choice˚ functions,
thus relaxing the standard assumption that the choice set is necessarily non-empty. But how
are the cases where the choice˚ function yields the empty set to be interpreted?

The simplest answer is that the agent refuses to make a decision. In practice, this may
come out in many ways. For example, he might admit that he is not sure what to do.
More interestingly, there may be cases where he can defer the decision to whoever would
next have to take it (including, perhaps, his later self); this is what he would do when the
choice set is empty. Deferral of decisions seems a natural option for identifying cases of
incompleteness, indeterminacy, or lack of confidence in preferences. Certainly, there seem
to be several non-trivial examples where deferral, or something like it, is an option:

— a secretary takes the responsibility of making many decisions on behalf of her boss
without consulting him. However, there are decisions which she could be called
upon to make but which she would not accept to make in the absence of her boss,
or at the least without his confirmation that her proposed decision is suitable. This
is a case where she does not actually make a choice from the options available, but
“defers” the decision to her boss.

— in the English law system, a judge may state in his verdict that he found the case
very difficult and would grant that the case is fit for appeal. (Under English law, a
party who wishes to appeal has to ask the judge to declare the case fit for appeal

of weak orderings, but rather a family of sets of weak orderings partially ordered by set inclusion.
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at the end of the hearing.) In essence, the judge is emitting a judgement on the
case, as he must, but admitting that the case should conceivably be reconsidered by
others; this is the closest thing to a deferral under the obligation to express a choice
or judgement.

— a person is faced with a moral dilemma, and he is unsure about the correct option.
He decides to delay taking the decision, in order to consult friends, advisers, men-
tors and so on on the moral issues involved. In a sense, he is deferring the decision
to his future self.

A particularly well-developed study of questions relating to deferral in the economic lit-
erature is in the ‘preference for flexibility’ tradition, following on from the groundbreaking
work of Kreps (1979) (see Danan (2003) for an application of related ideas to incomplete
preferences). A specificity of this literature is that the objects of choice are taken to be
menus of options. This formalism is rich enough to represent situations involving deferral;
for example, the choice among the menus txu, tyu, tzu, tx, y, zu can be understood as the
choice from a menu tx, y, zu with an option to defer (represented by tx, y, zu). If anything,
insofar as the study of deferral is concerned, the formalism is too rich: it is generally as-
sumed for example that the agent can choose between (or has preferences over) tx, yu and
tzu, and it is difficult to interpret such a choice in terms of deferral. Indeed, the standard
interpretation used in the literature is in terms of how the agent restricts or keeps open the
future choices that he will subsequently be faced with; for example, how he may restrict or
keep open his choice of meals for dinner by his choice of restaurant. This interpretation is
distinct from an interpretation in terms of deferral: it assumes that one will get to make the
choice in the future, whereas this need not be the case in general for deferral, as the first
two examples above, where the agents are deferring to someone else, illustrate. Moreover,
in harmony with the dominant interpretation, the models proposed in the literature tend to
be entirely strategic: the agent makes his choice of which options to leave open solely on
the basis of his beliefs about what he will prefer at the time when he will come to make
his final choice. It is unclear to what extent such models provide a fully satisfactory treat-
ment of deferral, for it is questionable whether considerations involving beliefs about future
preferences exhaust the possible reasons for deferring. For example, one might defer the
decision about the moral dilemma in the final example above, even if one expects friends
and advisers to be of no help; likewise, a judge might effectively defer his decision in a
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difficult case, even if the case is so difficult that he does not expect a higher court to “do
any better”. It thus seems that a full account of deferral cannot limit itself to the agent’s
anticipations of what will be preferred (by his future self, or by another agent). There
seems to be a need to incorporate the fact that one reason to defer makes no reference to
expectations about future attitudes, but only to one’s current attitudes: namely, that one is
not sure which option to prefer.

It is an advantage of the proposal made in the preceding sections that it can be thought
of as providing a theory of when to defer that responds precisely to this need. The empty
choice set can be interpreted as indicating that the agent would like to defer, or that he
would defer if possible. As a theory of deferral, it is eminently reasonable: it says that
one should defer if one’s confidence in the choice of any alternative does not match up
to the importance of the decision. Under this account, deferral makes reference solely to
one’s current attitudes, and in particular, to one’s confidence in one’s (current) preferences.
Of course, we do not mean to suggest that it is a complete theory of deferral: for that,
one would probably require some combination of a theory such as this one with theories
capturing strategic reasons for deferral, such as those mentioned above.

One might nevertheless complain that these considerations do not vindicate the use of
choice˚ functions, for if deferral is seen as an option, then it should be incorporated into
the menu offered to the agent. Indeed, this can be done, and yields a representation visibly
similar to that proposed in Section VI.1.2.

Let us use the symbol : to represent the option of deferral; when : is present in the menu,
the option of deferral is available, when it is absent, deferral is not available. The current
proposal can be formulated entirely in terms of importance-indexed choice functions (ie.
functions always yielding non-empty choice sets) on the set of alternatives X Y t:u (where
X is as above).

Now deferral is an alternative which has a special status with respect to the others. For
one, the question of identification (see Section VI.3.1) is particularly complicated: whereas
the alternatives are supposed to be defined at such a level of fineness that x chosen from
menu S can be treated as the same x as that chosen from T , it is unclear whether there is
any sense in which deferring when the choice is from menu S can be judiciously thought of
as the “same thing” as deferring from the choice on menu T . In the face of this, one could
introduce a set of different new alternatives “deferring from S”, “deferring from T ” and so
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on, with all the disadvantages in terms of richness that were discussed above. Alternatively,
one could admit just one new alternative, :, but give it a distinguished role in the definition
of rationalisability and in the axiomatisation. Since deferral is a special option, the axioms
on choice will have to reflect some of its distinctive properties.

As regards rationalisability, the theory proposed above, under the interpretation of an
empty choice set as deferral, immediately implies a notion of rationalisability for menus
containing the deferral option :, namely: for all S Ñ X Y t:u such that : P S and all
i P I , if suppSzt:u, Dpiqq is non-empty, then cpS, iq “ suppSzt:u, Dpiqq, and if not, then
cpS, iq “ :. This renders explicit the idea that one does not defer if there are options which
are optimal according to all the weak orderings in the relevant set and that one does defer
(and not possibly do something else) if not. It remains to define the value of the choice
function when deferral is not available. Of course, the notion of rationalisability proposed
in Definition VI.2 does not deal with this case, but we have already mentioned an intuition
about what one should do: choose an option that one is most confident in choosing. This
yields the following definition of rationalisability of importance-indexed choice functions
on sets of alternatives including an explicit deferral option.

Definition VI.3. An importance-indexed choice function c on a set of alternatives including
an explicit deferral option, X Y t:u, is rationalisable by an implausibility order if and only
if there exists an implausibility order § and a cautiousness coefficient D such that, for all
non-empty S Ñ X Y t:u and i P I , and all x P X ,

x P cpS, iq if x P suppSzt:u, Dpiqq
or : R S and x P suppS, Dpjqq for all j s.t. suppS, Dpjqq ‰ H

: P cpS, iq if : P S and suppSzt:u, Dpiqq “ H

The first clause says that x is in the choice set if either it is admissible by the lights
of the previous notion of rationalisability (Definition VI.2) or deferral is not available and
x is admissible by the lights of the previous notion of rationalisability for all levels of
importance where the choice set yielded by that notion is non-empty. The second clause
says that one chooses to defer if the option is available and no alternatives on the menu are
admissible by the lights of the previous notion of rationalisability.



VI-23 Confidence in preferences

It should not be surprising that this notion of rationalisability can be axiomatised along
similar lines to the axiomatisation proposed in Section VI.2. In fact, let the properties ↵:,
⇡: and Consistency: be identical to the properties ↵˚, ⇡˚ and Consistency in Section VI.2,
except that they apply to all x, y P X and S, T Ñ X Y t:u, and consider the following new
property and modification of Centering:

Deferral If : P cpS, iq, then cpS, iq X X “ H
Centering: There exists j P I such that cpS, jq ‰ t:u

Deferral just states that if one defers, no alternative in X is admissible. Centering: states
that for any menu there is an importance level for which one does not defer. These prop-
erties are necessary and sufficient for the rationalisability of importance-indexed choice
functions where there is an explicit deferral option.

Theorem VI.3. An importance-indexed choice function on a set of alternatives including

an explicit deferral option is rationalisable by a centered implausibility order if and only

if it satisfies ↵:, ⇡:, sing:, Consistency:, Centering: and Deferral. Moreover, there is a

unique coarsest full rationalising implausibility order and cautiousness coefficient.

We conclude that the interpretation of empty choice sets in terms of deferral is not
only natural in many cases, but entirely consistent with the traditional choice-theoretic
methodology, via the addition of a special option for deferral into the menus.

VI.3.3 Related Literature

The current proposal has significant technical and conceptual points of contact with
the economic literature on incomplete, fuzzy or uncertain preferences, as well as with the
philosophical literature on incomparability of value relations. In this section, we first dis-
cuss the technical relationships, before saying a few words on the conceptual issues.

Let us first consider the model proposed in Definition VI.1. Sets of weak orderings have
been frequently used in the literature on incompleteness (for example, by Sen (1973)). In-
deed, some of this literature is related to the literature on vagueness, and the technique of
considering the intersection of sets of weak orderings parallels that, adopted by superval-
uationist theory of vagueness (Fine, 1975), of considering sets of possible sharpenings of
a vague predicate, and taking a sentence to be true if it holds under all of the sharpenings.
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As such, sets of orderings feature prominently in Broome’s (1997) analysis of the incom-
mensurability of the betterness relation as vagueness. Technically, the current proposal can
be thought of as a generalisation of the models used by these theorists, replacing the binary
notions drawn from the single set of orderings with a relative notion, supplied by the order
on the set of orderings.

Another major modelling paradigm for indeterminacy of preference, itself connected to
an influential theory of vagueness, is that emanating from fuzzy set theory (Salles, 1998).
There the essential modelling idea is to associate to each ordered pair of alternatives px, yq
a number in r0, 1s (or, more generally, an element in an appropriate partially ordered set),
which represents the degree to which x is preferred to y. Functions from pairs of alterna-
tives to the interval r0, 1s are called fuzzy binary relations (Basu, 1984; Salles, 1998). It
turns out that the current proposal can also be thought of as a generalisation of a version of
the fuzzy model. For example, one obtains a fuzzy binary relation from an implausibility
order if one associates to each ordered pair for which a preference holds up to some “rank”
in the implausibility order, the ratio of the “rank” to which the preference holds to the total
number of “ranks” in the implausibility order, and if one associates zero to all other ordered
pairs. 18 This mapping from implausibility relations to fuzzy binary relations involves an
information loss, for much the same reason that the quasi-ordering defined from a set of
weak orderings carries less information than the set itself (Section VI.1.1). To illustrate,
consider an implausibility ordering according to which the leftmost pair of orderings in
Figure VI.1 are more plausible than the other two orderings on the right, and these four
are more plausible than all other orderings on the alternatives. Whereas the fuzzy binary
relation defined above is trivial (all pairs of different elements are sent to zero), the implau-
sibility order does contain non-trivial Boolean information: for example, that the agent is
more confident that if a is preferred to b, then c is preferred to d than he is that if a is pre-
ferred to b, then a is preferred to c. This difference is of course related to the well-known

18. Formally, for an implausibility order §, let n “ |⌅§|, and suppose that the elements in ⌅§ are
R1, . . . ,Rn

, where R
i

Ä R
i`1 for each i. Then define the fuzzy binary relation on X , r§ : X ˆX Ñ r0, 1s,

as follows: for any px, yq P X ˆ X , r§ppx, yqq “ 1
n

.maxti| @R P R
i

, xRyu (where the maximum is taken
to be zero if the set is empty). Note that this is not the only way to define a fuzzy binary relation from an
implausibility order. Indeed, although r§ is not connected, it is not difficult to define fuzzy binary relations
from the implausibility order which are: an example is r

1
§, defined by r

1
§px, yq “ 1

2 p1`r§px, yq´r§py, xqq.
It is straightforward to check that, whilst r§ satisfies max-min transitivity (Salles, 1998), r

1
§ does not.
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penumbral connections in the vagueness literature (Fine (1975), see Piggins and Salles
(2007) for a brief presentation): whereas under the fuzzy theory, it is not true (with degree
one), for a blob situated in a vague zone between red and orange on a colour scale, that ‘if
the blob is not red, then it is orange’, this is true under the supervaluationist theory. This
relationship is natural, given the aforementioned similarities between the model proposed
here and supervaluationism.

In fact, the notion of implausibility order can be seen as a cure to the ills sometimes
attributed to the supervaluationist and fuzzy approaches. The fuzzy approach is particu-
larly criticised for missing the penumbral connections (for example, Williamson (1994));
implausibility orders do not have this problem. On the other hand, some complain that the
supervaluationist theory cannot do justice to the intuition that there are degrees of truth, or,
in the case of models of preference, degrees of preference (Broome (1997) makes this point,
and Basu (1984) makes a similar point in criticism of Sen’s (1973) use of the intersection
of sets of orderings). By contrast, the current proposal can cope with degrees.

A final representation, used in the literature on random utility (see, for example, Luce
and Suppes (1965); Fishburn (1998)) as well as in literature on preference for flexibility
(see Kreps (1979) and Section VI.3.2), involves probability functions over the space of
weak orderings (or, more often, over the space of utility functions). Implausibility orders
are neither weaker nor stronger than such probability functions, as can be seen by compar-
ing the orderings on the set of non-empty sets of weak orderings generated by probability
functions (the so-called ‘qualitative probability relations’) with the orderings naturally gen-
erated by implausibility orders. 19 In particular, whilst for the former, unlike the latter, any
pair of non-minimal elements of the ordering must have non-empty intersection, the lat-
ter, unlike the former, satisfy an extra ‘independence’ property which guarantees additivity
(see, for example, Savage (1954)). Nevertheless, there is a sense in which implausibility or-
derings are more parsimonious than probability functions, insofar as they are ordinal rather
than cardinal.

These points pertain to the formal properties of implausibility orders; now let us con-
sider the notion of rationalisability (Definition VI.2). The relationship with other results
involving sets of orderings was discussed in Section VI.1.2. As concerns representations

19. Such an order, §, can be defined as follows: for S,S 1 Ñ P , S § S 1 if, for all R P ⌅§, if R Ñ S , then
R Ñ S 1.
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involving probabilities over the set of weak orderings, comparison is hindered by the fact
that these representations require specific assumptions – generally, that the choice func-
tions are probabilistic (Luce and Suppes, 1965; Fishburn, 1998), or that the objects of
choice must themselves be sets of alternatives (Kreps, 1979; Danan, 2003) – that are not
made here.

It remains to consider the literature on fuzzy preferences. As noted above, the notion
of implausibility order contains more information than the corresponding fuzzy preference
model. However, the supplementary information plays no role in the notion of rationalis-
ability or the representation theorem (Theorem VI.1), as can be seen from the uniqueness
clause. Hence this theorem can regarded as a representation theorem for a notion of ratio-
nalisability for fuzzy preferences. As such, it differs both in motivation and in content from
existing proposals (see, for example, Salles (1998) and the references contained therein).
As concerns motivation, the literature on rationalisability of fuzzy preferences contains
many choice rules, and the emphasis is placed more on the search for choice rules which
rationalise behaviour that is inconsistent with the standard non-fuzzy theory than on con-
ceptual comparison and motivation of the rules. By contrast, the choice rule proposed here
is based on an intuitive maxim about the role of confidence in choice. Moreover, the no-
tions of importance level, and the idea of allowing there to be no choice one could make
with particular levels of confidence are completely absent from the fuzzy preference litera-
ture. This is related to the main technical differences: whereas all representation theorems
in the literature involve choice functions (which never yield empty sets) and many focus
on connected fuzzy preference relations, choice˚ functions are involved here and the fuzzy
relation derived from implausibility orders is not necessarily connected. It is instructive to
compare the proposed representation with perhaps the closest rule in the literature on fuzzy
preferences, namely the BDr↵s-rule, according to which x is an admissible choice out of A

if rpx, yq • ↵ for all y P A, where r is a reflexive, transitive and connected fuzzy prefer-
ence relation (Dutta et al., 1986). Dutta et al. (1986) only characterise the case where the
rule yields a choice function, and come to the conclusion that it is behaviourally equivalent
to the standard choice rule with non-fuzzy preferences (this equivalence is related to the
final clause in Theorem VI.2 above). Of course, this conclusion no longer holds if one al-
lows empty choice sets, as Theorem VI.2 shows. Potential interesting directions for future
research may be to explore the consequences for fuzzy preference theory of taking choice˚



VI-27 Confidence in preferences

functions seriously (potentially using the interpretation proposed above), and to consider
the class of fuzzy preference relations generated by implausibility orders.

Before undertaking a conceptual comparison, let us note that, given its interesting tech-
nical properties, the basic modelling idea might find fruitful application beyond the case of
preferences which has been considered in this paper.

Consider first two examples that immediately spring to mind given the preceding dis-
cussion. First of all, one could interpret the weak orderings as corresponding to different
(precise) measures of inequality. Then the implausibility order can be thought of as, say,
a judgement of the plausibility of these measures, and the formal model would provide an
extension of Sen’s (1973) theory of inequality that avoids the aforementioned criticism by
Basu (1984). Or, to take another example, one could interpret the set of orderings on which
the implausibility order is defined as betterness orderings, and the implausibility order itself
in terms of truth (or, in supervaluationist terminology, as admissible sharpenings); in this
way, implausibility orders could be seen as a refinement of Broome’s (1997) theory of the
vagueness of betterness relation, which allows both for penumbral connections and degrees
of truth. Note that Broome argues that degrees of truth are not linearly ordered, whereas our
implausibility order is; a simple extension of the model to allow the implausibility order to
be incomplete (see Section VI.3.1) would cope with this case.

As a final example, consider Rabinowicz’s (2008) analysis of value relations in terms
of permissibility of preferences: he uses sets of orderings that are interpreted as containing
the permissible preference orderings. If one accepts that permissibility may come in de-
grees, then a version of the current model – involving nested sets of preference orderings,
interpreted as preferences permitted to a certain extent – would be the adequate extension
of Rabinowicz’s proposal. Note furthermore that Rabinowicz’s framework is rich enough
to capture the notion of parity (Chang, 2002); given the formal similarity, if implausibility
orderings are interpreted in the terms of permissibility of preferences, the same could be
said of them. Finally, Rabinowicz allows incomplete preferences in his set, in order to
capture incomparability; an extension of the current model would be to take the implausi-
bility order over the set of quasi-orderings (see Section VI.1.1) rather than weak orderings.
This would make a difference in terms of the Boolean (or “penumbral”) properties of the
model – for example, although, under the model proposed above, it is always true that ‘x
is better than y or y is better than x’, this is not the case if weak orderings are replaced by
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quasi-orderings. 20

However the proposal in the preceding sections pertains not the the relation of inequal-
ity, or betterness, or value relations in general, but to preferences, understood in the stan-
dard economic sense, as subjective choice-guiding attitudes. What is the conceptual rela-
tionship between the notion of confidence in preferences and other accounts of incompara-
bility of value relations, or of incompleteness, fuzziness or uncertainty of preference? Of
course, from the strictly behavioural point of view standardly adopted in economics, all
that can be said is what can be inferred from the comparison of the technical properties of
the models, and in particular the representation theorems; that is, from the sort of compar-
ison that we have just undertaken. The following discussion is thus for those of a more
philosophical bent. While we do not claim to provide a full answer to the question, we
offer an tentative interpretation of the notion of confidence in preference developed above,
and some considerations on its relationship to other notions in the literature.

Let us begin by recalling three major positions in the debate over incomparability of
value relations (see Chang (1997, 2002) for a presentation and references), which can be
seen as loosely analogous to three sorts of positions in the literature on vagueness (see
Keefe and Smith (1996) for a presentation and references). Basically, incomparability, like
vagueness, could be either in the mind, in the world, or in language.

According to the “epistemic” position, there is no value incomparability, just ignorance.
This is analogous to the position which claims that there is nothing more to vagueness than
ignorance. So, for example, the betterness relation is perfectly determinate – there is a fact
of the matter for any pair of objects that can fall under it which is better or whether they
are equal – but we do not (and perhaps never will) know some such facts. Similarly, under
such an approach to vagueness, there is, for each person, a fact of the matter whether he (or
she) is bald, we just might not (and perhaps never will) know it. Let us call this epistemic
position, insofar as it applies to value relations, imprecision.

According to the “ontic” position, value relations may be incomplete: it is a fact that,
for some pairs of alternatives, say x and y, it is false both that x is (weakly) better than y,
and that y is (weakly) better than x. This can be seen as analogous to the position that there
are vague objects, that is, objects that have indeterminate properties; mountains or clouds

20. Note however that there would be no axiomatic difference, in terms of the Theorem VI.1, between the
two cases.
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are sometimes taken as examples (they purportedly have indeterminate boundaries). In
these cases, no amount of information, or indeed reformulation in another language, would
be able to resolve the indeterminacy, for it is not due to ignorance or imperfections in the
language; it is a “hard” fact. Let us call this “ontic” position, insofar as it applies to value
relations, (ontic) indeterminacy.

According to the “semantic” position, value relations may be semantically indetermi-
nate, but not necessarily incomplete. This can be seen as analogous to doubtless the most
popular position regarding vagueness, namely that it is a property of language. So, diffi-
culty in attributing the predicate ‘bald’ to a particular person is not due to our ignorance, or
the fact that this person is some sort of vague object, but rather down to the ways that the
term ‘bald’ in our language is used and the way it relates to (potentially precise) objects in
the world. Likewise, this position admits that whereas it may occur that the statements ‘x
is better than y’ and ‘y is better than x’ are both not true, this does not imply that both of
these statements are false or that the betterness relation is indeterminate in the sense speci-
fied above. Given its predominance in the literature on vagueness, let us call this position,
insofar as it applies to value relations, (semantic) vagueness.

One way of transposing these positions onto the question of completeness of prefer-
ences is to consider the relation ‘the agent prefers ... to ...’. It will be important that this
notion of preference (as used in our language, or more specifically in the language of an
economist or behavioural scientist) concerns attributions of preference to someone other
than the person who is attributing. Comparison with the aforementioned literatures in-
spires a rudimentary taxonomy of theories in economics that drop or weaken the standard
completeness assumption. The preference for flexibility models, where the current agent
may be uncertain about his future preferences (see above and Section VI.3.2) correspond
to imprecision. Theories of incomplete preference (see above and Section VI.1.1) would
naturally seem to correspond to indeterminacy. Finally, given the relationship to the fuzzy
theory of vagueness, fuzzy theories of preference might be most naturally construed in
terms of semantic vagueness. Of course this is very crude, and several theories might be
understood as straddling the boundaries between these categories. 21

21. For example, whilst the interpretation of the fuzzy theory as vagueness is suggested by the voluntary
reference to the literature on vagueness in, say, Salles (1998) and Piggins and Salles (2007), there are occa-
sional hints that an epistemic reading is also intended (see for example what Sen calls the “pragmatic reason
for incompleteness” in the passage cited by Salles (1998)).
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That said, one suspects that much of the intuition for the latter two families of theories
is not drawn from our use of the term ‘preference’ when describing others, but rather from
the feeling we have that our preferences are undetermined or fuzzy. Although under the
strictures of the modern paradigm in economics such considerations are not pertinent for
comparisons among theories, they do often play an important motivating role in practice.
Hence, in order to gain an insight into the conception behind the current proposal, and the
comparison with others, it is perhaps worth considering the subjective, first-person point of
view. As concerns the difficulties for the completeness property which are involved in the
consideration of one’s own, current preferences, there is good reason to think that they are
neither imprecision, nor indeterminacy, nor vagueness (in the senses described above), nor
any combination of the three, but something entirely different.

In a word, the contrast between imprecision on the one hand, and indeterminacy and
vagueness on the other rests on a sharp distinction between an epistemic agent and a set of
facts that are independent from that agent. But it is far from clear that there is a neat sepa-
ration between the relevant “facts” – the subject’s preferences at the moment of decision –
and his beliefs about these “facts” – his beliefs about his preferences. Since, especially in
deliberate decision making, one’s decisions are made on the basis of the preferences that
one recognises in one way or another, what would it mean for one to have mistaken beliefs
about one’s current preferences, that is, those which inform the actual choice being made?
What would it mean to say that one’s actual preferences, at the moment in question, were
not as experienced: that, for example, there were facts about them that were beyond one’s
knowledge? If an agent couldn’t determine which he prefers out of x and y, what sense
can be made of the question of whether he really does prefer x to y but doesn’t know it, or
whether he really has indeterminacy of preference between x to y?

Given the connection between preference and choice, these worries are naturally related
to the debate on the possibility of having beliefs about what one will choose, during the
process of deliberation of that very choice (see for example Levi (1997); Joyce (2002);
Rabinowicz (2002)). A moral that can be drawn from this debate is that, at moments of
deliberation, beliefs about the outcomes of the deliberation lack many of the properties one
usually associates with beliefs; so much so that one might wonder to what extent one can
talk of belief at all. The suggestion is that, at the moment of choice, the notion of belief
about preferences collapses in a similar way. But without it, one cannot say what it is for
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the purported object – preferences – to be inherently vague or indeterminate, rather than
determinate but the subject of imprecise or uncertain beliefs.

If this is correct, then the boundaries between imprecision on the one hand, and indeter-
minacy and vagueness on the other, insofar as they apply to one’s own current preferences,
collapse. Whilst this is sufficient for the conclusions drawn below, let us note that the dis-
tinction between (ontic) indeterminacy of one’s own preferences and (semantic) vagueness
regarding them is even harder to defend. What would it mean for the preference relation
used by the agent in his “private” language to be vague, rather than the “preferences them-
selves” being simply indeterminate?

If one is sensitive to these points, then it is evident that the notions of imprecision,
indeterminacy and vagueness identified above are inappropriate to describe what may be
lacking from our preferences at the moment of decision. A notion is required which does
not separate the subject’s attitude from what it is that is being assessed (and, moreover, from
the conceptual framework in which it is being assessed). We suggest the term confidence to
denote this notion. As such, confidence in preferences is understood as an intrinsic property
of one’s own, current preferences, in much the same way as vagueness may be thought
of as an intrinsic property of the predicate ‘bald’ or incompleteness an intrinsic property
of Schubert’s unfinished symphony, and unlike, say, the property of being believed to be
higher than 300m, which is not an intrinsic property of the Eiffel Tower. Nevertheless, the
notion of confidence in preferences retains a doxastic aspect, without reducing to a fully
fledged belief, because there is no solid distinction between a fully fledged belief and an
independent object of belief in the case of one’s own, current preferences.

The conceptual relationships with other accounts follow as a corollary. Assimilating
confidence in preference to uncertainty about preference or imprecision in preference, or
semantic vagueness or fuzziness in preference, or ontic indeterminacy in preference is not
simply incorrect; it would be a category mistake. It makes no sense to speak of one’s
uncertainty about one’s own current preferences in the same way as one speaks of one’s
uncertainty about the closing price of a particular company’s shares, or about whether one
thing is objectively better than another. Similarly, it makes no sense to speak of one’s own
current preferences being vague or fuzzy in the same sense as, say, the predicates ‘bald’ or
‘poor’ are.

It follows that it would be a mistake to assimilate the notion of confidence in preferences
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to any of the three positions in the philosophical literature on value relations described
above, 22 or indeed to any application of the models discussed above in the study of value
relations such as (objective) betterness or inequality. As noted, these positions depend
on an assumed distinction between an epistemic agent considering the value relation and
agent-independent facts about this relation. Of course, the cited literature tends to assume
that there are such facts; the notion of confidence, as defined above, may have something
to contribute, but only if one were willing to weaken this assumption.

From a modelling perspective, it follows that models drawn from the literature on un-
certainty or vagueness must be justified from scratch if they are to be applied to (one’s own)
preferences, for this case is different from others in which they have previously been used.
For example, those proposing models involving probabilities on the set of weak orderings
cannot motivate them by interpreting them in terms of the agent’s uncertainty about his cur-
rent preferences and relying on the standard arguments for probabilities as representations
of belief, for it is not (normal) belief which is at issue. Likewise, those proposing fuzzy
models cannot motivate them by the intuition that our preferences are vague and relying
on standard arguments for modelling vagueness in terms of degrees of truth, for it is not
degrees of truth which are at issue. Of course, the recognition of the necessity for such
justifications does not imply that they are not forthcoming. 23

Let us conclude by emphasising that the last part of the discussion above is simply an
attempt to situate the notion of confidence in preferences conceptually with respect to other
notions of imprecision, indeterminacy, or vagueness. Economically speaking, the important
part of the proposal is its operationalization in a precise formal model and fully axiomatised
choice rule, carried out in Sections VI.1 and VI.2; comparison with other proposals can rely
entirely on these aspects, without needing to enter into the conceptual intricacies.

22. Naturally, a similar point holds for other positions in that literature, such as the “parity thesis” defended
by Chang (2002).

23. Note that some models may be motivated by considerations that are independent of the agent’s first-
person perspective on his current preferences, in which case the point made here does not apply. Examples
include the use of probabilities in the preference for flexibility literature, which may be justified by standard
arguments for probabilistic belief, because the beliefs in question do not concern the agent’s current prefer-
ences but his future ones. Another example is the interpretation of probabilities in the random utility model as
representing a random process, of which the agent may be unaware, that generates the utility function which
he adopts and uses in his choice. When models are motivated but such considerations, they are representing
a different phenomenon from the one that the model proposed here is concerned with.
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VI.4 Social choice and confidence

With an eye to illustrating the interest of the notion of confidence in preferences pro-
posed here, let us briefly consider an application to social choice. This discussion is not
intended to be a comprehensive discussion of the potential importance of the notion of
confidence for social choice, but rather a preliminary exploration of some possibilities.

The basic idea is that, if agents differ not only in their preferences but in their confidence
in their preferences, then the latter factor and not solely the former can and often should
be taken into account in the determination of the society’s preferences. This makes sense:
an agent’s confidence in a preference (for x over y, for example) reflects how “sure” he is
that he is “right” (by his own lights). Hence in aggregating the agents’ preferences, it is not
unreasonable to give those preferences in which an agent is more confident more bearing
than those in which he is less confident. There are of course several ways in which this can
be done; here we will consider only one.

As regards the setup, the set of alternatives, weak orderings and so on are as specified in
Section VI.1.1. The set of members of the society (or voters) are assumed to be numbered,
so the set of voters (which is not necessarily fixed) is some V Ñ N. Voters give not just
their preferences but also their confidence in their preferences, which, as argued above, can
be represented by an implausibility order. So a profile is a function w : V Ñ I. The task is
to determine a social preference ordering on the alternatives on the basis of each possible
profile. Given that the agents’ preferences are not necessarily fully determinate, we allow
that the social preference ordering may be indeterminate; as noted in Section VI.1.1, this
can be captured by representing it either by a quasi-ordering or by a set of weak orderings;
here we use the latter option. The objects of study are thus functions which associate to
each profile a subset of P . We shall call such functions confidence-adjusted social choice

functions (CASC), and denote them using the generic term f .

Following on from the intuition stated above, a natural CASC would be one which
selects social preferences that, on aggregate, the members of the society are most confident
in. Under one way of spelling out this idea, the CASC would aim to minimise the “total
implausibility” of the social preferences (by the lights of the members of the society); this
is like maximising the “total confidence” of society in the social value judgements. This is
by no means the only way to go; we shall briefly discuss other options below.



Confidence in preferences VI-34

Every weak ordering in P has a place in the implausibility order of each of the members
of the society; this place can be “counted” by associating to the weak ordering its “rank”
on the implausibility order §. Formally, the “rank” of a weak ordering R under an im-
plausibility order §, n§pRq, is defined as follows: n§pRq “ supR1†Rpn§pR1qq ` 1, where
the maximum over an empty set is taken to be ´1. So the orderings at the bottom of the
implausibility order (the “most plausible” ones) are of rank 0, those one rung up are of rank
1 and so on. The rank of a weak ordering can be thought of as a measure of the “distance”
the ordering is from plausibility, according to the implausibility order in question. (Figure
VI.2 in Section VI.1.1 makes this metaphor more vivid.)

A simple CASC which translates the idea that the social preference should be that which
minimises its total implausibility is the “additive rank-based” CASC.

Definition VI.4. The additive rank-based CASC f is defined as follows: for any profile w,
for any R P P ,

(VI.1) R P fpwq iff
ÿ

vPV

nwpvqpRq §
ÿ

vPV

nwpvqpR1q for all R1 P P

The additive rank-based confidence-adjusted social choice function picks out the set
of weak orderings whose total “implausibility”, as summed over all the voters, is minimal
(not greater than the total implausibility of any other orderings). In this sense, it could be
thought of as maximising the total confidence in the social value judgements. Of course,
although only a function yielding a set of weak orderings on alternatives has been defined,
this can be easily extended to a definition of a function yielding an “social” implausibility
order (that is, an order on the set of weak orderings).

Observe that the additive rank-based confidence-adjusted social choice function is none
other than the Borda rule, applied to orderings over alternatives rather than to alternatives
themselves. Thanks to this, we immediately have, borrowing a result from Young (1974),
the following characterisation of this rule. 24

Following Young, we say that a CASC f is neutral if, for � a permutation of the set
of orderings P , and �̂ the induced permutation of profiles, fp�̂pwqq “ �pfpwqq for all
profiles w. It is consistent if, for any w, w1 profiles for disjoint voter sets V and V’, then

24. Note that, though his theorem is stated for linear orderings, Young notes in the conclusion that it applies
to weak orderings as well. Naturally, the case of weak orderings is that which is relevant here.
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fpwq X fpw1q ‰ H implies that fpwq X fpw1q “ fpw ` w1q (where w ` w1 is the profile
on V Y V 1 which agrees with w on V and w1 on V 1). It is faithful if, for w a profile for one
voter, fpwq contains only the center of the voter’s implausibility measure. Finally, a CASC
f has the cancellation property if, whenever w is a profile such that, for any R, R1 P P , the
number of voters with R † R1 equals the number of voters with R1 † R, then fpwq “ P .
The following holds.

Theorem VI.4. A CASC f is neutral, consistent, faithful and has the cancellation property

if and only if it is the additive rank-based rule.

As indicated, the conditions involved here are versions of standard conditions in the
literature, and the reader is referred to the relevant papers (especially Young (1974)) for
further discussion.

The purpose of these considerations is to give a flavour of possible applications of the
notion of confidence to social choice. There are several directions that one could develop;
let us just mention two.

First of all, the additive rank-based social choice rule is far from the only one, and others
can be found and axiomatised in a way similar to that proposed, by exploiting the relation
to voting theory. In fact, both the “additive” and the “rank-based” parts could be altered.
For example, it is likely that an axiomatisation for a “maxmin rank-based” confidence-
adjusted social choice function – which yields the set of those preference orders whose
worst confidence ranking across voters is highest – can be obtained by using recent results
on maxmin rules in voting theory (for example, Congar and Merlin (2011)). Or, to take
another example, one might be able to develop and axiomatise an “additive importance-
based” confidence-adjusted social choice function – where the total is taken not of the
ranks of the weak orderings under the implausibility, but of the least importance levels
which are associated to sets containing the weak orderings. Each suggestion appears to
bring with it different issues, which may or may not be new. For example, the discussion of
the relationship between the CASC proposed above and a minmax version may well mimic
several classic debates in social theory, in particular the debate between utilitarianism and
egalitarianism. By contrast, the comparison of rank-based and importance-based rules may
well turn on the question of whether the agents’ tolerances of choice in the absence of
confidence (cautiousness coefficients) should be taken into account in the social preferences
(as would be the case under the importance-based rule) or not.
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Secondly, the sort of aggregation discussed above is “ordering-wise”: it works with
the order on the set of weak orderings P . A further direction to explore is “judgement-
wise” aggregation. As hinted in Section VI.1, an implausibility order represents whether
the agent is more, less or equally confident in one value assessment (that alternative x

is better than y by his lights) than in another (that alternative x1 is better than y1). Under
“judgement-wise” aggregation, one would not aggregate the rankings of the weak orderings
under the implausibility order, but, say, the rankings of the value assessments on the order
on value assessments generated by the implausibility order. This sort of aggregation may be
interesting because the axioms would be expressed solely in terms of confidence in value
assessments, and not in terms of orders on sets of weak orderings. Of course, there is a
large literature on judgement aggregation which is relevant here (in particular, Dietrich and
List (2010)). A particularly interesting question is the relation between judgement-wise
and ordering-wise choice rules: is it the case, for example, that the set of value assessments
endorsed by the result of an additive rank-based confidence-adjusted choice rule are those
in which the total confidence is highest, as calculated by looking at the rankings of the
assessments? This is, to our knowledge, an open question.

VI.5 Conclusion

People sometimes do not have preferences which are as determinate as the standard
model would have us believe. Often, this is because people are not confident enough in
some of the preferences they can be said to have. Of course, this may have implications
for choice: people should not choose on the basis of preferences in which they are not
sufficiently confident, if they can possibly avoid it.

This paper has made a start at bringing confidence in preferences into the field of choice
theory. First of all, a representation of an agent’s confidence in his preferences was de-
veloped, a notion of rationalisability of choice in terms of confidence in preference was
proposed, and an axiomatisation of this notion was offered. The notion of rationalisability
involves two main concepts which, to the knowledge of the author, have received relatively
little attention in choice theory to date. Firstly, there is the concept of the importance of a
choice, with the accompanying idea that the more important the choice, the more confident
one needs to be in a preference to use it in one’s choice. Secondly, there is the question
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of whether the agent can refuse to take a decision, or opt to defer, with the idea that this
is the appropriate course of action when the choice is too important for the confidence he
has in the relevant preferences. These notions, and their applications here, were discussed
in detail. The technical and conceptual relationships with the existing economic and philo-
sophical literature on indeterminacy were also examined.

Finally, in an attempt to indicate the relevance of the notion of confidence, a possible
application to social choice was considered. A simple confidence-adjusted social choice
function was proposed, based on the idea that the social preferences should be those in
which the members of the society are, on aggregate, most confident. A simple axiomatisa-
tion was proposed for this rule, and some directions for future research were discussed.

Confidence in preferences has been given short shrift in choice theory to date. The
author is confident that this should change.
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VI.A Appendix

Proof of Theorem VI.2. Define the set of orderings R as follows: Ri P R iff, for all
x, y P X , if x P cptx, yuq, then xRiy. First note that this set is well-defined. In partic-
ular sing implies reflexivity and ⇡ implies the necessary transitivity: if x P cptx, yuq and
y P cpty, zuq, then by ⇡ and ↵, x P cptx, zuq. Note also that this set is full: if R1 agrees
with the R in R wherever they all agree, then R1 P R. Moreover, it is the unique full set.

It needs to be shown that this set of orderings generates c; consider x P S Ñ X .

Suppose x P cpSq. Then, by ↵, x P cptx, yuq for all y P S. So, xRiy for all y P S and
Ri P R, as required.

Suppose now that xRiy for all y P S and Ri P R. Take an arbitrary enumeration of
the elements of Sztxu. We argue by induction that x P cptx, y

1

, . . . , ynuq for all n. By
hypothesis and definition of R, x P cptx, y

1

uq. Suppose that x P cptx, y
1

, . . . , yn´1

uq; by
hypothesis and definition of R, x P cpx, ynq; so by ⇡, with x “ y, S “ tx, y

1

, . . . , yn´1

u
and T “ tx, ynu, x P cptx, y

1

, . . . , ynuq. Hence x P cpSq, as required.

If c never takes as value the empty set, for all x, y P X , either x or y (or both) belong to
cptx, yuq. There is thus only one relation R such that for all x, y P X , xRy iff x P cptx, yuq:
so the R constructed above is a singleton.

To prove Theorem VI.1, we first require the following Lemma.

Lemma VI.A.1. Let choice˚ functions c
1

and c
2

be rationalised by full sets of orderings

R
1

and R
2

respectively. If x P c
1

pSq implies that x P c
2

pSq for every x P S and every

S Ñ X , then R
1

Ö R
2

.

Proof. By construction of the rationalising sets of orderings in the proof of Theorem VI.2.
The construction implies that R P Ri if and only if, for all x, y P X , if x P ciptx, yuq
then xRy (for i “ t1, 2u). However, for every R P R

2

, we have that, for all x, y P X , if
x P c

1

ptx, yuq then, by hypothesis, x P c
2

ptx, yuq, and so xRy; it follows that R P R
1

, as
required.

Proof of Theorem VI.1. The “only if” direction is straightforward to check. We consider
here the “if” direction.
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For any i P I , note that cp‚, iq is a function from sets of alternatives to sets of alterna-
tives; it is a choice˚ function because the image may be empty. We will denote this function
by ci in what follows.

↵˚, ⇡˚ and sing˚ imply that, for every i P I , ci satisfies ↵, ⇡ and sing. Theorem VI.2
implies that for each i P I , ci is rationalisable by a unique full set of weak orderings Ri.
Moreover, by Consistency and Lemma VI.A.1 (below), if i § i1, then Ri1 Ñ Ri. Define §
as follows: R § R1 iff for all i such that R1 P Ri, R P Ri. It is straightforward to check
that this is complete, transitive and reflexive; ie. that it is an implausibility order. Define D

by: Dpiq “ Ri.
The representation of c by § and D follows immediately from the construction. Also,

by construction, § is full, and any coarser full relation would fail to rationalise c; the
uniqueness of D follows by construction. Consider finally the clause regarding centering.
Centering implies that for every S Ñ X , there exists i P I such that cipSq is non-empty; by
Consistency, there exists i˚ P I such that, for all S Ñ X , ci˚pSq is non-empty. By the final
clause in Theorem VI.2, ci˚ is a singleton. This is the center of §.

Proof of Theorem VI.3. Define the implausibility order as in the proof of Theorem VI.1,
using the part of c defined on menus containing :. It follows from the reasoning in the proof
of that theorem that, for all x P X and all S Ñ X , x P cpS Y t:u, iq iff x P suppS, Dpiqq.
By Deferral, if suppS, Dpiqq is non-empty then cpS Y t:u, iq “ suppS, Dpiqq; by the fact
that the choice function always yields non-empty sets, it follows that if suppS, Dpiqq is
empty then cpS Y t:u, iq “ t:u. Moreover, if suppS, Dpiqq is non-empty, then by ↵:,
cpS, iq “ cpS Y t:u, iq “ suppS, Dpiqq. Finally, it can be seen that if suppS, Dpiqq is
empty, then x P cpS, iq if and only if x P suppS, Dpjqq for all j such that suppS, Dpjqq is
non-empty. For if not, then there is a j P I such that suppS, Dpjqq is non-empty but does
not contain x P cpS, iq. So x R cpS, jq but y P cpS, jq for some y. Since suppS, Dpjqq is
non-empty and suppS, Dpiqq is empty, cpS Y t:u, jq is not contained in cpS Y t:u, iq, so, by
Consistency:, it is not the case that i § j. But, given j § i and x P cpS, iq, Consistency:

implies that x P cpS, jq contrary to the assumption.
Uniqueness follows from construction, as in the proof of Theorem VI.1.



Bibliography VI-40

Bibliography

Aumann, R. J. (1962). Utility Theory without the Completeness Axiom. Econometrica,
30(3):445–462.

Basu, K. (1984). Fuzzy revealed preference theory. Journal of Economic Theory,
32(2):212–227.

Broome, J. (1991). Weighing Goods. Basil Blackwell, Oxford.

Broome, J. (1997). Is Incommensurability Vagueness? In Chang, R., editor, Incommensu-

rability, Incomparability and Practical Reason. Harvard University Press.

Chang, R. (1997). Introduction. In Chang, R., editor, Incommensurability, Incomparability

and Practical Reason. Harvard University Press.

Chang, R. (2002). The Possibility of Parity. Ethics, 112(4):659–688.

Congar, R. and Merlin, V. (2011). A Characterization of the Maximin Rule in the Context
of Voting. Theory and Decision, 72(1):131–147.

Danan, E. (2003). A behavioral model of individual welfare. Technical report, Université
Paris 1.

Dietrich, F. and List, C. (2010). The aggregation of propositional attitudes: towards a
general theory. Oxford Studies in Epistemology, 3.

Donaldson, D. and Weymark, J. A. (1998). A Quasiordering Is the Intersection of Order-
ings,. Journal of Economic Theory, 78(2):382–387.

Dutta, B., Panda, S. C., and Pattanaik, P. K. (1986). Exact choice and fuzzy preferences.
Mathematical Social Sciences, 11(1):53–68.

Eliaz, K. and Ok, E. A. (2006). Indifference or indecisiveness? Choice-theoretic founda-
tions of incomplete preferences. Games Econ. Behav., 56:61–86.

Fine, K. (1975). Vagueness, Truth and Logic. Synthese, 30:265–300.



VI-41 Bibliography

Fishburn, P. C. (1998). Stochastic Utility. In Barberà, S., Hammond, P. J., and Seidl, C.,
editors, Handbook of Utility Theory, volume 1. Kluwer, Dordrecht.

Hill, B. (2013). Confidence and decision. Games and Economic Behavior, 82:675–692.

Joyce, J. (2002). Levi on Causal Decision Theory and the Possibility of Predicting one’s
on Actions. Philosophical Studies, 110:69–102.

Keefe, R. and Smith, P. (1996). Introduction. In Keefe, R. and Smith, P., editors, Vagueness:

A Reader. MIT Press, Cambridge, MA.

Kreps, D. M. (1979). A Representation Theorem for ‘Preference for Flexibility’. Econo-

metrica, 47:565–576.

Levi, I. (1986). Hard Choices. Decision making under unresolved conflict. Cambridge
University Press, Cambridge.

Levi, I. (1997). Rationality, Prediction and Autonomous Choice. In The Covenant of

Reason. Rationality and the Commitments of Thoughts. CUP, Cambridge.

Luce, R. D. and Suppes, P. (1965). Preference, Utility and Subjective Probability. In Luce,
R. D., Bush, R. R., and Galanter, E. H., editors, Handbook of Mathematical Psychology,
volume 1. Wiley.

Mandler, M. (2009). Indifference and incompleteness distinguished by rational trade.
Games Econ. Behav., 67(1):300–314.

Morton, A. (1991). Disasters and Dilemmas. Blackwell, Oxford.

Moulin, H. (1985). Choice Functions Over a Finite Set: A Summary. Social Choice

Welfare, 2:147–160.

Piggins, A. and Salles, M. (2007). Instances of Indeterminacy. Analyse & Kritik,
29(2):311–328.

Rabinowicz, W. (2002). Does Practical Deliberation crowd out Self-Prediction? Erkennt-

nis, 57:91–122.

Rabinowicz, W. (2008). Value Relations. Theoria, 74(1):18–49.



Bibliography VI-42

Rawls, J. (1971). A Theory of Justice. Harvard University Press, Cambridge, MA.

Salles, M. (1998). Fuzzy Utility. In Barberà, S., Hammond, P. J., and Seidl, C., editors,
Handbook of Utility Theory, volume 1. Kluwer, Dordrecht.

Savage, L. J. (1954). The Foundations of Statistics. Dover, New York.

Sen, A. K. (1970). Collective Choice and Social Welfare. Holden Day, San Francisco.

Sen, A. K. (1973). On Economic Inequality. Oxford University Press, Oxford.

Sen, A. K. (1993). Internal Consistency of Choice. Econometrica, 61(3):495–521.

Sen, A. K. (1997). Maximization and the Act of Choice. Econometrica, 65(4):745–779.

Williamson, T. (1994). Vagueness. Routledge, London.

Young, H. P. (1974). An axiomatization of Borda’s rule. J. Econ. Theory, 9(1):43–52.



VII Incomplete preferences and confidence

Abstract

A theory of incomplete preferences under uncertainty is proposed, according to which a
decision maker’s preferences are indeterminate if and only if her confidence in the relevant
beliefs does not match up to the stakes involved in the decision. We use the model of confi-
dence in beliefs introduced in Hill (2013), and axiomatise a class of models, differing from
each other in the appropriate notion of stakes. Comparative statics analysis can distinguish
the decision maker’s confidence from her attitude to choosing in the absence of confidence.
The model naturally suggests two possible strategies for completing preferences, and hence
for choosing in the presence of incompleteness. One strategy respects confidence – it re-
lies only on beliefs in which the decision maker has sufficient confidence given the stakes
– whereas the other goes on hunches – it relies on all beliefs, no matter how little confi-
dence the decision maker has in them. Axiomatic characterizations are given for each of
the strategies. Finally, we consider the consequences of the model in markets, where in-
determinacy of preference translates into refusal to trade. The incorporation of confidence
adds an extra friction, beyond the standard implications of non-expected utility models for
Pareto optima. 1

Keywords: Incomplete preferences; confidence; multiple priors; choice under incom-
plete preferences; absence of trade.

JEL classification: D81, D01, D53.

1. This is a slightly modified version of the HEC Paris Research Paper No. ECO/SCD-2014-1051.
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VII.1 Introduction

VII.1.1 Motivation

Incomplete preferences have been increasingly recognized as of importance. Appeals
to the weakening of the completeness axiom – which demands that for every pair of op-
tions, the decision maker has a weak preference for one over the other – have been made
both in the name of ‘psychological realism’ (Aumann, 1962; Dubra et al., 2004; Danan,
2003b; Galaabaatar and Karni, 2013) and on the basis of normative considerations (Au-
mann, 1962; Bewley, 2002). Moreover, incomplete preferences have proved invaluable in
the development of alternative models of choice, such as those incorporating a tendency to
stick to the status quo (Bewley, 2002; Masatlioglu and Ok, 2005). Incomplete preferences
naturally arise is multi-agent settings, where the preferences of a group, or those drawn
from group members’ beliefs or utilities may naturally be incomplete (Dubra et al., 2004).
As a final example, objectively rational preferences in the sense of Gilboa et al. (2010) –
those preferences for which the decision maker can convince others of their correctness, by
a form of proof for example – are naturally incomplete.

Standard approaches to modeling incomplete preferences often proceed, roughly speak-
ing, by dropping the completeness axiom whilst retaining the other standard axioms, and
replacing a single function or measure in the model by a set. For instance, in decision un-
der uncertainty, the benchmark unanimity multi-prior model proposed by Bewley (2002)
retains all standard Anscombe-Aumann (1963) axioms for subjective expected utility ex-
cept completeness, and replaces the single probability measure in the representation by a
set of probability measures. In particular, it retains the independence axiom.

However, under all of the interpretations mentioned above, there appear to be cases
where the standard independence axiom is violated. Consider a decision maker who is
faced with choices between bets on the color of the next ball drawn from an urn containing
only black and white balls, as shown in Figure VII.1. For simplicity, suppose that the
bets are given in dollars and the decision maker has linear utility. 2 She is told neither the
proportion nor the number of balls in the urn, but she has observed fifteen draws (with
replacement), nine of which were black and the rest of which were white. It does not seem

2. Alternatively, one could read the bets as given in utils, and as corresponding to the appropriate mixtures
of corresponding dollar bets in the standard way; eg. f is the mixture 1

100000g ` 99999
1000000.
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Figure VII.1 – Bets (‘M’ stands for ‘million’)

Colour of ball drawn from urn
Black White

f 15 -10
0 0 0
g 1.5 M -1 M
fn 15 ˆn -10 ˆn

implausible that there are decision makers who prefer f to 0 given this information, whilst
being indeterminate in their preference between g and 0. Certainly, from a normative point
of view, it is not unreasonable to hold a preference between the first pair of bets while
not having a determinate preference between the second pair, given the weakness of the
information and the stakes involved. Even from the point of view of objective rationality,
there is a ‘statistical argument’ for preferring f over 0 – based, for example, on a classical
hypothesis test with a weak significance level (eg. 10%) 3 – whereas there is no objectively
rational preference between g and 0 – in the situation where more is at stake, arguably
more stringent standards of proof, such as tougher significance levels, are required, and the
data do not support any conclusions at such levels. Analogous cases exist for the group
interpretation of incomplete preferences: for example, if there is agreement between two
leading urn-experts that the proportion of black balls is 1

2

, but a large disagreement in the
community as a whole on the proportion of black balls, it is does not seem unreasonable
for the group to form a preference between f and 0 without forming one between g and
0. Since independence implies that there is preference for f over 0 if and only if there is
preference for g over 0, it is violated in these examples.

Reinterpreting the event that the ball is black to be the success of a new technology,
for example, and the observations to be suggestive yet inconclusive findings, it is clear that
there are real-life cases where this sort of preference pattern is exhibited. On the basis of
limited grounds (be they scarce information, a weak argument or a few members of the

3. Explicitly, a one-sided classical statistical test rejects the hypothesis that the proportion of black balls
is 0.4 at the 10% significance level, and for probabilities of black above 0.4, f has a higher expected utility
than 0.
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group), decision makers may be ready to form preferences when the decision is relatively
unimportant, but cannot do so when there is more at stake. Our proposed diagnosis is that
the standard models of incomplete preferences (in terms of sets of probability measures, for
example) overlook the fact that decision makers can be more or less sure of their beliefs.
The examples given above suggest that how sure the decision maker is in a belief may be
related to her preferences over options for which this belief is relevant. These appear to
be cases where determinate preferences are formed on the basis of beliefs in which the
decision maker is not entirely sure in some situations – in particular, when little is at stake
in the decision – whereas there are other situations – when the decision is more important,
for example – in which she may need to be more sure of her beliefs to avoid indeterminacy.

Beyond the case of individual preferences, this diagnosis also applies to other interpre-
tations of incompleteness. A group – a firm, for example – may be said to hold a belief if
appropriate subgroups – the directorship, or larger or smaller collections of committees –
are unanimous on the belief, and it is natural to say that the group is more sure of a belief
shared by all stakeholders than one shared only by the board of directors. Moreover, whilst
agreement among directors may be sufficient for some decisions, more group consensus
would seem a reasonable prerequisite when the stakes are high. Similarly, there are more
or less stringent standards of proof (corresponding, for example, to the strength of statis-
tical tests, the degree of experimentation, the rigor of argument, and so on) that could be
involved in objectively rational preferences. Any notion of objectively rational preference
will have to specify the appropriate standards: a natural way of doing so is by demanding
more rigorous proof when the choices are more important.

The aim of this paper is to propose a theory of decision under uncertainty that, whilst
deviating as little as possible from the standard models of incomplete preference, incor-
porates the decision maker’s confidence in her beliefs. The theory can be summed up in
the following principle: one’s preferences are indeterminate when and only when one’s
confidence in the beliefs needed to form the preference does not match up to the stakes
involved in the choice. Like the standard Bewley model, indeterminacy of preferences is
driven solely by the decision maker’s beliefs; it is tacitly assumed that the decision maker
is fully confident in her utilities.

As concerns behavioral properties, note that in the context of incomplete preferences,
independence applied to the preference f ° 0 and the acts g and 0 (Figure VII.1) in fact
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implies two distinct things: on the one hand, there is a determinate preference between g

and 0; on the other hand, this preference goes in the appropriate direction (g ° 0). The
examples above only conflict with the former condition, not the latter; however, it is the
latter condition that is at the heart of the independence property. Hence it is natural to drop
the former condition, retaining the latter: that is, to demand that the standard independence
condition applies whenever the preferences involved are determinate. This is the appropri-
ate weakening of independence for the model developed in this paper. Indeed, the other
main axiomatic difference from the Bewley multi-prior model involves a similar weak-
ening of transitivity: it applies whenever preferences are determinate, but indeterminacy
is permitted in some cases where standard transitivity would have demanded determinate
preference. 4 We take the mildness of these axioms to be an indication of the parsimony of
this departure from the benchmark Bewley model of incomplete preferences under uncer-
tainty.

The incorporation of confidence into an account of incomplete preferences has inter-
esting consequences for the question of how to ‘complete’ preferences, a question that is
pertinent under all the aforementioned interpretations, in particular when a decision must
be taken. It allows the distinction between, and characterization of, two strategies for pref-
erence completion. One respects confidence, insofar as it only allows the decision maker to
use beliefs in which she has sufficient confidence given the stakes involved in the decision.
A government who bases its climate policy on ‘full scientific certainties’, however scarce
they may be and ignoring the less well-established opinions of experts, adopts this strategy.
The other strategy goes on hunches, insofar as it allows the decision maker to mobilize all
her beliefs – even those in which she has little confidence – when she is forced to choose.
An entrepreneur who undertakes a venture on the basis of her ‘gut feeling’ that it will work,
without being strongly convinced of its success, is adopting this strategy. The distinction
between these strategies, though pre-theoretically reasonable and potentially pertinent to
the understanding of real-life decisions, has not yet been identified in the literature, to our
knowledge.

4. The need for a weakening of transitivity can also be seen on the example above. It is not implausible, in
the light of similar considerations to those behind the preference for f over 0, that the decision maker prefers
f

n`1 to f

n for all n between 0 and 99 999 (recall that she has linear utility). Transitivity would imply that
she prefers g over 0, and hence is violated. See Section VII.3.1 for further discussion.
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VII.1.2 Overview of proposal and results

To develop a theory of decision based on the maxim that one’s preferences are indeter-
minate when and only when one’s confidence in the beliefs needed to form the preference
does not match up to the stakes involved, we use several notions introduced in Hill (2013).
The decision maker’s confidence in her beliefs is represented by a confidence ranking: that
is, a nested family of sets of probability measures. Each set in the family is interpreted as
corresponding to a level of confidence. A probability judgement 5 that applies under every
probability measure in the set is one that the decision maker holds to the corresponding
level of confidence. Larger sets in the family correspond to higher levels of confidence;
fewer probability judgements (or beliefs) are held to those levels of confidence. Whilst
proposed as a representation of individual beliefs, confidence rankings have a natural inter-
pretation for groups. Each probability measure can be thought of as the beliefs of a member
of the group, and each level as corresponding to a level in the group’s hierarchical structure
(eg. in a country, one level will contain cabinet ministers, another will contain members of
the government, another all elected representatives, and so on). The probability held at a
particular level is one that is shared unanimously by all group members who have at least
the rank corresponding to that level.

The decision maker’s attitude to choosing in the absence of confidence is represented
by a cautiousness coefficient: a function that associates to each decision a set of probability
measures in the confidence ranking. It can be thought of as assigning the level of confidence
required in beliefs for them to play a role in the decision in question. It is defined in such
a way that it picks out the same set of probability measures for all decisions having the
same stakes; as such, it can be thought of as picking out the appropriate level of confidence
entirely on the basis of the stakes involved in the decision. The confidence ranking and
cautiousness coefficient are subjective elements in the model; for extended discussion and
defense of these notions and their interpretations, see Hill (2013) and Section VII.3.3 below.

We represent the notion of stakes by a stakes relation on the set of decisions, which
orders decisions according to whether the stakes involved in them are higher or lower. In
this paper, we take the view that the notion of stakes is a feature of the decision model,
different notions of stakes yielding different decision models. One can imagine several dif-

5. By probability judgement, we mean a statement concerning probabilities, such as ‘the probability of
event A is greater than p’.
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ferent notions of stakes (see Appendix VII.A), and we are non-committal about the proper
stakes relation to use. Hence we exogenously assume a stakes relation satisfying some
basic properties. The results hold for any such stakes relation, and are interpreted as pro-
viding inter alia an axiomatic treatment of a class of models, which differ only in the notion
of stakes used. An alternative perspective would be to consider the notion of stakes to be
subjective to the decision maker; Hill (2014) adopts such a perspective in a different but re-
lated framework, and can be thought of as providing a behavioral foundation for the stakes
relation.

In the main result of the paper, we give necessary and sufficient conditions for a repre-
sentation of the following form: for all Anscombe-Aumann acts f and g, f ® g if and only
if

ÿ

sPS

upfpsqq.ppsq §
ÿ

sPS

upgpsqq.ppsq for all p P Dppf, gqq(VII.1)

where u is a von Neumann-Morgenstern utility function and D is a cautiousness coefficient
for a confidence ranking ⌅. To understand this representation, note firstly that Dppf, gqq
is the set of probability measures associated with the choice between acts f and g, and
depends entirely on the stakes involved in this choice. It indicates the confidence level
associated to those stakes; the only probability judgements in which the decision maker
is confident enough for them to play a role in the decision are those which hold for all
probability measures in Dppf, gqq. Under representation (VII.1), g is weakly preferred
to f if and only if, based only on these probability judgements, the decision maker can
conclude that the expected utility of g is at least as high as that of f . So if, on the basis of
these probability judgements, the decision maker can conclude neither that g has expected
utility at least as high as f nor that f has expected utility at least as high as g, then she
has no preference between them. In other words, her preferences over a pair of acts are
indeterminate if she is not confident to the degree required by the stakes involved in the
decision that one act is at least as good as the other.

This model permits comparative statics analysis of the decision maker’s decisiveness
– her propensity to exhibit determinate preference – and supports a behavioral definition
and characterization of the decision maker’s confidence in her preferences. This analysis
vindicates the interpretation, mooted above, of the cautiousness coefficient as capturing her
attitude to choosing in the absence of confidence.
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Moreover, as intimated above, the model supports an analysis of two families of com-
pletion strategies for preferences, which differ in the beliefs that the decision maker allows
herself to rely on when completing her preferences. The difference between the strategies
is naturally captured by the level of the confidence ranking used in the formation of com-
plete preferences. Behavioral conditions that yield simple representations for each of the
strategies are proposed.

Finally, a standard interpretation of indeterminacy of preferences in market settings
(dating back at least to Bewley (2002)) is in terms of reluctance to trade. What implica-
tions does the incorporation of confidence according to representation (VII.1) have in such
settings? We show that it adds a friction absent under other non-expected utility or incom-
plete preference models of decision under uncertainty, with consequences for the difficulty
of attaining a Pareto optimum via Pareto-improving trade.

The basic notions of the model are introduced and formally defined in Section VII.2.
The representation result and comparative statics of decisiveness are given in Section VII.3.
In Section VII.4, we consider the question of how to complete one’s incomplete prefer-
ences. In Section VII.5, we consider the consequences of the model in markets under
uncertainty. Proofs of all results and other material are to be found in the Appendices.

In the rest of the Introduction, we discuss the relation to existing literature.

VII.1.3 Related literature

Bewley (2002) was the first to axiomatise a ‘unanimity’ representation of an incomplete
preference relation by a set of probability measures, according to which there is a prefer-
ence between acts if the expected utilities of the acts lie in the appropriate relation for all
the probability measures in the set. Technically, our representation is closer to the una-
nimity representation used by Gilboa et al. (2010), who take the weak rather than the strict
preference relation as primitive. 6 The unanimity model cannot capture differing degrees
of confidence, and hence it does not have the richness to capture the effect of the stakes
involved in a choice on the degree of confidence required of beliefs to play a role in it,
and hence on determinacy of preferences. Representation (VII.1) can thus be thought of as

6. The representation in Gilboa et al. (2010) differs from representation (VII.1) above by replacing
Dppf, gqq with a fixed set of probability measures; the representation in Bewley (2002) differs moreover
in replacing the weak preferences and orders by strict preferences and orders.
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a generalisation of the unanimity representation, replacing a single fixed set of probability
measures by a family of sets, where the set of measures used varies depending on the stakes
involved in the decision.

Representation (VII.1) belongs to a family of decision models that represent the deci-
sion maker’s state of belief by a confidence ranking and are based on the idea that different
sets of probability measures may be used in the evaluation of options, according to the
stakes involved. This family was introduced and motivated in Hill (2013). There it was
noted that members differ along two dimensions: the decision rule which determines pref-
erences on the basis of a set of probability measures and a utility function, and the notion
of stakes. In this perspective, the current paper can be thought of as complementary to
Hill (2013), exploring different fragments of the family introduced there. Theorem VII.1
axiomatises a family of models that take the unanimity decision rule (as opposed to the
maxmin expected utility rule, as in Hill (2013)) and any notion of stakes that generates a
stakes relation satisfying some basic properties (as opposed to a particular notion of stakes,
as in Hill (2013)). Moreover, Theorem VII.2 (ii) can be thought of as providing founda-
tions for another class of models belonging to the same family; namely the class using
the maxmin expected utility decision rule and any notion of stakes of the sort described
above. 7

Nau (1992) has proposed a theory of incomplete preferences which is similar to repre-
sentation (VII.1) in content and motivation. Besides the difference in framework (he uses
the de Finetti framework), presentation (he uses confidence-weighted upper and lower con-
ditional probabilities on random variables) and conceptualisation (the distinction between
stakes and confidence is not fully brought out, and the notion of cautiousness coefficient
is absent), he assumes a particular notion of stakes, whereas we do not. As discussed in
Appendix VII.A, there is a sense in which his theory is a member of the family axiomatised
here.

Faro (2013) has proposed an extension of Bewley’s representation by incorporating
a real-valued function on the space of probabilities measures, in a way inspired by the
variational preferences model of Maccheroni et al. (2006). Lehrer and Teper (2011) have
proposed a representation involving sets of sets of probability measures, where an act is

7. Note that the model considered in Hill (2013), although it uses the same decision rule, does not belong
this class. There the stakes are a function of a single act, whereas here the stakes are a function of the decision
(that is, the pair of acts on offer); see Section VII.2.2.
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preferred to another if it has a higher expected utility for all probability measures in at
least one of the sets. There are significant differences from the current proposal in the
representation of preferences (for example, the notion of the stakes plays no role in these
models), the concepts involved and how they are modeled, and the behavioral properties.
In particular, these models employ more severe weakenings of transitivity than used here,
and indeed allow preference cycles whilst representation (VII.1) does not; moreover, Faro
(2013) employs a more severe weakening of independence. Faro (2013) also considers the
relation to the variational preferences and maxmin EU models, in a manner similar to our
treatment of the question of preference completion in Section VII.4.

Minardi and Savochkin (2013) propose a representation of a graded preference relation
in terms of a capacity over a set of probability measures, where the ‘strength of’ or ‘confi-
dence in’ the preference for an act is equal to the measure of the set of probability measures
for which the expected utility of the act is greater. Their graded preference relation is a bi-
nary relation over pairs of acts, and hence is reminiscent of the confidence-in-preferences
relation introduced in our Section VII.3.3, with the notable difference that whilst Minardi
and Savochkin (2013) assume this relation as a primitive, here it is defined from (ordinary)
preferences over acts (Definition VII.2, Section VII.3.3). Analogous points to those made
in the previous paragraph appear to apply to the comparison with this model: for example,
notwithstanding the difference in framework, their transitivity condition (Weak Transitiv-
ity) seems to be closer to the weakening of transitivity used in Faro (2013); Lehrer and
Teper (2011) than to the one used here.

Seidenfeld et al. (1995); Nau (2006); Ok et al. (2012); Galaabaatar and Karni (2013)
have explored extensions of Bewley’s representation involving sets of probabilities and sets
of utilities. The behavioral points made above, in particular concerning the independence
axiom in the presence of incompleteness, continue to hold for these models. They plead in
favour of the incorporation of confidence in beliefs and confidence in utilities; this is left as
a topic for future research. Hill (2009) proposes a model of confidence in preferences that
retains the same basic intuition as the models of confidence of belief used here, and applies
it in the context of choice under certainty.

The discussion of the completion of incomplete preferences is technically related to
Gilboa et al. (2010), Kopylov (2009) and Nehring (2009), who provide representation re-
sults on pairs of binary relations, where one is complete, the other is represented according
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to the unanimity representation described above, and they are represented by related or
identical sets of probability measures. Although Gilboa et al. (2010), like us, propose a
representation of the second relation in terms of the maxmin expected utility representation
(Gilboa and Schmeidler, 1989), Kopylov (2009) and Nehring (2009) consider special and
more general cases respectively. All these authors work with single sets of probability mea-
sures, rather than confidence rankings, and hence cannot capture the distinction between
the two strategies presented in Section VII.4. A final, axiomatic, difference is that they all
impose axioms other than completeness on the complete preference relation (generally, at
least transitivity and continuity), whereas we only impose completeness. Accordingly, the
main new axiom used here (Stakes Benchmark on Certainty, Section VII.4) is stronger that
the main ‘connecting’ axioms used, for example, by Gilboa et al. (2010) (Consistency and
Caution or Default to certainty). In the case of a degenerate confidence ranking (containing
a single set of probability measures), our Theorem VII.2 thus provides a new axiomatisa-
tion of the representation obtained in their Theorems 3 and 4.

Finally, the interpretation of indeterminacy of preference in terms of sticking to a sta-
tus quo option used in Section VII.5 has been considered by Bewley (2002), under the
name of the ‘inertia assumption’. Bewley (1989) was the first to consider consequences for
trade, and Rigotti and Shannon (2005) undertake a thorough analysis of markets involv-
ing decision makers with unanimity preferences. Billot et al. (2000), Rigotti et al. (2008)
and Ghirardato and Siniscalchi (2014) consider markets involving decision makers with
complete non-expected utility preferences.

VII.2 General preliminaries

VII.2.1 Setup

Throughout the paper, we use the standard Anscombe-Aumann framework (Anscombe
and Aumann, 1963), as adapted by Fishburn (1970). Let S be a non-empty finite set of
states; subsets of S are called events. �pSq is the set of probability measures on S, en-
dowed with the Euclidean topology. X is a nonempty set of outcomes; a consequence is
a probability measure on X with finite support. �pXq is the set of consequences. Acts

are functions from states to consequences; A is the set of acts. A is a mixture set with the
mixture relation defined pointwise: for f , h in A and ↵ P r0, 1s, the mixture ↵f ` p1 ´↵qh
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is defined by p↵f ` p1 ´ ↵qhqps, xq “ ↵fps, xq ` p1 ´ ↵qhps, xq. We write f↵h as short
for ↵f ` p1 ´ ↵qh. With slight abuse of notation, a constant act taking consequence c for
every state will be denoted c and the set of constant acts will be denoted �pXq.

The decision maker’s preferences over A are represented by a binary relation ®. „
and † are the symmetric and asymmetric components of ®, and — is the ‘determinate
preference’ relation, defined as follows: f — g iff f ® g or f © g. So f � g means that
the decision maker does not have a determinate preference between f and g.

VII.2.2 Stakes

As mentioned in the Introduction, a central idea in this paper is the importance of the
stakes involved in a choice between two options for the preferences over them. We repre-
sent the notion of stakes by a stakes relation that, for each pair of (binary choice) decisions
the decision maker may be faced with, specifies which has higher stakes or whether the
stakes involved in them are the same. That is, a stakes relation Æ is a relation on the set
of pairs of acts (A ˆ A) that is interpreted as follows: pf, gq Æ pf 1, g1q means that the
stakes involved in the choice between f and g are (weakly) lower than the stakes involved
in the choice between f 1 and g1. ” and † are the symmetric and asymmetric components
of Æ, defined in the standard way. We shall be interested in stakes relations satisfying the
following basic properties.

(Weak Order) Æ is reflexive, transitive and complete.

(Symmetry) For all f, g P A, pf, gq ” pg, fq.

(Extensionality) For all f, f 1, g, g1 P A, if fpsq „ f 1psq and gpsq „ g1psq for all s P S,
then pf, gq ” pf 1, g1q.

(Continuity) For all f, f 1, g, g1, h P A, the sets tp↵, �q P r0, 1s2| pf↵h, g�hq Ø pf 1, g1qu
and tp↵, �q P r0, 1s2| pf↵h, g�hq Æ pf 1, g1qu are closed in r0, 1s2.

(Richness) For all f, f 1, g, g1 P A such that fpsq ⇢ gpsq for some s P S and pf 1, g1q is not
Æ-minimal, there exists h, h1 P A and ↵,↵1 P p0, 1s such that pf↵h, g↵hq Æ pf 1, g1q Æ
pf↵1h1, g↵1h1q.

Weak order states that the binary choices the agent may be faced with can be weakly
ordered according to the stakes involved in them. We take this to be a basic property of the
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notion of stakes, and accept it without discussion here. 8 Symmetry states that the stakes
involved in a choice only depend on the alternatives available, irrespective of the order in
which they are presented, and deserves no further discussion.

Extensionality says that all that counts for the stakes are the values of the consequences
of the acts at the different states. If two acts are extensionally equivalent – that is, the
decision maker is indifferent between the consequences of the acts at every state – then in
virtually all formal theories of decision under uncertainty, they are treated (and evaluated)
in exactly the same way. Extensionality says that whenever two pairs of acts are related
in this way, they have the same stakes. Note that extensionality involves reference to the
decision maker’s preferences over constant acts. This is to be expected: the stakes involved
in a choice depend on how ‘good’ and ‘bad’ the consequences of the various options are in
particular instances, and of course, how ‘good’ and ‘bad’ they are depends on the decision
maker’s evaluation. Indeed, many plausible notions of stakes which come to mind make
reference at least to the decision maker’s utility function, if not also to part of her confidence
ranking (see the examples in Appendix VII.A). It is thus entirely natural for the stakes
relation to respect some aspects of her utility function.

On mixing a pair of acts with a third act, the stakes involved in a choice may change;
Continuity says that this change is continuous in the degree of mixing. This seems reason-
able: the stakes may be altered as one or both of the acts on offer are mixed with another act,
but one would not expect the stakes to ‘jump’ as the mixture coefficient moves gradually
from one value to another.

Richness is a technical property, which states that the stakes involved in a choice be-
tween different acts can be shifted as far up or down the stakes order as desired, by mixing
the pair of acts appropriately. There is a sense in which (in particular in the presence of
an independence axiom; see Section VII.3) the choice between f and g and the choice be-
tween f↵h and g↵h are the ‘same’ choice. Nevertheless, the stakes involved in these two
choices may differ; to that extent, the latter choice can be thought of as a ‘version’ of the
former choice, but at the stakes level corresponding to pf↵h, g↵hq rather than pf, gq. Hence,
using such mixtures, one can consider the decision maker’s preferences at different stakes
levels. We will say that the decision maker prefers f to g at a certain stakes level if she

8. See Hill (2009, Section 3.1) for a discussion of the possibility of weakening the completeness assump-
tion in a different but related framework.
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prefers f↵h to g↵h for some ↵ and h such that pf↵h, g↵hq has that level of stakes. Richness
simply states that for any non-trivial choice and non-minimal stakes level, there is a version
of the choice, obtained by mixing with a third act, which has stakes above the level in ques-
tion, and there is a version which has stakes below that level. The intuition is that mixing
with a third act can change many of the properties of a pair of acts, and in particular the
main properties that are relevant for the stakes involved in the choice between them. Under
some notions of stakes, ‘trivial’ choices – between an act and itself, or, given extensional-
ity, between an act and one which is extensionally equivalent to it – and the minimal stakes
level have a special status; it could be, for example, that all and only trivial choices have
minimal stakes (this is the case for some of the notions mentioned in Appendix VII.A). For
this reason, richness does not apply to such choices and stakes levels.

As noted in Hill (2013, Section 4), there are many notions of stakes, each of which
generates a stakes relation. Of course, the weaker the properties assumed for the stakes
relation, the more general the results involving it. To illustrate the generality of the results in
the following sections, we give some examples of notions of stakes satisfying the properties
above in Appendix VII.A. We also discuss weakenings of the properties and extensions to
allow dependence of the stakes on the status quo or the context that can be straightforwardly
accounted for by appropriate modifications in the theorems below.

As mentioned in the Introduction, we adopt the perspective presented in Hill (2013),
according to which the notion of stakes is an objective feature of the decision model: dif-
ferent notions of stakes yield different decision models. We thus assume throughout Sec-
tions VII.3 and VII.4 a stakes relation Æ satisfying the five properties above. The analysis
and results hold for any stakes relation satisfying these properties; as such, they can be
thought of as applying to a class of decision models, where the members of the class differ
on the notions of stakes. Note that, to the extent that some axioms are formulated in terms
of the stakes relation, different notions of stakes will correspond to different behavioral
properties, and hence it is possible in principle to tell whether the decision maker is us-
ing a given stakes relation or not. Hill (2014), working with a different but related decision
model, provides a representation in which the stakes relation (over general, rather than only
two-element menus) is endogenous.
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VII.2.3 Confidence ranking and cautiousness coefficient

We recall two notions that were introduced in Hill (2013). (The reader is referred to
that paper for further discussion of these notions and their properties.)

Definition VII.1. A confidence ranking ⌅ is a nested family of closed, convex subsets of
�pSq. A confidence ranking ⌅ is continuous if, for every C P ⌅, C “ î

⌅QC1àC C 1 “
ì

⌅QC1âC C 1. It is centered if
ì

CP⌅

C is a singleton. 9

As mentioned in the Introduction, confidence rankings represent decision makers’ be-
liefs, and in particular their confidence in probability judgements. The sets in the confi-
dence ranking can be thought of as corresponding to levels of confidence. The higher the
level of confidence in question, the larger the set: this translates the fact that one is confident
of fewer probability judgements to that level of confidence. The convexity and closedness
of the sets of probability measures in the confidence ranking are standard assumptions for
decision rules involving sets of probabilities. The continuity property guarantees a continu-
ity in one’s confidence in probability judgements: it ensures, for example, that one cannot
be confident up to a certain level that the probability of an event A is in r0.3, 0.7s and then
only confident that the probability is in r0.1, 0.9s at the ‘next’ confidence level up. All
confidence rankings considered in this paper will be continuous, the property often being
assumed in discussion without being explicitly mentioned. Finally, a decision maker with
a centred confidence ranking is one who, if forced to give her best estimate for the proba-
bility of any event, could come up with a single value (and these values satisfy the laws of
probability), although she may not be very confident in it. We do not assume confidence
rankings to be centred in general; in the representation result, there is an axiom that is nec-
essary and sufficient for the confidence ranking to be centred, so this property receives a
behavioural characterisation.

The second notion required is that of a cautiousness coefficient for a confidence ranking
⌅, which is defined to be a surjective function D : A ˆ A Ñ ⌅ that preserves Æ; that is,
such that for all pf, gq, pf 1, g1q P AˆA, if pf, gq Æ pf 1, g1q, then Dppf, gqq Ñ Dppf 1, g1qq. D

assigns to any pair of acts the level of confidence that is required in probability judgements
in order to be used in the choice between the acts. This level of confidence corresponds
to the appropriate set of probability measures in the confidence ranking. Preservation of

9. For a set X , X is the closure of X . Note that the union of a nested family of convex sets is convex.
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the stakes relation Æ implies that D assigns a confidence level to a choice solely on the
basis of the stakes involved in that choice, and is faithful to the intuition that the higher the
stakes, the higher the confidence required in probability judgements for them to play a role
in the choice. Surjectivity of D basically attests to the behavioral nature of the confidence
ranking: it implies that for each set of probability measures in the ranking, there will be a
level of stakes, and hence a choice, for which it is the relevant set.

VII.3 A theory of incomplete preferences and confidence

In this section, we axiomatise and analyze a representation of incomplete preferences.
Throughout this section and the next one, we assume a fixed stakes relation Æ.

VII.3.1 Axioms

Consider the following axioms on ®.

Axiom VII-A1 (C-Completeness). For all c, d P �pXq, c — d.

Axiom VII-A2 (Reflexivity and Non-triviality). ® is reflexive and non-trivial.

Axiom VII-A3 (Stakes Transitivity). For all f, g, h, e, e1 P A, ↵, � P p0, 1s such that
pf, hq Æ pf↵e, g↵eq or fpsq „ gpsq for all s P S, and pf, hq Æ pg�e1, h�e1q or gpsq „ hpsq
for all s P S, if f↵e ® g↵e and g�e1 ® h�e1, then f ® h.

Axiom VII-A4 (Pure Independence). For all f, g, h P A and for all ↵ P p0, 1q such that
f — g and f↵h — g↵h, f ® g if and only if f↵h ® g↵h.

Axiom VII-A5 (Monotonicity). For all f, g P A, if fpsq ® gpsq for all s P S, then f ® g.

Axiom VII-A6 (Consistency). For all f, g, h P A and ↵ P p0, 1q such that pf↵h, g↵hq Æ
pf, gq, if f — g, then f↵h — g↵h.

Axiom VII-A7 (Continuity). For all f, g, h P A, the set tp↵, �q P r0, 1s2 | f↵h ® g�hu is
closed in r0, 1s2.

Axiom VII-A8 (Continuity in Stakes). For all f, g, h P A with pf, gq not Æ-maximal and
fpsq, gpsq © hpsq for all s P S, f © g if and only if for all � P p0, 1q, there exists e P A
and ↵ P p0, 1s such that pf↵e, pg�hq↵eq ° pf, gq and f↵e © pg�hq↵e.
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Axiom VII-A9 (Centering). For all f P A and c P �pXq, if f↵h � c↵h for all h P A and
↵ P p0, 1s, then, for all d P �pXq with d ⇢ c, there exists h1 P A and ↵1 P p0, 1s such that
f↵1h1 — d↵1h1.

Reflexivity and Non-triviality (VII-A2) and Monotonicity (VII-A5) are standard and
require no further comment. Continuity (VII-A7) is a slight strengthening of the standard
continuity axiom, and is related to axioms used elsewhere in the literature on incomplete
preferences (see, for example, Dubra et al. (2004)). Indeed, in the presence of transitivity,
independence and monotonicity, this axiom is equivalent to the standard one (see for ex-
ample Gilboa et al. (2010, Lemma 3)). C-Completeness (VII-A1), which was introduced
by Gilboa et al. (2010), simply says that preferences over constant acts are determinate. It
translates the fact that the agent is assumed to be fully confident in her utilities; as stated in
the Introduction, only confidence in beliefs is at issue here.

As concerns Stakes Transitivity (VII-A3), note firstly that transitivity in the case of
incomplete preferences involves two distinct conditions: firstly, if f ® g and g ® h, then
one has determinate preferences between f and h; secondly, these preferences go in the
appropriate direction – that is, f ® h. However, the former condition may be too strong.
A decision maker may prefer spending $10 on a bet on a certain ambiguous event to her
current portfolio, no matter what her current portfolio is. Transitivity (applied repeated)
implies that she prefers spending $10 000 on 1000 bets on this same event to her current
portfolio, whereas it does not seem unreasonable, under any of the standard interpretations
of incompleteness cited in the Introduction, to have indeterminate preferences over these
options.

Stakes transitivity weakens the first clause of the standard transitivity property, whilst
retaining its second clause. More precisely, except for cases where f and g or g and h are
extensionally equivalent, it demands determinate preference between f and h only when
the decision maker’s preferences between f and g and between g and h are determinate for
stakes higher than the stakes involved in the choice between f and h. 10 It allows prefer-
ences to be indeterminate if this is not the case. In the example above, stakes transitivity
thus allows indeterminacy of preferences concerning the $10 000 bet, insofar as the stakes
are higher than for a single $10 bet. Importantly, in the presence of the other axioms, stakes

10. Recall from the discussion of richness in Section VII.2.2 that preferences at different stakes levels are
given by preferences over appropriate mixtures of the acts in question.
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transitivity implies that, whenever preferences are determinate, they go in the direction im-
plied by the standard transitivity axiom. So, to the extent that one can speak of ‘violations’
of the standard axiom, they never result in preference cycles, but only in indeterminacy of
preference where transitivity would have implied a determinate preference. 11 In this sense,
this is a particularly mild weakening of transitivity. Note finally that, in the presence of
VII-A4, stakes transitivity is equivalent to transitivity whenever preferences are complete.

A similar situation holds for Pure Independence (VII-A4). Whereas the standard inde-
pendence axiom implies, firstly, that certain preferences are determinate, and secondly, that
they go in a certain direction, pure independence simply states that whenever preferences
are determinate, they go in the direction specified by the standard independence condition.
Evidently it fully retains the intuitions behind the standard axiom, whilst accounting for
the examples given in Section VII.1.1. Indeed, it can be thought of as an alternative way of
extending the traditional independence axiom to the case of incomplete preferences, which
separates the part of the standard axiom concerning determinacy of preference from the
arguably more important part concerning direction of preference.

Consistency (VII-A6) is perhaps the most novel axiom and naturally so: it deals with the
relationship between preferences at different stakes levels. It says that, if preferences be-
tween f and g are determinate, then preferences will be determinate between any mixtures
of f and of g, as long as the stakes are not higher. In other words, if one has determinate
preferences between two options at a given stakes level, then as the stakes fall, one retains
the determinacy of the preferences. If the decision maker can choose between the options
when there are hundreds of thousands of dollars at stake, then she can still choose when
there are only tens of thousands at stake. As such, it is this axiom in particular which trans-
lates the idea that the higher the stakes, the more confidence is needed to take the choice.
This is a fully behavioral axiom, which is in principle testable by, for example, comparing
preferences at different stakes levels. (Of course, the other axioms are as behavioral as their
standard counterparts.)

Of the final two axioms, Continuity in Stakes (VII-A8) is a largely technical axiom.
The main direction states that, whenever f is preferred to g, then as the stakes in the choice
are gradually increased (supposing they are not maximal), f may no longer be preferred

11. Perhaps it would be more appropriate to call these ‘abstentions’ from the transitivity axiom, reserving
the term ‘violation’ for patterns of determinate preference that are incompatible with the axiom.
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to g, but the most preferred act ‘below’ g (in the appropriate sense of being a mixture of
g with an act dominated statewise by g and f ) to which it is preferred will not suddenly
‘jump’ down with a slight increase in stakes. This basically ensures that the ‘lower contour
set’ of an act changes gradually with an increase in the stakes involved in the decision. The
axiom also includes the converse direction: if, for each act ‘below’ g there is a higher stakes
level at which f is preferred to that act, then f is preferred to g. This direction is in fact
implied by the other axioms whenever pf, gq is not Æ-minimal, and thus can be dropped if
one assumes, for example, that Æ has no non-trivial minimal elements.

The final axiom, Centering (VII-A9), is not required for the representation in general,
but characterises the centeredness property of the confidence ranking (Section VII.2.3). It
basically states that for any act and every constant act except at most one, if the stakes are
low enough in the choice between them, the decision maker’s preferences over them are
determinate. The basic intuition is that, if there is sufficiently little at stake, the decision
maker will hazard a preference in all these cases, albeit one in which she is not necessarily
very confident.

VII.3.2 Result

The preceding axioms characterize the following representation of preferences.

Theorem VII.1. Let ® be a binary relation on A. The following are equivalent.

(i) ® satisfies VII-A1-VII-A8.

(ii) There exists a nonconstant affine utility function u : �pXq Ñ <, a continuous

confidence ranking ⌅ and a cautiousness coefficient D : A ˆ A Ñ ⌅ for ⌅ such

that, for all f, g P A, f ® g if and only if

ÿ

sPS

upfpsqq.ppsq §
ÿ

sPS

upgpsqq.ppsq for all p P Dppf, gqq(VII.1)

Furthermore, ⌅ and D are unique, and u is unique up to positive affine transformation.

Finally, under the conditions above, VII-A9 is satisfied if and only if ⌅ is centred.
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VII.3.3 Decisiveness and attitudes to choosing in the absence of confi-
dence

We now undertake a basic comparative statics analysis of a decision maker’s decisive-
ness under the model proposed above. Beyond giving a characterization of decisiveness in
this model, the analysis will also allow us to verify the claim made in the Introduction that
the cautiousness coefficient can be understood as capturing the decision maker’s attitude to
choosing in the absence of confidence.

Models of incomplete preferences admit a particularly simple comparison of decision
makers, in terms of the completeness of their preference relations. For decision makers 1

and 2, if 2 weakly prefers f to g whenever 1 does, this is an indication that 2 is less prone
to indeterminacy of preference than 1. Formally, we say that ®1 is less decisive than ®2 if
®1Ñ®2. 12

In order to characterise this relation in terms of the elements of the model, we require
the relation Ñ on families of sets, defined as follows. For two families of sets ⌅ and ⌅

1,
we write ⌅ Ñ ⌅

1 when, for every C P ⌅, there exists C 1 P ⌅

1 with C Ñ C 1. We have the
following result.

Proposition VII.1. Let ®1 and ®2 satisfy axioms VII-A1–VII-A8, and be represented by

pu
1

, ⌅
1

, D
1

q and pu
2

, ⌅
2

, D
2

q respectively. The following are equivalent:

(i) ®1 is less decisive than ®2.

(ii) u
2

is a positive affine transformation of u
1

, ⌅

2

Ñ ⌅

1

and D
2

ppf, gqq Ñ D
1

ppf, gqq
for all pf, gq P A ˆ A.

Besides the utility functions, the main two elements in this result are the confidence
ranking and the cautiousness coefficient. However, they may be understood as playing
different roles. Consider two decision makers with the same utility function. Decision
maker 1 has unanimity preferences à la Bewley: her confidence ranking contains a single
set of probability measures C

1

and the cautiousness coefficient sends all pairs of acts to that
set. Decision maker 2, by contrast, has a rich confidence ranking ⌅

2

, with a range of sets of
probability measures, and an appropriate cautiousness coefficient, sending different pairs

12. Containment of the preference relations is equivalent to saying that, for all f, g P A, if f ©1
g then

f ©2
g.
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of acts to different sets. As long as C 1 Ñ C
1

for all C 1 P ⌅

2

, 1 will be less decisive than 2.
However, there seems to be something more precise to say about the relationship between
the two decision makers. In particular, it appears that, on the one hand, 1 is less sensitive to
the importance of decisions than 2 – if she prefers f over g at a given stakes level, then she
has the same preference at any stakes level, no matter how high – but, on the other hand, 1

is confident of fewer beliefs than 2. In other words, there seems to be an aspect of belief
(how confident one is of certain beliefs) as well as an aspect of taste (how willing one is
to decide on the basis of beliefs in which one has a certain amount of confidence) mixed
together in Proposition VII.1. To tease them apart, let us introduce the notion of confidence
in preferences.

Definition VII.2. Let ® satisfy axioms VII-A1–VII-A8. The confidence-in-preferences

relation § on A ˆ A is defined as follows: for any f, g, f 1, g1 P A, pf, gq § pf 1, g1q iff, for
all ↵,↵1 P p0, 1s, h, h1 P A such that pf↵h, g↵hq ” pf 1

↵1h1, g1
↵1h1q:

f↵h © g↵h ñ f 1
↵1h1 © g1

↵1h1

Definition VII.2 relies on the observation that, if a decision maker prefers f 1 to g1 at
a given stakes level but has indeterminate preferences between f and g at that level, then
this can be taken as an indication that she is more confident in her preference for f 1 over g1

than in her preference for f over g. 13 In other words, one can extract information about a
decision maker’s confidence in her preferences from the extent to which she holds specific
preferences at given stakes levels. This is done according to the simple principle: the
preferences that the decision maker holds at higher stakes are those in which she is more
confident.

Given these considerations, we shall say that two decision makers are confidence equiv-
alent if they have the same confidence-in-preferences relation.

Definition VII.3. Let ®1 and ®2 satisfy axioms VII-A1–VII-A8. ®1 and ®2 are confidence

equivalent if §1“§2.

Proposition VII.2. Let ®1 and ®2 satisfy axioms VII-A1–VII-A8, and be represented by

pu
1

, ⌅
1

, D
1

q and pu
2

, ⌅
2

, D
2

q respectively. ®1 and ®2 are confidence equivalent if and only

if u
2

is a positive affine transformation of u
1

and ⌅

1

“ ⌅

2

.

13. Recall from the discussion of richness in Section VII.2.2 that talk of preferences at different stakes
levels is spelt out formally in terms of preferences over appropriate mixtures.
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This proposition confirms that a decision maker’s confidence in her preferences is en-
tirely determined by her utilities and her confidence in beliefs. This is to be expected:
to the extent that preferences are determined by utilities and beliefs, it is reasonable that
confidence in preferences be determined by confidence in utilities – which is trivial in this
model, because of the use of a single utility function – and confidence in beliefs, repre-
sented by the confidence ranking. The notion of confidence in preferences also helps shed
light on the example above: decision makers 1 and 2 obviously have different confidence
in preferences, and it is this difference, as much as any difference in attitude to choosing
in the absence of confidence, that yields the difference in decisiveness. In fact, once differ-
ences in confidence in beliefs are accounted for, by comparing decision makers who have
the same confidence in preferences, decisiveness is entirely determined by the cautiousness
coefficient, as the following corollary of Propositions VII.1 and VII.2 shows.

Corollary VII.1. Let ®1 and ®2 satisfy axioms VII-A1–VII-A8, be confidence equivalent,

and be represented by pu, ⌅, D
1

q and pu, ⌅, D
2

q respectively. The following are equivalent:

(i) ®1 is less decisive than ®2.

(ii) D
2

ppf, gqq Ñ D
1

ppf, gqq for all pf, gq P A ˆ A.

In summary, one can compare decision makers’ decisiveness, that is, the pairs of acts
for which they have determinate preferences. Comparison in terms of decisiveness corre-
sponds to identical utilities (up to positive affine transformation) and appropriate relations
of containment on the confidence rankings and cautiousness coefficients. Furthermore, one
can define a decision maker’s confidence in preferences on the basis of her preferences.
Decision makers with the same confidence in preferences are precisely those who share the
same utilities and confidence in beliefs, represented by a confidence ranking. Finally, for
decision makers with the same confidence in preferences, differences in decisiveness are
completely characterized by the relationship between their cautiousness coefficients. To
the extent that such decision makers have the same confidence, differences in decisiveness
must come down to differences in their attitudes to choosing on the basis of limited confi-
dence. This supports the interpretation of the decision maker’s cautiousness coefficient as
capturing precisely her attitude to choosing in the absence of confidence.
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VII.4 Incomplete preferences and choice

There may be situations in which indeterminate preferences have direct consequences
in choice. Decision makers with indeterminate preferences may opt for the status quo, if it
exists (Bewley, 2002); they may postpone the decision, if possible (Danan, 2003a; Kopy-
lov, 2009); more generally, they may take a deferral option, if one is present (Hill, 2014).
However, in many situations, such ‘choice-avoidance mechanisms’ are unavailable and the
decision maker will have to make a choice, notwithstanding the incompleteness of her
preferences. This essentially poses the question of how a decision maker with incomplete
preferences ‘completes’ her preference relation in situations where she must choose.

This question is evidently relevant under all of the interpretations of incomplete pref-
erences mentioned in the Introduction, though the form it takes sometimes depends on the
interpretation adopted. For example, in the perspective proposed by Gilboa et al. (2010),
the question of completion is that of the relationship between objectively and subjectively
rational preferences. Note that a purely behavioral interpretation of the question can be
given, by thinking of incompleteness in terms of deferral. The incomplete preference rela-
tion considered in previous sections can be thought of as representing the decision maker’s
behavior when a deferral option is available: when preferences are indeterminate, she de-
fers. The question of completion is thus the question of how she would choose in situations
where no deferral option is available. 14

Consider a decision maker who is forced to choose between options over which she
has indeterminate preference. Pre-theoretically, two sorts of strategies for deciding suggest
themselves. One sort of strategy respects confidence: it uses only the beliefs that the deci-
sion maker holds with the level of confidence that corresponds to the stakes involved in the
decision. The intuition is that, since these are the appropriate beliefs for decisions involving
these stakes, they are the only ones she allows herself to rely on when deciding. Since they
do not yield a determinate choice under representation (VII.1), the decision maker employs
a different decision rule, involving, for instance, considerations of caution or an element of
random choice. Another sort of strategy goes on hunches: it allows the decision maker to
use all of her beliefs, irrespective of the confidence she has in them. The intuition here is

14. See Hill (2009) for further discussion of this interpretation of incompleteness, and Hill (2014) for a
general treatment of deferral in the context of decision under uncertainty.
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that, whilst the decision maker would not form preferences on the basis of a hunch (a belief
in which she has insufficient confidence) – or decide on a hunch if she could avoid it by
deferring the decision, for instance – when she is forced to decide she may as well mobilize
all of her beliefs – even hunches. Given that she is relying on more beliefs, the decision
maker may be able to decide using the ‘unanimity’ rule employed in representation (VII.1);
if not, she will require a different decision rule.

We would suggest that this distinction corresponds to an important difference between
possible reactions to forced choice, under all of the interpretations cited above. It seems that
some decision makers in certain situations – an entrepreneur following her ‘gut feelings’,
or a general going on his intuition in the heat of a battle, for example – rely on beliefs in
which they have insufficient confidence when called on to decide, whereas others in other
situations – a governor deciding whether to permit the construction of a nuclear plant, or a
doctor deciding on treatment for a patient, for example – only limit themselves to beliefs
that they hold with sufficient confidence given the decision in hand. In the perspective pro-
posed by Gilboa et al. (2010), a strategy that respects confidence only uses the beliefs that
are ‘objectively defendable’ to form subjectively rational preferences, and in this sense is
close to the representation given in that paper. However, it does not seem unreasonable,
when forming one’s (personal) subjectively rational preferences, to rely on beliefs that one
cannot convince others of with sufficiently strong arguments: that is, to adopt a strategy that
goes on hunches. Finally, the distinction takes a particularly simple form under the group
interpretation of incompleteness: in cases of disagreement among the group, a strategy that
respects confidence forms preferences accounting for the full scope of the disagreement,
whereas a strategy that goes on hunches chooses what the board of directors deem prefer-
able, ignoring the others’ opinions. Whilst some groups, such as certain associations, may
sometimes use the former strategy, others, for example many firms, often seem to use the
latter one.

To tackle the question of choice on the basis of incomplete preferences, we augment
the framework introduced in the previous sections with a binary relation, ®c, over the set
of acts. It represents the ‘completion’ of the decision maker’s preference ® from Sections
VII.2 and VII.3. The issue of choice on the basis of incomplete preferences can be tackled
by considering axioms on these preference relations and the relationship between them,
such as the following.
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Axiom VII-B1 (Forced Choice). ®c is complete.

Axiom VII-B2 (Benchmark on Certainty). For all f, g P A, g †c f if and only if there
exist c, d P �pXq with c ° d such that f↵h © c↵h for some h P A and ↵ P p0, 1s and
g↵1h1 ´ d↵1h1 for all h1 P A and ↵1 P p0, 1s.

Axiom VII-B2S (Stakes Benchmark on Certainty). For all f, g P A, g †c f if and only if
there exist c, d P �pXq with c ° d such that f↵h © c↵h for some h P A and ↵ P p0, 1s with
pf↵h, c↵hq Ø pf, gq, and g↵1h1 ´ d↵1h1 for all h1 P A and ↵1 P p0, 1s with pg↵1h1, d↵1h1q Ø
pf, gq.

Forced Choice (VII-B1) states that the completed preferences are indeed complete; it
translates the fact that the decision maker must choose. The other two axioms, Benchmark
on Certainty (VII-B2) and Stakes Benchmark on Certainty (VII-B2S), involve the same
basic intuition. Incomplete preferences provide a crude indication of the relative worth
of different acts for the decision maker; one way of getting a more refined judgement is
by considering how the acts compare to constant acts. Thus, even if the decision maker’s
preferences between two acts, say f and g, are indeterminate, she may have determinate
preference for f over a particular constant act (eg. a sure $5), whilst not having a deter-
minate preference for g over an inferior constant act (eg. a sure $4). The axioms both
demand that in precisely these cases she strictly prefers f to g when forced to choose. In
other words, an act is chosen over another in situations of forced choice precisely when it
fairs favourably with respect to the other act in the comparison with constant acts according
the initial (incomplete) preference relation. Both VII-B2 and VII-B2S characterise a form
of conservative decision making, insofar as all that counts in determining the preference
completion are the constant acts that the acts in question are preferred to. The difference
between them is that whilst Benchmark on Certainty (VII-B2) licences all comparisons
with constant acts, no matter the stakes level, Stakes Benchmark on Certainty (VII-B2S)
only involves stakes-corrected comparisons: comparisons where all the pairs of acts con-
sidered involve sufficiently high stakes. As the following results show, these two axioms
characterize behaviorally the difference between the two strategies described above.

Theorem VII.2. Let ® satisfy VII-A1–VII-A8, and be represented according to (VII.1) by

pu, ⌅, Dq. Then
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(i) ® and ®c satisfy VII-B1 and VII-B2 if and only if for all f, g P A,

f ®c g iff min

pPìCP⌅ C

ÿ

sPS

upfpsqq.ppsq § min

pPìCP⌅ C

ÿ

sPS

upgpsqq.ppsq(VII.2)

(ii) ® and ®c satisfy VII-B1 and VII-B2S if and only if for all f, g P A,

f ®c g iff min

pPDppf,gqq

ÿ

sPS

upfpsqq.ppsq § min

pPDppf,gqq

ÿ

sPS

upgpsqq.ppsq(VII.3)

Both Benchmark to Certainty (VII-B2) and Stakes Benchmark to Certainty (VII-B2S)
characterize cautious decision making, insofar as decision makers who satisfy them choose
on the basis of the minimum expected utility taken over a set of probability measures
(Gilboa and Schmeidler, 1989). They differ, however, in the set over which the minimum
is taken. Stakes Benchmark to Certainty (VII-B2S) implies that the decision maker uses
the set of probability measures corresponding to the level of confidence appropriate for the
stakes involved in the choice. This set represents the beliefs that she holds with sufficient
confidence given the stakes. So, although she may not be able to form a determinate pref-
erence on the basis of these beliefs under the representation proposed in Section VII.3, she
continues to use them when she is forced to choose: she chooses the act with the highest
worst-case expected utility, given the beliefs in which she has sufficient confidence. By
contrast, Benchmark to Certainty (VII-B2) yields a representation involving the smallest
set of probability measures in her confidence ranking. This set encapsulates all her beliefs,
even those in which she has little confidence. So, while the decision maker uses only beliefs
held with sufficient confidence to form preferences according to representation (VII.1), she
does allow herself to rely on beliefs in which she has insufficient confidence when forced
to choose: she chooses the act that has the highest worst-case expected utility, given all of
her beliefs.

Obviously the decision makers satisfying Stakes Benchmark to Certainty employ a cau-
tious strategy that respects confidence to decide when they are forced to choose, whereas
those satisfying Benchmark to Certainty employ a cautious strategy that goes on hunches.
Hence, between cautious strategies for ‘completing’ incomplete preferences, the difference
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between VII-B2S and VII-B2 characterizes precisely the difference between the strategy
that respects confidence and the one that goes on hunches. The ability to capture in a sim-
ple and precise way both of these pre-theoretically conceivable, and apparently relevant,
strategies for deciding when one is not sure could be considered as a strength of the present
approach, and in particular of the use of the notion of confidence ranking. To the knowledge
of the author, this is the first model in the literature capable of capturing this distinction.

Whilst representations (VII.2) and (VII.3) involve the maxmin EU rule, other strategies
for deciding in situations of forced choice may involve different decision rules, such as the
maxmax EU rule, the ↵-maxmin EU rule (Ghirardato et al., 2004) or a random decision
rule in the style of Gul and Pesendorfer (2006). There are two versions of each of these
strategies: one that respects confidence – using the representation (VII.3) with the appro-
priate decision rule in place of the maxmin EU one – and one that goes on hunches – where
the decision rule is used in a version of representation (VII.2). So the difference between
strategies respecting confidence and those that go on hunches is orthogonal to the issue of
which decision rule is used in the case of forced choice. To this extent, the representations
studied above can be thought of as examples drawn from a general family of models of
forced choice on the basis of incomplete preferences.

Finally, let us comment on the case of a decision maker with a centered confidence
ranking. Faced with a decision in which she is forced to choose, but where there is low
confidence in the relevant beliefs, if such a decision maker goes on hunches, then she acts
precisely like a subjective expected utility maximizer. In this case, the distinction between
the two strategies for preference completion may be thought of as offering a new perspec-
tive on the debate between Bayesians and non-Bayesians: to the question of whether deci-
sion makers can form precise probabilities (raised, for example, by Gilboa et al. (2009)),
it adds the question of whether they should choose on the basis of them even if they could
form them.

VII.5 Confidence and indeterminacy in markets

As a further exploration of the wider implications of the model, we briefly consider
some consequences for risk sharing in financial markets. Recall that one interpretation of
indeterminacy of preferences is in terms of status quo choice, if there is a status quo option.
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A status quo is present in a market setting: it is simply the option of not trading. Bewley
(1989) and Rigotti and Shannon (2005) have considered the consequences of the unanimity
model (à la Bewley) in a market setting, interpreting indeterminacy of preferences as the
choice of not trading. We do the same here for preferences represented according to (VII.1).

We consider a standard Arrow-Debreu exchange economy with a complete set of (non-
negative) state-contingent commodities on a finite state space S. The set of acts A is defined
as in Section VII.2.1, with the set of outcomes specified by X “ <`. A state-contingent
commodity is a vector in <S`, and can be naturally assimilated with the corresponding
element in A. 15 With slight abuse of notation, a constant state-contingent commodity
yielding outcome w in every state will be denoted w. The economy has finitely many
agents, indexed by i “ 1 . . . n. Each has preferences ®i over A (and hence over <S`),
represented as in (VII.1) for a stakes relation Æi. Each agent thus has a utility function ui

:

<` Ñ <, a confidence ranking ⌅

i on S and a cautiousness coefficient Di. We assume that
all ui are differentiable, strictly concave and strictly increasing. Note that, since expected
utility preferences and unanimity preferences à la Bewley are special cases of (VII.1), the
economy may contain agents with these sorts of preferences. The aggregate endowment is
e P <S``. Finally, an allocation px1, . . . , xnq P p<S`qn is said to be feasible if

∞
i x

i “ e,
it is interior if xi

s ° 0 for all i and s, and it is a full insurance allocation if all the xi are
constant.

Definition VII.4. An allocation py1, . . . , ynq Pareto dominates the allocation px1, . . . , xnq
if, for each agent i, either yi °i xi or yi “ xi.

A feasible allocation px1, . . . , xnq is Pareto optimal if there is no feasible allocation that
Pareto dominates it.

This notion of Pareto optimality is very close to that studied by Fon and Otani (1979).
The notion of Pareto dominance employed says that an allocation dominates another ex-

15. State-contingent commodities correspond to acts whose consequences are degenerate lotteries; <S

`
thus corresponds to a proper subset of A. Nevertheless, for each agent, thanks to the continuity of her utility
function, every lottery over <` (ie. element of �pXq) has a certainty equivalent in <`, so, given her utility
function, her preferences over A are completely determined by her preferences over <S

`. Hence, although
we assume preferences over A, this is equivalent in this setup to assuming preferences over <S

`; similarly,
properties of preferences can be formulated either in terms of A or <S

`. We continue to use the notation
introduced in Section VII.2, and in particular the generic symbols f, g, h . . . for acts; we use standard vector
notation and generic symbols x, y, z . . . for commodities.
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actly when all agents who trade contingent commodities strictly prefer their new commod-
ity to their old one. This is a natural notion in the context of incomplete preferences where
indeterminacy is interpreted in terms of sticking to the status quo: it supposes that agents
who do not have strict preference for trade – either because they consider the commodity on
offer not to be better than what they have, or because they do not have sufficient confidence
to form determinate preferences – stick to their initial endowment.

For technical reasons, we make several assumptions on the notions of stakes and on
the preferences. Since they are tangential to the general discussion in this section, they
are simply noted here; statement of the relevant properties and discussion are relegated to
Appendix VII.B.

Assumption VII.1. For each 1 § i § n, the stakes relation Æi is monotone decreasing,
and the preference relation ®i satisfies indifference consistency and full support.

Under this assumption, we have a characterisation of Pareto optima. For a contingent
commodity x P <S` and an agent i, let 16

⇧

ipxq “
#˜

pps
1

qui1pxs1q∞
tPS pptqui1pxtq , . . . ,

pps|S|qui1pxs|S|q∞
tPS pptqui1pxtq

¸
| p P

£

z‰x

ripDipx, zqq
+

Theorem VII.3. Under Assumption VII.1, an interior allocation px1, . . . , xnq is Pareto

optimal iff
ì

i ⇧
ipxiq ‰ H.

The intuition behind this result is analogous to similar results in the literature (Rigotti
and Shannon, 2005; Rigotti et al., 2008): ⇧

ipxq is the set of supports of the strict upper
contour set of x under ®i, and an allocation is Pareto optimal if and only if the intersection
of all such sets is non-empty. The theorem has several immediate consequences.

Corollary VII.2. Let Assumption VII.1 hold, and suppose that the aggregate endowment

is constant across states.

(i) An interior full insurance allocation px1, . . . , xnq is Pareto optimal iff
ì

i

ì
z‰xi ripDipxi, zqq ‰ H.

16. For a set A, ripAq is the relative interior of A. Note that, if A is a singleton, ripAq “ A.
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(ii) If, for each i, there exists Ci Ñ �pSq with ⌅

i “ tCiu, then there exists an interior

full insurance Pareto optimal allocation iff
ì

i ripCiq ‰ H. In this case, every full

insurance allocation is Pareto optimal.

The first corollary, which is a simple consequence of the fact that ⇧

ipxiq “
ì

z‰xi ripDipxi, zqq when xi is constant, is a general characterisation of Pareto optimal-
ity of an interior full insurance allocation under representation (VII.1). It is in the style
of existing results, such as Billot et al. (2000); Rigotti and Shannon (2005); Rigotti et al.
(2008). Unlike these cases, the existence of a full insurance Pareto optimal allocation does
not imply that all full insurance allocations are Pareto optimal, because, in general, the
relevant sets of probability measures may differ depending on the constant commodity.

The second corollary involves the special case of representation (VII.1) where the con-
fidence ranking is degenerate: this is essentially the unanimity model of preferences à la
Bewley. The result differs slightly from that of Rigotti and Shannon (2005, Corollary 2),
which also concerns the Bewley model, insofar as their result involves the intersection of
the sets of probability measures of the different agents, whereas ours uses the intersections
of their relative interiors. This difference is due to the fact that they take the strict prefer-
ence relation as primitive, use a slightly different representation from that used here and
take a stricter notion of Pareto optimality. 17

Comparing the two corollaries brings out the relationship between the consequences of
representation (VII.1) for risk sharing in markets and those of the unanimity model à la
Bewley. Concerning the question of whether an interior full insurance allocation is Pareto
optimal or not, an economy with agents represented by (VII.1) is roughly equivalent to an
economy where each agent is replaced by an agent with unanimity preferences à la Bewley
who takes as her set of probability measures the intersection of all the sets in her confidence
ranking that are relevant for choices involving the commodity she is allocated. 18 Grosso

modo, if each agent in the economy for whom more confidence is required to take decisions
with higher stakes simply ignored the stakes, and always chose as if the stakes were at the
lowest possible level for the commodity she is allocated, this would make little difference
to whether the allocation is Pareto optimal or not. Although it does not follow that the
set of Pareto optima would be the same as for an economy containing only agents with

17. They use the representation axiomatised by Bewley (2002); see Section VII.1.3.
18. This is a rough statement because, for a family tC

i

| i P Iu of closed sets, it is not necessarily the case
that

ì
iPI ripC

i

q “ ri

ì
iPI Ci.



VII-31 Incomplete preferences and confidence

preferences à la Bewley, because the relevant sets of probability measures may depend on
the allocation, this highlights some similarities between economies with agents à la Bewley
and economies with agents represented according to (VII.1).

Things are considerably different, however, regarding the question of how fast Pareto
optima can be reached. (To the extent that, as noted in the proof of Theorem VII.3, Pareto
optima correspond to appropriately defined equilibria, this is closely related to the question
of how fast the economy can arrive at equilibrium.) 19 There is often a simple, if idealised,
fastest way to achieve a Pareto optimum. In particular, whenever a non-Pareto optimal
allocation px1, . . . , xnq is dominated by a (feasible) Pareto optimal one py1, . . . , ynq, then
there is a ‘one-step’ move to a Pareto optimum, which is acceptable to all agents – namely,
each agent swaps xi for yi. (This set of ‘swaps’ corresponds to a set of simultaneous
trades between the agents.) Whenever this is the case, we say that py1, . . . , ynq is one-step

accessible from px1, . . . , xnq. In economies where agents have expected utility preferences,
preferences à la Bewley or preferences represented by many of the standard non-expected
utility theories proposed in the literature (and in particular those considered by Rigotti
et al. (2008)), any Pareto dominated allocation is Pareto dominated by a Pareto optimum.
In other words, any allocation has a Pareto optimum that is one-step accessible from it.
This is not necessarily true for economies containing agents represented by (VII.1), as the
following example shows.

Consider a two-agent economy with two states of the world, s
1

and s
2

, and suppose that
each agent i has constant relative risk aversion �i (so the utility function is uipxq “ x1´�i

1´�i

if �i ‰ 1 and uipxq “ ln x if �i “ 1). Agent 1’s preferences are represented by (VII.1),
where the stakes in the choice between x and y are given by maxs |xpsq ´ ypsq|. 20 She has
the following centred confidence ranking: ttp P �p⌃q| 0.5 ´ ✏ § pps

1

q § 0.5 ` ✏u| ✏ P
r0, 0.45su. Note that since each set in the confidence ranking is uniquely specified by an
✏ P r0, 0.45s, the cautiousness coefficient is entirely specified by a function from pairs

19. Rigotti and Shannon (2005) address a related question with their notion of ‘equilibrium with inertia’,
which, approximately, is an equilibrium which Pareto dominates the initial endowment. The example below
shows that, by contrast with economies whose agents have preferences à la Bewley, equilibria with inertia
may not exist, even if equilibria do exist, in economies whose agents have preferences represented by (VII.1).

20. As noted in footnote 15, although the stakes relation is defined on contingent commodities, this yields
a well-defined stakes relation on acts. It is straightforward to check that this relation satisfies the properties
assumed in this paper (see Section VII.2.2 and Appendix VII.A) and in Assumption VII.1.
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of acts to values of ✏. Using this formulation, the cautiousness coefficient is given by
D1ppx, yqq “ mint⌘maxs |xpsq ´ ypsq|, 0.45u for ⌘ ° 0, where ⌘ characterises the agent’s
attitude to choosing in the absence of confidence (see Section VII.3.3). Agent 2 is an
expected utility decision maker with probability measure assigning 0.5 to both states.

We consider a case with no aggregate risk in the economy: the sum of allocations is w

in both states. Hence allocations are of the form pp�
1

w, �
2

wq, pp1 ´ �
1

qw, p1 ´ �
2

qwqq for
�
1

, �
2

P r0, 1s. It is easy to check, given Theorem VII.3, that the only Pareto optima are full
insurance allocations. Now consider the risky endowment px1, x2q “ pp�w, p1´�qwq, pp1´
�qw, �wqq, where � P p1

2

, 1s. It would seem that a natural ‘one-move’ trade yielding a Pareto
optimal allocation would be for 2 to give 1 pp1

2

´ �qw, p� ´ 1

2

qwq. It is easy to check that
1

2

w °2 x
2

. Moreover,
∞

s ppsqu1p1

2

wq ° ∞
s ppsqu1px1

sq for all p P ì
x1‰x1 ripD1ppx1, x1qq.

Were the agents to ignore the stakes and always choose as if the stakes were at their low-
est level, this would be sufficient for the trade to be acceptable to both agents: that is,
for the full insurance allocation p1

2

w, 1

2

wq to be one-step accessible from px1, x2q. How-
ever, if they take the stakes into account as specified by representation (VII.1), there is a
stronger condition that is required for the trade to be acceptable to agent 1, namely that
∞

s ppsqu1p1

2

wq • ∞
s ppsqu1px1

sq for all p P D1ppx1, 1

2

wqq, with strict inequality for some
p. By straightforward calculation, this condition holds if and only if 21

(VII.4) p §
1

2

1´�1 ´ p1 ´ �q1´�1

�1´�1 ´ p1 ´ �q1´�1 for all p P D1ppx1,
1

2

wqq

Hence, by the definition of D1, 1

2

w £1 x1 whenever

(VII.5) mint⌘wp� ´ 1

2

q, 0.45u ` 0.5 °
1

2

1´�1 ´ p1 ´ �q1´�1

�1´�1 ´ p1 ´ �q1´�1

This inequality has solutions for various values of the parameters: it is straightforward
to check, for example, that when �1 “ 2, � “ 3

4

, w “ 1500, ⌘ “ 0.001, the inequality
is satisfied and so 1

2

w £1 x1. In such cases, the Pareto optimum p1

2

w, 1

2

wq is not one-step
accessible from px1, x2q. In fact, by a similar argument, one can show that there are cases
where no Pareto optimal allocation is one-step accessible from px1, x2q.

21. Here we consider the case where �1 ‰ 1; the case of �1 “ 1 can be treated similarly.
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Proposition VII.3. There may exist Pareto dominated allocations from which no Pareto

optimal allocation is one-step accessible.

This phenomenon is basically a consequence of the dependence on stakes in represen-
tation (VII.1), which allows agents to have determinate preferences at low stakes levels
that they may withdraw at higher stakes levels. Whereas it is the former preferences –
and in particular the probability measures corresponding to low levels of stakes – which
determine whether an allocation is Pareto optimal or not, the latter preferences – and the
associated larger sets of probability measures – determine whether an agent accepts a given
trade or not. If all agents were indifferent to the stakes, and formed preferences using the
minimal sets of probability measures in their confidence rankings (that is, as if the stakes
were at their lowest level), then any Pareto dominated allocation would indeed be Pareto
dominated by a Pareto optimal one. However, whenever there is an agent who takes the
stakes into account according to representation (VII.1), she may not be confident enough in
her strict preference for that Pareto optimal allocation over her initial endowment to choose
the former at the appropriate level of stakes, and so sticks to the status quo. She refrains
from trading, and the ‘one-step’ move to the Pareto optimum is blocked.

We have already mentioned one interpretation of this result in terms of maximal speed
of convergence to equilibrium. It indicates a non-trivial bound on how fast a Pareto optimal
allocation can be reached: allowing any conceivable way of constructing a set of simulta-
neous trades (as unfeasible as it may be in practice), it may still be impossible to get to a
Pareto optimum by a single set of trades if the market contains agents who incorporate con-
fidence into their preferences, and who do not trade when they lack sufficient confidence.
Another interpretation is in terms of the restrictions placed on the (theoretical) power of a
social planner. In standard general equilibrium models, as well as the market under uncer-
tainty models mentioned above, a suitably intelligent social planner who knows the agents’
preferences could propose a set of simultaneous trades that would be accepted by all agents
and that would bring the market to a Pareto optimum. This relies on the fact that, in these
models, for each allocation, there is a Pareto optimum that is one-step accessible. That this
is not necessarily the case in the current model attests to the limited influence of such a
social planner: even if he had all the information about preferences (and infinite computa-
tional power), the social planner might not be able to propose a set of simultaneous trades
that leaves the economy in a Pareto optimum and is acceptable to all. The agents’ tendency
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to demand more confidence in beliefs when the stakes are higher mean that he may not
be able to persuade some of them to shift from the endowment to a Pareto optimal alloca-
tion when the stakes involved in the change are high, though they would have accepted the
trade if the stakes were low. Confidence, combined with the status quo interpretation of
indeterminacy of preference, can hinder Pareto enhancing intervention in the market.

The natural question is, of course: how fast can a Pareto optimum be reached? Put in
terms of the second interpretation offered above, this amounts to asking how many times a
social planner has to intervene to bring the economy to a Pareto optimum. Let us say that a
feasible allocation py1, . . . , ynq is m-step accessible from px1, . . . , xnq if there is a sequence
of m ´ 1 feasible allocations, the first of which Pareto dominates px1, . . . , xnq, the last of
which is Pareto dominated by py1, . . . , ynq, and each of which is Pareto dominated by its
successor. A Pareto optimum which is not one-step accessible may be m-step accessible:
this means that, under ideal conditions, it can be reached not with a single set of trades that
is acceptable to all, but rather after m consecutive sets of trades, each of which is acceptable
to all. If, for a given allocation, there is a Pareto optimum that is m-step accessible and none
that is m1-step accessible for m1 † m, this can be thought of as a lower bound on the how
fast the economy can come to a Pareto optimum: it requires at least m sets of simultaneous
trades. A social planner has to intervene at least m times. There are, however, allocations
from which no Pareto optimum is accessible in a finite number of steps.

Proposition VII.4. There may exist Pareto dominated allocations from which no Pareto

optimal allocation is m-step accessible, for any finite m.

When there are agents whose preferences incorporate their confidence in beliefs, and
who stick to the status quo when they do not have enough confidence to take a choice, it
may thus be theoretically impossible for the market to arrive at a Pareto optimal allocation
in finite time. Because, quite simply, there may not exist a finite sequence of sets of trades,
where all agents have sufficient confidence to accept the trades and where the sequence
reaches a Pareto optimum. Confidence, combined with taking the status quo option – and
not trading – when one is not sufficiently confident in any option, adds considerable friction
into the economy.
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VII.6 Conclusion

Decision makers may have incomplete preferences. Moreover, they may be more or
less confident in their beliefs. In this paper, a theory which relates incompleteness of pref-
erences to confidence in beliefs was proposed. It is based on the following maxim: one has
a determinate preference over a pair of acts if and only if one’s confidence in the beliefs
needed to form the preference matches up to the stakes involved in the choice between the
acts. In the absence of sufficient confidence, preferences are indeterminate.

A formal decision rule conforming to this maxim was proposed. The decision maker’s
confidence in her beliefs is modelled by a confidence ranking – a nested family of sets of
probability measures. A cautiousness coefficient assigns to any decision a level of confi-
dence relevant for that decision (represented formally by a set in the confidence ranking),
which is determined by the stakes involved. The decision rule according to which one act
is preferred to another if it has higher expected utility according to all the probability mea-
sures in the appropriate set was axiomatised. Moreover, comparative statics analysis of the
relative decisiveness of decision makers, as well as of their confidence in preferences, was
undertaken, and the cautiousness coefficient was seen to correspond to the decision maker’s
attitude to choosing in the absence of confidence.

It was argued that the choice-theoretic properties that distinguish the proposed model
from the standard Bewley model of incomplete preferences are both axiomatically mild
(they involve allowing indeterminacy where the Bewley model demands determinate pref-
erence), and behaviorally reasonable, under most of the existing interpretations of incom-
plete preferences. Moreover, the question of the ‘completion’ of incomplete preferences
– which is relevant under all of the aforementioned interpretations, in particular to handle
situations where a choice is required – was considered. The introduction of the notion
of confidence allows the identification of two strategies for preference completion. One
strategy respects confidence, insofar as it only relies on the beliefs that the decision maker
holds to the appropriate level of confidence given the stakes involved in the decision. The
other strategy goes on hunches, to the extent that it mobilizes all of the decision maker’s
beliefs, even those in which she has little confidence, in situations where she is forced to
decide. It was argued that each of these strategies may be pertinent in different decision
situations under the various interpretations of incomplete preferences, and an axiomatic
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characterization of the two strategies was proposed.
Finally, possible consequences of the model in a market setting were considered, where

indeterminacy of preferences is interpreted in terms of refusal to trade. On the one hand,
a characterisation of Pareto optima was provided, which is analogous to similar results for
other decision models. On the other hand, it was shown that, unlike other models, there
may exist Pareto dominated allocations that are not dominated by any Pareto optimum.
This indicates that the incorporation of confidence can add a considerable friction to the
economy: it may be theoretically impossible for the market to come to a Pareto optimum
by a single set of trades accepted by all. Moreover, there are cases where no finite sequence
of sets of trades, accepted by all, can bring the market to a Pareto optimum.
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VII.A Notions of stakes

There are many notions of stakes, each of which generates a particular stakes relation.
The weaker the properties assumed on the stakes relations, the more notions of stakes
satisfy them, and the wider any results involving them apply. In this appendix, we briefly
discuss the weakness of the properties assumed in this paper, and hence the generality of
the results in Sections VII.3 and VII.4, by considering some possible notions of stakes. The
following natural notions of stakes all yield stakes relations satisfying the five properties
stated in Section VII.2.2: 22 the stakes in the choice between f and g are given by

(i) the maximum of the negation of the utility of the least preferred consequence which
could be obtained, taken over f or g

(ii) the maximum utility of the most preferred consequence which could be obtained by
f or g

(iii) the probability that either of f or g takes a value below some threshold, calculated
using a given probability measure (possibly taken from the decision maker’s confi-
dence ranking).

Now consider the following notions of stakes: the stakes in the choice between f and g

are given by

(iv) the difference between the utility of the least preferred consequence which could
be obtained by f and the utility of the least preferred consequence which could be
obtained by g

(v) the maximum absolute value of the difference between the utility of fpsq and the
utility of gpsq, taken over s P S

(vi) the difference between the expected utilities of f and g, calculated using a given
probability measure (possibly taken from the decision maker’s confidence ranking).

It is straightforward to check that these notions generate stakes relations satisfying all of
the properties in Section VII.2.2 except for richness. However, they do satisfy the following
weaker richness condition:

22. Richness is satisfied by these notions of stakes under the assumption that the utility function is un-
bounded above; the weakening of richness discussed below is satisfied in the absence of this assumption.
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(Richness’) For all f, f 1, g, g1 P A such that fpsq ⇢ gpsq for some s P S and pf 1, g1q is not
Æ-minimal, there exists pf 2, g2q, pf3, g3q P }pf, gq} such that pf 2, g2q Æ pf 1, g1q Æ
pf3, g3q.

where }pf, gq} is the set of pairs of acts pf 1, g1q which can either be obtained from f and g by
mixing them in the same proportion with another act, or such that f and g can be obtained
from f 1 and g1 by such a mixture. 23 Rather than demanding that every (non-trivial) pair of
acts can be shifted as far up or down the stakes ordering as desired by mixing with a third
act, richness’ simply asks that, for every (non-trivial) pair of acts and (non-minimal) stakes
level, there is a pair of acts below (respectively, above) that level, such that either the latter
pair can be obtained from the former pair by mixing, or the former can be obtained from
the latter by mixing. It evidently retains the intuition behind the original richness property
– in particular, the pairs in }pf, gq} correspond to versions of the choice between f and g

but with potentially different stakes. Moreover, with a corresponding modification to the
axioms in Section VII.3, one can prove a result analogous to (but stronger than) Theorem
VII.1 for stakes relations satisfying the first four properties in Section VII.2.2 and richness’.
We have chosen to work with richness in the bulk of this paper to avoid burdening the reader
with notation.

Note moreover that the theory proposed by Nau (1992) is essentially a member of the
class of representations of the form (VII.1) which takes as stakes notion (v). Hence the
result just mentioned contains Nau’s as a special case.

Finally we remark that defining the stakes relation on pairs of acts as done in this paper
is the simplest, but far from the only possibility. It could also have been defined on triples in
AˆAˆ �, where � can have several interpretations. For example, � can be understood as
a set of context indices; hence dependence of the stakes on the context can accommodated.
Alternatively, � could be interpreted as the status quo, if there is one; using this relation,
one can capture dependence of the stakes on the status quo. It is straightforward to adapt the
properties given in Section VII.2.2 to such stakes relations; corresponding modifications to
the axioms in Section VII.3 yield similar results where the stakes may depend on factors
other than the two acts on offer.

23. The formal definition is as follows: for all f

1
, g

1 P A, pf 1
, g

1q P }pf, gq} if and only if there exists
↵ P p0, 1s, h P A such that f

1psq „ pf
↵

hqpsq and g

1psq „ pg
↵

hqpsq for all s P S, or fpsq „ pf 1
↵

hqpsq and
gpsq „ pg1

↵

hqpsq for all s P S.
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VII.B Properties involved in Assumption VII.1

Readers familiar with the literature on general equilibria in the absence of completeness
or transitivity might expect these results to be directly applicable to the case considered in
Section VII.5. This is in fact not straightforwardly possible in general, for two reasons.
Firstly, the weakening of transitivity in representation (VII.1) implies that, for certain no-
tions of stakes, preferences represented by (VII.1) may not be convex. 24 Secondly, since
the weak preference order is taken as primitive, it does not follow from the axioms in Sec-
tion VII.3.1 that the strict preference order is continuous. 25

Assumption VII.1 deals with these issues, by assuming the following properties of the
stakes relation and of the preferences.

Monotone decreasing For all f, g P A and ↵, � P r0, 1s, if ↵ § �, then pf, g↵fq Æ
pf, g�fq.

Indifference consistency For all f, g, h P A and ↵ P p0, 1q such that f — g and f↵h —
g↵h, if f „ g, then f↵h „ g↵h.

Full support For all s P S, there exists cs P <`` such that, for all h P A and ↵ P p0, 1s,
p1sq↵h ° pcsq↵h. 26

The monotone decreasing property of stakes states that as one considers choices be-
tween acts that are ‘closer’ to each other (in the sense of mixtures), the stakes decrease.
This property is satisfied by several of the notions of stakes mentioned in Appendix VII.A:
for example, stakes as the minimum utility that could be obtained from either of the acts, as
the difference between the minimum utilities yielded by the two acts, or as the maximum
utility difference between the two acts (taken over the set of states).

24. Consider a stakes relation where pf, g

↵

hq ° pf, gq, pf, hq, for some ↵ P p0, 1q; with such a notion of
stakes, the preferences g, h ° f � g

↵

h are compatible with representation (VII.1).
25. Schmeidler (1971) has shown that for incomplete transitive preferences (over appropriate spaces), the

weak and strict preference orderings cannot both be continuous. Although his result does not apply here, due
to the weakening of transitivity, it emphasises the subtlety of the issue of the continuity of the derived strict
preference ordering. Note that this issue could also have been resolved by taking the strict preference ordering
as primitive and using a version of the representation proposed by Bewley (2002); see Section VII.1.3.

26. 1

s

is the characterisic function for s: 1
s

ps1q “ 1 for s

1 “ s and 1

s

ps1q “ 0 for s

1 ‰ s. As specified in
Section VII.2.1, c

s

is the constant act taking the degenerate lottery yielding c

s

for sure in all states.
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Indifference consistency implies that indifferences cannot become strict preferences
simply on altering the stakes. Under representation (VII.1), it is possible that f „ g,
because the expected utilities are equal for all p P Dppf, gqq, but that f↵h ° g↵h for
some ↵ and h, because Dppf↵h, g↵hqq â Dppf, gqq contains a probability measure q such
that the expected utility of f calculated with q is strictly greater than that of g. In such
cases, Dppf↵h, g↵hqq is of a higher dimensionality than Dppf, gqq; the latter set, but not the
former, is contained in the hyperplane defined by u ˝ f „ u ˝ g. Indifference consistency
rules out such possibilities; technically, it can be thought of as a constant dimensionality
assumption on the sets of probability measures in the space �p⌃q.

Full support is the behavioural formulation of the following full support property of ⌅:
for each s P S, there exists bs ° 0 such that ppsq • bs for all p P î

CiP⌅

Ci. This property
can be thought of as the analogue of full support for a probability measure, but for sets of
measures and confidence rankings. In particular, it is stronger than simply asking that all
probability measures in the confidence ranking have full support: it requires moreover that
probability measures have a common non-zero lower bound on the values for each state.

VII.C Proofs

Throughout the Appendix, B will denote the space of all real-valued functions on S,
and bapSq will denote the set of additive real-valued set functions on S, both under the
Euclidean topology. B is equipped with the standard order: a § b iff apsq § bpsq for all
s P S. For x P <, we define x˚ to be the constant function taking value x.

VII.C.1 Proof of Theorem VII.1

The main part of the result is to show the sufficiency of the axioms for the representa-
tion (direction (i) to (ii)), the proof of which proceeds as follows. By standard arguments,
we obtain a von Neumann-Morgernstern utility function on the consequences, which al-
lows us to work with real-valued functions on S instead of acts. For each stakes level r,
we define a preference relation ®r on these functions, which can be thought of as rep-
resenting the preferences between corresponding acts considered “as if” the choices had
stakes r. We show (Lemma VII.C.5) that, for each non-extremal stakes level r, ®r is a
non-trivial, monotonic, affine, Archimedean pre-order, whence, by Gilboa et al. (2010,
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Corollary 1) (which is a version of a Ghirardato et al. (2004, Proposition A.2)), there is a
closed convex set of probability measures Cr representing ®r according to the unanimity
rule. Lemma VII.C.10 shows that the preference relations for minimal stakes can be rep-
resented according to the unanimity rule with the intersection of the Cr for the other stakes
levels. By Lemma VII.C.7, the Cr form a nested family of sets, and we thus have a con-
fidence ranking. By Lemmas VII.C.8 and VII.C.9, this confidence ranking is continuous.
By construction, the function that assigns to any stakes level r the set Cr is a well-defined
cautiousness coefficient.

Now we proceed with the proof. First we assume (i); we will show (ii). If Æ is triv-
ial (pf, gq ” pf 1, g1q for all f, f 1, g, g1 P A), then VII-A3 is equivalent to the standard
transitivity axiom, and VII-A4 and VII-A6 are jointly equivalent to the standard indepen-
dence axiom, so the result follows immediately from Gilboa et al. (2010, Theorem 1). We
henceforth assume that Æ is not trivial. We begin with the following lemma.

Lemma VII.C.1. There exists a non-constant utility function u representing the restriction

of ® to the constant acts.

Proof. By VII-A1, VII-A2, VII-A4 and VII-A7, the restriction of ® to constant acts is
non-trivial complete, reflexive and satisfies independence and continuity. We now show
that it is transitive. For any c, c1, c2 P �pXq, suppose that c ® c1 and c1 ® c2. If pc, c2q is
Æ-minimal, then VII-A3 immediately implies that c ® c2. Now suppose that pc, c2q is not
Æ-minimal. Consider firstly the case where c ⇢ c1 and c1 ⇢ c2. By richness of Æ, there
exist ↵,↵1 P p0, 1s and h, h1 P A such that pc, c2q Æ pc↵h, c1

↵hq and pc, c2q § pc1
↵1h1, c2

↵1h1q.
By VII-A1 and VII-A4, c↵hpsq ® c1

↵hpsq and c1
↵1h1psq ® c2

↵1h1psq for all s P S, from which
it follows by VII-A5 that c↵h ® c1

↵h and c1
↵1h1 ® c2

↵1h1. Hence, by VII-A3, c ® c2, as
required. If c „ c1 and c1 ⇢ c2, then by richness of Æ, there exists ↵ P p0, 1s and h P A such
that pc, c2q Æ pc↵h, c1

↵hq; by VII-A1, VII-A4, VII-A5, and VII-A3 as previously, c ® c2.
The case where c1 „ c2 and c ⇢ c1 is treated similarly. The case where c „ c1 „ c2 follows
directly from VII-A3. The existence of u follows from the von Neumann-Morgenstern
theorem.

Let K “ up�pXqq and BpKq be the set of functions in B taking values in K. There is
thus a many-to-one mapping between acts in A and elements of BpKq, given by a “ u ˝ f ,
for f P A. With slight abuse of notation, we use ® to denote the order generated on BpKq
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by ® under this mapping, and Æ to denote the order generated on BpKq ˆ BpKq by Æ. (®
and Æ are well-defined on BpKq by VII-A5 and the extensionality of Æ respectively.)

Lemma VII.C.2. For every a, a1, b, b1 P BpKq with a ‰ b and pa1, b1q not Æ-minimal, there

exists ↵ P p0, 1s and l P BpKq such that p↵a ` p1 ´ ↵ql,↵b ` p1 ´ ↵qlq ” pa1, b1q.

Proof. If pa, bq ” pa1, b1q, then there is nothing to show. Suppose without loss of generality
that pa, bq † pa1, b1q; the other case is treated similarly. By richness of Æ, there exist
� P p0, 1s and l P A such that p�a ` p1 ´ �ql, �b ` p1 ´ �qlq Ø pa1, b1q. If p�a ` p1 ´
�ql, �b` p1´�qlq ” pa1, b1q, then the result has been established; if not, then by continuity
of Æ, there exists ↵ P p�, 1q such that p↵a ` p1 ´↵ql,↵b ` p1 ´↵qlq ” pa1, b1q, as required.

Let S be the set of equivalence classes of Æ. As standard, Æ on BpKqˆBpKq generates
a relation on S , which will be denoted § (with symmetric and asymmetric components “
and † respectively): for r, s P S , r § s iff, for any pf, gq P r and pf 1, g1q P s, pf, gq Æ
pf 1, g1q. r P S is a minimal (respectively maximal) element if r § s (resp. r • s) for all
s P S . Note that, since § is a linear ordering, there is at most one minimal (resp. maximal)
element; if it exists, we denote the minimal (resp. maximal) element by S (resp. S). r P S
is full if, for every a, b P BpKq with a ‰ b, there exists ↵ P p0, 1s and l P BpKq such that
p↵a` p1´↵ql,↵b` p1´↵qlq P r. It follows from Lemma VII.C.2 that every non-minimal
element in S is full. Let Sf be the set of full elements in S , and let S` be the set of non-
minimal full elements. For each r P Sf , let ®r be the reflexive binary relation on BpKq
such that, for all a, b P BpKq with a ‰ b, a ®r b iff there exists l P BpKq and ↵ P p0, 1s
such that p↵a ` p1 ´ ↵ql,↵b ` p1 ´ ↵qlq P r and ↵a ` p1 ´ ↵ql ® ↵b ` p1 ´ ↵ql. The
following lemma implies that a ®r b iff ↵a ` p1 ´↵ql ® ↵b ` p1 ´↵ql for every l P BpKq
and ↵ P p0, 1s such that p↵a ` p1 ´ ↵ql,↵b ` p1 ´ ↵qlq P r.

Lemma VII.C.3. For every a, b, l, m P BpKq and ↵, � P p0, 1s with p↵a ` p1 ´ ↵ql,↵b `
p1 ´ ↵qlq, p�a ` p1 ´ �qm, �b ` p1 ´ �qmq P r P Sf , ↵a ` p1 ´ ↵ql ® ↵b ` p1 ´ ↵ql iff

�a ` p1 ´ �qm ® �b ` p1 ´ �qm.

Proof. The result is an immediate consequence of VII-A5 if a “ b, so consider a, b P BpKq
with a ‰ b. Without loss of generality, suppose that � § ↵. Consider first the case where
� † ↵. Note that �a ` p1 ´ �qm “ �

↵
p↵a ` p1 ´ ↵qlq ` p1 ´ �

↵
qp↵�´�

↵´�
l ` ↵´↵�

↵´�
mq, where
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↵�´�
↵´�

l` ↵´↵�
↵´�

m P BpKq, since it is a ↵�´�
↵´�

-mix of l and m; similarly for �b`p1´�qm. Let
f, g, h P A be such that ↵a`p1´↵ql “ u˝f , ↵b`p1´↵ql “ u˝g and ↵�´�

↵´�
l` ↵´↵�

↵´�
m “

u˝h; so �a`p1´�qm “ u˝f �
↵
h and �b`p1´�qm “ u˝g �

↵
c. Since pf, gq ” pf �

↵
h, g �

↵
hq,

by VII-A6, f — g iff f �
↵
h — g �

↵
h. Hence, by VII-A4, f ® g iff f �

↵
h ® g �

↵
h. So

↵a ` p1 ´ ↵ql ® ↵b ` p1 ´ ↵ql iff �a ` p1 ´ �qm ® �b ` p1 ´ �qm, as required.
Now consider the case where � “ ↵. If l “ m, the result is immediate, so suppose

that l ‰ m. Note that if there exists ✏ P p0, 1s and k P BpKq with ✏ ‰ ↵ and p✏a ` p1 ´
✏qk, ✏b ` p1 ´ ✏qkq ” p↵a ` p1 ´ ↵ql,↵b ` p1 ´ ↵qlq, then, by applying the reasoning in
the case above, we get ↵a ` p1 ´ ↵ql ® ↵b ` p1 ´ ↵ql iff ✏a ` p1 ´ ✏qk ® ✏b ` p1 ´ ✏qk iff
�a` p1´�qm ® �b` p1´�qm, as required. By the continuity and non-triviality of Æ, Sf

is not a singleton, so there exists n P BpKq and � P p0, 1q such that p�p↵a`p1´↵qlq`p1´
�qn, �p↵b`p1´↵qlq`p1´�qnq ı p↵a`p1´↵ql,↵b`p1´↵qlq. Since r P Sf , there exists
� P p0, 1q and n1 P BpKq such that p�p�p↵a ` p1 ´↵qlq ` p1 ´ �qnq ` p1 ´ �qn1, �p�p↵b `
p1 ´ ↵qlq ` p1 ´ �qnq ` p1 ´ �qn1q ” p↵a ` p1 ´ ↵ql,↵b ` p1 ´ ↵qlq P r. However,
�p�p↵a ` p1 ´↵qlq ` p1 ´ �qnq ` p1 ´ �qn1 “ ↵��a ` p1 ´↵��qp �´↵��

1´↵��
p�´↵�

1´↵�
l ` 1´�

1´↵�
nq `

1´�
1´↵��

n1q, with �´↵��
1´↵��

p�´↵�
1´↵�

l ` 1´�
1´↵�

nq ` 1´�
1´↵��

n1 P BpKq since it is a mix of elements of
BpKq. So ↵�� and �´↵��

1´↵��
p�´↵�

1´↵�
l ` 1´�

1´↵�
nq ` 1´�

1´↵��
n1 have the properties required above,

and the result is established.

We now establish some properties of the relations ®r.

Lemma VII.C.4. For all r, s P Sf with r • s, ®rÑ®s.

Proof. If s “ r, there is nothing to show, so suppose not and consider a, b P B such that
a ®r b. If a “ b, the result follows from the reflexivity of ®s and ®r; henceforth suppose
that this is not the case. Without loss of generality, it can be assumed that pa, bq P r. (If not,
replace a, b with ↵a ` p1 ´ ↵ql,↵b ` p1 ´ ↵ql where p↵a ` p1 ´ ↵ql,↵b ` p1 ´ ↵qlq P r

and continue as below.) It follows from Lemma VII.C.3 that a ® b. Let � P p0, 1q and
m P BpKq, be such that p�a ` p1 ´ �qm, �b ` p1 ´ �qmq P s (such � and m exist since
s P Sf ). VII-A6 and VII-A4 imply that �a ` p1 ´ �qm ® �b ` p1 ´ �qm, and hence
a ®s b, as required.

Recall that a binary relation ® on BpKq is
— non-trivial if there exists a, b P BpKq such that a ® b but not a © b.
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— monotonic if, for all a, b, P BpKq, if a § b then a ® b.
— affine if, for all a, b, c P BpKq and ↵ P p0, 1q, a ® b iff ↵a`p1´↵qc ® ↵b`p1´↵qc.
— Archimedean if, for all a, b, c P BpKq, the sets t↵ P r0, 1s | ↵a ` p1 ´↵qb © cu and

t↵ P r0, 1s | ↵a ` p1 ´ ↵qb ® cu are closed in r0, 1s.
— a pre-order if ® is reflexive and transitive.

Lemma VII.C.5. For every r P Sf , ®r is a non-trivial, monotonic, affine pre-order. More-

over, if r P S`, ®r is Archimedean.

Proof. Non-triviality. By VII-A2, ® is non-trivial; by VII-A5 and VII-A1, it follows that
the restriction of ® to �pXq is non-trivial. But ®r coincides with ® on �pXq, so it is
non-trivial.

Monotonicity. Suppose that a § b and a ‰ b (the result is immediate for a “ b). Then,
↵a ` p1 ´↵ql § ↵b ` p1 ´↵ql for l P BpKq and ↵ P p0, 1s such that p↵a ` p1 ´↵ql,↵b `
p1 ´ ↵qlq P r. By monotonicity (VII-A5), ↵a ` p1 ´ ↵ql ® ↵b ` p1 ´ ↵ql, and so a ®r b.

Affineness. The result is immediate if a “ b; henceforth suppose not. Since r P Sf ,
there exists � P p0, 1s and l P BpKq such that p�a ` p1 ´ �ql, �b ` p1 ´ �qlq P r.
Consider �p↵a ` p1 ´ ↵qcq ` p1 ´ �ql and �p↵b ` p1 ´ ↵qcq ` p1 ´ �ql: since r P Sf ,
there exists � P p0, 1s and m P BpKq such that p�p�p↵a ` p1 ´ ↵qcq ` p1 ´ �qlq ` p1 ´
�qm, �p�p↵b ` p1 ´ ↵qcq ` p1 ´ �qlq ` p1 ´ �qmq P r. Note that �p�p↵a ` p1 ´ ↵qcq `
p1 ´ �qlq ` p1 ´ �qm “ ↵�p�a ` p1 ´ �qlq ` p1 ´ ↵�qp�´↵�

1´↵�
p�c ` p1 ´ �qlq ` 1´�

1´↵�
mq,

where �´↵�
1´↵�

p�c ` p1 ´ �qlq ` 1´�
1´↵�

m P BpKq since it is a mix of elements of BpKq, and
similarly for b. Let f, g, h P A be such that �a ` p1 ´ �ql “ u ˝ f , �b ` p1 ´ �ql “ u ˝ g

and �´↵�
1´↵�

p�c ` p1 ´ �qlq ` 1´�
1´↵�

m “ u ˝ h. Since pf, gq ” pf↵�h, g↵�hq, by VII-A6 and
VII-A4, �a ` p1 ´ �ql ® �b ` p1 ´ �ql iff �p�p↵a ` p1 ´ ↵qcq ` p1 ´ �qlq ` p1 ´ �qm ®
�p�p↵b ` p1 ´ ↵qcq ` p1 ´ �qlq ` p1 ´ �qm. But since �p�p↵a ` p1 ´ ↵qcq ` p1 ´ �qlq `
p1 ´ �qm “ ��p↵a ` p1 ´↵qcq ` p1 ´��qp�´��

1´��
l ` 1´�

1´��
mq, and similarly for b, it follows

that a ®r b iff ↵a ` p1 ´ ↵qc ®r ↵b ` p1 ´ ↵qc, as required.
Pre-order. Reflexivity follows from the definition of ®r. As for transitivity, suppose

that a ®r b and b ®r c and that a ‰ b ‰ c (if a “ b, b “ c or a “ c, the result
is immediate). Since r P Sf , there exists l P BpKq and ↵ P p0, 1s such that p↵a `
p1 ´ ↵ql,↵c ` p1 ´ ↵qlq P r. Moreover, there exists m, n P BpKq and �, � P p0, 1s
such that p�p↵a ` p1 ´ ↵qlq ` p1 ´ �qmq, �p↵b ` p1 ´ ↵qlq ` p1 ´ �qmqq P r and
p�p↵b` p1´↵qlq ` p1´�qmq, �p↵c` p1´↵qlq ` p1´�qmq P r. Since a ®r b and b ®r c,
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�p↵a`p1´↵qlq`p1´�qm ® �p↵b`p1´↵qlq`p1´�qmq and �p↵b`p1´↵qlq`p1´�qm ®
�p↵c ` p1 ´ ↵qlq ` p1 ´ �qm. Hence, by VII-A3, ↵a ` p1 ´ ↵ql ® ↵c ` p1 ´ ↵ql, and so
a ®r c, as required.

Archimedean. Let r be a non-minimal element of Sf . Consider t↵ P r0, 1s | ↵a ` p1 ´
↵qb ©r cu; the other case is dealt with similarly. Let ↵̄ be a limit point of this set, and
without loss of generality, assume that p↵̄a ` p1 ´ ↵̄qb, cq P r (if not, replace a, b, c with
appropriate mixtures for which this is the case). It needs to be shown that ↵̄a`p1´↵̄qb ©r c.
If ↵̄a ` p1 ´ ↵̄qb “ c the result is immediate; suppose henceforth that this is not the case.
If there is a open interval I in t↵ P r0, 1s | ↵a ` p1 ´ ↵qb ©r cu such that ↵̄ is a limit point
of I and such that p�a ` p1 ´ �qb, cq Æ p↵̄a ` p1 ´ ↵̄qb, cq for all � P I , then, by Lemma
VII.C.4, �a ` p1 ´ �qb © c for all � P I , whence ↵̄a ` p1 ´ ↵̄qb © c by VII-A7, and so
↵̄a ` p1 ´ ↵̄qb ©r c as required.

Now suppose that there is no such interval. Since r is a non-minimal element of S ,
by the Continuity of Æ and Lemma VII.C.2, there exists l P BpKq and ¯� P p0, 1q such
that p¯�p↵̄a ` p1 ´ ↵̄qbq ` p1 ´ ¯�ql, ¯�c ` p1 ´ ¯�qlq † p↵̄a ` p1 ´ ↵̄qb, cq. Let � “ mint� P
p¯�, 1s| p�p↵̄a`p1´ ↵̄qbq`p1´�ql, �c`p1´�qlq Ø p↵̄a`p1´ ↵̄qb, cqu (by Continuity of Æ
this is a minimum). Consider any � P p¯�, �q; by the definition of �, p�p↵̄a`p1´ ↵̄qbq`p1´
�ql, �c ` p1 ´ �qlq † p↵̄a ` p1 ´ ↵̄qb, cq. Note moreover that �p↵̄a ` p1 ´ ↵̄qbq ` p1 ´ �ql “
↵̄p�a ` p1 ´ �qlq ` p1 ´ ↵̄qp�b ` p1 ´ �qlq. So, by the Continuity of Æ, there is an open
interval I� Ñ p0, 1q containing ↵̄ such that, for all � P I�, p�p�a ` p1 ´ �qlq ` p1 ´ �qp�b `
p1´�qlq, �c`p1´�qlq † p↵̄a`p1´↵̄qb, cq. Note that I� Xt↵ P r0, 1s | ↵a`p1´↵qb ©r cu
is non-empty, since ↵̄ is a limit point of t↵ P r0, 1s | ↵a ` p1 ´ ↵qb ©r cu. Furthermore,
since �p�a ` p1 ´ �qlq ` p1 ´ �qp�b ` p1 ´ �qlq “ �p�a ` p1 ´ �qbq ` p1 ´ �ql, Lemma
VII.C.4 implies that �p�a ` p1 ´ �qlq ` p1 ´ �qp�b ` p1 ´ �qlq © �c ` p1 ´ �ql for all
� P I� X t↵ P r0, 1s | ↵a ` p1 ´ ↵qb ©r cu. It follows by VII-A7 that ↵̄p�a ` p1 ´
�qlq ` p1 ´ ↵̄qp�b ` p1 ´ �qlq © �c ` p1 ´ �ql. Since this holds for all � P p¯�, �q, it
follows by VII-A7 that �p↵̄a ` p1 ´ ↵̄qbq ` p1 ´ �ql © �c ` p1 ´ �ql; whence, since
p�p↵̄a ` p1 ´ ↵̄qbq ` p1 ´ �ql, �c ` p1 ´ �qlq P r, ↵̄a ` p1 ´ ↵̄qb ©r c, as required.

Lemma VII.C.6. For each r P S`, there exists a unique closed convex set of probabilities

Cr such that, for all a, b P B, a ®r b iff
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(VII.C.1)
ÿ

sPS

apsqppsq §
ÿ

sPS

bpsqppsq for all p P Cr

Proof. This follows from Lemma VII.C.5, by Gilboa et al. (2010, Corollary 1), 27 which es-
tablishes such a representation for non-trivial, monotonic, affine, Archimedean pre-orders.

Lemma VII.C.7. For all r, s P S` with r • s, Cs Ñ Cr.

Proof. This follows directly from Lemma VII.C.4 and Ghirardato et al. (2004, Proposition
A.1).

Lemma VII.C.8. For all r P S`, Cr “ î
r1†r Cr1 .

Proof. By Lemma VII.C.7, Cr Ö Cr1 for all r1 † r. Suppose, for reductio, that Cr â
î

r1†r Cr1 , so that there exists a point (probability measure) p P Crzîr1†r Cr1 . By a sep-
arating hyperplane theorem, there is a linear functional � on bapSq and ↵ P < such that
�ppq † ↵ § �pqq for all q P î

r1†r Cr1 . Since B is finite-dimensional, there is a real-
valued function a P B such that �pqq “ ∞

sPS apsqqpsq for any q P bapSq. Without loss
of generality, ↵, � and a can be chosen so that ↵ P K, a P BpKq. Since r P Sf , there
exists � P p0, 1s and m P BpKq such that p�a ` p1 ´ �qm, �↵˚ ` p1 ´ �qmq P r. By
Lemma VII.C.2, there exists l P BpKq and � P p0, 1q such that p�p�a ` p1 ´ �qmq `
p1 ´ �ql, �p�↵˚ ` p1 ´ �qmq ` p1 ´ �qlq † p�a ` p1 ´ �qm, �↵˚ ` p1 ´ �qmq. Let
�1 “ mint� P r�, 1s| p�p�a ` p1 ´ �qmq ` p1 ´ �ql, �p�↵˚ ` p1 ´ �qmq ` p1 ´ �qlq Ø
p�a ` p1 ´ �qm, �↵˚ ` p1 ´ �qmqu (this is a minimum by the Continuity of Æ). Taking
f, g, h P A such that u ˝ f “ �a ` p1 ´ �qm, u ˝ g “ �↵˚ ` p1 ´ �qm and u ˝ h “ l, it fol-
lows, by the construction, that for any � P p�, �1q, g�h ® f�h. However, by construction,
g�1h ™ f�1h, contradicting VII-A7. Hence Cr “ î

r1†r Cr1 .

Lemma VII.C.9. For all non-maximal r P S`, Cr “ ì
r1°r Cr1 .

Proof. By Lemma VII.C.7, Cr Ñ Cr1 for all r1 ° r. Suppose, for reductio, that Cr à
ì

r1°r Cr1 , so that there exists a point (probability measure) p P ì
r1°r Cr1zCr. By a sepa-

rating hyperplane theorem, there is a linear functional � on bapSq, an ↵ P < and an ✏ ° 0

27. See Ghirardato et al. (2004, Proposition A.2) for a related result.
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such that �ppq § ↵ ´ ✏ and ↵ § �pqq for all q P Cr. Since B is finite-dimensional, there is
a real-valued function a P B such that �pqq “ ∞

sPS apsqqpsq for any q P bapSq. Without
loss of generality, ↵, � and a can be chosen so that ↵ P K, a P BpKq. Since r P Sf ,
there exists � P p0, 1s and m P BpKq such that p�a ` p1 ´ �qm, �↵˚ ` p1 ´ �qmq P r.
Take any x P K with x § ↵, apsq for all s P S, and let f, g, h P A be such that
u ˝ f “ �a ` p1 ´ �qm, u ˝ g “ �↵˚ ` p1 ´ �qm, u ˝ h “ �x˚ ` p1 ´ �qm. Let
� P p0, 1q be such that u ˝ g�h “ �p↵ ´ ✏

2

q˚ ` p1 ´ �qm; such a � exists by the definition
of g and h. By construction, f © g, fpsq, gpsq © hpsq for all s P S, there exists ↵ P p0, 1s
and e P A with pf↵e, pg�hq↵eq ° pf, gq and pf↵e, pg�hq↵eq not Æ-maximal, but, for all
such ↵ and e, f↵e ´ pg�hq↵e. Hence, by VII-A6, for all ↵ P p0, 1s and e P A such that
pf↵e, pg�hq↵eq ° pf, gq, f↵e ´ pg�hq↵e, contradicting VII-A8; hence Cr “ ì

r1°r Cr1 .

Lemma VII.C.10. Let ®ì
S be the relation on BpKq generated by (VII.C.1) with the set of

probability measures
ì

rPS` Cr. If there exists a non-empty minimal element of S , S , then

® |S “®ì
S |S .

Proof. Let a, b P BpKq be such that pa, bq P S and suppose that a ®ì
S b. Let x “

mintapsq, bpsq | s P Su. Since a ®ì
S b, it follows from representation (VII.C.1) and

Lemma VII.C.6 that for each � P p0, 1q, there exists a non-maximal s ° S such that
�a ` p1 ´ �qx˚ ®s b, and thus, by Lemma VII.C.2, there exists ↵ P p0, 1s and e P A
such that ↵p�a ` p1 ´ �qx˚q ` p1 ´ ↵qe ® ↵b ` p1 ´ ↵qe. Hence, by VII-A8, a ® b, as
required. Now suppose that a ® b. By VII-A8, for every � P p0, 1q, there exists r ° S
such that b ©r �a ` p1 ´ �qx˚, where x is as defined above. So, by Lemma VII.C.6,
b ©ì

S �a ` p1 ´ �qx˚ for all � P p0, 1q. Since ®ì
S is Archimedean, it follows that

b ©ì
S a, as required.

Conclusion of the proof of Theorem VII.1. Define

⌅ “
#

tCr| r P S`u if S “ S`

tCr| r P S`u Y tìrPS` Cru if S “ S` Y tSu
where the Cr are as specified in Lemma VII.C.6. It follows from Lemma VII.C.7 that ⌅

is a nested family of sets. Since the Cr are closed and convex for all r P S` (Lemma
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VII.C.6), ⌅ is a confidence ranking. By Lemmas VII.C.8 and VII.C.9, ⌅ is continuous. D

is defined as follows: for all pf, gq P A ˆ A, if rpf, gqs P S`, then Dppf, gqq “ Crpf,gqs,
and if pf, gq P S , then Dppf, gqq “ ì

sPS` Cs. Order preservation and surjectivity of D are
immediate from the definition and Lemma VII.C.7. By construction and Lemma VII.C.10,
u, ⌅, D represent ® according to (VII.1).

Now consider the clause concerning the centering axiom VII-A9. Let ®ì
S be the

relation on BpKq generated by (VII.C.1) with the set of probability measures
ì

rPSf Cr.
Obviously ®ì

SÖ î
rPSf ®r. By VII-A9, for each f P A, there is at most one c P �pXq

for which pf, cq is not ordered by
î

rPSf ®r; since ®ì
S is Archimedean, it follows that

pf, cq is ordered by ®ì
S for every f P A and c P �pXq, and hence that ®ì

S is complete.
It follows from the form of (VII.C.1) that

ì
rPSf Cr is a singleton, as required.

The direction from (ii) to (i) is generally straightforward. The only interesting case is
continuity (VII-A7). Consider any f, g, h P A, and the set tp↵, �q P r0, 1s2| f↵h ® g�hu.
Suppose that p↵˚, �˚q is a limit point of this set, and consider a sequence pp↵i, �iqq of
members of the set with p↵i, �iq Ñ p↵˚, �˚q. If there exists a subsequence of pp↵i, �iqq,
tending to p↵˚, �˚q, such that pf↵in

h, g�in
hq Ø pf↵˚h, g�˚hq for all p↵in , �inq in this se-

quence, then the case can be treated in a similar way to that used below, relying on the
continuity of the confidence ranking. Henceforth, we consider the case where there is
no such sequence. In this case, there exists f 1, g1 P A with pf 1, g1q † pf↵˚h, g�˚hq.
Moreover, by the continuity of Æ, for each such pf 1, g1q, there is an open interval around
p↵˚, �˚q such that pf�h, g�hq Ø pf 1, g1q for any p�, �q in this interval. Hence, for each
such pf 1, g1q, there is a subsequence pp↵

j
rpf 1,g1qs
n

, �
j

rpf 1,g1qs
n

qq of pp↵i, �iqq, tending to p↵˚, �˚q,
with pf↵

j
rpf 1,g1qs
n

h, g�
j

rpf 1,g1qs
n

hq Ø pf 1, g1q for all n P N. It follows, since D is order-
preserving, that for all n P N,

∞
sPS upf↵

j
rpf 1,g1qs
n

hpsqq.ppsq § ∞
sPS upg�

j
rpf 1,g1qs
n

hpsqq.ppsq,
for all p P Dppf 1, g1qq. Hence, by the continuity of the representation, it follows that
∞

sPS upf↵˚hpsqq.ppsq § ∞
sPS upg�˚hpsqq.ppsqq, for all p P Dppf 1, g1qq. Since this holds

for every pf 1, g1q † pf, gq, and since, by the continuity of the confidence ranking and the
surjectivity of D, Dppf, gqq “ î

pf 1,g1q†pf,gq Dppf 1, g1qq, there cannot be a q P Dppf, gqq
such that

∞
sPS upf↵˚hpsqq.qpsq ° ∞

sPS upg�˚hpsqq.qpsq. So f↵˚h ® g�˚h, and hence
tp↵, �q P r0, 1s2| f↵h ® g�hu is closed, as required.

Finally, consider the uniqueness clause. Uniqueness of u follows from the von Neumann-
Morgenstern theorem. As regards uniqueness of ⌅, proceed by reductio; suppose that
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u, ⌅
1

, D
1

and u, ⌅
2

, D
2

both represent ® according to (VII.1), with ⌅

1

‰ ⌅

2

. Since ⌅

1

and
⌅

2

are continuous, they must differ on some non-minimal element; hence, by the surjectiv-
ity of the Di, there exists pf, gq P A ˆ A with non-minimal stakes such that D

1

ppf, gqq ‰
D

2

ppf, gqq. Suppose, without loss of generality, that p P D
1

ppf, gqqzD
2

ppf, gqq. By a sep-
arating hyperplane theorem, there is a linear functional � on bapSq and ↵ P < such that
�ppq † ↵ § �pqq for all q P D

2

ppf, gqq. Since B is finite-dimensional, there is a real-
valued function a P B such that �pqq “ ∞

sPS apsqqpsq for any q P bapSq. Without loss of
generality �, a and ↵ can be chosen so that ↵ P K, a P BpKq and pa,↵˚q ” pu ˝ f, u ˝ gq.
Taking h P A such that u ˝ h “ a and c P �pXq such that upcq “ ↵, we have that
∞

sPS uphpsqqppsq • ∞
sPS upcqppsq for all p s.t. p P D

2

pph, cqq, whereas this is not the case
for all p s.t. p P D

1

pph, cqq, contradicting the assumption that both u, ⌅
1

, D
1

and u, ⌅
2

, D
2

represent ®. A similar argument establishes the uniqueness of D.

VII.C.2 Proofs of results in Sections VII.3.3 and VII.4

Proof of Proposition VII.1. Let the assumptions of the Proposition be satisfied. (ii) implies
(i) is straightforward, so we consider only (i) implies (ii). Since the preference relations
are complete on the set of constant acts, they coincide on that set; hence, by the uniqueness
clause of the von Neumann-Morgenstern theorem, u

2

is a positive affine transformation of
u

1

. Hence K and the mapping from A to BpKq used in the proof of Theorem VII.1 can be
taken to be the same for the two agents; we use the notation employed in that proof. By (i),
for every r P S`, ®1

rÑ®2

r , and so, by Ghirardato et al. (2004, Proposition A.1), C2

r Ñ C1

r .
It follows that ⌅

2

Ñ ⌅

1

and D
2

ppf, gqq Ñ D
1

ppf, gqq for all pf, gq P A ˆ A.

Proof of Proposition VII.2. The ‘if’ direction is straightforward. The ‘only if’ direction
is a simple corollary of the proof of Theorem VII.1. On the one hand, if ®1 and ®2 are
confidence equivalent, they have identical preferences over constant acts (of which they
are maximally confident), and hence the same utilities up to positive affine transformation.
On the other hand, if they are confidence equivalent, the sets of preferences t®r |r P S`u
defined in the proof of Theorem VII.1 are the same, and so the confidence rankings are the
same.

Proof of Theorem VII.2. First consider part (ii). Showing the necessity of the axioms is
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straightforward; we now show sufficiency. Take f, g P A, and consider firstly the case
where minDppf,gqq

∞
sPS upgpsqq.ppsq • minDppf,gqq

∞
sPS upfpsqq.ppsq. Suppose there exist

c P �pXq, ↵ P p0, 1s, h P A such that pf↵h, c↵hq Ø pf, gq and f↵h © c↵h; it thus follows
that

∞
sPS upgpsqq.ppsq • upcq for all p P Dppf, gqq. If pf, gq is not Æ-minimal, then, by

the richness of Æ, for each d P �pXq with d † c, there exist ↵1 P p0, 1s, h1 P A such
that pg↵1h1, d↵1h1q ” pf, gq; moreover, for any such d, h1,↵1, g↵1h1 © d↵1h. If pf, gq is
Æ-minimal, then, by the continuity of ⌅ and the subjectivity of D, for each d P �pXq
with d † c, there exists pf 1, g1q ° pf, gq such that

∞
sPS upgpsqq.ppsq • updq for all p P

Dppf 1, g1qq. Moreover, by the richness of Æ, there exist ↵1 P p0, 1s, h1 P A such that
pg↵1h1, d↵1h1q ” pf 1, g1q; for any such d, h1,↵1, g↵1h1 © d↵1h. Hence, for any d P �pXq with
d † c, there exist ↵1 P p0, 1s, h1 P A such that pg↵1h1, d↵1h1q Ø pf, gq and g↵1h1 © d↵1h. It
follows by VII-B2S that g ¢c f , and thus, by VII-B1, g ©c f .

Now suppose that minDppf,gqq
∞

sPS upgpsqq.ppsq † minDppf,gqq
∞

sPS upfpsqq.ppsq,
so there exist c, d P �pXq with minDppf,gqq

∞
sPS upgpsqq.ppsq † updq † upcq †

minDppf,gqq
∞

sPS upfpsqq.ppsq. Take any such c, d. First, note that it is not the case that
∞

sPS upgpsqq.ppsq § updq for all p P Dppf, gqq. It thus follows from representation (VII.1)
that for all h1 P A and ↵1 P r0, 1s such that pg↵1h1, d↵1h1q Ø pf, gq, g↵1h1 ´d d↵1h1. How-
ever, we have upcq § ∞

sPS upfpsqq.ppsq for all p P Dppf, gqq; moreover, if pf, gq is not
Æ-maximal, it follows from the continuity of ⌅ and the subjectivity of D that there ex-
ists pf 1, g1q ° pf, gq such that upcq § ∞

sPS upfpsqq.ppsq for all p P Dppf 1, g1qq. If pf, gq
is not Æ-minimal, then by the richness of Æ, there exist ↵ P p0, 1s and h P A such that
pf↵h, c↵hq ” pf, gq; by representation (VII.1), f↵h © c↵h. If pf, gq is Æ-minimal, then
take any pf 1, g1q ° pf, gq such that upcq § ∞

sPS upfpsqq.ppsq for all p P Dppf 1, g1qq; by the
richness of Æ, there exist ↵ P p0, 1s and h P A such that pf↵h, c↵hq ” pf 1, g1q ° pf, gq, and
by representation (VII.1), f↵h © c↵h. It follows from VII-B2S that g †c f , as required.
Hence representation (VII.3) holds.

A similar argument establishes part (i).

VII.C.3 Proofs of results in Section VII.5

As stated in Section VII.5 (see in particular footnote 15), we continue to use the stan-
dard notation (and generic terms f, g . . . ) for acts, as well as the standard notation (and
generic terms x, z . . . ) for commodities. In particular, for commodities x, z and ↵ P r0, 1s,
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↵x`p1´↵qz is the standard vector sum of products of the two commodities, whereas x↵z is
the act obtained by applying the mixture operation on (the acts corresponding to) the com-
modities. Whilst x↵z does not in general belong to <S`, for any preference relation ®i with
the properties specified in Section VII.5, there is a natural element in <S` corresponding
to it; namely ppuiq´1p↵uipx

1

q ` p1 ´ ↵quipz
1

qq, . . . , puiq´1p↵uipx|S|q ` p1 ´ ↵quipz|S|qqq.
(At each state, the lottery obtained in that state is replaced by its certainty equivalent.)
Henceforth we denote this element by xi

↵z.

We first require the following Lemma.

Lemma VII.C.11. Under Assumption VII.1, the strict preferences °i have the following

reduced convexity property: for all f, g, h P A, if g, h °i f , then, for all ↵ P p0, 1q, there

exists � P p0, 1s such that pg↵hq�1f °i f for all �1 P p0, �s.

Proof. Let f, g, h P A such that g, h °i f , and consider ↵ P p0, 1q. By the monotone de-
creasing and continuity properties of stakes, there exists � P p0, 1s such that ppg↵hq�f, fq Æ
mintpg, fq, ph, fqu. By the representation (VII.1), it follows that pg↵hq�f ©i f . However,
if pg↵hq�f „i f , then, by indifference consistency (and the properties of the representation)
pg↵hq�h1 „i f�h1 for any � P p0, 1s, h1 P A with ppg↵hq�h1, f�h1q ” mintpg, fq, ph, fqu,
contradicting g, h °i f , under representation (VII.1). Hence pg↵hq�f °i f and, by indif-
ference consistency, the fact that the stakes are monotone decreasing, and the properties of
the representation, pg↵hq�1f °i f for all �1 P p0, �s, as required.

Proof of Theorem VII.3. For any x P <S`, let ⇡ipxq “ tp P �p⌃q|@z P <S`, if z °
x, then p ¨ z ° p ¨ xu, and let ⇡̄ipxq “ tp P �p⌃q|@z P <S`, if z ° x, then p ¨ z • p ¨ xu.
On inspection, it is straightforward to check that the reduced convexity property (Lemma
VII.C.11), combined with the concavity of u and the monotonicity of representation
(VII.1), is sufficient for the application of standard arguments on welfare theorems in the
absence of completeness and transitivity, notably Fon and Otani (1979), yielding the con-
clusion that, if x is Pareto optimal, there exists p P ì

i ⇡̄
ipf iq. (In a word, in the presence

of reduced convexity and concavity of the utility function, Pareto optimality implies that
the convex hull of the strict upper contour set of xi is disjoint from txiu, allowing appli-
cation of a separating hyperplane theorem. By monotonicity of representation (VII.1), the
separating hyperplane has a positive normal; by normalising, this yields a p P ì

i ⇡̄
ipxiq.)

We show that ⇡ipxq “ ⇡̄ipxq for all i and x P <S`. Suppose not, and let p P ⇡̄ipxqz⇡ipxq
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for some i and x; so there exists z with z °i x and p ¨ z “ p ¨ x. By the fact that
stakes are monotone decreasing, indifference consistency of preferences, and represen-
tation (VII.1), zi

↵x °i x for any ↵ P p0, 1s. By strict concavity of u, for all s P S,
pzi

↵xqs “ puiq´1p↵uipzsq ` p1 ´↵quipxsqq § ↵zs ` p1 ´↵qxs, with strict inequality when-
ever zs ‰ xs. It follows that either p ¨ x “ p ¨ p↵z ` p1 ´ ↵qxq ° p ¨ pzi

↵xq, contradicting
the assumption that p P ⇡̄ipfq, or ppsq “ 0 whenever xs ‰ zs. Consider the latter case, and
let S

1

“ ts P S| ppsq “ 0u. By full support, minqPîCP⌅i C
qpS1q

qpSzS1q ° 0; pick any � ° 0 with

minqPîCP⌅i C
qpS1q

qpSzS1q ° �
maxsRS1

ui1pzsq
minsPS1 ui1pzsq . For ✏ ° 0 and define the allocation z✏ as follows:

z✏
s “ ✏ for s P S

1

, and z✏
s “ ´✏.� for s R S

1

. By the definition of z✏, z ` z✏ °i x for ✏
sufficiently small, and p ¨ pz ` z✏q † p ¨ x for all ✏ ° 0, contradicting the assumption that
p P ⇡̄ipxq. Hence ⇡̄ipxq “ ⇡ipxq as required.

By standard arguments, if
ì

i ⇡
ipxiq ‰ H, then px1, . . . , xnq is Pareto optimal. It re-

mains to show that ⇧

ipxq “ ⇡ipxq for all i and x P <S`.

We first show that ⇧

ipxq Ñ ⇡ipxq. Note that, if z °i x, then
∞

s ppsqpuipzsq´uipxsqq °
0 for all p P ripDippx, zqqq and hence for all p P ì

z‰x ripDipx, zqq. By concavity of ui, it
follows that

∞
s ppsqui1pxsqpzs ´ xsq ° 0 for all p P ì

z‰x ripDipx, zqq. Renormalising, it
follows that, for any q P ⇧

ipfq,
∞

s qs ¨ pzs ´ xsq ° 0, and hence that q ¨ z ° q ¨ x. Since
this holds for all z P <S` with z °i x, q P ⇡ipxq.

We now show that ⇡ipxq Ñ ⇧

ipxq. Suppose not, and let p̄ P ⇡ipxqz⇧ipxq. Since, as is
straightforwardly checked, ⇧

ipxq is convex, by a separation theorem, there exists y P <S

and b P < with p̄ ¨ y § b § q ¨ y for all q P ⇧

ipxq where the right hand inequality is strict
for all q P rip⇧ipxqq. Without loss of generality, we can take b “ 0. Since this implies
that, for ↵ ° 0, q ¨↵y “ 1∞

tPS pptqui1pxtq
∞

s ppsqui1pxsq↵ys • 0 for all p P ì
z‰x ripDipx, zqq

with strict inequality for all p P ripìz‰x ripDipx, zqqq, and since
ì

z‰x ripDipx, zqq is
compact, it follows that, for ↵ sufficiently small,

∞
s ppsqpuippx ` ↵yqsq ´ uipxsqq • 0

for all p P ì
z‰x ripDipx, zqq, with strict inequality for some such p. Let A be the set

of ↵ possessing this property and such that x ` ↵y P <S`; we show that x ` ↵y °i x

for some ↵ P A. If not, then for every ↵ P A, there exists p̂ P Dippx ` ↵y, xqq with
∞

s p̂psqpuippx ` ↵yqsq ´ uipxsqq † 0. By nestedness of ⌅

i, it follows that there exists
p̂ P ì

z‰x ripDipx, zqq with
∞

s p̂psqpuippx`↵yqsq ´uipxsqq † 0, contradicting the inverse
inequality above. Hence x ` ↵y °i x for some ↵ ° 0, whereas p̄ ¨ px ` ↵yq § p̄ ¨ x, so
p̄ R ⇡ipxq, as required.
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Proof of Proposition VII.3. We show this on the example given in the text. Consider the
full insurance allocation pz1

¯�
, z2

¯�
q “ pp¯�w, ¯�wq, pp1 ´ ¯�qw, p1 ´ ¯�qwq. Agent 2 would accept

to exchange x2 for this (x2 †2 z2

¯�
) iff:

0.5u2pp1 ´ �qwq ` 0.5u2p�wq † u2p1 ´ ¯�q
This gives a strict upper bound ⌫ on ¯�. If a condition analogous to that in (VII.5) holds,

namely:

(VII.C.2) mint⌘w maxt|� ´ ¯�|, |¯� ´ p1 ´ �q|u, 0.45u ` 0.5 °
¯�1´�1 ´ p1 ´ �q1´�1

�1´�1 ´ p1 ´ �q1´�1

for all ¯� † ⌫, then, for all ¯� such that x2 †2 z2

¯�
, x1 ¢1 z1

¯�
; hence there are no Pareto

optimal allocations accessible from px1, x2q. It is straightforwardly checked that, with the
parameter values given in the text, these conditions are satisfied.

Proof of Proposition VII.4. It suffices to give an example where no Pareto optimum is m-
accessible for any finite m; we use a refinement of the previous example, with �1 “ �2 “ 1.
Take an allocation px1, x2q “ pp�

1

w, �
2

wq, pp1 ´ �
1

qw, p1 ´ �
2

qwqq with the following
properties:

(a) 1 ° �
1

° �
2

° 0

(b) �
1

´ �
2

† 18�
2

p1 ´ �
1

q
(c) ⌘w ° max

!
1

p1´�1q`p1´�1q0.5p1´�2q0.5p2�1´1q ,
1

�1`�0.51 �0.52 ´2�0.51 �1.52
, 2

)
.

It is straightforward to see that such allocations exist: �
1

“ 3

4

, �
2

“ 1

4

, ⌘ “ 2.5
w

is an
example. Suppose, for reductio, that a Pareto optimal allocation is m-accessible for some
finite m: there exists a sequence of allocations px1

j , x
2

jq “ pp�j1w, �j2wq, pp1 ´ �j1qw, p1 ´
�j2qwqq, 1 § j § m ` 1, with px1

1

, x2

1

q “ px1, x2q, xi
j`1

°i xi
j or xi

j`1

“ xi
j for all i, j, and

px1

m`1

, x2

m`1

q Pareto optimal – and so px1

m`1

, x2

m`1

q “ pp�1w, �1wq, pp1 ´ �1qw, p1 ´ �1qwqq
for some �1 P r0, 1s. Without loss of generality, it can be assumed that �1 § �pj`1q1 §
�j1 § �

1

and �1 • �pj`1q2 • �j2 • �
2

for all 1 § j § m. Moreover, such a sequence
implies that 0.5u2pp1 ´ �

1

qwq ` 0.5u2pp1 ´ �
2

qwq † u2pp1 ´ �1qwq and pps
1

qu1p�
1

wq `
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pps
2

qu1p�
2

wq † u1p�1wq for all p P ì
x1‰x1 ripD1px1, x1qq; since

ì
x1‰x1 ripD1px1, x1qq

contains (only) the probability measure giving the value 0.5 to each state, it follows that
0.5u1p�

1

wq ` 0.5u1p�
2

wq † u1p�1wq. Hence:

(VII.C.3) �
2

† �0.5
1

�0.5
2

† �1 † 1 ´ p1 ´ �
1

q0.5p1 ´ �
2

q0.5 † �
1

Consider an arbitrary consecutive pair px1

j , x
2

jq and px1

j`1

, x2

j`1

q in the se-
quence. By Theorem VII.3 and the fact that the latter is a Pareto-improvement
on the former, tp pps1qu11px1

j ps1qq
∞

tPS pptqu11px1
j ptqq ,

pps2qu11px1
j ps2qq

∞
tPS pptqu11px1

j ptqq | p P ripD1px1

j , x
1

j`1

qqu X
tp pps1qu21px2

j ps1qq
∞

tPS pptqu21px2
j ptqq ,

pps2qu21px2
j ps2qq

∞
tPS pptqu21px2

j ptqqtq| p P ripD2px2

j , x
2

j`1

qqu “ H. Doing the
calculations, and using the fact that ripD2px2

j , x
2

j`1

qq “ 0.5, this is the case if
�j1´�j1�j2

�j1`�j2´2�j1�j2
R ripD1px1

j , x
1

j`1

qq. Hence we must have that:

(VII.C.4) mint⌘w maxt|�j1 ´ �pj`1q1|, |�pj`1q2 ´ �j2|u, 0.45u `0.5 § �j1 ´ �j1�j2
�j1 ` �j2 ´ 2�j1�j2

Note that 0.95 § �j1´�j1�j2
�j1`�j2´2�j1�j2

if and only if:

�j1 ´ �j2 • 18�j2p1 ´ �j1q
• 18�

2

p1 ´ �
1

q

by the bounds noted above on �j1 and �j2. It follows from assumption (b) and the fact that
�j1 ´ �j2 § �

1

´ �
2

for all j, that, for all j, 0.95 ° �j1´�j1�j2
�j1`�j2´2�j1�j2

. (VII.C.4) thus reduces to
the following inequalities

�pj`1q1 • �j1 ´ 1

2⌘w

�j1 ´ �j2
�j1 ` �j2 ´ 2�j1�j2

�pj`1q2 § �j2 ` 1

2⌘w

�j1 ´ �j2
�j1 ` �j2 ´ 2�j1�j2

And so:

�pj`1q1 ´ �pj`2q2 • p�j1 ´ �j2q
ˆ

1 ´ 1

⌘w

1

�j1 ` �j2 ´ 2�j1�j2

˙
(VII.C.5)
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But, using (VII.C.3):

�j1`�j2´2�j1�j2 •

$
’’’&

’’’%

p1 ´ �
1

q ` p1 ´ �
1

q0.5p1 ´ �
2

q0.5p2�
1

´ 1q if �j1, �j2 ° 1

2

�0.5
1

�0.5
2

` �
2

´ 2�0.5
1

�1.5
2

if �j1, �j2 † 1

2

1

2

if p�j1 ´ 1

2

qp�j2 ´ 1

2

q § 0

It thus follows from (VII.C.5) that:

�pj`1q1 ´ �pj`1q2 • p�j1 ´ �j2qp1 ´ �q(VII.C.6)

where

� “ max

"
1

⌘w

1

p1 ´ �
1

q ` p1 ´ �
1

q0.5p1 ´ �
2

q0.5p2�
1

´ 1q ,
1

⌘w

1

�0.5
1

�0.5
2

` �
2

´ 2�0.5
1

�1.5
2

,
2

⌘w

*

By assumption (c), � † 1. Iterating inequality (VII.C.6), we obtain:

�pm`1q1 ´ �pm`1q2 • p�
1

´ �
2

qp1 ´ �qm ° 0

contradicting the assumption that px1

m`1

, x2

m`1

q is Pareto optimal.
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VIII Confidence as a Source of Deferral

Abstract

One apparent reason for deferring a decision – abstaining from choosing, leaving the
decision open to be taken by someone else, one’s later self, or nature – is for lack of
sufficient confidence in the relevant beliefs. This paper develops an axiomatic theory of
decision in situations where a costly deferral option is available that captures this source
of deferral. Drawing on it, a preliminary behavioural comparison with other accounts of
deferral, such as those based on information asymmetry, is undertaken, and a simple multi-
factor model of deferral – involving both confidence and information considerations – is
formulated. The model suggests that incorporating confidence can account for cases of
deferral that traditional accounts have trouble explaining. 1

Keywords: Confidence; multiple priors; deferral; delegation; information acquisition;
value of information; incomplete preferences.

JEL classification: D81, D80, D83.

1. This is a slightly modified version of HEC Paris Research Paper No. ECO/SCD-2014-1060.

VIII-1
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VIII.1 Introduction

VIII.1.1 Motivation

‘If you’re not sure, say so.’ At first glance, this appears to be a reasonable guide to when
a person should defer: that is, when he should abstain from choosing any of the options
on offer, leaving the decision open, to be taken by someone else, by his future self, or by
nature. If you’re not sure about any of the options on offer, deferring is one way of saying
so. However, this maxim is largely ignored by standard economic accounts of deferral.

Deferral or delegation of decisions to another agent is normally analysed in terms of
the expected difference in information (or information-gathering ability) between the ‘de-
ferrer’ and the ‘deferree’, without taking into account how sure the former would be in
taking the decision himself (for example, Holmstrom (1984)). One family of theories of
deferral to one’s future self is based on expectations about what information is available
to one’s future self or what his preferences are (for example, Stigler (1961); Marschak and
Miyasawa (1968); Koopmans (1964); Kreps (1979)). Another family considers deciding to
be a task, and analyzes deferral – or procrastination of that task – in terms of the compar-
ison between the value of choosing now and the discounted value of choosing at a future
moment, in the presence of time inconsistencies or salience effects (for example, Akerlof
(1991); O’Donoghue and Rabin (2001)). Under all of these accounts, whether the decision
maker is sure or not about which is the best option is assumed not to be a factor in his
deferring the decision. The sources of deferral involved are extrinsic: they inevitably refer
to factors beyond the immediate decision under consideration (the information held by an-
other agent or by one’s future self, one’s future preferences, the value of accomplishing the
task of deciding tomorrow). By contrast, not being sure about what to choose is a source
of deferral that only makes reference to the decision maker’s own attitudes at the moment
of decision: it is intrinsic.

Despite their absence from accounts of deferral to others or to one’s future self, intrinsic
considerations do seem to be involved in some theories of status quo choice – which can
be thought of as an instance of deferral to nature. Most prominent are those involving
incomplete preferences and according to which the decision maker defers to the status quo
in the absence of appropriate determinate preference (for example, Bewley (2002)) . To the
extent that his preferences are incomplete, he is not sure of the best option, and this plays a
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role in his deferral to the status quo.

Beyond the plausible intuition that how sure a decision maker is may play a role in
his deferral behaviour, the peculiarity of the current state of the literature – where some
of our best models of deferral to nature involve intrinsic sources, whilst the main models
of deferral to others or to one’s future self assume that such factors have no role to play –
pleads in favour of the development of theories of intrinsic deferral general enough to cover
the latter sorts of cases.

Moreover, intrinsic sources need not be without significant economic consequences,
even for deferral to others or to one’s future self. Consider, for example, a decision maker
faced with an investment decision that can be deferred (or delegated) to a portfolio manager,
and suppose that the information differential between the decision maker and the portfolio
manager does not justify the manager’s fee; mutual fund data suggests that this situation
may be quite realistic (Malkiel, 1995; Gruber, 1996). Whilst the information differential
and the cost of delegation cannot explain the (observed) deferral in such cases, incorpora-
tion of intrinsic sources of deferral can: the decision maker defers because he is not sure
how to invest. Or, to take another example, consider a single, important investment deci-
sion, among several given options, where all the information one could expect to learn in a
reasonable timeframe is already available, and suppose that the decision maker may defer
the decision to his future self (or procrastinate); the choice of whether and how to invest
in a 401(k) pension plan may be a decision of this sort. Given the absence of a significant
information advantage to deferring, and given that, under the time inconsistency-salience
approach, there is a lower tendency to procrastinate on single, important tasks – such as de-
ciding one’s investment policy for retirement – it may not be straightforward to account for
deferral in such cases on the basis of extrinsic sources alone. 2 Once again, incorporation of
intrinsic sources of deferral – most people are not very confident in their judgements about
the best investment policies – could contribute to understanding deferral of these sorts of
decisions. Similarly, deciding on the basis of tealeaves, palm-reading, horoscopes or or-
acles, or delaying the decision to consult one of these sources, are forms of deferral – to
others or to one’s future self – for which information acquisition is too scant (even by the

2. O’Donoghue and Rabin (2001) show that procrastination falls as importance rises when there is a
single task to be accomplished. To account for procrastination of important decisions, they develop a model
of procrastination in the presence of several tasks. For some further discussion of the relationship to their
model, see Section VIII.4.2, footnote 26.
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lights of many who rely on these methods) and time-consistency considerations too weak
to explain, and where the decision maker’s lack of confidence about the appropriate choice
may have a role to play. 3 As these examples suggest, in natural situations where decision
makers are not sure about what to do – and thus may feel uncomfortable deciding – incor-
poration of this aspect may help understand cases of deferral that are not clearly accounted
for by existing extrinsic approaches.

Any theory of intrinsic deferral with a serious claim of covering all species of deferral
– to others, to one’s future self and to nature – must be able to tackle the issue of the cost

of deferral. Deferring to others or to one’s future self may incur costs, such as costs of del-
egation or delay. Standard extrinsic accounts accommodate such costs, roughly speaking,
by assigning a value to deferral that is ‘weighed off’ against its cost. But what is the value
of deferral in a situation where the decision maker is not sure what to choose? Existing
theories of intrinsic deferral, such as those treating status quo choice, offer no answer to
this question.

The aim of this paper is to propose a theory of decision in the presence of a costly de-
ferral option according to which deferral is driven by the decision maker’s confidence. This
theory will provide the basis for a proper evaluation of this intrinsic source of deferral and
its consequences. First of all, since it applies in the costly deferral situations that are the fo-
cus of most extrinsic theories of deferral, it will allow a behavioural comparison with these
approaches, revealing behavioural differences between them. Secondly, it opens the door
to the development of multi-factor models of deferral. Of course, in many real-life situa-
tions, several factors – both intrinsic and extrinsic – may be in play. It is standard practice
to propose and study models based entirely on one factor (say, information acquisition),
ignoring others (for example, time consistency). Likewise, our proposal of a model based
solely on intrinsic sources of deferral, ignoring extrinsic sources, is intended as a first step.
The ultimate aim is to lay the groundwork for the development of models incorporating
both intrinsic and extrinsic sources of deferral. As an illustration, a multi-factor model of
deferral, incorporating how sure the decision maker is as well as expected differences in
information, will be sketched and some consequences explored.

3. Note that the ‘entertainment value’ of consulting an oracle does not explain why people tend to consult
them specifically when they are faced with a difficult decision. Casual observation suggests that this is indeed
the case: indeed, some divination methods are to be used, we have been told, only when there is an important
choice to be made.
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VIII.1.2 Confidence and the Value of Deferral

As noted previously, the central conceptual difficulty for the development of a theory
of intrinsic deferral in the presence of a costly deferral option concerns the question of the
value of deferral. To fix ideas, let us restrict ourselves to the framework of decision under
uncertainty, where preferences are determined by beliefs and utilities. We focus throughout
the paper on the role of the decision maker’s confidence in his beliefs, tacitly assuming that
the decision maker is fully confident in his utilities. The benchmark in this framework
is the model of deferral to nature (or status quo choice) proposed by Bewley (2002). It
involves a set of probability measures, which can be thought of as representing the beliefs
or probability judgements 4 the decision maker is sure of. Moreover, the unanimity decision
rule used – there is a preference between acts if the expected utilities of the acts lie in
the appropriate relation for all the probability measures in the set – can be thought of as
reflecting the maxim with which this paper began: if the decision maker is not sure of the
relevant beliefs, then he does not come to a decision. However, as noted above, the model
provides no guidance as to how to value the option of deferral.

The solution proposed in this paper starts from the observation that the representation
of beliefs by a set of probability measures assumes that being sure is an all-or-nothing af-
fair: either a belief or probability judgement holds for all measures in the set – the decision
maker is sure of it – or not. This assumption is unrealistic: one can be more confident of
some beliefs than others. As explored in Hill (2013, 2014), the introduction of a graded
notion of confidence in beliefs allows the development of more refined theories of decision.
In particular, it permits the level of confidence required of a belief for it to play a role in
a decision to depend, say, on the importance of the decision. In the case of interest here,
such dependence would yield a theory of deferral encompassing the following reasonable
maxim: decide when one has sufficient confidence in the relevant beliefs given the impor-
tance of the decision, and defer if not. Or, to put it in the terms of the adage with which
this paper began: when you’re not sure enough, say so.

Beyond its role in driving deferral, a graded notion of confidence may also have a role
to play in pricing deferral. For, once introduced, one can talk not only of how confident

4. By ‘probability judgement’ we mean a statement concerning probabilities, such as ‘the probability
of event A is greater than 0.3’, held by the agent. We use the terms ‘belief’ and ‘probability judgement’
interchangeably in the discussion below.
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a decision maker is in certain beliefs, but also of how confident he would need to be to
decide, given the importance of the decision to be made. It is plausible that, among cases
where the decision maker lacks sufficient confidence in the relevant beliefs, the option of
deferral is perceived as more valuable in decisions that call for more confidence. As the
level of confidence appropriate for the decision goes up, the value of not having to decide –
the value of deferring – increases as well. Accordingly, a higher cost of deferral is required
to induce the decision maker to decide rather than defer.

Formally, we employ the representation of confidence in beliefs by a centered confi-

dence ranking – a nested family of sets of probability measures that includes a singleton
set – proposed and defended in Hill (2013). Each set in the family corresponds to a level
of confidence, and is understood as representing the beliefs held to that level of confidence.
The probability measure in the singleton element of the confidence ranking – called the
centre – represents all of the decision maker’s beliefs, even those in which he has little con-
fidence. Following the cited paper, the decision maker’s attitude to choosing on the basis
of limited confidence is represented by a cautiousness coefficient – a function assigning to
each decision a set in the confidence ranking, interpreted as the appropriate level of confi-
dence (in the decision maker’s eyes) for the decision. Finally, we introduce a cost function

that assigns to each level of confidence a real value, understood as the psychological cost
of choosing in a decision requiring that level of confidence when one is not sufficiently
confident in the relevant beliefs.

Following the ideas mooted above, we develop a model according to which the decision
maker’s choice from a menu of Anscombe-Aumann acts A where deferral is possible at a
(monetary) cost of x is represented as follows. If there is an optimal element according to
the unanimity rule à la Bewley applied with the set of priors picked out by the cautiousness
coefficient – that is, if he has sufficient confidence in the relevant beliefs given the decision
– then he decides. Otherwise his behaviour depends on the cost of deferral x. If it is
outweighed by the cost of deciding – given by the cost function – then he defers. If, on the
other hand, the cost of deferral outweighs the cost of deciding, he decides, using all of his
beliefs, even those in which he is not very confident (that is, using the probability measure
in the singleton element of his confidence ranking).

An axiomatic characterisation of this model is proposed, in which all the aforemen-
tioned elements are endogenously derived. The essential axiomatic difference with re-
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spect to the standard expected utility model (where there is no deferral) is in appropriate
weakenings of the basic choice axioms (grosso modo, those playing the role of transitiv-
ity, completeness and independence in preference-based models) to allow deferral in some
circumstances where standard axioms oblige the decision maker to decide. To that extent,
the behavioural properties of the model are quite reasonable. Moreover, the model is be-
haviourally distinguishable (that is, distinguishable on the basis of the choice patterns it
licenses) from a popular theory of costly extrinsic deferral based on the expected infor-
mation acquisition or asymmetry. Finally, it permits comparative statics analyses of the
decision maker’s attitudes to deferral, which support the interpretations of the various ele-
ments of the model suggested above.

The representation result formally shows how confidence can price deferral, by show-
ing that the confidence-related source of deferral generates a ‘cost of deciding’, which can
be elicited in principle from behaviour. This insight opens the door to the development of
multi-factor models of deferral. As an illustration, we formulate and briefly investigate an
extension of the model of deferral developed here to incorporate information-related con-
siderations. This model naturally yields a simple additive expression determining deferral,
combining the standard value of information and the cost of deciding. It can comfortably
accommodate the examples given in the Section VIII.1.1, where important decisions are
deferred in the absence of clear extrinsic reasons for deferral; in such cases, the confidence-
related cost of deciding will generally be large, and could thus ‘tip the balance’ in favour
of deferral.

The framework and basic notions are introduced in Section VIII.2. The representation
is given and axiomatised in Section VIII.3. Section VIII.4 contains a comparison with
a standard information-based model of deferral and a brief exploration of a multi-factor
model. Related literature not treated elsewhere is discussed in Section VIII.5. Proofs, as
well as a comparative statics analysis, are to be found in the Appendices.

VIII.2 Preliminaries

VIII.2.1 Setup

Throughout the paper, we use a version of the Anscombe and Aumann (1963) frame-
work. Let X , the set of outcomes, be a separable metric space. To simplify the treatment of
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the cost of deferral, we suppose that outcomes are monetary, and hence take X “ < (with
the standard metric). A consequence is a probability measure on X with finite support.
�pXq is the set of consequences, endowed with the weak topology. Since the space of
Borel probabilities measures over X is metrizable (Billingsley, 2009, p72; Aliprantis and
Border, 2007, Theorem 15.12), so is �pXq. The operation ´ : �pXq ˆ X Ñ �pXq is
defined as follows: for all c P �pXq and x P X , pc ´ xqpyq “ cpy ` xq for all y P X .
c ´ x is the result of ‘subtracting’ a monetary value x from (each outcome yielded by) a
consequence c. A function u : �pXq Ñ < is zeroed if up0q “ 0 and it is strictly increasing

if, for all x, y P X “ <, x • y if and only if upxq • upyq.

Let S be a non-empty finite set of states; subsets of S are called events. �pSq is the
set of probability measures on S, endowed with the Euclidean topology. The objects of
choice are acts, defined to be functions from states to consequences. A is the set of acts,
endowed with the inherited product metric. A is a mixture set with the mixture relation
defined pointwise: for f , h in A and ↵ P r0, 1s, the mixture ↵f ` p1 ´ ↵qh is defined by
p↵f `p1´↵qhqps, xq “ ↵fps, xq`p1´↵qhps, xq. We write f↵h as short for ↵f `p1´↵qh.
With slight abuse of notation, a constant act taking consequence c for every state will be
denoted c and the set of constant acts will be denoted �pXq. Similarly, for any x P X ,
we shall also use x to denote the constant act yielding the degenerate lottery giving x with
probability one.

The decision maker is faced with choices from sets of acts, where deferral is possible
but costly. 5 To this end, let }pAq be the set of non-empty compact subsets of A, endowed
with the Hausdorff metric. 6 We call elements of }pAq menus. Pointwise mixtures of menus
are defined as standard: A↵h “ tf↵h | f P Au, for A P }pAq, h P A, ↵ P r0, 1s. Let :x

be the option of deferring at (non-negative) cost x, and D “ t:x | x P <•0

u. An element
pA, :xq P }pAq ˆ D represents the situation in which the decision maker is called upon to
choose from menu A where deferral costs x. A choice correspondence for costly deferral

is a correspondence � : }pAqˆD Ñ AYD – that is, a function � : }pAqˆD Ñ 2

AYDzH
– such that �pA, :xq Ñ A Y t:xu. The choice correspondence for costly deferral � delivers
for each situation of the sort described a set containing elements in A – which, as standard,

5. Situations where no deferral option is available can be accommodated in this setup, as limiting cases
where the cost of deferral becomes prohibitive.

6. This metric is defined as follows: for A, B P }pAq, hpA, Bq “
max tmax

xPA min

yPB dpx, yq,max

yPB min

xPA dpx, yqu, where d is the metric on A.
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are interpreted as those which the decision maker is inclined to choose – or :x – which
represents the decision to defer.

Some further notation shall prove useful. Two menus A, B P }pAq are extension-

ally equivalent if there exists a surjective correspondence 7 � : A Ñ B such that
�ptfpsq, gpsqu, :

0

q “ tfpsq, gpsqu for all f P A, g P �pfq and s P S; if this holds, we
write A

e.e» B. This is the natural notion of equivalence for menus if, as is standard in
formal theories of decision under uncertainty, one treats two acts as essentially the same
whenever they yield consequences between which the decision maker is indifferent in every
state.

For a utility function u : �pXq Ñ <, a set of probability measures C Ñ �pSq and a
menu A P }pAq, let:

suppA, u, Cq “
#

f P A |
ÿ

sPS

upfpsqq.ppsq •
ÿ

sPS

upgpsqq.ppsq @p P C, @ g P A
+(VIII.1)

suppA, u, Cq is the set of optimal elements of A – those that are ranked better than all
other elements in A – according to the unanimity rule with u and C, which ranks an act
better than another if the former has higher expected utility for all probability measures
in C. Note that if C is a singleton, then suppA, u, Cq is the set of acts in A with maximal
expected utility calculated with u and the element in C.

As a final piece of notation, let � “ tA P }pAq | Dh P A, ↵ P p0, 1s, :
0

P �pA↵h, :
0

qu.
This is the set of menus such that, for at least one mixture of the menu, the decision maker
defers.

VIII.2.2 Confidence ranking and cautiousness coefficient

We adopt with some modification two notions that were introduced in Hill (2013).

Definition VIII.1. A confidence ranking ⌅ is a nested family of closed, convex subsets
of �pSq. A confidence ranking ⌅ is continuous if, for every C P ⌅, C “ î

⌅QC1àC C 1 “
ì

⌅QC1âC C 1. ⌅ is strict if, for every C
1

, C
2

P ⌅ with C
1

Ä C
2

, pC
1

XpripC
2

qqcqXripîC1P⌅

C 1q “
7. A correspondence � : A Ñ B is surjective if, for all g P B, there exists f P A with g P �pfq.
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H. 8
⌅ is centered if it contains a singleton set; in this case, the member of the singleton

set is called the centre and is denoted p
⌅

.

As mentioned in the Introduction, confidence rankings represent decision makers’ be-
liefs and their confidence in their beliefs. A set in the confidence ranking corresponds to
a level of confidence and can be thought of as representing the beliefs held to this level
of confidence. For further discussion of the main features of the definition, the reader is
referred to Hill (2013). The only new property in the definition is strictness, which im-
plies that the confidence ranking is strictly increasing in a particular sense. It ensures, for
example, that as the confidence level increases, the highest value for the probability of an
event that is endorsed at that level of confidence also increases, unless this value is already
maximal over all confidence levels.

As noted in Hill (2013), a decision maker with a centred confidence ranking is one who,
if forced to give his best estimate for the probability of any event, could come up with a
single value, although he may not be very confident in it. He is, so to speak, a ‘Bayesian
with confidence’. Whilst we by no means wish to suggest that all decision makers are of
this sort, we focus on decision makers with centred confidence rankings to facilitate the
comparison with other approaches to deferral, which generally assume expected utility. 9

The second notion required is that of a cautiousness coefficient for a confidence rank-
ing ⌅, which is defined to be a function D : }pAq Ñ ⌅ satisfying the following three
properties.

(Extensionality) For all A, B, P }pAq, if A
e.e.» B, then DpAq “ DpBq.

(Continuity) For all C P ⌅, the sets tA P }pAq| DpAq Ö Cu and tA P }pAq| DpAq Ñ Cu
are closed.

(�-Richness) For all A P � Ñ }pAq and C P ⌅, there exists h, h1 P A and ↵,↵1 P p0, 1s
such that DpA↵hq Ñ C Ñ DpA↵1h1q.

The cautiousness coefficient can be understood as assigning a level of confidence to a
menu: DpAq represents the beliefs held to the level of confidence appropriate for use in the
choice from the menu A. As discussed in Hill (2013, 2014), it is a subjective element that

8. For a set X , X is the closure of X , and ripXq is its relative interior.
9. Possible extensions, involving weakening of the centering and strictness properties in particular, are

discussed in Remark VIII.2 (Section VIII.3.1).
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captures the decision maker’s attitude to choosing on the basis of limited confidence. 10 The
underlying idea is that the appropriate level of confidence is picked out on the basis of the
importance of the decision: for more important decisions, more confidence is required. By
contrast with Hill (2013, 2014), who exogenously assume a notion of stakes or importance
of a decision, this is left implicit in the notion of cautiousness coefficient used here. 11

Accordingly, several new properties of the cautiousness coefficient are required.

Extensionality states that all that counts in the determination of the level of confidence
appropriate for a decision are the values of the consequences of the acts in the menu at the
different states. Virtually all formal theories of decision under uncertainty treat extension-
ally equivalent acts – those that yield consequences between which the decision maker is
indifferent in every state – as being essentially the same. Extensionality says that whenever
two menus are composed of such acts, the same level of confidence is appropriate for the
choice from the menus. Continuity, which is fairly standard, seems reasonable: the level
of confidence appropriate for choice from a menu may be altered as the menu changes, but
one would not expect it to ‘jump’ with gradual modifications of the menu.

�-Richness is a technical property, which states that the appropriate level of confidence
for the choice from a menu can be shifted as far up or down as desired, by considering
suitable mixtures of the menu. There is a sense in which (in particular in the presence of
an independence axiom; see Section VIII.3.2) the choice from A and the choice from A↵h

are the ‘same’ choice. Nevertheless, these choices need not be of the same importance;
accordingly, different levels of confidence may be appropriate for the two choices. To that
extent, the latter choice can be thought of as a ‘version’ of the former choice which calls
for the use of beliefs held to the level of confidence appropriate for A↵h rather than A.
�-Richness simply states that for any choice for which the decision maker defers for some
version of the choice (that is, every menu in �) and any confidence level, there is a version
of the choice, obtained by mixing with an act, for which the appropriate confidence level
is above the level in question, and there is a version for which the appropriate confidence
level is below that level. The intuition is that mixing with an act can change many of

10. Where the cited papers speak of ‘attitude to choosing in the absence of confidence’, we prefer ‘attitude
to choosing on the basis of limited confidence’ which strikes us as more in tune with the graded notion of
confidence involved.

11. A notion of stakes can however be defined from the notion of cautiousness coefficient used here; see
Remark VIII.1 below for further discussion.
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the properties of a menu, and in particular the main properties that are relevant for the
importance of the choice from it, and for the level of confidence appropriate.

Remark VIII.1. In Hill (2013, 2014), the notion of the stakes involved in a decision was
fixed exogenously: in the former paper by stipulating a notion of stakes, and in the latter
paper by assuming an exogenously-given stakes relation which orders decisions according
to whether the stakes involved in them are higher or lower. The cautiousness coefficient was
defined in these papers as a function that respects the stakes relation. The model developed
below can be formulated in terms of a stakes relation and a cautiousness coefficient that
respects it (in the style of Hill (2014)): it suffices to take D as given and define the stakes
relation Æ on menus by A Æ B iff DpAq Ñ DpBq. (The stakes relation defined in this way
will automatically satisfy versions of the properties given in Hill (2014).) To that extent, the
notion of stakes assumed in the cited papers can be thought of as endogenised, or elicited
from choice, in the main theorem of this paper (Theorem VIII.1). For further discussion,
see Remark VIII.3 (Section VIII.3.3) and Section VIII.5.

VIII.3 A model of costly deferral

We now introduce a representation of choice in the presence of a costly deferral option
that captures the role of confidence. The aim in this section is not to offer an exhaustive
study of deferral, but rather to propose a relatively simple model of intrinsic deferral that
can accommodate cases where deferral is costly, and characterise its behavioural properties.

VIII.3.1 Representation

Consider the following representation of a choice correspondence for costly deferral �:
for all A P }pAq and x P <•0

,

(VIII.2) �pA, :xq “

$
’’&

’’%

suppA, u, DpAqq if suppA, u, DpAqq ‰ H
suppA, u, tp

⌅

uq if suppA, u, DpAqq “ H and cpDpAqq § upxq
t:xu otherwise

where u : �pXq Ñ < is a von Neumann-Morgenstern utility function, ⌅ is a continuous
strict, centred confidence ranking, D : }pAq Ñ ⌅ is a cautiousness coefficient and c : ⌅ Ñ
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<•0

Y t8u is a continuous function that is order-preserving and -reflecting with respect
to Ñ: that is, cpCq • cpC 1q if and only if C Ö C 1. 12 The function c is called the cost

function. It can be understood as assigning to any confidence level the psychological cost
of deciding – or equivalently the value of deferring – in a choice that calls for that level of
confidence but in which one does not hold the relevant beliefs with sufficient confidence to
yield a decision. As one would expect, this function is increasing in the confidence level:
for decisions requiring more confidence, it is more (psychologically) costly to decide when
one would have wanted to defer for lack of sufficient confidence in the appropriate beliefs.

To understand representation (VIII.2), first note that, when deferral is costless, it be-
comes:

�pA, :
0

q “
#

suppA, u, DpAqq if suppA, u, DpAqq ‰ H
t:

0

u otherwise

Recall that DpAq represents the set of beliefs that the decision maker holds to the level
of confidence appropriate for use in the choice from the menu A. suppA, u, DpAqq contains
the acts in A that are better than all other alternatives under the unanimity rule with the
set of probability measures DpAq. It can be interpreted as containing those acts that the
decision maker can conclude to be better than all other acts on the menu, on the basis of the
beliefs in which he has sufficient confidence given the choice to be made. Hence, under this
representation, the decision maker decides when there is an act that is optimal according
to these beliefs. If there is no such act, he defers. When deferral is free, a decision maker
represented by (VIII.2) chooses when he has sufficient confidence in the appropriate beliefs
given the decision to be made, and defers when he does not.

In the light of this, representation (VIII.2), applied in the general case of choice from
a menu A where it costs x to defer, can be understood as follows. If the decision maker
has sufficient confidence, his behaviour is the same as in the case where deferral is free:
he chooses an optimal act according to the unanimity rule with appropriate beliefs. In the
absence of sufficient confidence – when there is no optimal act according to the rule – his
behaviour may differ. In these cases, he compares the psychological cost of deciding given
the confidence level appropriate for the decision (given, in utility units, by cpDpAqq) with

12. We take the standard topology on the non-negative extended reals <•0 Y t8u, namely that produced
by the Alexandroff one-point compactification of <•0 (Aliprantis and Border, 2007, Section 2.16).
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the cost of deferral in the choice situation in which he is in (which corresponds to the utility
of x, upxq). If the monetary cost of deferral imposed on him is lower than the psychological
cost of deciding, then he defers, as recommended by the unanimity rule applied with the
appropriate confidence level. If the monetary cost of deferral imposed on him outweighs
the psychological cost of deciding, then he decides. In these cases, he chooses an act which
has highest expected utility calculated with the probability measure in the centre of the
confidence ranking. To the extent that this probability measure captures all of the decision
maker’s beliefs, this amounts to deciding on the basis of all of his beliefs, irrespective of the
confidence with which they are held. The intuition here is that, whilst the decision maker
should not decide on the basis of a belief in which he has insufficient confidence when he
can defer, if deferral is too costly he may as well mobilise all of his beliefs – even those
held with little confidence. Given that he is relying on more beliefs, the decision maker
may be able to come to a decision; in fact, for decision makers with centered confidence
rankings – which, recall, are basically Bayesians with confidence – this will always be the
case.

Whilst not the only way of choosing in such situations, the procedure formalised in rep-
resentation (VIII.2) is certainly not unreasonable. The decision maker will choose when-
ever he has sufficient confidence in the relevant beliefs. Otherwise, he will allow himself
to defer only if the (psychological) cost of deciding outweighs the (monetary) cost of de-
ferral. Finally, when he does not allow himself to defer, he decides on the basis of all of his
beliefs, even those in which he has little confidence.

Remark VIII.2. Although we consider a simple rule for choice in the face of costly deferral,
it is possible to formulate models, and extend the representation results, to incorporate
modifications or refinements.

First of all, one could abandon the assumption that the confidence ranking is centered.
In the case where the decision maker has insufficient confidence in the relevant beliefs but
decides due to the cost of deferral, one could adopt the same strategy of employing the
smallest set of probability measures in the confidence ranking. Since this may be a non-
singleton set, some other rule, such as the maxmin EU rule (Gilboa and Schmeidler, 1989),
would be required in cases in which the unanimity rule applied on this set does not yield
an optimal element.

Secondly, one could abandon the use of the smallest set in the confidence ranking to
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choose in cases where the decision maker has insufficient confidence but the cost of deferral
is high. One possibility is to use the set of probability measures corresponding to the level
of confidence appropriate for the choice from the menu, and a decision rule that always
yields an optimal act, such as the maxmin EU rule. Another possibility is to use the largest
set in the confidence ranking that yields a decision (that is, for which the optimal set of acts
under the unanimity rule is non-empty). Whenever the confidence ranking is strict, this
latter possibility is equivalent to representation (VIII.2).

Working in a preference framework, Hill (2014) distinguishes and characterises ax-
iomatically ways of deciding based on all of one’s beliefs and ways that rely on the beliefs
that one holds to the level of confidence appropriate for the decision. Similar techniques
could be employed to generalize Theorem VIII.1 to non-centred or non-strict confidence
rankings, and to alternative strategies for choosing in the absence of sufficient confidence.

Thirdly, one could imagine using a criterion for deferral different from the one in-
volved in representation (VIII.2), namely cpDpAqq § upxq. Note that representations
with criteria such as cpDpAqq § x or cpDpAqq § ´up´xq (where, in the former,
c gives the cost in monetary units) are related to representation (VIII.2) by appropri-
ate transformations of the cost function, and so are behaviourally indistinguishable from
it. Hence the results below immediately apply to them. Other possible suggestions in-
clude taking the difference in cost between the confidence level required for the deci-
sion and the highest confidence level at which the decision maker holds sufficient be-
liefs to decide, or the following criterion based on the difference in the value of decid-
ing after paying the monetary cost of deferral and deciding in the absence of this cost:
cpDpAqq § maxhPA

∞
sPS uphpsqq.p

⌅

psq´maxhPA

∞
sPS uphpsq´xq.p

⌅

psq. Representation
theorems for versions of representation (VIII.2) involving these criteria can be developed,
using similar techniques to those adopted in the proof of Theorem VIII.1. Finally, one
could go beyond monetary outcomes, developing similar representations and results for
outcome spaces and costs that are not purely monetary (including, for example, a temporal
element).

VIII.3.2 Axioms

To state the axioms, the following definition shall prove useful.
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Definition VIII.2. For each x P <•0

, the function �̄x
: }pAq Ñ 2

A is defined by: f P
�̄xpAq if and only if, for all h P A and ↵ P p0, 1s, if :x R �pA↵h, :xq, then f↵h P �pA↵h, :

0

q.

To explain the underlying intuition, let us say that the cost x is not motivating for a
menu A when, for every version of the menu, 13 if the decision maker chooses from it when
deferral costs x, then he also chooses when deferral is free. A cost that is not motivating
for a menu does not drive any decision taken from it: whenever the decision maker decides
at this cost of deferral, he is ‘sure enough’ to decide even when deferral is costless. By
contrast, a cost that is motivating for a menu may drive the decision from it: the decision
maker may choose at this cost though he does not choose at some lower cost. So f P �̄xpAq
says that the cost x is not motivating for A and (the appropriate mixture of) f is among the
potential choices from (the corresponding version of) A whenever a decision is made. Note
that �̄x may take as value the empty set; it does so on menus for which x is motivating.
Hence �̄x is not a choice correspondence (which is standardly assumed to take non-empty
values).

We now consider several axioms on �, which are organised into three groups.

VIII.3.2.1 Main Behavioral Axioms

Axiom VIII-A1 (Contraction). For all A, B P }pAq with A Ñ B, all x P <•0

, and all
f P A, if f P �̄xpBq, then f P �̄xpAq.

Axiom VIII-A2 (Strong Expansion). For all A, B P }pAq, x P <•0

, f P A and g P AXB,
if f P �̄xpAq and g P �̄xpBq, then f P �̄xpA Y Bq.

Axiom VIII-A3 (Independence). For all A P }pAq, h P A and ↵ P p0, 1s and all x, x1 P
<•0

such that :x R �pA, :xq and :x1 R �pA↵h, :x1q, �pA, :xq↵h “ �pA↵h, :x1q.

Axiom VIII-A4 (Consistency). For all A P }pAq, and all x, x1 P <•0

with x § x1, if
:x R �pA, :xq then �pA, :x1q “ �pA, :xq.

Axiom VIII-A5 (Centering). For all A P }pAq, there exists ↵ P p0, 1s and h P A such that
:
0

R �pA↵h, :
0

q.

13. Recall from the discussion in Section VIII.2.2 that different versions of a menu are obtained by mixing
the menu with an act.
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Contraction (VIII-A1) is just Sen’s axiom ↵ applied to �̄x; as such, it is well known in
the literature as a standard ingredient in the revealed preference theory of complete prefer-
ences. Similarly, Strong Expansion (VIII-A2) is the property ⇡ introduced by Hill (2009),
formulated for �̄x. As discussed in Hill (2009), ⇡ can be thought of as the equivalent of
Sen’s axiom � for incomplete preferences. Firstly, the intuition supporting it is similar to
that supporting the standard axiom �. Secondly, it implies �, and is in fact equivalent to it
on ordinary choice correspondences. Finally, ↵ and ⇡ basically characterise the rationalisa-
tion of a generalisation of standard choice correspondences by reflexive, transitive but not
necessarily complete binary relations. Lest it help the reader get a grasp on these axioms,
one can think of ↵ and ⇡ as boiling down, in the case of binary menus (and hence standard
preferences), to the assumption of reflexivity and transitivity without completeness.

To appreciate the formulation of these conditions for �̄x, it is useful to consider the ap-
plication of Strong Expansion (VIII-A2) to menus tf, gu, tg, hu and tf, g, hu. 14 It implies
in particular that, if f is chosen over g, g is chosen over h, and the cost x is not motivating
for these decisions – that is, whenever the decision maker chooses at cost x, he also chooses
when deferral is free – then this cost cannot be motivating for the choice from tf, g, hu –
if he chooses at cost x, then he must also choose when deferral is free. The underlying
intuition is reasonable: if the decisions taken between f and g and between g and h at cost
of deferral x are driven not by the cost of deferral, but say by the decision maker being
‘sure enough’, then the same holds for the choice from tf, g, hu.

By contrast, consider the following formulation of ⇡ for choice behaviour when deferral
is free, which is arguably a more standard version of the property in the current framework:

Axiom VIII-A2’ (Strong ExpansionFree). For all A, B P }pAq, f P A and g P A X B, if
f P �pA, :

0

q and g P �pB, :
0

q, then f P �pA Y B, :
0

q.

Applied to the case discussed above, Strong ExpansionFree (VIII-A2’) implies that, if
the decision maker chooses f over g and g over h when deferral is free, then he cannot
defer from tf, g, hu when deferral is free. This may be unreasonably strong in some cir-
cumstances. For example, suppose that g represents taking out $100 of credit to buy a
financial product, where the current portfolio is given by h, and f itself represents buying
another $100 product on credit with respect to current portfolio g. Whilst one may be able

14. This case has the advantage of highlighting the relation to the transitivity axiom on preferences. Similar
considerations apply to Contraction (VIII-A1).
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to decide in each of the binary choices between f and g and g and h, when the credit un-
der consideration is larger (up to $200 over one’s current portfolio) the decision may be
more difficult, and it might not be unreasonable to defer. 15 Strong Expansion (VIII-A2)
can comfortably accommodate such behavioural patterns: it allows deferral in such cases,
albeit under certain conditions. In particular, it only prohibits deferral if the decision maker
chooses from tf, g, hu at a cost of deferral that is not motivating for the other choices (be-
cause VIII-A2 implies that this cost is not motivating for the choice from tf, g, hu either).

Note moreover that, whenever a choice is made from tf, g, hu, then VIII-A2 agrees
with VIII-A2’ that f will be among the chosen options. The only ‘violations’ of the more
standard Strong ExpansionFree that are sanctioned by Strong Expansion are not forms of
inconsistent choices (such as those corresponding to preference cycles), but cases of de-
ferral where the standard axiom would have demanded decision. Summing up in terms of
preferences for readers more familiar with these: on binary menus, Contraction and Strong
Expansion basically amount to the assumption of reflexivity and a weakening of transitiv-
ity to allow indeterminacy in some cases where the standard axiom demands determinate
preference.

Independence (VIII-A3) demands that the standard independence axiom, formulated in
a choice-theoretic setting, holds whenever the decision maker decides rather than deferring.
Evidently it fully retains the intuitions behind the standard axiom, and is equivalent to it
in the case where the decision maker never defers. The restriction to pairs of menus from
which the decision maker decides is a central behavioural difference between the proposed
model and more standard ones. Indeed, in the presence of the other axioms, dropping the
condition that :x1 R �pA↵h, :x1q from VIII-A3 yields the standard expected utility represen-
tation (formulated in the current framework), under which the decision maker never defers.
In the current context, this condition is entirely natural: without it, the axiom would de-
mand that if one chooses from A when deferral costs $100 then one cannot defer from A↵h

when deferral is free.

Consistency (VIII-A4), requires an immediately intuitive relationship between deci-
sions with different costs of deferral. It says that, if one is willing to choose from a menu
at a particular cost of deferral, then as deferral becomes more expensive, one will continue

15. Consider also the version of this example that involves the successive application of Strong
Expansion

Free

to 100 binary choices in which one decides between taking $100 credit over one’s current
portfolio or not.
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to choose, and make the same choice. Centering (VIII-A5) characterises the centeredness
property of the confidence ranking (Section VIII.2.2). Recall from the discussion in Section
VIII.2.2 that different versions of a choice can be obtained by mixing the menu with an act;
these different versions may be of varying importance, with different levels of confidence
appropriate. In the light of this, Centering states that, for any menu, there is a version of
the choice from the menu in which the decision maker will decide rather than deferring.
The basic intuition is that, if the appropriate level of confidence is sufficiently low, the de-
cision maker will hazard a choice, albeit one in which he may not be very confident. As
mentioned in Section VIII.2.2, the centeredness property of confidence rankings is adopted
to ease comparison with standard approaches to deferral; the same goes for the Centering
axiom, which will be dropped in any extension of the model that does not involve centered
confidence rankings.

VIII.3.2.2 Remaining Behavioral Axioms

Axiom VIII-A6 (Defer or Choose). For all A P }pAq and x P <•0

, if :x P �pA, :xq, then
�pA, :xq “ t:xu.

Axiom VIII-A7 (No Deferral). For all A P }pAq with A Ñ �pXq and all x P <•0

,
:x R �pA, :xq.

Axiom VIII-A8 (Monotonicity). For all f, g P A, z, z1 P X , A, B P }pAq and x P <•0

:

i. if z ° z1 then �ptz, z1u, :
0

q “ tzu;

ii. if gpsq P �ptfpsq, gpsqu, :
0

q for all s P S, then g P �ptf, gu, :
0

q;

iii. if A
e.e» B, then :x P �pA, :xq if and only if :x P �pB, :xq.

Defer or Choose (VIII-A6), which is specific to the sort of choice situation under con-
sideration here, basically says that if the decision maker defers – :x is in the choice set –
then he does not choose – no acts are retained as admissible choices. No Deferral (VIII-
A7) simply states that in choices among constant acts only, the decision maker never defers.
The axiom translates the fact that the agent is assumed to be fully confident in his utilities;
as stated in the Introduction, only confidence in beliefs is at issue here.

The first clause of Monotonicity (VIII-A8) is a standard assumption in the context of
monetary outcomes, saying that the decision maker chooses (strictly) more money over
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less. It is retained to simplify the representation (insofar as it implies that different costs
of deferral are perceived as different by the decision maker), and can be dropped without
significant changes to the basic form of the result below. The second clause is a choice-
theoretic version of the standard monotonicity axiom for decision under uncertainty as
formulated in the preference framework. The final clause demands that whether the deci-
sion maker defers at a given cost of deferral respects extensional equivalence of menus: for
any two menus such that each act in one is extensionally equivalent to an act in the other
(they yield consequences between which the decision maker is indifferent in all states), the
decision maker defers from one menu at a given cost of deferral precisely when he defers
from the other menu at this cost. Virtually all formal theories of decision under uncertainty
treat extensionally equivalent acts in the same way; this axiom extends this to the case of
deferral. (The extension to the case of deferral is not a consequence of clause VIII-A8 part
ii., as is standardly the case, because of the weakness of the choice-theoretic axioms.)

VIII.3.2.3 Technical Axioms

Before stating the final, technical, axioms, let us introduce the following terminology.
Define ◆ : }pAq Ñ <•0

Y t8u by ◆pAq “ inftx P <•0

| :x R �pA, :xqu, 16 and mmc :

}pAq Ñ <•0

Y t8u by mmcpAq “ inftx P <•0

| �̄xpAq “ Hu. Moreover, let ⌥ “ tA P
}pAq | :

0

P �pA, :
0

qu.

⌥ is the set of menus from which the decision maker defers when deferral is free. For
such menus, the cost of deferral counts: whether the decision maker chooses or defers
depends on it. ◆ gives the point where the cost of deferral ‘bites’: whenever the cost is
below the value given by ◆ the decision maker defers, whereas above that value he decides.
Naturally, if a cost is above the ‘biting point’ for such a menu, then it is motivating for
the menu, in the sense introduced previously. The interpretation of ◆ as a biting point only
holds on ⌥ (◆ takes the value zero elsewhere), but mmc can be thought of as an extension
beyond this set. It gives the lowest cost that can be motivating, 17 and hence the lowest
biting point over all versions of the menu where the cost counts. For any menu A whose
biting point is above mmcpAq, this point is given by ◆pAq, and A is in ⌥. So for a menu
A not in ⌥, although the biting point is not pinned down by ◆pAq, one can nevertheless

16. Throughout, we take an infimum to be infinite when the set over which it is taken is empty.
17. Hence the terminology: mmc stands (albeit loosely) for minimal motivating cost. Recall from the

remarks following Definition VIII.2 that �̄

xpAq “ H when x is motivating for A.
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conclude that it is not greater than mmcpAq. Note that � (defined in Section VIII.2.1) is
the set of menus for which some cost is motivating.

Now consider the following axioms.

Axiom VIII-A9 (Continuity). For all A, An P }pAq, f, fn, g, h P A, ↵ P p0, 1q, x, xn P
<•0

:

i. if An Ñ A, fn Ñ f and xn Ñ x, and fn P �pAn, :xnq for all n P N, then f P
�pA, :xq;

ii. if sup ◆p⌥q ° mmcptf, guq, f P �ptf, gu, :
0

q, fpsq P �ptfpsq, hpsqu, :
0

q and gpsq P
�ptgpsq, hpsqu, :

0

q for all s P S, then there exists y P <•0

such that �̄yptf, guq “ H
but �̄yptf, g↵huq ‰ H;

iii. if x P p0, sup ◆p⌥qq, p◆´1pr0, xsq X ⌥q Y pmmc´1pr0, xsq X ⌥

cq and ◆´1prx, 8sq Y
pmmc´1prx, 8sq X ⌥

cq are closed in �;

iv. tx P <•0

| �̄xpAq “ Hu “ tx P <•0

| �̄xpA↵hq “ Hu and the set is open in <•0

.

Axiom VIII-A10 (Richness). For all A P �:

i. for all x P ◆p⌥q, there exist h P A and ↵ P p0, 1s such that :y P �pA↵h, :yq for all
y † x;

ii. if there exists x ° inf ◆p⌥q with �̄xpAq ‰ H, then tA↵h P � | ↵ P p0, 1s, h P Au Ü
⌥.

As indicated, these are basically technical axioms. The first clause of Continuity (VIII-
A9) is a version of the standard upper hemi-continuity property for correspondences, with
the addition of continuity under changes in the cost of deferral. It captures essentially the
same intuition that small changes in the choice situation – in the menu and the cost of
deferral – do not induce large changes in choice behaviour. The second clause (VIII-A9
part ii.) states that, for pairs of acts f and g where f is chosen over g when deferral is
free, whenever g is ‘worsened’ – by mixing it with an act dominated statewise by g and
f – some costs cease to be motivating. As g is ‘worsened’ the choice becomes ‘easier’,
so some costs that could drive the initial decision – in the sense that the decision maker is
not sure enough to decide when deferral is free – no longer drive the ‘easier’ decision – he
is sure enough in that decision to decide when deferral is free. The third clause (VIII-A9
part iii.) requires a certain continuity in the point at which the cost of deferral bites: as
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one gradually changes the menu, its biting point (as given by the value of ◆ if the cost of
deferral counts, and the lowest motivating cost mmc if not) does not suddenly ‘jump’. The
final clause (VIII-A9 part iv.) demands that the set of costs that are motivating for a menu
is the same for the menu and any version of it, and that this set is open. The assumption
of openness, like some of the other parts of the technical axioms, is largely conventional:
appropriate modifications of it would lead, for example, to a representation with the same
general form as (VIII.2) but with a strict rather than weak inequality in the condition on the
second line.

Richness (VIII-A10) is also a technical axiom. For any menu for which some cost
is motivating, the first clause (VIII-A10 part i.) demands that the point at which cost of
deferral bites can be moved as high up the range of possible values as desired by taking the
appropriate version of the menu. The second clause (VIII-A10 part ii.) states that either
every cost is motivating for the menu – and hence the biting point can be moved as low
down as desired by considering different versions of the menu – or a condition is satisfied.
The condition basically states that for some versions of the menu, the biting point is not
entirely fixed by deferral behaviour: the cost does not count for the choice from them (and
they are not arbitrary close to menus for which the cost counts), so ◆ does not give the biting
point. In other words, VIII-A10 part ii. says that, if it cannot be concluded that the biting
point can be moved as low down the range of possible values as desired (there is a cost
that is not motivating for the menu), then it cannot be concluded that it cannot be moved as
low down the range of values as desired (for some versions of the menu, the cost does not
count, so the biting point cannot be fully pinned down).

VIII.3.3 Result

We have the following representation result.

Theorem VIII.1. Let � be a choice correspondence for costly deferral on A. The following

are equivalent:

(i) � satisfies VIII-A1–VIII-A10,

(ii) there exists a strictly increasing zeroed continuous affine utility function u : �pXq Ñ
<, a continuous strict centred confidence ranking ⌅ with centre p

⌅

, a cautiousness

coefficient D : }pAq Ñ ⌅ for ⌅, and a cost function c : ⌅ Ñ <•0

Y t8u, such that,
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for all A P }pAq and x P <•0

:

(VIII.2)

�pA, :xq “

$
’’&

’’%

suppA, u, DpAqq if suppA, u, DpAqq ‰ H
suppA, u, tp

⌅

uq if suppA, u, DpAqq “ H and cpDpAqq § upxq
t:xu otherwise

Furthermore, ⌅ is unique, the restriction of D to ⌥ is unique, and u and c are unique

up to the same positive affine transformation.

The confidence ranking, the utility function and the cost function have the standard
uniqueness properties. Moreover, the cautiousness coefficient has the sort of uniqueness
properties one would expect. Wherever the confidence level appropriate for the choice
from a menu counts – wherever there are some costs of deferral for which the decision
maker defers and others where he decides – the level of confidence is fixed uniquely by
the cautiousness coefficient. Wherever the decision maker chooses no matter the cost of
deferral, the precise value of the appropriate level of confidence is not important; all that
matters is that it is low enough for the beliefs held to that level of confidence to yield a
choice. On these menus, where the precise setting of the appropriate level of confidence
does not matter for choice, the cautiousness coefficient is not necessarily unique. In other
words, the cautiousness coefficient is unique where the appropriate level of confidence
matters, but not where it doesn’t.

Remark VIII.3. As noted in Remark VIII.1, the representation can be reformulated in terms
of a stakes relation on the set of menus and a cautiousness coefficient that respects this rela-
tion, in the style of Hill (2014). This reformulation gives a version of Theorem VIII.1 that
yields a stakes relation, as well as the other elements cited. It is straightforward to check
that this stakes relation has the same uniqueness properties as the cautiousness coefficient:
it is unique on ⌥. To this extent, Theorem VIII.1 provides an independent contribution to
the literature on the confidence-based approach set out in Hill (2013, 2014), in the form
of a representation result where the stakes relation is endogenised, that is elicited from
behaviour rather than assumed. See Section VIII.5 for further discussion.

We note finally that comparative statics analyses can be undertaken on the proposed
representation, separating in particular the roles of various elements of the model. Some
details are given in Appendix VIII.A.
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VIII.4 Confidence and difference in information as sources

of deferral

The representation and characterization of choice in the presence of a costly deferral
option lays the ground for a deeper understanding of the relationship between the intrinsic
source of deferral explored in this paper and extrinsic sources studied elsewhere in the liter-
ature (Section VIII.1.1), as well as for the development of multi-factor theories of deferral.
As a preliminary exploration, we focus on a particular, popular model of extrinsic deferral,
based on the difference in information between the decision maker and the person who will
finally take the decision. We perform a brief comparison with the model proposed in the
previous section, and consider how the two aspects could be combined.

VIII.4.1 Confidence- versus information-driven deferral

Assume the setup used above, and suppose moreover that if the decision maker – call
him DM1 – defers, then the person to whom he defers (who may be his future self) – call
him DM2 – will be faced with the same choice, which he cannot defer. A standard simple
approach to this sort of decision would be to assume that both decision makers are Bayesian
with the same (strictly increasing, zeroed, continuous, affine) utility function u : �pXq Ñ
<. 18 The information differential between the decision makers can be characterised by a
finite set I of signals, with each i P I associated with an ex post probability measure pi over
S, and a probability measure q over I . DM2 receives one of the signals before deciding, and
so has probability measure pi for the appropriate i. DM1 only has a probability measure
over the signal received by DM2, q; his probability measure over states is p where ppsq “
Eqpipsq for all s P S. 19 The value of deferral, measured in utility units, is the value of
the expected information differential given the cost: that is, the difference between the
expected value of choosing ex post after having paid the cost of deferral and the value of
choosing ex ante. More precisely, for the choice from a menu A where deferral costs x, it

18. The strategic literature on delegation only gets properly started, of course, when the utility functions
are different, but we focus on this simple case to highlight the contrast with the model proposed here.

19. E
q

is the expectation operator given distribution q, defined by E
q

fpiq “ ∞
iPI fpiqdqpiq.
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is given by: 20

(VIII.3) V IxpAq “ Eq max

hPA
Epiuphpsq ´ xq ´ max

hPA
Epuphpsqq

A formulation in monetary units is given by the demand value of deferral (Marschak
and Miyasawa, 1968) – the highest monetary amount that DM1 is willing to pay to defer –
which, for a menu A, is the (unique) solution z to

(VIII.4) V IzpAq “ 0

The decision maker (DM1) defers whenever V IxpAq is positive, or equivalently the
cost of deferral is less than the demand value, and decides if not. Hence this approach
yields the following representation of the choice correspondence for costly deferral �: for
all A P }pAq and x P <•0

�pA, :xq “
#

suppA, u, tpuq if V IxpAq § 0

t:xu otherwise
(VIII.5)

As concerns the criteria determining whether the decision maker defers or not, there
are two evident points of contrast with representation (VIII.2). The first concerns the value
or cost considerations driving deferral. Under the standard approach, it is the value of
the expected information that determines whether deferral is acceptable, whereas under the
model proposed in Section VIII.3, the relevant factor is the (psychological) cost of deciding
when one would have wanted to defer. Note that, consistently with the distinction between
extrinsic and intrinsic reasons for deferring introduced in Section VIII.1.1, the value of
information depends on factors beyond DM1’s immediate decision – and in particular the
information available to the person who will take the decision if it is deferred – whilst
the cost of deciding in representation (VIII.2) only depends on the decision itself, and in
particular the level of confidence appropriate for it. Given the relative nature of the former
term, this difference between the two representations does not immediately translate into a
perspicuous axiomatic difference in the setup adopted here.

20. Recall from Section VIII.2.1 that hpsq ´ x is the result of subtracting the monetary value x from each
outcome yielded by the lottery hpsq.
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The second point of contrast concerns the existence of a second ‘non-cost’ criterion
determining whether the decision maker defers or not. Under the value of information ap-
proach, deferral is entirely dictated by the value considerations just discussed: the decision
maker defers whenever the value of the expected information given the cost of deferral
is positive. Under representation (VIII.2), the decision maker’s capacity to decide on the
basis of the beliefs in which he has appropriate confidence also plays a role in determin-
ing whether he defers or not. In particular, he does not necessarily defer in cases where
the psychological cost of deciding outweighs the cost of deferral: whenever he has suffi-
cient confidence in the relevant beliefs, he decides. This difference between the value of
information and confidence approaches does have simple behavioral consequences.

Under the value of information approach, if the decision maker defers the decision from
a menu A at some non-zero cost of deferral, then for each mixture A↵h of the menu, there
is a non-zero cost of deferral at which the decision maker defers the choice. For instance,
if the decision maker defers, at some cost, the choice of whether to take a bet where one
could win or lose $1 M, then there is a cost he would pay to defer the choice of whether
to bet on the same event but with stakes of $10. 21 If there is a difference of information
between DM1 and DM2 in one case, there will be an information difference in the other.
This behavioural pattern may be violated under the model developed in this paper, because,
although one might not have enough confidence in the relevant beliefs to decide when $1
M are at stake, the level of confidence required may be lower when only $10 are at stake.
If one holds the relevant beliefs to that level of confidence, one will decide in the latter
decision, no matter the cost of deferral. 22

We thus conclude that the confidence approach developed in this paper is behaviorally
distinguishable from one of the major standard approaches to deferral, or delegation, namely
that based on difference or asymmetry of information. 23

21. The example in the text assumes a linear utility function. As standard, this assumption can be dropped
by replacing $10 by a lottery yielding a 10

´5 chance of getting $1 M.
22. More formally, over and above the independence axiom used here (VIII-A3), the information-driven

model of deferral (VIII.5) satisfies the following condition, whilst the confidence-based model (VIII.2) does
not:

(Deferral-Independence). For all A P }pAq, h P A, ↵ P p0, 1s and x P <°0, if :
x

P �pA, :
x

q, then there
exists x

1 P <°0 such that :
x

1 P �pA
↵

h, :
x

1 q.
23. A similar analysis applies mutatis mutandis to many of the main models in which deferral (leaving

a choice open) is based on consideration of the decision maker’s future self’s possible utility functions (for
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VIII.4.2 Combining confidence and information: a simple multi-factor
model of deferral

As made clear at the outset, the ultimate aim of this paper is not to claim that there is
one ‘correct’ account of deferral, but rather to draw attention to a different, intrinsic, source
of deferral, which eventually may be integrated into existing approaches. To illustrate
its potential interest, we now consider, on a very simple setup, how the two reasons for
deferring discussed above – expected difference in information and insufficient confidence
– may be combined, and some consequences of the presence of the two.

To this end, consider a decision maker DM3 who perceives the same information struc-
ture as DM1 (Section VIII.4.1), but who is also a confidence-based decision maker of the
sort proposed in Section VIII.3. More specifically, suppose that, beyond the utility func-
tion, the set of signals I , posteriors pi and the distribution q over I , the decision maker has
a centered confidence ranking that is centered on p (DM1’s prior probability measure). 24

Whenever DM3 has sufficient confidence given the decision, he chooses, as in representa-
tion (VIII.2). In these cases, he makes the same choices as DM1. When he lacks sufficient
confidence, his behaviour will depend on the value of deferring, which now incorporates
confidence- and information-related factors. The value, in utility units, of deferring from
menu A when deferral costs x and the decision maker has insufficient confidence in the
relevant beliefs becomes:

V DxpAq “ Eq max

hPA
Epiuphpsq ´ xq ´ max

hPA
Ep puphpsqq ´ cpDpAqqq(VIII.6)

“ V IxpAq ` cpDpAqq
example, Kreps (1979); Dekel et al. (2001); Gul and Pesendorfer (2001)). Note in particular that the addition
of a self-control cost to a representation involving difference in information (including information about
future preferences), in the style of Gul and Pesendorfer (2001) for example, would not alleviate the behavioral
difference identified above, since the independence axiom in the menu framework that is satisfied by such
models essentially implies the condition given in footnote 22. Moreover, in temptation models, the decision
maker may decide even if he were paid to defer (ie. if the cost of deferral were negative), whereas this is not
a consequence of the confidence-based approach.

24. The posteriors p

i

could also be centres of centered confidence rankings; however, since ex post the
decision maker is forced to choose, he will act like DM2 above, so the rest of the confidence rankings are
irrelevant. Likewise, the distribution q over I may be thought of as a centre of a confidence ranking, but we
may ignore the rest of the confidence ranking for the purposes of this simple exercise.
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The first term on the first line is the expected value of the choice made by the person
deferred to, which incorporates the cost of deferring x. The second term is the value of
deciding rather than deferring for DM3: it is the standard expected value of the best act,
but, unlike the equivalent term in (VIII.3), it incorporates the psychological cost of decid-
ing from A when one does not hold the relevant beliefs with sufficient confidence for the
decision, cpDpAqq. (Recall that this cost of deciding is in utility units and is normalized to
be non-negative.) The second line follows from the first by the definition of V Ix (equation
(VIII.3)). So DM3 chooses according to a representation that is the same as (VIII.2) except
that cpDpAqq § upxq is replaced by V IxpAq ` cpDpAqq § 0. Axiomatisation of this model
and generalizations beyond the terms of this simple analysis are left to future research.

The incorporation of confidence into a standard information-based model of deferral
thus introduces a second term – the cost of deciding from representation (VIII.2) – into the
determinant of whether the decision maker defers. Unlike the value of information term, the
cost of deciding term does not depend on the information differential between the decision
maker and the person who will take the decision if deferred, but only on the decision itself
and the level of confidence appropriate for it. It increases the value of deferral, and may
thus lead to deferral in situations where the information differential alone would not.

This effect can be clearly seen on the demand value of deferral (that is, the highest
amount the decision maker is willing to pay to defer). A decision maker incorporating
both information- and confidence-related considerations into his choices, and who is not
sufficiently confident in his beliefs given the decision, has a demand value of deferral of y

for the choice from a menu A, where:

(VIII.7) V DypAq “ V IypAq ` cpDpAqq “ 0

Contrasting this with the demand value under the pure information-based model (given by
(VIII.4)) reveals that the incorporation of confidence bumps up the amount the decision
making is willing to pay to defer. Moreover, this increase is greater for more important
decisions, which call for more confidence. 25

25. Basic comparative statics of the demand value of deferral can be immediately read off from equation
(VIII.7) and the analysis in Appendix VIII.A. Decision makers that are more decision averse (see Appendix
VIII.A for a precise definition of this notion) have higher costs of deciding from a menu A (cpDpAqq), so
their demand value of deferral for A is higher.
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The introduction of confidence into the standard information-based approach may thus
be able to explain cases where the information differential between the decision maker and
the person to whom he defers does not justify the cost of deferral, but where the decision
maker defers nonetheless. For instance, active portfolio management appears to perform
too poorly with respect to passive benchmarks to justify its cost (Malkiel, 1995; Gruber,
1996), making it difficult to rationalize delegation solely on the basis of the difference
in information (or information-gathering ability) between the investor and the portfolio
manager. In such cases, where the decision is important and hence the cost of deciding is
high, this cost may drive up the price that the investor is willing to pay to defer, ultimately
leading to the choice to delegate.

Such cases could be just instances of a more general sort of ‘calibration error’. The
analysis suggests that standard estimations of the information differential based on willing-
ness to pay to delegate or defer tend to be overvalued: part of what may be driving deferral
is the reluctance to choose in important decisions on the basis of beliefs in which one has
insufficient confidence. Correct estimations of the information differential may need to
take this factor into account.

Finally, we note that the introduction of confidence into the information-based approach
might also have consequences for what delegation or deferral options the decision maker
adopts when he defers. If investors in fact see themselves as buying two services from
portfolio managers – information, but also the taking of a difficult decision on their behalf
– the relative importance of the two aspects in the decision to delegate may impact upon
the competitive pressure on managers to provide high quality information. Exploration of
such possible consequences of the introduction of confidence is left for further research. 26

26. Although the details will of course differ considerably, there is little reason to expect that the general
conclusions are specific to information-based approaches. There may even be interesting consequences of
integrating confidence into accounts of deferral, or procrastination, based on time inconsistency, which have
a different structure and often different primitives. For example, for a single task – such as a single decision
to be taken – with a fixed cost, procrastination tends to decrease with increases in the per-period benefit
(O’Donoghue and Rabin, 2001), suggesting that there would be less deferral in important decisions. Adding
confidence to the model would imply that the cost (which is exogenous in the cited model) increases with the
importance of the decision, tempering the mitigating effect of increased importance on deferral. This may
contribute to explaining procrastination in important decisions such as the choice of retirement policy.
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VIII.5 Related literature

Several related papers have already been mentioned previously; we now discuss some
points of related literature that have not been treated above.

As noted in the Introduction, Bewley’s (2002) theory of status quo choice – which
can be thought of as deferral to nature – is one of the first axiomatic theories of intrinsic
deferral-like phenomena. The essential intuition, which is behind part of the subsequent
axiomatic literature on the status quo bias (for example, Masatlioglu and Ok (2005); Or-
toleva (2010); Riella and Teper (2014)) 27, is that one sticks with the status quo in the
absence of appropriate determinate preference. Many discussions of deferral in behavioral
economics (for example, Tversky and Shafir (1992)) and marketing (for example, Dhar
(1997)), though generally couched in the context of decision under certainty, make refer-
ence at times to apparently similar intuitions that deferral results from preferences being
incompletely constructed or ‘conflicting’. To the extent that it is the decision maker’s ac-
tual preferences that drive deferral, these are involved with intrinsic deferral. Although the
theory proposed in this paper may be interpreted as a theory of status quo choice, the in-
terpretation is more general, covering and focussing on cases of deferral to one’s later self,
and deferral to someone else.

As suggested previously, there is a relationship between representation (VIII.2) and
incomplete preferences. Rather than discussing the whole literature on incomplete pref-
erences, we focus on several conceptually and formally related papers. 28 Danan (2003b)
and Kopylov (2009) both involve incomplete preference relations where incompleteness
is interpreted in terms of postponing a decision. The former paper cashes out this op-
tion in terms of preference for flexibility and hence, as discussed in Sections VIII.1.1 and
VIII.4.1, is concerned with extrinsic deferral (see Danan (2003a) for a related study in a
choice-theoretical framework). The latter paper, which uses the unanimity representation à
la Bewley and is noncommittal about the relationship between postponing a decision and
preference for flexibility, may be interpreted in terms of intrinsic deferral. However, it does
not offer an account of behaviour when deferral or postponement is costly.

The closest paper in this literature is Hill (2014), which, though it does not involve a
deferral interpretation of incompleteness, can technically be thought of as a special case of

27. A technically related paper drawing on a different motivation is Savochkin (2014).
28. Readers seeking a more developed discussion of this literature are referred to Hill (2014).
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(VIII.2) where deferral is free and all menus are binary. However, like Hill (2013), it as-
sumes an exogenously-given notion of the stakes involved in, or importance of, a decision.
This assumption is objectionable, especially if one considers the importance of a decision
to be a subjective judgement on the part of the decision maker. No such assumption is
made here. Indeed, as discussed in Remarks VIII.1 and VIII.3, a notion of stakes can be
defined from the endogenous elements of representation (VIII.2). Theorem VIII.1 can thus
be thought of as providing a behavioural foundation for the notion of stakes assumed in the
cited papers, and hence an answer to the aforementioned criticism of the confidence-based
approach that they set out. Indeed, this could be considered a separate contribution of the
theorem; it is, to our knowledge, the first behavioural foundation for the notion of stakes in
the literature.

The cost of deciding involved in representation (VIII.2) is reminiscent of cost factors
involved in representations studied by Ergin and Sarver (2010); Ortoleva (2013); Buturak
and Evren (2014). In a menu-preference framework, Ergin and Sarver (2010) derive en-
dogenously the elements of a costly information acquisition representation, where different
information structures have costs, called ‘contemplation costs’. Given the conceptual prox-
imity to the literature on information acquisition and preference for flexibility, the general
remarks concerning the relationship between the approach taken here and standard ap-
proaches (see Sections VIII.1.1 and VIII.4.1) continue to apply. In particular, when applied
to the question of deferral, Ergin and Sarver (2010) evidently take an extrinsic approach,
which, even ignoring technical differences and differences in framework, clearly yields a
different representation from that proposed here.

Buturak and Evren (2014), working in a choice-theoretic framework with a fixed ‘de-
fault option’ that is always present and no explicit cost of taking that option, introduce
several related models incorporating a value of this option. The default option in their
models can be either interpreted as a (fixed) status quo or as the opportunity to postpone
the decision. In the most structured ‘subjective state space’ representation, both interpre-
tations involve consideration of the decision maker’s ex ante uncertainty about his future
tastes. Hence, when interpreted in terms of deferral, this representation adopts an extrinsic
approach, as opposed to the intrinsic approach taken here. The less structured ‘variable
threshold’ representation, under the status quo interpretation of the default option, is re-
lated to the status quo literature mentioned above, and many of the points made there apply
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to this case. Behavioural differences between these representations and our representation
(VIII.2) include the fact that the former demand that the decision maker defers from some
singleton menus, whereas the latter implies that the decision maker never defers from sin-
gleton menus. Moreover, once this aspect is set aside, the independence axiom involved
in the former representations appears to be stronger than our VIII-A3, to the extent that it
demands that the decision maker choose from a mixture of a menu whenever he chooses
from the menu itself (see also the discussion in Section VIII.3.2.1). 29

Ortoleva (2013) proposes a representation of preferences over menus where the valu-
ation of each menu differs from the standard ‘additive EU representation’ (Kreps, 1979;
Dekel et al., 2001) by the addition of a ‘thinking cost’ that is a function of the menu. De-
spite the difference in interpretation – the thinking cost is generally motivated in terms of
computational constraints, rather than the importance of the decision – the cost of deciding
involved in representation (VIII.2) could be thought of as a possible source of Ortoleva’s
thinking cost, insofar as it represents the psychological cost of taking certain decisions.
However, even putting aside technical differences and differences in framework, the rep-
resentation in Ortoleva (2013) is quite different from ours, because it is concerned with
a different choice problem. Ortoleva considers the problem of deciding which choice the
decision maker would like to face at some future moment – and the cost of deciding or
thinking in the choice he eventually faces will be a factor in this ex ante decision, though
it does not affect the ex post choice taken. By contrast, we consider behavior in a single
choice situation where deferral is an option – and the cost of deciding may influence the
decision to defer or not. 30

29. More precisely, in their models, the decision maker chooses from the mixture of a menu with an
alternative if he chooses from the menu and from the singleton set containing the alternative; as noticed, this
latter condition is automatically satisfied in the model proposed here. Another way of seeing the difference is
by noting that, though our representation (VIII.2) can be written in the same form as their VT representation
(their (1)), the threshold function will not be affine, as assumed in their representation (Definition 1).

30. This difference can be seen in the representations themselves, by considering the choice between f

and g in the presence of a free deferral option: written in menu language, this is the choice among tfu, tgu
and tf, gu. Under Ortoleva’s representation, there is no cost of thinking involved in the valuation of tfu and
tgu, but there may be a positive cost attached to tf, gu; under our representation, opting for tfu or tgu incurs
a cost of deciding, whereas deferral – tf, gu – incurs no cost. This is due to the difference in the choice
problems considered. Since Ortoleva is considering what choice the decision maker would like to be faced
with, if he is faced with tfu, no thinking will be required, so the cost is zero. Since we are considering
behaviour in the choice between f and g with the possibility of deferring, tfu amounts to making a decision
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VIII.6 Conclusion

One potential source of deferral is lack of confidence in the beliefs needed to decide.
Whilst recognised in some studies of deferral behavior – such as deferral to nature or to the
status quo – this source is completely absent from many accounts of deferral – in particular
standard accounts of delegation to others or deferral to one’s future self. This paper makes
a start at incorporating it into our models of such cases of deferral.

We develop a theory of deferral in which the decision maker’s confidence in his beliefs
plays a double role. It drives deferral, insofar as the decision maker is inclined to defer only
when he lacks sufficient confidence in the relevant beliefs given the decision to be taken;
whenever he has sufficient confidence, he decides. It prices deferral, to the extent that the
value of the deferral option is determined by the confidence level appropriate for the deci-
sion under consideration. The theory applies naturally to situations where deferral is costly,
which are the norm in cases of deferral to others or to one’s future self. In these situations,
a decision maker represented by the model decides if he has sufficient confidence in the
relevant beliefs given the decision; if he lacks sufficient confidence, he decides whenever
the cost of deferral outweighs its value, as determined by the confidence level appropriate
for the decision, and he defers if not.

A behavioural axiomatization of this model is given, in which all the elements are
derived endogenously. Choice-theoretically, the theory is quite reasonable: the essential
axiomatic difference from the standard Savagean theory of decision under uncertainty (ap-
plied in a choice-theoretic setting) is to weaken the equivalent of the preference-theoretic
completeness, transitivity and independence axioms to allow the decision maker to defer in
cases where the standard axioms would have demanded decision.

The formulation of the model and its axiomatic analysis clarifies the relationship be-
tween confidence as a source of deferral and standard mechanisms for deferral to others or
to one’s future self considered in the literature, such as those based on expected difference
or asymmetry of information between the deferrer and the deferree. In particular, it re-
veals behavioural patterns exhibited by information-based models but not by the proposed
confidence-based one, hence showing that the two approaches to deferral are behaviourally
distinct.

and hence may incur a cost.
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Finally, the proposed model provides a starting point for the incorporation of confidence
into standard approaches to deferral. A straightforward integration of confidence into an
information-differential model yields a simple additive formula for the effect of confidence
on the value of deferral. The model suggests that the introduction of confidence as a source
of deferral increases the price the decision maker is willing to pay to defer, and that this
effect is stronger for more important decisions (which call for more confidence). This
may help explain some cases that are problematic for the standard approach: although the
expected information differential may be insufficient to explain the observed willingness to
pay for deferral or delegation, lack of confidence in the relevant beliefs, combined with the
importance of the decision, would imply deferral even at relatively high costs.
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VIII.A Attitudes to decision and deferral

In this Appendix, we perform some basic comparative statics on representation (VIII.2),
bringing out the role of the various elements in the decision maker’s attitude to deciding or
deferring.

In the current context, there is a particularly simple comparison of decision makers’
attitude to deciding: if decision maker 2 decides, rather than deferring, in every choice sit-
uation in which decision maker 1 decides, then decision maker 2 has less trouble deciding,
and seeks deferral less, than decision maker 1. We shall say that decision maker 2 is less
decision averse, or equivalently less deferral seeking, than decision maker 1. Formally, we
say that (a decision maker whose choice correspondence is) �1 is more decision averse than
�2 when, for all A P }pAq, x P <•0

, if :x R �1pA, :xq then :x R �2pA, :xq.

Beyond this benchmark comparison, we consider two others, which shall be useful
in the separation of the roles of the different elements of the model. The first involves the
comparison of when the cost of deferral is motivating. Recall from the discussion in Section
VIII.3.2 that a cost is said to be motivating for a menu when it can drive the decision from
it: there is a version of the menu from which the decision maker decides when deferral
has this cost, though he does not decide when deferral is free. We shall say that decision
maker 2 is more cost motivated than decision maker 1 if whenever a cost is motivating for
a menu for decision maker 1, it is motivating for decision maker 2. Formally, we say that
(a decision maker whose choice correspondence is) �1 is less cost motivated than �2 when,
for all A P }pAq and x P <•0

, if �1

xpAq “ H then �2

xpAq “ H. 31

Decision aversion compares, for a given menu, the costs of deferral at which the de-
cision makers decide. Another possible comparison focusses on the menus for which the
cost is motivating, rather than the cost itself. If a decision maker decides from a menu A

at every cost which is motivating for some other menu B, then this provides an indication
about his deferral behaviour, relative to the extent to which cost motivates his choices. The
more menus B for which this holds, the more he is inclined to decide rather than defer
from A. If whenever decision maker 1 chooses from a menu at every cost that is moti-
vating for another menu, decision maker 2 does the same, then there is a sense in which

31. Recall from the discussion in Section VIII.3.2 that, for a choice correspondence for costly deferral �,
�

xpAq “ H exactly when x is motivating for A.



Confidence as a Source of Deferral VIII-36

decision maker 2 exhibits less decision aversion. We shall say that decision maker 2 is less
motivation-calibrated decision averse than decision maker 1; the terminology reflects the
fact that decision maker’s cost motivation (rather than the cost itself) is used as a yardstick
in the comparison. Formally, we say that (a decision maker whose choice correspondence
is) �1 is more motivation-calibrated decision averse than �2 when, for all A, B P A, if
:x R �

1

pA, :xq for all x P <•0

such that �1

xpBq “ H, then :x R �
2

pA, :xq for all x P <•0

such that �2

xpBq “ H.
The weakness of these notions – none of them ask that the decision makers choose

the same acts when they decide – mean that the implications for the relationships between
the elements of the representation are also weak. For a finer analysis, we shall follow a
standard strategy in the literature and make assumptions sufficiently strong to guarantee
that the decision makers have the same utilities and beliefs. To this end, we introduce the
following notion.

Definition VIII.3. Let � satisfy axioms VIII-A1–VIII-A10. The confidence-in-choice

relation § on A ˆ }pAq is defined as follows: for any A, B P }pAq and f, g P A,
pf, Aq § pg, Bq iff, for all x P <•0

, if f P �xpAq, then g P �xpBq.

Recall from Section VIII.3.2 that a cost is not motivating for a menu if, whenever the
decision maker decides at this cost, he would decide even if deferral was free: he is, so to
speak, sure enough to choose even if there were no cost to deferral. So if a cost x is not
motivating for the choice from B and g is chosen, but x is motivating for the choice from
A, then this can be taken as an indication that the decision maker is more confident in his

choice of g from B than in his choice from A. Definition VIII.3 introduces a confidence-in-
choice relation that, in these situations, ranks the choice of g from B (pg, Bq) higher than
any choice from A (for example, pf, Aq).

We shall say that two decision makers are confidence equivalent if they have the same
confidence-in-choice relation.

Definition VIII.4. Let �1 and �2 satisfy axioms VIII-A1–VIII-A10. �1 and �2 are confi-

dence equivalent if §1“§2.

Proposition VIII.A.1. Let �1 and �2 satisfy axioms VIII-A1–VIII-A10, and be represented

by pu
1

, ⌅
1

, D
1

, c
1

q and pu
2

, ⌅
2

, D
2

, c
2

q respectively. �1 and �2 are confidence equivalent if

and only if u
2

is a positive affine transformation of u
1

and ⌅

1

“ ⌅

2

.
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This proposition confirms that a decision maker’s confidence in his choices is entirely
determined by his utilities and his confidence in beliefs. This is to be expected: to the
extent that his choices are dictated by his utilities and his beliefs, it is reasonable that con-
fidence in choices be determined by confidence in utilities – which is trivial in this model,
because of the use of a single utility function – and confidence in beliefs, represented by the
confidence ranking. Once differences in utilities and confidence in beliefs are accounted
for, by comparing decision makers who have the same confidence in choices, the different
comparisons mentioned above are entirely characterised by the relationship between the
cautiousness coefficients and the cost functions, as the following proposition shows.

Proposition VIII.A.2. Let �1 and �2 satisfy axioms VIII-A1–VIII-A10 and be confidence

equivalent. Then:

(i) �1 is more decision averse than �2 if and only if there exist representations

pu, ⌅, D
1

, c
1

q and pu, ⌅, D
2

, c
2

q of �1 and �2 respectively such that c
2

pD
2

pAqq §
c
1

pD
1

pAqq for all A P ⌥

2

and D
2

pAq Ñ D
1

pAq for all A R ⌥

2

.

(ii) �1 is less cost motivated than �2 if and only if there exist representations

pu, ⌅, D
1

, c
1

q and pu, ⌅, D
2

, c
2

q of �1 and �2 respectively such that c
2

pCq § c
1

pCq
for all C P ⌅.

(iii) �1 is more motivation-calibrated decision averse than �2 if and only if there exist

representations pu, ⌅, D
1

, c
1

q and pu, ⌅, D
2

, c
2

q of �1 and �2 respectively such that

D
2

pAq Ñ D
1

pAq for all A P }pAq.

Since the cost function is unique, given the utility function, the comparison in part (ii)
holds for all representations using the same utility function. Similarly, since the cautious-
ness coefficient D is only unique on ⌥, it really only makes sense to compare D

1

and D
2

on ⌥

1

X ⌥

2

, and the comparisons on these sets (in parts (i) and (iii)) hold for all repre-
sentations using the same utility function. (Note that both notions of decision aversion
in fact imply that ⌥

1

Ö ⌥

2

, as is clear from the proof.) The formulation used for part
(iii) in particular emphasises that the restriction to ⌥

2

in the uniqueness of the cautious-
ness coefficient does not complicate applications: insofar as the behavioural consequences
of comparisons of motivation-calibrated decision aversion are concerned, one can assume
that the cautiousness coefficient containment condition holds everywhere.
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Proposition VIII.A.2 brings out both the characterisation of the standard notion of deci-
sion aversion and the behavioural effects of the cautiousness coefficient and the cost func-
tion. More decision averse decision makers assign a higher cost to (the confidence level
associated with) every menu. For each menu, they value the option of deferring from that
menu more than less decision averse counterparts. Whilst not surprising, this does not
separate the role of the cautiousness coefficient and the cost function, insofar as the cost
assigned to a menu depends both on the level of confidence deemed appropriate for choice
from the menu (determined by the cautiousness coefficient) and the cost of deciding when
this level of confidence is required (determined by the cost function).

The other two parts of the result provide this separation. Comparison in terms of the
cost function alone corresponds precisely to a difference in cost motivation: decision mak-
ers who are less cost motivated have a higher cost of deciding for every confidence level. It
is the degree to which certain costs motivate decision makers’ decisions that reveals the re-
lationship between their costs of deciding at given confidence levels. By contrast, ordering
in terms of motivation-calibrated decision aversion is characterised precisely in terms of
an appropriate ordering of the cautiousness coefficients. It is intuitive that decision makers
who assign higher levels of confidence to each menu are more decision averse: part (iii) of
Proposition VIII.A.2 shows that this is the case, when decision aversion is measured on the
motivation rather than the cost yardstick. Note that these results confirm the interpretations
adopted for the elements of the model. Confidence drives deferral – and the cautiousness
coefficient reflects tastes for choosing on the basis of limited confidence, when measured
on a scale that is cost independent (the scale provided by motivation). Confidence also
prices deferral – and the cost function captures the value of deferring, or equivalently the
cost of deciding, fleshed out entirely in terms of the sensitivity of deferral behaviour to the
cost of deferral.

Naturally, piecing together parts (ii) and (iii), one obtains a behavioural characterisa-
tion of when two decision makers satisfy both the containment condition on cautiousness
coefficients and the ordering condition on cost functions: one is both less cost motivated
and more motivation-calibrated decision averse than the other. It is evident from the propo-
sition that these two comparisons imply that the decision maker is more decision averse.
As Proposition VIII.C.3 in Appendix VIII.C shows, apart from this implication, the com-
parisons are independent: no other pair of comparisons imply the third.
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VIII.B Proof of Theorem VIII.1

Throughout the remaining Appendices, B will denote the space of real-valued functions
on S, and bapSq will denote the set of additive real-valued set functions on S, both under
the Euclidean topology. B is equipped with the standard order: a § b iff apsq § bpsq for
all s P S. For x P <, let x˚ be the constant function taking value x.

The main part of Theorem VIII.1 consists in showing the sufficiency of the axioms ((i)
to (ii) direction), the proof of which proceeds as follows. We first construct a binary rela-
tion Æ on }pAq satisfying appropriate properties. This essentially orders menus according
to whether a higher or lower confidence level is appropriate. The essential idea of the con-
struction is that, for A, B P ⌥, A Æ B iff ◆pAq § ◆pBq; the main work in the construction
(Lemma VIII.B.1) is to extend this definition to the whole of }pAq in such a way as the re-
tain the appropriate properties. Then we establish (Lemma VIII.B.2) the representation for
the case where deferral is free. To this end, for each indifference class r under Æ – which,
recall, can be thought of as corresponding to a level of confidence – we define a function
�r from menus to (perhaps empty) subsets, which can be thought of as representing the
choices from menus considered ‘as if’ the appropriate level of confidence was r. We show
(Lemmas VIII.B.4 to VIII.B.6) that for every non-minimal r there is a closed convex set
of probability measures Cr representing �r in the sense that the elements selected by �r are
the optimal ones according to the unanimity rule applied with Cr. Lemmas VIII.B.8 and
VIII.B.9 show that the choice correspondence for minimal r can be represented according
to the unanimity rule with the intersection of the Cr for the other stakes levels, and that this
set is a singleton. By Lemma VIII.B.7, the Cr form a nested family of sets, and we thus
have a confidence ranking. By Lemmas VIII.C.8 and VIII.C.9, this confidence ranking is
continuous, and by Lemma VIII.C.10, it is strict. By construction, the function that assigns
to any level r the set Cr is a well-defined cautiousness coefficient. Moreover, the function
that assigns to any set Cr in the confidence ranking the utility of ◆pAq for any A P r is a
well-defined cost function. Finally we show that these elements correctly capture the part
of the representation where deferral has non-zero cost (Lemma VIII.B.10). We detail the
main steps below; proofs of the technical lemmas are relegated to Appendix VIII.C.
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VIII.B.1 Sufficiency of axioms

Note firstly that since X “ < is a separable metric space, the space of all Borel prob-
ability measures on X , and hence �pXq (which, recall from Section VIII.2.1, is the sub-
space of finitely additive probability measures on X), can be equipped with a separable
metric (Billingsley, 2009, p72; Aliprantis and Border, 2007, Theorem 15.12). Hence, A
is a separable metric space, equipped with the product metric, and }pAq is a metric space,
under the Hausdorff metric. If � “ H, then by VIII-A4, :x R �pA, :xq for all A P }pAq,
x P <•0

, and the result follows from the standard representation theorem for expected util-
ity. Throughout the rest of the proof, we thus assume that � ‰ H. We begin by stating
some preliminary results (see Appendix VIII.C for proofs).

The first is a generalisation of Hill (2009, Theorem 2), which held for finite menus, to
the case of infinite menus (with topological structure).

Theorem VIII.2. Let X be a metric space and }pXq the set of non-empty compact subsets

of X , endowed with the Hausdorff topology. Let � : }pXq Ñ 2

X be a function such that

�pAq Ñ A for all A P }pXq. Suppose that � satisfies the following continuity property: for

all sequences Ai P }pXq and xi P X with Ai Ñ A and xi Ñ x, if xi P �pAiq for all i, then

x P �pAq. 32 The following are equivalent:

(i) There exists a reflexive, transitive binary relation ® such that �pAq “ tx P A | x ©
y @y P Au;

(ii) � satisfies the following properties:

↵ if x P A Ñ B and x P �pBq, then x P �pAq
⇡ if x P A, y P A X B, y P �pBq and x P �pAq, then x P �pA Y Bq
sing if A “ txu, then x P �pAq.

Moreover, ® is unique.

Finally, if � always takes non-empty values, (ii) is equivalent to the existence of a re-

flexive, transitive and complete preference relation representing �, even in the absence of

the continuity assumption.

32. Note that � is not necessarily a correspondence, because it is not necessarily non-empty-valued. The
continuity condition, which is essentially a version of the standard upper hemi-continuity condition for cor-
respondences, is thus stated explicitly.
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Secondly, Lemma VIII.C.1 establishes that there is a strictly increasing zeroed contin-
uous affine utility function u : �pXq Ñ < representing the restriction of � to menus of
constant acts. We fix such a u for use throughout the proof, and let K “ up�pXqq and
BpKq be the set of functions in B taking values in K. Note that since u is strictly increas-
ing, K is an open interval. BpKq is naturally isomorphic to a subset of <|S|, and we take
it to be equipped with the Euclidean topology. Lemma VIII.C.2 guarantees that, under u,
� generates a well-defined choice correspondence for costly deferral on }pBpKqq ˆ D,
which, with slight abuse of notation, we denote by �.

VIII.B.1.1 Construction of ‘higher level of confidence appropriate’ relation

Lemma VIII.B.1. There exists a non-trivial, continuous weak order 33 Æ on }pAq satisfy-

ing:

i. for all A, B P ⌥, A Æ B iff ◆pAq § ◆pBq;

ii. for all A P ⌥, B P �z⌥, if ◆pAq ° mmcpBq, then A ° B;

iii. for all A, B, P }pAq, if A
e.e.» B, then A ” B;

iv. for all A, B P � Ñ }pAq, there exists h, h1 P A and ↵,↵1 P p0, 1s such that A↵h Æ
B Æ A↵1h1;

v. there exists A P � such that, for all B P }pAq, A Æ B.

where ” and † are the symmetric and asymmetric parts of Æ respectively.

Proof. Recall that, by assumption, � is non-empty. Note that, by VIII-A7, }p�pXqq Ñ
�

c. We first define the function ◆̃ : � Ñ < as follows: ◆̃pAq “ ◆pAq if A P ⌥ and
◆̃pAq “ mmcpAq otherwise. By VIII-A9 part iii. ◆̃ is continuous.

By Lemma VIII.C.1, u is a strictly increasing zeroed continuous affine utility function
representing the restriction of � to sets of constant acts. Note that td P �pXq | �ptc, du, :

0

q “
tcuu and td P �pXq | �ptc, du, :

0

q “ tduu is a subbase for the set of open subsets of
�pXq that are pre-images of sets in K under u; since the image under u of these sets
is ty P K |y † upcqu and ty P K |y ° upcqu, a subbase for the set of open subsets
of K, u is a quotient map (Hart et al., 2004, Section b-4). Moreover, there is a many-
to-one map û : A Ñ BpKq, given by ûpfqpsq “ u ˝ fpsq, for all f P A, s P S.

33. A weak order is a reflexive, transitive and complete binary relation; a relation § on a topological space
X is continuous if ty P X | x § yu and ty P X | x • yu are closed in X .
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Since u is a quotient map and û is a finite product of quotient maps, û is also a quo-
tient map. Let ũ : }pAq Ñ }pBpKqq be the generated map between the compact sub-
sets of A and BpKq (since û is continuous, the image of each element of }pAq is com-
pact). By Aliprantis and Border (2007, Theorem 3.91), the Hausdorff topology on }pAq
coincides with the Vietoris topology on }pAq, and similarly for }pBpKqq. The collec-
tion of sets of the form Gh

0

X Gl
1

X ¨ ¨ ¨ X Gl
n, where the Gi are open subsets of BpKq,

Gh “ tF P }pBpKqq | F Ä Gu and Gl “ tF P }pBpKqq | F X G ‰ Hu, is a base
for the Vietoris topology on }pBpKqq (Aliprantis and Border, 2007, Definition 3.89). So
H Ñ }pBpKqq is open iff it is the union of such sets, and this holds iff ũ´1pHq is the
union of sets of the form ũ´1pGh

0

q X ũ´1pGl
1

q X ¨ ¨ ¨ X ũ´1pGl
nq with Gi open in BpKq.

But since ũ´1pGhq “ tũ´1pF q | F P }pBpKqq, F Ä Gu “ î
G1Pû´1pGqtF P }pAq | F Ä

G1u “ î
G1Pû´1pGqpG1qh and ũ´1pGlq “ tũ´1pF q | F P }pBpKqq, F X G ‰ Hu “

î
G1Pû´1pGqtF P }pAq | F X G1 ‰ Hu “ î

G1Pû´1pGqpG1ql, ũ´1pHq is the union of
sets of the form ũ´1pGh

0

q X ũ´1pGl
1

q X ¨ ¨ ¨ X ũ´1pGl
nq with Gi open in BpKq iff it is a

pre-image of an open subset of }pBpKqq under ũ that is the union of sets of the form
pG1

0

qh X pG1
1

ql X ¨ ¨ ¨ X pG1
nql where the G1

i are open subsets of A. By the definition of the
Vietoris topology on }pAq, this latter property holds iff ũ´1pHq is open. So H is open
in }pBpKqq iff ũ´1pHq is open in }pAq. Hence ũ is a quotient map between }pAq and
}pBpKqq taken with the Vietoris, or equivalently Hausdorff, topology.

Recall that, with slight abuse of notation, we use � : }pBpKqq ˆ D Ñ 2

BpKqYDzH to
denote the choice correspondence for costly deferral generated on }pBpKqqˆD by � under
ũ; similarly, we use ◆ to denote the image of ◆ and likewise for mmc, ⌥, � and ◆̃. (Lemma
VIII.C.2 and VIII-A6 imply that � is well-defined on BpKq and that ◆, mmc, ◆̃, ⌥ and �

are well-defined on }pBpKqq.) Since ũ is a quotient map, it follows from a standard result
(Kelley, 1975, Theorem 3.9) that the continuity of ◆̃ implies that the function it generates
on � Ñ }pBpKqq is continuous.

Let x “ inf ◆p⌥q; by the definition of ◆̃, inf ◆̃p⌥q “ inf ◆̃p�q “ x. For each A P � such
that mmcpAq ‰ x, t↵A`p1´↵ql |↵ P p0, 1s, l P BpKquXp⌥qc ‰ H, by VIII-A10 part ii.
For each such A, let pA be any element of t↵A ` p1 ´ ↵ql |↵ P p0, 1s, l P BpKqu such that
dp ˆA, ⌥q ° 1

2

supA1Pt↵A`p1´↵ql |↵Pp0,1s,lPBpKqu dpA1, ⌥q (where d is the Euclidean metric on

BpKq). Let B “ t pA | A P }pBpKqq, mmcpAq ‰ xu. Note that, by VIII-A9 part i., A R ⌥

for all A P B. We now show that, if B X ⌥ ‰ H, then ◆̃pB X ⌥q “ x. For any A P B X ⌥,



VIII-43 Confidence as a Source of Deferral

the definition of B and the continuity of the metric implies that there is no ↵A ` p1 ´ ↵ql,
for ↵ P p0, 1s, l P BpKq, with distance from ⌥ strictly greater than the distance of A from
⌥, whence, by VIII-A10 part ii., mmcpAq “ x. Since A R ⌥, it follows from the definition
of ◆̃ that ◆̃pAq “ mmcpAq “ x, as required.

Now consider the correspondence t : � Ñ < (ie. map from � Ñ 2

<zH) defined as
follows: tpAq “ t◆̃pAqu if A P ⌥; tpAq “ txu if A P B; and tpAq “ rx, ◆̃pAqs otherwise. t

is obviously a well-defined closed and convex-valued correspondence. We now show that
it is lower hemicontinuous. By Aliprantis and Border (2007, Theorem 17.21), it suffices
to show that for any pAnq P � with An Ñ A, and any y P tpAq, there exists yn Ñ y

with yn P tpAnq for all n. Whenever A R B X ⌥, this is an immediate consequence of
the continuity of ◆̃, the fact that ⌥ and B are closed, and of the definition of t. Whenever
A P B X ⌥, as shown above, ◆̃pAq “ x, so the continuity of t at A follows from the
continuity of ◆̃. Hence t is lower hemicontinuous.

Since � is metric, and hence paracompact, the Michael Selection Theorem (Aliprantis
and Border, 2007, Theorem 17.66) implies that there exists a continuous function s : � Ñ
< such that spAq P tpAq for all A P �. By definition s agrees with ◆̃ on ⌥, and it attains its
infimal value.

It remains to extend s to BpKq. Since }pBpKqq is a metric space, so is �. Since s

is continuous on this space, by Aliprantis and Border (2007, Lemma 3.12) there exists an
equivalent metric on � under which s is Lipschitz, and hence uniformly continuous. By
Aliprantis and Border (2007, Lemma 3.11), there is a uniformly continuous extension of
s to the closure of � under this metric, which, since the metrics are equivalent, coincides
with �, the closure under the Hausdorff metric. Let ŝ be this extension; it is a continuous
function (under the Hausdorff metric on }pBpKqq) on �. Moreover, by definition, ŝp�q “
sp�q.

Since }pBpKqq is a metric space (and hence normal) and � is closed, Tietze’s extension
theorem (Aliprantis and Border, 2007, Theorem 2.47) applies, and implies that there is a
continuous real-valued function � on }pBpKqq and agreeing with ŝ on �. Moreover, � can
be chosen such that �p}pBpKqqq Ñ ŝp�q “ sp�q.

Define the relation Æ on }pAq as follows: for any A, B P }pAq, A Æ B iff �pũpAqq §
�pũpBqq. Since � is a continuous real-valued function defined everywhere on }pBpKqq,
Æ is a continuous weak order; since � is defined on }pBpKqq, Æ satisfies property iii. By
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definition, s and hence � is not a constant function, so Æ is non-trivial. Moreover, s attains
its infimal value, so � attains its infimal value with an element in �, and hence Æ satsifies
property v. We now show that it satisfies the other required properties.

Property i. follows immediately from the fact that, for all A P }pAq with A P ⌥, by
definition, �pũpAqq “ ◆pAq. As concerns property ii., if A P ⌥ and B P �z⌥, then, by
the definition of �, �pũpAqq “ ◆pAq and �pũpBqq § mmcpBq. Hence if ◆pAq ° mmcpBq,
then �pũpAqq ° �pũpBqq, as required. We now show that Æ satisfies property iv. On the
one hand, by VIII-A10 part i., for any A, B P � with �pũpAqq † �pũpBqq “ x, there exists
↵1 P p0, 1s and h1 P A such that �pũpA↵1h1qq “ ◆pA↵1h1q • x, as required. On the other
hand, to treat the case where A, B P � with �pũpAqq ° �pũpBqq “ x, we consider two
cases. If mmcpAq “ inf ◆p⌥q “ x, by VIII-A5 there exists ↵1 P p0, 1s and h1 P A such that
:
0

R �pũpA↵1h1q, :
0

q, so, by the definition of �, �pũpA↵1h1qq § mmcpAq “ x § x. On the
other hand, if mmcpAq ‰ inf ◆p⌥q, by construction there exists ↵1 P p0, 1s and h1 P A such
that ũpA↵1h1q P B and so �pũpA↵1h1qq “ x § x. It follows that Æ satisfies property iv, as
required. This completes the proof of Lemma VIII.B.1.

VIII.B.1.2 Construction of confidence ranking and representation

Throughout this section, and the relevant Lemmas in Appendix VIII.C, Æ is assumed
to be any relation satisfying the conditions i–v of Lemma VIII.B.1. We say that a function
D : }pAq Ñ ⌅ respects Æ if, for any A, B P }pAq, DpAq Ñ DpBq iff A Æ B. The
following lemma is central.

Lemma VIII.B.2. There exists a centred strict continuous confidence ranking ⌅ and a

cautiousness coefficient D : }pAq Ñ ⌅ respecting Æ such that, for all A P }pAq,

(VIII.8) �pA, :
0

q “
#

suppA, u, DpAqq if suppA, u, DpAqq ‰ H
t:

0

u if suppA, u, DpAqq “ H
where u is as in Lemma VIII.C.1.

Proof. By Lemma VIII.C.1, there exists a strictly increasing zeroed continuous affine util-
ity function u representing choices on menus consisting of constant acts. We use the nota-
tion introduced in the proof of Lemma VIII.B.1; in particular, we denote by ũ : }pAq Ñ
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}pBpKqq the function on menus generated by u. As above, we use this function to map �
into a choice correspondence for costly deferral on }pBpKqq ˆ D, which we also call �.
Let Æ on }pBpKqq be the image of Æ under u, and similarly for ◆, mmc, ⌥, � and �̄x. We
begin by stating two consequences of the construction and properties of Æ.

Firstly, by Lemma VIII.C.4, for all A P }pBpKqq, ↵ P p0, 1s and l P BpKq, if ↵A `
p1 ´ ↵ql Æ A and :

0

R �pA, :
0

q, then :
0

R �p↵A ` p1 ´ ↵ql, :
0

q, and similarly for the
case where ↵A ` p1 ´ ↵ql Ø A. Moreover, Lemma VIII.C.5 establishes that, for every
A, A1 P �, there exists ↵ P p0, 1s and l P BpKq such that ↵A ` p1 ´ ↵ql ” A1.

Let S be the set of equivalence classes of Æ. As standard, Æ on }pBpKqq generates
a relation on S , which will be denoted § (with symmetric and asymmetric components “
and † respectively): for r, s P S , r § s iff, for any A P r and A1 P s, A Æ A1. r P S is
a minimal (respectively maximal) element if r § s (resp. r • s) for all s P S . Note that,
since § is a linear ordering, there is at most one minimal (resp. maximal) element. By
property v of Æ, there is a minimal element of S , which we call S; the maximal element,
if it exists, is denoted by S . We say that an element r P S is full if, for every A P �,
there exists ↵ P p0, 1s and l P BpKq such that ↵A ` p1 ´ ↵ql P r. Let Sf be the set
of full elements of S . By Lemma VIII.C.5 and the construction of Æ, every non-maximal
element of S is full. Let S` be the set of non-minimal elements of Sf . For each r P Sf ,
define �r : }pBpKqq Ñ 2

BpKq as follows: for all A P �, �rpAq “ B if there exists
B P 2

BpKq, l P BpKq and ↵ P p0, 1s such that �p↵A ` p1 ´ ↵ql, :
0

q “ ↵B ` p1 ´ ↵ql
and ↵A ` p1 ´ ↵ql P r, and �rpAq “ H otherwise; and for all A R �, �rpAq “ �pA, :

0

q.
Lemma VIII.C.6 guarantees that �p↵A ` p1 ´ ↵ql, :

0

q “ ↵B ` p1 ´ ↵ql if and only if
�p�A ` p1 ´ �qm, :

0

q “ �B ` p1 ´ �qm for all l, m P BpKq and ↵, � P p0, 1s such that
↵A ` p1 ´ ↵ql, �A ` p1 ´ �qm P r, so �r is well-defined for every r P Sf .

By Lemma VIII.C.7, the functions �r respect the ordering § on S in the following
sense: for all A P }pAq and r, s P Sf , if r • s, then �rpAq ‰ H implies that �spAq “
�rpAq. We now establish some further properties of the �r.

Lemma VIII.B.3. For every r P S`, �r satisfies the following continuity property: for all

sequences An P }pBpKqq, an P BpKq with An Ñ A and an Ñ a, if an P �rpAnq for all

n P N, then a P �rpAq.

Proof. Let r be a non-minimal element of Sf , and let an, An be a pair of sequences with
An Ñ A, an Ñ a and an P �rpAnq for all n P N. We consider the case where A P �, and
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suppose without loss of generality that A P r. (The case where A R � can be treated in an
analogous fashion, replacing A in the argument below by any member of r.) If there exists
N P N such that An Æ A for all n • N , then, by Lemma VIII.C.7, an P �pAn, :

0

q for all
n • N , so by VIII-A9 part i., a P �pA, :

0

q, and thus a P �rpAq, as required.
Now suppose that there is no such N . Since r is a non-minimal element of Sf , there

exists l P BpKq and ¯� P p0, 1q such that ¯�A ` p1 ´ ¯�ql † A. Let ⌘ “ mint� P p¯�, 1s| �A `
p1 ´ �ql Ø Au (by the continuity of Æ this is a minimum). Consider any � P p¯�, ⌘q; by the
definition of ⌘, �A`p1´�ql † A. By the continuity of Æ, there exists N� P N such that, for
all n ° N�, �An`p1´�ql † A. Lemma VIII.C.7 implies that �an`p1´�ql P �p�An`p1´
�ql, :

0

q for every n ° N�, whence, by VIII-A9 part i., �a ` p1 ´ �ql P �p�A ` p1 ´ �ql, :
0

q.
Since this holds for all � P p¯�, ⌘q, VIII-A9 part i. implies that ⌘a ` p1 ´ ⌘ql P �p⌘A ` p1 ´
⌘ql, :

0

q. Since ⌘A ` p1 ´ ⌘ql P r, it follows that a P �rpAq, as required.

Lemma VIII.B.4. For each r P Sf , there exists a unique reflexive, transitive binary re-

lation ®r representing �r, in the following sense: �rpAq “ ta P A | a ©r b @b P Au.

Moreover, if r “ S , then ®r is complete.

Proof. We first show that for every r P Sf , �r satisfies properties ↵ and ⇡ in Theorem
VIII.2 (see also Hill (2009)).

Consider firstly a P BpKq and A, B P }pBpKqq such that a P A Ñ B and a P �rpBq,
and let xr P <•0

be such that, for any A1 P }pAq such that A1 P ⌥ and A1 P r, ◆pA1q “ xr

(by property i of Æ, xr is well-defined). It follows from a P �rpBq that, for all ↵ P p0, 1s,
l P BpKq such that :xr R �p↵B ` p1 ´ ↵ql, :xrq, ↵a ` p1 ´ ↵ql P �p↵B ` p1 ´ ↵ql, :

0

q.
To see this, take any ↵ P p0, 1s, l P BpKq such that :xr R �p↵B ` p1 ´ ↵ql, :xrq. If
↵B ` p1 ´ ↵ql P ⌥, then ◆p↵B ` p1 ´ ↵qlq § r, so ↵B ` p1 ´ ↵ql P s § r, and since,
by Lemma VIII.C.7, �spBq “ �rpBq, ↵a ` p1 ´ ↵ql P �p↵B ` p1 ´ ↵ql, :

0

q, contradicting
the assumption that ↵B ` p1 ´ ↵ql P ⌥. So ↵B ` p1 ´ ↵ql R ⌥, whence it follows from
a P �rpBq by the argument in Lemma VIII.C.6 that ↵a ` p1 ´ ↵ql P �p↵B ` p1 ´ ↵ql, :

0

q,
as required. So a P �̄xrpBq, from which it follows, by VIII-A1, that a P �̄xrpAq. If A R �,
then :xr R �pA, :xrq, so a P �̄xrpAq implies that a P �pA, :

0

q. Now consider the case where
A P �, and suppose without loss of generality that A P r. By the definition of ◆, VIII-A4
and VIII-A9 part i., :xr R �pA, :xrq, which, given a P �̄xrpAq, implies that a P �pA, :

0

q.
So a P �rpAq, and �r satisfies property ↵.
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Now consider a, b P BpKq and A, B P }pBpKqq such that a P A, b P AXB, a P �rpAq
and b P �rpBq. Let xr P <•0

be such that, for any A1 P }pAq such that A1 P ⌥ and A1 P r,
◆pA1q “ xr. As above, for all ↵ P p0, 1s, l P BpKq such that :xr R �p↵A ` p1 ´ ↵ql, :xrq,
↵a ` p1 ´ ↵ql P �p↵A ` p1 ´ ↵ql, :

0

q, and for all ↵ P p0, 1s, l P BpKq such that :xr R
�p↵B `p1´↵ql, :xrq, ↵b`p1´↵ql P �p↵B `p1´↵ql, :

0

q. So a P �̄xrpAq and b P �̄xrpBq,
whence, by VIII-A2, a P �̄xrpAYBq. If AYB R �, then :xr R �pAYB, :xrq, which, given
a P �̄xrpA Y Bq, implies a P �pA Y B, :

0

q. Now consider the case where A Y B P � and
suppose without loss of generality that AYB P r. By the definition of ◆, VIII-A4 and VIII-
A9 part i., :xr R �pAYB, :xrq, which, given a P �̄xrpAYBq, implies that a P �pAYB, :

0

q.
So a P �rpA Y Bq, and �r satisfies property ⇡.

Now consider the case where r is non-minimal in S . By Lemma VIII.B.3, �r satisfies
the continuity condition in Theorem VIII.2. By VIII-A8 part ii., for every a P BpKq,
a P �ptau, :

0

q, so a P �rptauq, and �r satisfies sing. Theorem VIII.2 implies that there
exists a unique reflexive, transitive binary relation representing �r, as required.

For the case where r “ S , note firstly that, by VIII-A5, for every A P }pAq, there
exists ↵ P p0, 1s, h P A such that :

0

R �pA↵h, :
0

q. By Lemma VIII.C.7, it follows that
�SpAq ‰ H for all A P }pAq: �S always takes non-empty values. Theorem VIII.2 implies
the required representation.

Note that, by VIII-A8 part i., ®r is non-trivial for all r P S . We now establish some
other properties of the relations ®r. Recall that a binary relation ® on BpKq is

— monotonic if, for all a, b, P BpKq, if a § b then a ® b.
— affine if, for all a, b, c P BpKq and ↵ P p0, 1q, a ® b iff ↵a`p1´↵qc ® ↵b`p1´↵qc.
— continuous if, for all an, bn P BpKq, if an ® bn for all n P N, an Ñ a and bn Ñ b,

then a ® b.

Lemma VIII.B.5. For every r P Sf , ®r is monotonic and affine. Moreover, if r P S`, ®r

is continuous.

Proof. Monotonicity. Suppose that a § b. So ↵a`p1´↵ql § ↵b`p1´↵ql for all l P BpKq
and ↵ P p0, 1s. VIII-A8 part ii. implies that ↵b ` p1 ´ ↵ql P �p↵ta, bu ` p1 ´ ↵ql, :

0

q for
all such l and ↵. It follows from the definition of �r and Lemma VIII.B.4 that a ®r b.
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Affineness. We consider the case where ta, bu, t↵a ` p1 ´↵qc,↵b ` p1 ´↵qcu P �; the
other case is treated similarly. Note that it follows from the specification of the case and
VIII-A8 part ii. that a ‰ b. Since r P Sf , there exists � P p0, 1s and l P BpKq such that
�ta, bu`p1´�ql P r. Consider t�p↵a`p1´↵qcq`p1´�ql, �p↵b`p1´↵qcq`p1´�qlu:
since r P Sf , there exists � P p0, 1s and m P BpKq such that �t�p↵a ` p1 ´ ↵qc ` p1 ´
�ql, �p↵b ` p1 ´ ↵qc ` p1 ´ �qlu ` p1 ´ �qm P r. Note that �p�p↵a ` p1 ´ ↵qcq ` p1 ´
�qlq ` p1 ´ �qm “ ↵�p�a ` p1 ´ �qlq ` p1 ´ ↵�qp �´↵�

1´↵�
p�c ` p1 ´ �qlq ` 1´�

1´↵�
mq, where

�´↵�
1´↵�

p�c ` p1 ´ �qlq ` 1´�
1´↵�

m P BpKq since it is a mix of elements of BpKq; similarly
for b. Let f, g, h P A be such that �a ` p1 ´ �ql “ u ˝ f , �b ` p1 ´ �ql “ u ˝ g and
�´↵�
1´↵�

p�c`p1´�qlq` 1´�
1´↵�

m “ u˝h. Since tf, gu ” tf↵�h, g↵�hu, by Lemma VIII.C.4 and
VIII-A3, �b`p1´�ql P �p�ta, bu`p1´�ql, :

0

q iff �p�p↵b`p1´↵qcq`p1´�qlq`p1´�qm P
�pt�p�p↵a`p1´↵qcq`p1´�qlq`p1´�qm, �p�p↵b`p1´↵qcq`p1´�qlq`p1´�qmu, :

0

q.
But since �p�p↵a`p1´↵qcq`p1´�qlq`p1´�qm “ ��p↵a`p1´↵qcq`p1´��qp �´��

1´��
l`

1´�
1´��

mq, and similarly for b, it follows that a ®r b iff ↵a ` p1 ´ ↵qc ®r ↵b ` p1 ´ ↵qc, as
required.

Continuity. Continuity of �r for r P S` is an immediate consequence of Lemma
VIII.B.3 and the representation in Lemma VIII.B.4.

Lemma VIII.B.6. For each r P S`, there exists a unique closed convex set of probabilities

Cr such that, for all A P }pBpKqq,

(VIII.9) �rpAq “
#

a P A |
ÿ

sPS

apsqppsq •
ÿ

sPS

bpsqppsq @p P Cr, @b P A

+

Proof. By VIII-A8 part i. and Lemmas VIII.B.4 and VIII.B.5, ®r is a non-trivial, mono-
tonic, affine, continuous, reflexive, transitive relation, for each r P S`. By Ghirardato et al.
(2004, Proposition A.2), for every such relation ®r, there is a unique closed convex set of
probabilities Cr such that, for all a, b P B, a ®r b iff

(VIII.10)
ÿ

sPS

apsqppsq §
ÿ

sPS

bpsqppsq for all p P Cr

The required representation follows from Lemma VIII.B.4.
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Lemma VIII.B.7. For all r, s P S` with r • s, Cs Ñ Cr.

Proof. By Lemma VIII.C.7 and the representation in Lemma VIII.B.4, for all r, s P Sf

with r • s, ®rÑ®s. The result follows directly by Ghirardato et al. (2004, Proposition
A.1).

Lemma VIII.B.8. Let ®ì
S be the relation on BpKq generated by (VIII.10) with the set of

probability measures
ì

rPS` Cr. Then ®S“®ì
S .

Proof. By Lemma VIII.C.7, ®SÖ î
rPS` ®r, and so ®SÖ®ì

S . For the inverse con-
tainment, suppose that a ®S b. If ta, bu R �, the result is immediate, so suppose not.
Since ®S is affine, by Lemma VIII.B.5, it follows that x˚ ©S ↵pa ´ bq ` x˚, for any
↵ P p0, 1q, x P < such that x˚,↵pa ´ bq ` x˚ P BpKq. Take ↵ and x such that
this is the case, and let y “ minsPSp↵pa ´ bq ` x˚qpsq. We may suppose without loss
of generality that tx˚,↵pa ´ bq ` x˚u P S . Let f, g, h P A such that u ˝ f “ x˚,
u ˝ g “ ↵pa ´ bq ` x˚ and u ˝ h “ y˚. By VIII-A9 part ii., since f P �ptf, gu, :

0

q,
fpsq P �ptfpsq, hpsqu, :

0

q and gpsq P �ptgpsq, hpsqu, :
0

q for all s P S, for every � P p0, 1q,
there exists z P <•0

such that �̄zptf, guq “ H but �̄zptf, g�huq ‰ H. It follows from
the property i of Æ and its continuity that, for every � P p0, 1q, there exists r ° S such
that �rptf, g�huq ‰ H. By Lemma VIII.C.7, the representation in Lemma VIII.B.4 and
the monotonicity and transitivity of ®S , x˚ ©r �p↵pa ´ bq ` x˚q ` p1 ´ �qy˚, and hence
x˚ ©ì

S �p↵pa ´ bq ` x˚q ` p1 ´ �qy˚. Since this holds for every � P p0, 1q and ®ì
S is

continuous, it follows that x˚ ©ì
S ↵pa ´ bq ` x˚ and thus, since it is affine, a ®ì

S b, as
required.

Lemma VIII.B.9. The set
ì

rPS` Cr is a singleton.

Proof. By Lemma VIII.B.4, ®S is complete. Since, by Lemma VIII.B.8, ®S is represented
according to (VIII.10) with set of priors

ì
rPS` Cr, it follows that

ì
rPS` Cr is a singleton.

Lemmas VIII.C.8 and VIII.C.9 ensure that for all r P S`, Cr “ î
r1†r Cr1 and Cr “

ì
r1°r Cr1 whenever r is non-maximal. Lemma VIII.C.10 establishes that, for all r, s P S`,

if Cr Ä Cs, then pCr X pripCsqqcq X ripîr1PSf Cr1q “ H, and similarly for
ì

rPS` Cr and Cs

with s P S`.
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Conclusion of the proof of Lemma VIII.B.2. Define

⌅ “
#

tCr| r P S`u Y tìrPS` Cru if S “ Sf

tCr| r P S`u Y tìrPS` Cr,
î

rPS` Cru if S “ Sf Y tSu
where the Cr are as specified in Lemma VIII.B.6, and where, in the second case, S is
understood to be a maximal element of S not belonging to Sf (ie. a non-full maximal
element). It follows from Lemma VIII.B.7 that ⌅ is a nested family of sets. Since the Cr

are closed and convex for all r P S` (Lemma VIII.B.6), ⌅ is a confidence ranking. By
Lemma VIII.B.9, it contains a singleton set, and so is centred. By Lemmas VIII.C.8 and
VIII.C.9, ⌅ is continuous, and by Lemma VIII.C.10, it is strict.

Define D as follows: for all A P }pAq, if ru ˝ As P S`, then DpAq “ Cru˝As, if
A P S , then DpAq “ ì

sPS` Cs, and if A P S , then DpAq “ î
sPS` Cs. By construction

and Lemma VIII.B.7, D respects Æ. Extensionality, Continuity and �-Richness of D are
immediate from the definition, the fact that D respects Æ, and properties iii, iv and the
continuity of Æ. By construction, VIII-A6, and Lemmas VIII.B.6 and VIII.B.8, u, ⌅, D

represent the restriction of � to }pAq ˆ t:
0

u according to (VIII.8).

Define c : ⌅ Ñ <•0

Y t8u as follows. For every C P ⌅, if C “ ì
C1P⌅

C 1, then
cpCq “ upinf ◆p⌥qq; if C “ î

C1P⌅

C 1, then cpCq “ upsup ◆p⌥qq; otherwise, cpCq “ up◆pAqq
for any A P D´1pCq X ⌥. (Lemma VIII.B.2, the continuity and �-richness of D and the
fact that it respects Æ, and properties i and ii of Æ imply that the value of c in the last
case is well-defined: there always exists an appropriate A and the value is independent of
the choice of A satisfying the conditions. The fact that u is zeroed implies that c takes non
negative values.) By property i of Æ and the fact that D respects Æ, c is order-preserving and
-reflecting with respect to Ñ. Continuity of c follows from the definition and the continuity
of Æ, ⌅ and D.

Lemma VIII.B.10. For every A P }pAq and x ° 0, if cpDpAqq § upxq, then

�pA, :xq “
#

suppA, u, DpAqq if suppA, u, DpAqq ‰ H
suppA, u, tp

⌅

uq if suppA, u, DpAqq “ H
where u, ⌅ and D are as in Lemmas VIII.C.1 and VIII.B.2.
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Proof. Let A P }pAq and x ° 0 be such that cpDpAqq § upxq. It follows from the
definitions of c and ◆, VIII-A4 and VIII-A9 part i. that either :

0

R �pA, :
0

q or :
0

P �pA, :
0

q
and :x R �pA, :xq. It follows from Lemma VIII.B.2 that suppA, u, DpAqq ‰ H in the
former case and that suppA, u, DpAqq “ H in the latter case. Moreover, in the former
case, VIII-A4 implies that �pA, :x1q “ suppA, u, DpAqq, for all x1 • 0, which implies the
desired representation. Now consider the latter case. Note that, in this case, A P �.

By the �-Richness of D, there exists ↵ P p0, 1s and h P A such that DpA↵hq “
ì

C1P⌅

C 1. By the fact that ⌅ is centred,
ì

C1P⌅

C 1 “ tp
⌅

u. Lemma VIII.B.2 implies
that �pA↵h, :

0

q “ suppA↵h, u, tp
⌅

uqq. By VIII-A3, since :x R �pA, :xq, we have that
�pA, :xq↵h “ �pA↵h, :

0

q “ suppA↵h, u, tp
⌅

uq. So �pA, :xq “ suppA, u, tp
⌅

uq, as re-
quired.

The desired representation is a direct consequence of Lemmas VIII.B.2 and VIII.B.10,
VIII-A6, and the construction of c. Hence the axioms imply the representation, as required.

VIII.B.2 Necessity of axioms

As concerns the (ii) to (i) direction, most cases are straightforward, in the light of the
fact that the representation (VIII.2) implies that, if f P �̄xpA, :

0

q, then f is an optimal
element in A according to the unanimity rule with the level of confidence c´1pxq. So VIII-
A1, for example, holds if f P suppB, u, Cq implies that f P suppA, u, Cq, where C is the
confidence level such that cpCq “ upxq; this is evidently the case. Similar considerations
apply to VIII-A2 and VIII-A9 part ii. (in the latter case, note that the fact above implies
that mmcpAq gives the cost of the highest confidence level which yields an optimal element
from A according to the unanimity rule). Apart from the continuity axioms, which shall
be discussed below, perhaps the only other axiom requiring comment is VIII-A3. Note
that, since the confidence ranking is strict, if

∞
sPS upfpsqq.ppsq “ upcq for all p P C, for

some C P ⌅ and f P A, c P �pXq, then for any C 1 P ⌅ such that
∞

sPS upfpsqq.ppsq ‰
upcq for some p P C 1, there exists q, q1 P C 1 such that

∞
sPS upfpsqq.qpsq ° upcq and

∞
sPS upfpsqq.q1psq † upcq. Hence, if supptf, cu, u, Cq “ tf, cu for some C P ⌅, then for

every C 1 P ⌅, either supptf, cu, u, C 1q “ tf, cu or supptf, cu, u, C 1q “ H. It follows, given
the properties of the unanimity rule, that for any A P }pAq, if suppA, u, Cq “ A1 for some
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C P ⌅, then for every C 1 P ⌅, either suppA, u, C 1q “ A1 or suppA, u, C 1q “ H. In the light
of representation (VIII.2), this implies that VIII-A3 holds.

The final cases of potential interest are VIII-A9, parts i and iii. 34 As concerns the for-
mer, consider any An, A P }pAq, fn, f P A and xn, x P <•0

, n P N with An Ñ A,
fn Ñ f and xn Ñ x, and such that fn P �pAn, :xnq for all n P N. We distinguish
two cases. If :

0

P �pAn, :
0

q for all n • N for some N P N, then f P �pA, :xq fol-
lows from the continuity of the EU representation, the continuity of c, the form of rep-
resentation (VIII.2), and (in the case where :

0

R �pA, :
0

q) the fact, noted above, that
suppA, u, tp

⌅

uq “ suppA, u, Cq for any C P ⌅ such that suppA, u, Cq ‰ H. Now con-
sider the case where, for every N P N, there exists n ° N with :

0

R �pAn, :
0

q. Given
the form of representation (VIII.2), it suffices to show that, for any sequences An Ñ A

and fn Ñ f with fn P �pAn, :
0

q for all n P N, f P �pA, :
0

q. Taking such a pair of
sequences, we consider the case where there is no N P N with DpAnq Ö DpAq for all
n • N ; the other case is treated similarly. Since there is no such sequence, DpAq ‰ tp

⌅

u,
so there exists B P }pAq with DpBq Ä DpAq. By the continuity of D, for each such
B, there exists NB P N such that DpAnq Ö DpBq for all n • NB. It follows that, for
each n • NB,

∞
sPS upfnpsqq.ppsq • ∞

sPS uphpsqq.ppsq for all p P DpBq and h P An.
Hence, by the continuity of the representation,

∞
sPS upfpsqq.ppsq • ∞

sPS uphpsqq.ppsq for
all p P DpBq and h P A. Since this holds for every B with DpBq Ä DpAq, and since the
continuity of the confidence ranking and D imply that DpAq “ î

DpBqÄDpAq DpBq, there
cannot be a q P DpAq such that

∞
sPS upfpsqq.qpsq † ∞

sPS uphpsqq.qpsq for some h P A.
So f P suppA, u, DpAqq; hence f P �pA, :

0

q and so f P �pA, :xq , as required.

Finally, we consider VIII-A9 part iii. We use the fact, established in Lemma VIII.C.11,
that mmc´1pr0, xsq and mmc´1prx, 8qq are closed in � for all x P p0, sup ◆p⌥qq. Sup-
pose that VIII-A9 part iii. does not hold, and that there exists A P � with A P
p◆´1pr0, xsq X ⌥q Y pmmc´1pr0, xsq X ⌥

cqzp◆´1pr0, xsq X ⌥q Y pmmc´1pr0, xsq X ⌥

cq
for some x P p0, sup ◆p⌥qq. It follows that A P p◆´1pr0, xsq X ⌥qzp◆´1pr0, xsq X
⌥q or A P pmmc´1pr0, xsq X ⌥

cqzpmmc´1pr0, xsq X ⌥

cq. Suppose first that A P
p◆´1pr0, xsq X ⌥qzp◆´1pr0, xsq X ⌥q. If A P ⌥, then, by the continuity of D and c and
the representation, A P ◆´1pr0, xsq X ⌥. If A R ⌥, then, since ◆´1pr0, xsq Ñ mmc´1pr0, xsq

34. Richness (VIII-A10) is a straightforward consequence of the �-Richness of D for part i., and of the
representation and the �-Richness and continuity of D for part ii. Likewise, VIII-A9 part iv. is a straightfor-
ward consequence of the �-Richness of D and the form of the representation.
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and the latter set is closed by Lemma VIII.C.11, A P mmc´1pr0, xsq X ⌥

c. Now sup-
pose that A P pmmc´1pr0, xsq X ⌥

cqzpmmc´1pr0, xsq X ⌥

cq. Since, by the continuity of
the representation, ⌥

c is closed, A P ⌥

c. It follows, since mmc´1pr0, xsq is closed (by
Lemma VIII.C.11), that A P mmc´1pr0, xsq X ⌥

c. All cases contradict the assumption that
A P p◆´1pr0, xsq X ⌥q Y pmmc´1pr0, xsq X ⌥

cqzp◆´1pr0, xsqX⌥qYpmmc´1pr0, xsqX⌥

cq;
so p◆´1pr0, xsqX⌥qYpmmc´1pr0, xsqX⌥

cq is closed in �, as required. A similar argument
establishes that p◆´1prx, 8sq X ⌥q Y pmmc´1prx, 8sq X ⌥

cq is closed in �.

VIII.B.3 Uniqueness

Uniqueness of u follows from the Herstein-Milnor theorem. Without loss of generality,
we can thus restrict attention to two representations pu, ⌅, D, cq and pu, ⌅1, D1, c1q of the
same choice correspondence � involving the same utility function. Note firstly that if � “
H, then uniqueness of all elements follows from the standard uniqueness properties of the
EU representation; henceforth we suppose that � ‰ H. (VIII.2) implies that, for any
A P ⌥, cpDpAqq “ up◆pAqq. So the function c ˝ D : }pAq Ñ <•0

Y t8u is unique on ⌥.
By the continuity of c and D, it follows that it is unique on ⌥.

We now consider the uniqueness of D. We first establish that D and D1 coincide on
⌥. Suppose, for the purposes of reductio, that there exists ˆA P ⌥ for which they do not
coincide. Suppose, without loss of generality, that p P Dp ˆAqzD1p ˆAq. By a separating
hyperplane theorem, there is a linear functional � on bapSq and ↵ P < such that �ppq †
↵ § �pqq for all q P D1p ˆAq. Since B is finite-dimensional, there is a real-valued function
a P B such that �pqq “ ∞

sPS apsqqpsq for any q P bapSq. Without loss of generality �
and ↵ can be chosen so that ↵ P K and a P BpKq. Taking f P A such that u ˝ f “
a and c P �pXq such that upcq “ ↵, we have that

∞
sPS upfpsqqppsq • upcq for all

p P D1p ˆAq, whereas this is not the case for all p P Dp ˆAq. Let x P <°0

be such that
upxq “ cpDp ˆAqq “ c1pD1p ˆAqq (note that since ˆA P ⌥, it belongs to the domain where
c ˝ D and c1 ˝ D1 agree). It follows from the representation (VIII.2) and the aforementioned
properties of D1p ˆAq that f P �̄xptf, cuq. However, it follows from the representation and
the properties of Dp ˆAq that f R �̄xptf, cuq, contradicting the assumption that pu, ⌅, D, cq
and pu, ⌅1, D1, c1q both represent the choice correspondence �. Hence D and D1 coincide
on ⌥. Now consider A P ⌥z⌥, and take any sequence of An P ⌥ with An Ñ A. By the
continuity of D, DpAq “ limnÑ8 DpAnq and similarly for D1; since D and D1 coincide on
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⌥, DpAq “ D1pAq. So D and D1 coincide on ⌥.

As concerns the uniqueness of ⌅, we show that ⌅ “ ⌅

1 “ Dp⌥q. It follows from what
has just been established that ⌅ and ⌅

1 both contain Dp⌥q. We firstly show that there do
not exist C P ⌅zDp⌥q with C à ì

A1P⌥

DpA1q. Suppose that there does exist such C P ⌅.
Using a separating hyperplane theorem as above, one can construct f P A, c P �pXq such
that

∞
sPS upfpsqqppsq • upcq for all p P C, whereas this is not the case for

ì
A1P⌥

DpA1q.
Hence tf, cu P �. By the continuity of ⌅, there exists C2 P ⌅ such that C2 à ì

A1P⌥

DpA1q
and it is not the case that

∞
sPS upfpsqqppsq • upcq for all p P C2. By the �-Richness

and continuity of D, there exists ↵ P p0, 1s, h P A such that Dptf↵h, c↵huq “ C2. It
follows from the representation that tf↵h, c↵hu P ⌥, and from the order-preserving and
-reflecting properties of c that ◆ptf↵h, c↵huq † inf ◆p⌥q, which is a contradiction. So there
is no C P ⌅zDp⌥q with C à ì

A1P⌥

DpA1q, as required. A similar argument shows that
there exists no C P ⌅zDp⌥q with C â î

A1P⌥

DpA1q. Since ⌅ is nested, it follows that
⌅ “ Dp⌥q, and similarly for ⌅

1. So ⌅ “ ⌅

1, as required.

Finally, the uniqueness of c is a direct consequence of the fact that ⌅ “ Dp⌥q, and the
uniqueness of D and c ˝ D on ⌥.

VIII.C Proofs of results mentioned in Appendices VIII.A

and VIII.B

Throughout this Appendix, we adopt the notation introduced in Appendix VIII.B.

VIII.C.1 Proofs of results used in Appendix VIII.B

Proof of Theorem VIII.2. Define ® by x ® y iff y P �ptx, yuq. Reflexivity is an immediate
consequence of sing. 35 Transitivity follows from ⇡ and ↵, by the same reasoning as used
in the proof of Hill (2009, Theorem 2). It is a straightforward consequence of ↵ that, if

35. Note that there is an error in the statement and proof of Theorem 2 in Hill (2009). The proof (p300)
establishes the representation for all non-singleton menus, but not for singleton menus; accordingly, it does
not show the reflexivity of the representing relation. This omission is corrected by the addition of the axiom
sing.
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x P �pAq, then x © y for all y P A. It remains to show that if x © y for all y P A, then
x P �pAq.

Suppose that this is not the case: ie. x © y for all y P A, but x R �pAq. We first
show that there exists a maximal subset A1 of A such that x P A1 and x P �pA1q. sing

implies that there exists at least one subset such that x is in the image of �, namely txu.
The continuity of � implies that if there were an increasing (under set inclusion) infinite
chain Ai of subsets of A such that x P �pAiq for all i, then x P �pîAiq (where

î
Ai is

compact since it is contained in A) so this is a subset containing all the subsets in the chain
and such that x is in its image under �. Hence, by Zorn’s Lemma, there exists a maximal
subset of A such that x P A1 and x P �pA1q. Since x R �pAq, any such maximal subset
cannot be A. Take any such subset A1 and consider any y P AzA1. Since x P �pAq and
x P �ptx, yuq by hypothesis, ⇡ implies that x P �pA1 Y tyuq, contradicting the maximality
of A1. Hence x P �pAq as required.

The uniqueness is immediate from the definition of ®. Finally, since ⇡ implies Sen’s
�, the standard theorem for choice correspondences (for example Sen (1971)) implies that,
if � always takes non-empty values then it can be represented by a complete, reflexive,
transitive binary relation, without the need for the continuity assumption.

Lemma VIII.C.1. There exists a strictly increasing zeroed continuous affine utility func-

tion u : �pXq Ñ < representing the restriction of � to sets of constant acts.

Proof. VIII-A6 and VIII-A7 imply that �pA, :
0

q Ñ A for all A P }pAq such that A Ñ
�pXq. VIII-A1 and VIII-A2 imply that the restriction of �p‚, :

0

q to sets of constant acts
satisfies properties ↵ and ⇡ in Theorem VIII.2. By Theorem VIII.2, there exists a complete,
transitive, reflexive preference relation ®0

|�pXq
representing the restriction to �p‚, :

0

q to sets
of constant acts. By VIII-A8 part i., VIII-A3 and VIII-A9 part i., ®0

|�pXq
is a non-trivial

relation satisfying independence and continuity. The existence of an affine u representing
®0

|�pXq
follows from the Herstein-Milnor theorem. VIII-A9 part i. implies that u is contin-

uous. By VIII-A8 part i., u is strictly increasing. Since u is unique up to positive affine
transformation, it can be chosen to be zeroed, as required. By VIII-A4, �pA, :xq “ �pA, :

0

q
for all A P }pAq with A Ñ �pXq and all x P <•0

, so u represents the restriction of � to
constant acts, as required.
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Lemma VIII.C.2. For all A, B P }pAq and x P <•0

, if A
e.e.» B with relevant correspon-

dence �, then �pB, :xq “ �p�pA, :xqq if �pA, :xq Ñ A and �pB, :xq “ :x if not.

Proof. Take any A, B and � with the specified properties. If :x P �pA, :xq, then VIII-A8
part iii. and VIII-A6 imply that �pB, :xq “ :x. Now consider the case where :x R �pA, :xq.
Let ¯A “ �pA, :xq; by VIII-A6, ¯A Ñ A. By VIII-A5, there exists ↵ P p0, 1s and h P A
such that :

0

R �pA↵h, :
0

q, and by VIII-A3, �pA↵h, :
0

q “ ¯A↵h for any such ↵ and h.
For any f P ¯A and f 1 P �pfq, it follows from VIII-A5 that there exists ↵1 P p0, 1s and
h1 P A such that :

0

R �ppA Y tf 1uq↵1h1, :
0

q. For any such ↵1 and h1, VIII-A2 (applied
with x “ 0) implies that ¯A↵1h1 Y tf 1

↵1h1u Ñ �ppA Y tf 1uq↵1h1, :
0

q, and VIII-A1 implies
that �ppA Y tf 1uq↵1h1, :

0

q “ ¯A↵1h1 Y tf 1
↵1h1u. Similarly, for any f P Az ¯A and f 1 P �pfq,

VIII-A5 implies that there exists ↵1 P p0, 1s and h1 P A such that :
0

R �ppAYtf 1uq↵1h1, :
0

q.
For any such ↵1 and h1, VIII-A2 implies that ¯A↵1h1 Ñ �ppA Y tf 1uq↵1h1, :

0

q and that if
f 1

↵1h1 P �ppAYtf 1uq↵1h1, :
0

q, then f↵1h1 P �ppAYtf 1uq↵1h1, :
0

q, from which it would follow
by VIII-A1 that f↵1h1 P ¯A↵1h1, contrary to the assumption. Hence �ppA Y tf 1uq↵1h1, :

0

q “
¯A↵1h1. Repeating this reasoning, we have that, for ↵2 P p0, 1s and h2 P A such that

:
0

R �ppA Y Bq↵2h2, :
0

q, �ppA Y Bq↵2h2, :
0

q “ ¯A↵2h2 Y �p ¯Aq↵2h2. Hence, by VIII-A1,
for ↵3 P p0, 1s and h3 P A such that :

0

R �pB↵3h3, :
0

q, �pB↵3h3, :
0

q “ �p ¯Aq↵3h3.
Since, by VIII-A8 part iii., :x R �pB, :xq, it follows from VIII-A3 that �pB, :xq “ �p ¯Aq,
as required.

Lemma VIII.C.3. For all A P ⌥, ◆pAq ° mmcpAq.

Proof. Note that VIII-A9 part i., VIII-A4 and VIII-A6 imply that, if ◆pAq “ y, then :y R
�pA, :yq. Hence, for all A P }pAq, ◆ptA↵h | ↵ P p0, 1s, h P A, A↵h P ⌥uq Ñ tx P
<•0

| �̄xpAq “ Hu. By VIII-A9 part iv., this set is open, so, for any A P ⌥, ◆pAq °
mmcpAq, as required.

Lemma VIII.C.4. For all B P }pAq, h P A and ↵ P p0, 1s, if B↵h Æ B and :
0

R �pB, :
0

q,

then :
0

R �pB↵h, :
0

q. Similarly, if B↵h Ø B and :
0

R �pB↵h, :
0

q, then :
0

R �pB, :
0

q.

Proof. First note that, for any B P A, h P A and ↵ P p0, 1s, mmcpB↵hq “ mmcpBq by
VIII-A9 part iv. Now suppose that B P A, h P A and ↵ P p0, 1s are such that B↵h Æ B
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and :
0

R �pB, :
0

q. We first show that ◆pB↵hq “ 0. If this were not the case, then Lemma
VIII.C.3 implies that ◆pB↵hq ° mmcpB↵hq “ mmcpBq. It follows, by property ii of Æ
(Lemma VIII.B.1) that B↵h ° B, contradicting the fact that B↵h Æ B. So ◆pB↵hq “ 0.
By the definition of ◆ and VIII-A4, there exists B1 Ñ B such that �pB↵h, :xq “ B1

↵h for
all x ° 0, whence, by VIII-A9 part i., :

0

R �pB↵h, :
0

q, as required. Similar reasoning
establishes the conclusion for the other case.

Lemma VIII.C.5. For every A, A1 P }pBpKqq such that A, A1 P �, there exists ↵ P p0, 1s
and l P BpKq such that ↵A ` p1 ´ ↵ql ” A1.

Proof. If A ” A1, then there is nothing to show. Suppose without loss of generality that
A † A1; the other case is treated similarly. By property iv of Æ (Lemma VIII.B.1), there
exist � P p0, 1s and l P A such that �A ` p1 ´ �ql Ø A1. If �A ` p1 ´ �ql ” A1, then the
result has been established; if not, then by continuity of Æ, there exists ↵ P p�, 1q such that
↵A ` p1 ´ ↵ql ” A1, as required.

Lemma VIII.C.6. For every A P }pBpKqq, l, m P BpKq and ↵, � P p0, 1s with ↵A`p1´
↵ql, �A ` p1 ´ �qm P r P Sf , and every a P A, ↵a ` p1 ´ ↵ql P �p↵A ` p1 ´ ↵ql, :

0

q iff

�a ` p1 ´ �qm P �p�A ` p1 ´ �qm, :
0

q.

Proof. The result is an immediate consequence of VIII-A3 if A R �, so suppose that this
is not the case. Without loss of generality, suppose that � § ↵. Consider first the case
where � † ↵. Note that �A ` p1 ´ �qm “ �

↵
p↵A ` p1 ´↵qlq ` p1 ´ �

↵
qp↵�´�

↵´�
l ` ↵´↵�

↵´�
mq,

where ↵�´�
↵´�

l ` ↵´↵�
↵´�

m P BpKq, since it is a ↵�´�
↵´�

-mix of l and m. Let B P }pAq be
such that ↵A ` p1 ´ ↵ql “ ũpBq and h P A be such that ↵�´�

↵´�
l ` ↵´↵�

↵´�
m “ u ˝ h; so

�A ` p1 ´ �qm “ ũpB �
↵
hq. Since B ” B �

↵
h, Lemma VIII.C.4 implies that :

0

R �pB, :
0

q
iff :

0

R �pB �
↵
h, :

0

q. Hence, by VIII-A3 and VIII-A6, �pB, :
0

q �
↵
h “ �pB �

↵
h, :

0

q, which
yields the required conclusion.

Now consider the case where � “ ↵. If l “ m, the result is immediate, so suppose
that l ‰ m. Note that if there exists ✏ P p0, 1s and k P BpKq with ✏ ‰ ↵ and ✏A `
p1 ´ ✏qk ” ↵A ` p1 ´ ↵ql, then, by applying the reasoning in the case above, we get
↵a ` p1 ´ ↵ql P �p↵A ` p1 ´ ↵ql, :

0

q iff ✏a ` p1 ´ ✏qk P �p✏A ` p1 ´ ✏qk, :
0

q iff
�a ` p1 ´ �qm P �p�A ` p1 ´ �qm, :

0

q, as required. By the continuity and non-triviality
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of Æ, Sf is not a singleton, so there exists n P BpKq and ⌘ P p0, 1q such that ⌘p↵A ` p1 ´
↵qlq ` p1 ´ ⌘qn ı ↵A ` p1 ´ ↵ql. Since r P Sf , there exists � P p0, 1q and n1 P BpKq
such that �p⌘p↵A ` p1 ´ ↵qlq ` p1 ´ ⌘qnq ` p1 ´ �qn1 ” ↵A ` p1 ´ ↵ql P r. However,
�p⌘p↵A ` p1 ´↵qlq ` p1 ´ ⌘qnq ` p1 ´ �qn1 “ ↵⌘�A ` p1 ´↵⌘�qp �´↵⌘�

1´↵⌘�
p⌘´↵⌘

1´↵⌘
l ` 1´⌘

1´↵⌘
nq `

1´�
1´↵⌘�

n1q, with �´↵⌘�
1´↵⌘�

p⌘´↵⌘
1´↵⌘

l ` 1´⌘
1´↵⌘

nq ` 1´�
1´↵⌘�

n1 P BpKq since it is a mix of elements of
BpKq. So ↵⌘� and �´↵⌘�

1´↵⌘�
p⌘´↵⌘

1´↵⌘
l ` 1´⌘

1´↵⌘
nq ` 1´�

1´↵⌘�
n1 have the properties required above,

and the result is established.

Lemma VIII.C.7. For all A P }pAq and r, s P Sf with r • s, if �rpAq ‰ H then

�spAq “ �rpAq.

Proof. If s “ r, there is nothing to show, so suppose not. If A R �, the result is an
immediate consequence of the definition of �r, so suppose this is not the case. Without
loss of generality, it can be assumed that A P r. (If not, apply the argument below to an
↵A ` p1 ´ ↵ql P r.) Let � P p0, 1q and m P BpKq, be such that �A ` p1 ´ �qm P s

(such � and m exist since s P Sf ). Since, by assumption and VIII-A6, :
0

R �pA, :
0

q,
Lemma VIII.C.4 implies that :

0

R �p�A ` p1 ´ �qm, :
0

q; VIII-A3 implies that �p�A `
p1 ´ �qm, :

0

q “ ��pA, :
0

q ` p1 ´ �qm, so �spAq “ �rpAq, as required.

Lemma VIII.C.8. For all r P S`, Cr “ î
r1†r Cr1 .

Proof. By Lemma VIII.B.7, Cr Ö Cr1 for all r1 † r. Suppose, for reductio, that Cr â
î

r1†r Cr1 , so that there exists a point (probability measure) p P Crzîr1†r Cr1 . By a sep-
arating hyperplane theorem, there is a linear functional � on bapSq and ↵ P < such that
�ppq † ↵ § �pqq for all q P î

r1†r Cr1 . Since B is finite-dimensional, there is a real-
valued function a P B such that �pqq “ ∞

sPS apsqqpsq for any q P bapSq. Without
loss of generality, ↵, � and a can be chosen so that ↵ P K, a P BpKq. By construc-
tion, ta,↵˚u P �. Since r P Sf , there exists � P p0, 1s and m P BpKq such that
�ta,↵˚u ` p1 ´ �qm P r. Since r is non-minimal in Sf , there exists l P BpKq and
� P p0, 1q such that �p�ta,↵˚u ` p1 ´ �qmq ` p1 ´ �ql † �ta,↵˚u ` p1 ´ �qm. Let
�1 “ mint✏ P r�, 1s| ✏p�ta,↵˚u ` p1 ´ �qmq ` p1 ´ ✏ql Ø �ta,↵˚u ` p1 ´ �qmu (this is
a minimum by the continuity of Æ). Taking f, g, h P A such that u ˝ f “ �a ` p1 ´ �qm,
u ˝ g “ �↵˚ ` p1 ´ �qm and u ˝ h “ l, it follows, by the construction, that for any
⌘ P p�, �1q, f⌘h P �ptf⌘h, g⌘hu, :

0

q. However, by construction, f�1h R �ptf�1h, g�1hu, :
0

q,
contradicting VIII-A9 part i. Hence Cr “ î

r1†r Cr1 .
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Lemma VIII.C.9. For all non-maximal r P S`, Cr “ ì
r1°r Cr1 .

Proof. By Lemma VIII.B.7, Cr Ñ Cr1 for all r1 ° r. Suppose, for reductio, that Cr à
ì

r1°r Cr1 , so that there exists a point (probability measure) p P ì
r1°r Cr1zCr. By a sepa-

rating hyperplane theorem, there is a linear functional � on bapSq, an ↵ P < and an ✏ ° 0

such that �ppq § ↵ ´ ✏ and ↵ § �pqq for all q P Cr. Since B is finite-dimensional,
there is a real-valued function a P B such that �pqq “ ∞

sPS apsqqpsq for any q P bapSq.
Without loss of generality, ↵, � and a can be chosen so that ↵ P K, a P BpKq. By con-
struction, ta,↵˚u P �. Since r P Sf , there exists � P p0, 1s and m P BpKq such that
�ta,↵˚u ` p1´ �qm P r. Take any x P K with x § ↵, apsq for all s P S, and let f, g, h P A
be such that u ˝ f “ �a ` p1 ´ �qm, u ˝ g “ �↵˚ ` p1 ´ �qm, u ˝ h “ �x˚ ` p1 ´ �qm.
Let � P p0, 1q be such that u ˝ g�h “ �p↵ ´ ✏

2

q˚ ` p1 ´ �qm; such a � exists by the
choice of a and ↵ and the definition of g and h. By construction, f P �ptf, gu, :

0

q and
for all ↵ P p0, 1s and e P A such that tf, g�hu↵e ° tf, gu, f↵e R �ptf, g�hu↵e, :

0

q.
However, fpsq P �ptfpsq, hpsqu, :

0

q and gpsq P �ptgpsq, hpsqu, :
0

q for all s P S, and
there exists ↵ P p0, 1s and e P A with tf, g�hu↵e ° tf, gu. Since, by VIII-A1, VIII-A2,
VIII-A3 and VIII-A8 part ii., for all ↵ P p0, 1s and e P A, if :

0

R �ptf, g�hu↵e, :
0

q
then f↵e P �ptf, g�hu↵e, :

0

q, it follows that, for all ↵ P p0, 1s and e P A such that
tf, g�hu↵e ° tf, gu, tf, g�hu↵e P ⌥. It follows by properties i, ii and iv of Æ and its con-
tinuity that for all supp◆p}pAqqq ° x ° mmcptf, guq, there exists ↵ P p0, 1s, e P A with
◆ptf, g�hu↵eq “ x. So for every x P <•0

such that �̄xptf, guq “ H, �̄xptf, g�huq “ H,
contradicting VIII-A9 part ii. Hence Cr “ ì

r1°r Cr1 .

Lemma VIII.C.10. For all r, s P S`, if Cr Ä Cs, then pCr X pripCsqqcq X ripîr1PS` Cr1q “
H. Similarly, for all s P S`, pìrPS` Cr X pripCsqqcq X ripîr1PS` Cr1q “ H.

Proof. We only consider the case of r, s P S`, the other case being treated similarly.
Suppose that the condition does not hold, so there exist r, s P S` with Cr Ä Cs and
p P Cr X pripCsqqc but p P ripîr1PSf Cr1q. Let xr “ ◆pAq for any A P ⌥ such that
A P r and similarly for xs; property i of Æ implies that these are well-defined and Lemma
VIII.B.7 implies that xs ° xr. Since S is finite, it follows from a supporting hyperplane
theorem (Aliprantis and Border, 2007, Theorem 7.36) that there exists a linear functional
� supporting Cs at p; ie. such that �pqq • �ppq for all q P Cs. Let �ppq “ ↵. Since B is



Confidence as a Source of Deferral VIII-60

finite-dimensional, there is a real-valued function a P B such that �pqq “ ∞
sPS apsqqpsq

for any q P bapSq. Without loss of generality � can be chosen so that a P BpKq and
↵ P K. By construction, ta,↵˚u P �. Since r P Sf , there exist � P p0, 1s and m P BpKq
such that �ta,↵˚u ` p1 ´ �qm P r. Take f, g P A such that u ˝ f “ �a ` p1 ´ �qm and
upgq “ �↵˚ ` p1 ´ �qm. Since, by construction, �a ` p1 ´ �qm P �sp�ta,↵˚u ` p1 ´ �qmq,
it follows that mmcptf, guq • xs ° xr. Finally, it follows from the construction that
for any z ° ↵ and g1 P A such that upg1q “ �z˚ ` p1 ´ �qm, and any � P p0, 1q,
:
0

P �ptf↵h, pg�g1q↵hu, :
0

q for all ↵ P p0, 1s, h P A such that tf↵h, pg�g1q↵hu ” tf, gu.
Since, whenever tf↵h, pg�g1q↵hu ” tf, gu, :xr R �ptf↵h, pg�g1q↵hu, :xrq, it follows that
each tf↵h, pg�g1q↵hu with tf↵h, pg�g1q↵hu ” tf, gu belongs to ◆´1pr0, xrsq X ⌥. By the
continuity of Æ, every neighborhood of tf, gu contains such a tf↵h, pg�g1q↵hu; so tf, gu is
an element of � on the boundary of p◆´1pr0, xrsq X ⌥q Y pmmc´1pr0, xrs X ⌥

cq, but not
belonging to this set, contradicting VIII-A9 part iii. So there exist no such r, s, as required.

Lemma VIII.C.11. Let � be represented according to (VIII.2). Then, for all x P p0, sup ◆p⌥qq,

mmc´1pr0, xsq and mmc´1prx, 8qq are closed in �.

Proof. For ease of presentation, we adopt the following notation: for any x P <,
Cx “ c´1pxq. Take x P p0, sup ◆p⌥qq; to show that mmc´1pr0, xsq is closed, suppose not,
and suppose that A P

´
mmc´1pr0, xsqzmmc´1pr0, xsq

¯
X �. Let An P mmc´1pr0, xsq

be a sequence with An Ñ A. It follows from representation (VIII.2) and the defini-
tion of mmc that, for every n P N, every fn P suppAn, u, tp

⌅

uq and every x1 ° x,
there exists p, q P Cx1 and g, h P An such that

∞
sPS upfnpsqq.ppsq † ∞

sPS uphpsqq.ppsq
and

∞
sPS upfnpsqq.qpsq ° ∞

sPS upgpsqq.qpsq. It follows from the representation and
the fact that A P

´
mmc´1pr0, xsqzmmc´1pr0, xsq

¯
X � that for some x1 ° x and all

f P suppA, u, tp
⌅

uq,
∞

sPS upfpsqq.ppsq • ∞
sPS uphpsqq.ppsq for all p P Cx1 and all h P A.

Since An Ñ A, it follows from the continuity of the representation that the hyperplane
u ˝ f ´ u ˝ h “ 0 in �pSq supports Cx1 , for at least one h P A and f P suppA, u, tp

⌅

uq. If
this holds for some x1 ° x, it must also hold for any x1 ° x2 ° x by the same reasoning;
it follows from the fact that ⌅ is a nested family that there exists a support point of Cx1 that
is also a support point of Cx2 . Moreover, since A P �, such a point is not a support point
of

î
C1P⌅

C 1. Since support points are those that do not belong to the relative interiors of the
appropriate sets, it follows that pCx2 X pripCx1qqcq X ripîC1P⌅

C 1q ‰ H, contradicting the
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strictness of ⌅. So mmc´1pr0, xsq is closed in �. The closeness of mmc´1prx, 8sq in � is
a straightforward consequence of the continuity of the unanimity representation.

VIII.C.2 Proofs of results in Appendix VIII.A

Proof of Proposition VIII.A.1. The ‘if’ direction is straightforward. The ‘only if’ direction
is a simple corollary of the proof of Theorem VIII.1. On the one hand, if �1 and �2 are
confidence equivalent, they yield identical choices over menus consisting entirely of con-
stant acts; hence the utilities are the same up to positive affine transformation. On the other
hand, if they are confidence equivalent, the family of functions t�r|r P Sfu defined in the
proof of Theorem VIII.1 are the same, and so the confidence rankings are the same.

Proof of Proposition VIII.A.2. Let the assumptions of the Proposition be satisfied and let
pu, ⌅, D

1

, c
1

q and pu, ⌅, D
2

, c
2

q represent �1 and �2 respectively. Beyond using some ter-
minology introduced in Section VIII.3.2.3, the following notation shall prove useful. For
any A P }pAq, define CA P ⌅ as follows: CA “ maxtC P ⌅ | suppA, u, Cq ‰ Hu. We
consider the three parts in turn.
Part (i). The right-to-left implication is straightforward, so we only consider the left-to-
right direction. It follows from representation (VIII.2) that c

1

pD
1

pAqq “ up◆
1

pAqq for all
A P ⌥

1

and similarly for decision maker 2. Since �1 is more decision averse than �2,
◆
2

pAq § ◆
1

pAq for all A P }pAq, and hence in particular A P ⌥

2

implies A P ⌥

1

. It
follows that, for each A P ⌥

2

, c
1

pD
1

pAqq • c
2

pD
2

pAqq. This property extends to ⌥

2

by
the continuity of the D and c.

Define D
3

: }pAq Ñ ⌅ by D
3

pAq “ D
2

pAq whenever A P ⌥

2

and D
3

pAq “
mintD

1

pAq, D
2

pAqu otherwise. By definition, and the fact that for A P ⌥

2

, c
1

pD
1

pAqq •
c
2

pD
2

pAqq, c
2

˝ D
3

satisfies the ordering conditions with respect to c
1

˝ D
1

in the Propo-
sition. We now show that it is a cautiousness coefficient and that pu, ⌅, D

3

, c
2

q represents
�2. Continuity of D

3

off the boundary of ⌥

2

follows from the continuity of D
1

, D
2

and
the minimum. To establish continuity for menus on the boundary, it suffices to show that
for every A P ⌥

2

z⌥
2

, D
2

pAq Ñ D
1

pAq. For every A P ⌥

2

z⌥
2

, it follows from represen-
tation (VIII.2) that D

2

pAq “ CA; since, as noted above, ⌥

2

Ñ ⌥

1

, then either A P ⌥

1

,
in which case D

1

pAq Å D
2

pAq by the definition of ⌥, or A P ⌥

1

z⌥
1

, in which case
D

1

pAq “ CA “ D
2

pAq. So D
2

pAq Ñ D
1

pAq, and D
3

satisfies continuity. Extensionality
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and �-richness of D
3

follow from the extensionality and �-richness of D
1

and D
2

, so D
3

is a cautiousness coefficient. Finally, we show that pu, ⌅, D
3

, c
2

q represents �
2

. Since, by
definition, D

3

pAq “ D
2

pAq for all A P ⌥

2

, c
2

˝ D
3

“ c
2

˝ D
2

on ⌥

2

. Moreover, for
all A R ⌥

2

, suppA, u, D
3

pAqq ‰ H, and so, by representation (VIII.2) (and the strictness
of the confidence ranking), suppA, u, D

3

pAqq “ suppA, u, D
2

pAqq. Since pu, ⌅, D
2

, c
2

q
represents �

2

, so does pu, ⌅, D
3

, c
2

q, as required.

Part (ii). By the representation (VIII.2), for any A P �

1

, mmc
1

pAq “ c
1

pCAq and similarly
for decision maker 2. Moreover that, by a simple supporting hyperplane argument, for
every C P ⌅ztîC1P⌅

C 1u, there exists A1 P �

1

such that CA1 “ C. (It suffices to consider
any supporting hyperplane of C, and take the menu containing an act and a constant act
corresponding to the hyperplane, as in Lemmas VIII.C.8–VIII.C.10, for example.) Note
finally that, since A P �

1

iff suppA, u,
î

C1P⌅

C 1q ‰ H, it follows from the fact that �1

and �2 are represented by the same u and ⌅ that �

1

“ �

2

. It follows from representation
(VIII.2) that �1 is less cost motivated than �2 iff mmc

1

pAq • mmc
2

pAq for all A P �

1

. By
the first remark above, this holds iff c

1

pCAq • c
2

pCAq for all A P �

1

; by the second remark,
this holds iff c

1

pCq • c
2

pCq for all C P ⌅ztîC1P⌅

C 1u. By the continuity of c
1

and c
2

, this
holds iff c

1

pCq • c
2

pCq for all C P ⌅, yielding the required equivalence.

Part (iii). By the representation (VIII.2), for any A P ⌥

1

, ◆
1

pAq “ c
1

pD
1

pAqq and similarly
for decision maker 2. By representation (VIII.2), �1 is more motivation-calibrated decision
averse than �2 iff for all A, B P }pAq, ◆

1

pAq § mmc
1

pBq ñ ◆
2

pAq § mmc
2

pBq. Given
the observations made in the proof of part (ii), this holds iff, for all A P ⌥

2

and C P
⌅ztîC1P⌅

C 1u, c
1

pD
1

pAqq § c
1

pCq ñ c
2

pD
2

pAqq § c
2

pCq. Since c
1

and c
2

are order-
preserving and -reflecting, this holds iff D

1

pAq Ñ C ñ D
2

pAq Ñ C for all A P ⌥

2

and
C P ⌅ztîC1P⌅

C 1u, and hence iff D
1

pAq Ö D
2

pAq for all A P ⌥

2

. So �1 is more motivation-
calibrated decision averse than �2 iff D

1

pAq Ö D
2

pAq for all A P ⌥

2

. Note moreover
that if �1 is more motivation-calibrated decision averse than �2, then ⌥

2

Ñ ⌥

1

: for any
A P ⌥

2

, D
2

pAq Å CA, and hence, since �1 is more motivation-calibrated decision averse,
D

1

pAq Å CA, so A P ⌥

1

.

It follows immediately from representation (VIII.2) and the uniqueness conditions in
Theorem VIII.1 that the existence of a cautiousness coefficient satisfying the conditions in
part (iii) implies that �1 is more motivation-calibrated decision averse than �2. To show
the left-to-right direction of part (iii), we show that if ⌥

2

Ñ ⌥

1

and D
1

pAq Ö D
2

pAq
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for all A P ⌥

2

, then there exists cautiousness coefficient D
3

representing �2 such that
D

3

pAq Ñ D
1

pAq for all A P }pAq. To this end, let D
3

pAq “ mintD
1

pAq, D
2

pAqu for all
A. This is a cautiousness coefficient: extensionality, continuity and �-richness follow from
the extensionality, continuity and �-richness of D

1

and D
2

, the continuity of the minimum,
and the fact that D

1

pAq Ö D
2

pAq on ⌥

2

. By definition, D
3

pAq Ñ D
1

pAq for all A P }pAq.
By a similar argument to that used in the proof of part (i), pu, ⌅, D

3

, c
2

q represents �2. So
pu, ⌅, D

1

, c
1

q and pu, ⌅, D
3

, c
2

q satisfy the required conditions.

Proposition VIII.C.3. Let �1 and �2 satisfy axioms VIII-A1–VIII-A10 and be confidence

equivalent.

— If does not follow from �1 being more decision averse and less cost motivated than

�2 that �1 is more motivation-calibrated decision averse than �2.

— It does not follow from �1 being more decision averse and more motivation-

calibrated decision averse than �2 that �1 is less cost motivated than �2.

Proof. Consider any pu, ⌅, D
2

, c
2

q satisfying the conditions in Theorem VIII.1 and let �2

be the choice correspondence it represents. Take two continuous functions fD : c
2

p⌅q Ñ
c
2

p⌅q and fc : c
2

p⌅q Ñ < such that fD is surjective and fc is strictly increasing. Define D
1

:

}pAq Ñ ⌅ by D
1

pAq “ c´1

2

pfDpc
2

pD
2

pAqqqq and c
1

: ⌅ Ñ <•0

by c
1

pCq “ fcpc2

pCqq.
It is straightforward to check that these are well-defined cautiousness coefficients and cost
functions respectively; let �1 be the choice correspondence represented by pu, ⌅, D

1

, c
1

q.
Let us say that a function � : X Ñ Y , where X Ñ Y , is upper-valued if, for every x P X ,
fpxq • x. Note that, by Proposition VIII.A.2 (and the order-reflecting and preserving
properties of the cost function), �1 and �2 are ordered by decision aversion iff fc ˝ fD is
upper-valued, they are ordered by motivation-calibrated decision aversion iff fD is upper-
valued, and they are ordered by cost motivation iff fc is upper-valued.

To establish the first part of the proposition, it thus suffices to find fc and fD such that fc

is upper-valued, fD is not, but fc ˝fD is. Let a “ inf c
2

p⌅q and b “ sup c
2

p⌅q, and consider
fDpxq “ 1

b´a
px ´ aq2 ` a, and fcpxq “ x ` b´a

2

. It is straightforward to check that fD is
not upper-valued, whilst fc and fc ˝fD are, yielding the required example. Similarly, taking
for example fDpxq “ pb ´ aq 1

2 px ´ aq 1
2 ` a, and fcpxq “ 3

4

px ´ aq ` a for x § b´a
4

` a, and
fcpxq “ 13

12

px ´ aq ´ b´a
12

` a for x • b´a
4

` a yields an example establishing the second
part of the proposition.
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IX Dynamic Consistency and Ambiguity:
A Reappraisal

Abstract

Dynamic consistency demands that a decision maker’s preferences over contingent
plans agree with his preferences in the planned-for contingency. What counts are the con-
tingencies the decision maker envisages – and plans for – rather than contingencies selected
by a theorist. We show how this simple point resolves some crucial purported difficulties
for ambiguity models in dynamic settings. Firstly, when properly formulated, dynamic con-
sistency is compatible with consequentialism and non-expected utility. Secondly, the per-
spective provides a principled justification for the restrictions to certain families of beliefs
(à la Epstein and Schneider (2003)) in applications to dynamic choice problems. Thirdly,
the value of information under non-expected utility is revealed to be non-negative as long
as the information offered does not compromise information that the decision maker had
otherwise expected to receive. We also give behavioral foundations for the contingencies
the decision maker envisages, in the form of a representation theorem. 1

Keywords: Decision under Uncertainty; Dynamic Consistency; Dynamic Choice; Value
of Information; Epistemic Contingency.

JEL classification: D81, D83, D90.

1. This is a slightly modified version of HEC Paris Research Paper No ECO/SCD-2013-983.

IX-1
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IX.1 Introduction

IX.1.1 Motivation

One of the principal challenges in, and to, the literature on non-expected utility models
for decision under uncertainty is that posed by application in dynamic situations. Violation
of expected utility purportedly brings with it some problematic consequences, which have
been at the base of criticism of the whole literature on ambiguity (for some examples,
see Al Najjar et al. (2009) and discussions in Epstein and Le Breton (1993), Ghirardato
(2002)). Putting aside subtleties in the terminology and definitions, the gist of the problem
lies in the argument that consequentialism – the decision maker ignores sunk costs (or
the history in the decision tree) when deciding at any node – and dynamic consistency –
the decision maker’s preferences over contingent plans agree with his preferences in the
planned-for contingency – are incompatible with non-expected utility. Given the primae

facie attraction of these properties of dynamic choice, not to mention their importance
for economic applications, the option of abandoning one of them to leave space for non-
expected utility is unappetizing. All the worse, some have concluded, for non-expected
utility theories.

The main thesis of this paper is that this generally accepted state-of-play rests on a
mistake. Standard formalizations of the dynamic consistency principle use sets of contin-
gencies that are effectively imposed by the theorist. However, since the principle involves
the decision maker’s plans, it is the contingencies that he himself envisages – and plans
for – that are relevant under any reasonable version of the principle. Once the principle
is formulated with the contingencies the decision maker himself envisages, the apparent
incompatibility with non-expected utility is resolved.

This apparently innocuous point has wide-ranging conceptual and economic ramifica-
tions. First of all, it implies a reconceptualization in terms of what the decision maker
envisages about his future states of belief. Dynamic consistency, as considered in the liter-
ature on decision under uncertainty, is revealed to be essentially a condition on the relation-
ship between two sorts of belief: the decision maker’s current beliefs about the state of the
world and his beliefs about what he will believe in the future about the state of the world.

Secondly, this relationship turns out to be particularly strong in certain cases: so strong,
in fact, that one can draw conclusions, just on the basis of the decision maker’s current
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beliefs, about what he thinks he might believe in the future, and hence about the contin-
gencies he envisages. In particular, the standard modelling assumption that the decision
maker is using the same decision tree as the theorist implies that his ex ante beliefs must
be of a certain form. In perhaps the most significant economic contribution of the paper,
this observation provides a principled justification for the restriction to a specific family of
beliefs in the application of non-expected utility models to dynamic choice problems. In
such problems, the use of a set of beliefs not in this family implies that the decision maker
do not think that he is facing the decision tree used by the theorist.

Thirdly, the approach provides a new perspective on the purported propensity of non-
expected decision makers to turn down free information. Information about the decision
tree that the decision maker is faced with may impact upon his beliefs about his future
beliefs, and hence, in the light of the implications mentioned above, his current beliefs.
Incorporating this factor into his choice of whether to accept free information, it turns out
that he will always accept an offer of free information, as long as it does not compromise
information he had otherwise expected to receive.

In the rest of the Introduction, we present the notion of dynamic consistency, explain
our challenge to the standard argument against non-expected utility, and set out the main
contributions and plan of the paper, as well as some relations to existing literature.

IX.1.2 Dynamic consistency, events and epistemic contingencies

To present the notion of dynamic consistency for decision under uncertainty, let us
adopt the standard setup in the literature, where a decision maker has ex post and ex ante
preferences over acts – functions from a given (‘objective’) set of states of the world, called
the state space and understood to represent all payoff-relevant factors, to a set of conse-
quences. We focus on the dynamic consistency of preferences, rather than the dynamic
consistency of behavior (see for example Strotz (1955); Karni and Safra (1989, 1990);
Siniscalchi (2009, 2011)). Put succinctly, dynamic consistency demands harmony be-
tween ex ante preferences over contingent plans and preferences after the realisation of
the planned-for contingency: the decision maker’s ex post preferences correspond to his ex
ante preferences over plans involving the contingency in question. At first glance, applica-
tion of this principle would seem to require determining which contingencies the decision
maker envisages holding, and hence plans for. Somewhat surprisingly, there is little discus-
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sion of this question in the literature. Rather, it is generally assumed that one can associate
to any pair of acts two contingencies – one in which the acts necessarily yield the same
consequence, and one in which this is not the case. The idea is that the acts can be thought
of as plans for the contingency in which they differ. In this way, one avoids the question
of which contingencies the decision maker himself envisages; the contingencies are, so to
speak, imposed by the theorist in the pairs of acts considered.

An important consequence of this approach is that the contingencies are events, that is,
sets of states of the world. It is clear on reflection that, strictly speaking, the contingencies
that the decision maker plans for cannot simply be events, because they must factor in the
fact that the decision maker knows them to hold. A decision maker does not plan for the
contingency that event A holds but he does not know it, and it makes no sense to speak
of his preference or state of belief after having learnt that such a contingency has arose,
for that is not something that he can learn. Taking contingencies as events is shorthand:
the contingency is not strictly speaking the fact that the event in question has occurred, but
rather the fact that the decision maker learns that the event has occurred. Hence planned-for
contingencies are more accurately represented not by events, but rather by future possible
states of knowledge or belief (or by the preferences generated by these states of belief). We
call these epistemic contingencies.

This pedantry would be of no interest if it did not undermine the practice described
above of considering contingencies to be events on which acts yield the same or different
consequences. Although, as we have seen, any event has a natural epistemic contingency
corresponding to it (namely, the contingency that the decision maker learns only that the
event in question has occurred), the converse is not true. A contingency in which the de-
cision maker alters his probability for a certain event without giving it probability 0 or 1
(for example, by some form of non-Bayesian learning) is an epistemic contingency which
cannot be naturally associated to an event. More importantly, what counts as overlapping,
disjointness and exhaustivity for contingencies differs between events and epistemic con-
tingencies. Whilst a (non-empty) event A and the event containing the whole state space
S are not exclusive, the epistemic contingency in which the decision maker learns only
that A and that in which he learns nothing (ie. where he learns S) are: they cannot both
concurrently occur. This has important consequences when one considers which contin-
gencies may need to be planned for. While, when reasoning with events, planning for the
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Figure IX.1 – Dynamic consistency in the standard (static) Ellsberg urn (values in dollars)
R B Y

f
1

10 0 10
g
1

0 10 10
f

2

10 0 0
g
2

0 10 0

eventualities A and Ac exhausts all possibilities, this is not the case when the contingencies
are epistemic: learning only that A, learning only that Ac and learning nothing are three
distinct epistemic contingencies, each of which occurs without any of the others occurring.
Hence, even considering the decision maker’s preference between acts that only differ on
the event A, it does not follow that the only contingencies that he envisages – and plans for
– are necessarily (learning that) A and (learning that) Ac: he could equally well envisage,
and plan for, the contingency in which he learns nothing (or, indeed, the contingencies in
which he learns only B or only Bc for a different event B).

The set of epistemic contingencies that the decision maker envisages at a particular
moment forms a decision tree; we shall call this the decision maker’s subjective tree. The
set of events that the theorist considers also forms a tree; since these trees can be defined
independently of considerations regarding the decision maker’s opinion on the relevant
possible future states, we shall call these objective trees. As noted above, the class of
objective trees can be embedded into the class of subjective trees, in the sense that for each
objective tree, there could exist a decision maker who envisages all and only the (epistemic
versions of) the events in that tree. However, there are subjective trees that correspond to no
objective tree. For such trees, the argument that consequentialism and dynamic consistency
rule out non-expected utility behavior does not go through. 2

To illustrate this point, let us consider a standard example of violation of expected
utility for decision under uncertainty, the Ellsberg one-urn example. Consider a decision
maker who is told that an urn contains ninety balls, thirty of which are red (R), and the

2. It might be objected that if the decision maker’s envisaged future states of belief – the ‘subjective
information structure’ he is using, if you will – are relevant, then they should be represented explicitly in
the state space. As discussed in Section IX.2.2 (in particular, Remark IX.2), a setup involving such an
extended state space is equivalent to the one used here, and all the points made below continue to hold when
reformulated in these terms. See also Appendix IX.A.



Dynamic Consistency and Ambiguity: A Reappraisal IX-6

A
1

f

1

10

Y

fRB
RB

g

1

10

Y

gRB
RB

A
2

f

2

0

Y

fRB
RB

g

2

0

Y

gRB
RB

(a) Ex ante choice situations

10

Y

RB

B
1

fRB
f

1

gRBg

1

0

Y

RB

B
2

fRB
f

2

gRBg

2

(b) Ex post choice situations

Figure IX.2 – Dynamic consistency in the standard (dynamic) Ellsberg urn

rest of which are black (B) and yellow (Y) in an unknown proportion, and is asked for his
preferences over the bets on the colour of a ball drawn from the urn shown in Figure IX.1.
The standard preference pattern is f

1

† g
1

and f
2

° g
2

, violating the sure-thing principle
(Savage’s P2 (1954)).

A standard formulation of the argument against these Ellsberg preferences using the
principles of consequentialism and dynamic consistency is as follows. One considers not
only the decision maker’s preferences over the bets in Figure IX.1, but one also imagines
that, after the ball is drawn, the decision maker receives information as to whether the ball
is yellow or not (and no other information), and is asked again for his preferences over the
bets. Using fRB to refer to the partial act, defined on the event tR, Bu, 3 and coinciding
with f

1

and f
2

on these states, and similarly for gRB, one can, the story goes, represent
the decision maker’s choices before and after the information is revealed by the trees in
Figure IX.2. Consequentialism demands that all that counts are the consequences of one’s
choices; hence, in particular, it demands that the choices made at the B nodes in Figure
IX.2(b) are independent of the values that could have been won if the ball were yellow (ie.
the upper branches of the trees). So the choices made at B

1

and B
2

are the same. Dynamic

3. A partial act is a partial function from states to consequences, defined on a subset of the state space.
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consistency in preferences asks for coherence between one’s preferences over contingent
plans concerning future options and one’s preferences in the appropriate contingencies.
So, if the decision maker prefers f

1

to g
1

at node A
1

in Figure IX.2(a), then, since the
only difference between the consequences yielded by these bets occurs when the ball is
not yellow, this can be thought of as a preference over plans for the contingency that the
ball is not yellow. Dynamic consistency thus demands that he prefer f

1

to g
1

at node B
1

in
Figure IX.2(b) (after the resolution of the uncertainty about whether the ball is yellow or
not). Similar reasoning applies to the right hand trees (nodes A

2

and B
2

) and the acts f
2

and g
2

. It follows that, contrary to the Ellsberg preferences, the decision maker must have
the same preferences over f

2

and g
2

as over f
1

and g
1

.

A

f

1

10“Y ”

fRB

“RB”

f
1

“ ”

g

1
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“RB”

g
1
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(a) Ex ante choice situation
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f
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f
1

f

1
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1

g

1

(b) Ex post choice situation

Figure IX.3 – Dynamic consistency in the non-standard (dynamic) Ellsberg urn (choice
between f

1

and g
1

)
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This argument is most naturally read as involving objective trees, especially given that
the trees in Figure IX.2 are motivated by the choice of acts considered, independently of
considerations about the contingencies the decision maker himself envisages. Certainly, if
these trees were read as involving epistemic contingencies, then they involve a non-trivial
assumption: that the decision maker envisages only two future states of belief – one in
which he learns (only) that the ball is yellow and one in which he learns (only) that it is
not. This assumption is far from innocent: it does not hold, for example, for a decision
maker who envisages that he might learn whether the ball is yellow or not, but also that he
might learn nothing. 4 In this case, the appropriate (subjective) decision trees are not those
in Figure IX.2 but rather those given in Figure IX.3 (we only give the trees for the choice
between f

1

and g
1

; the trees for the choice between f
2

and g
2

are similar). There are three
branches corresponding to the epistemic contingency in which the decision maker learns
that the ball is yellow (denoted here with inverted commas to emphasise the difference
from mere events), the epistemic contingency in which he learns that the ball is not yellow,
and the contingency in which he learns nothing at all (denoted “ ”: the message is empty).
On these trees, dynamic consistency can no longer be applied as in the argument presented
above. It applied non-trivially on the trees in Figure IX.2 because the choice at the initial
node in the ex ante case (node A

1

) corresponds to the choice at a single node (B
1

) in the
ex post case, and hence can be interpreted as a plan for that node. By contrast, in Figure
IX.3, the choice between the acts f

1

and g
1

at node A does not correspond to the choice
at a single node in the ex post case; thus it cannot be thought of as a plan for a single ex
post contingency. Hence dynamic consistency does not necessarily apply – for example,
if the preferences over f

1

and g
1

differ at nodes B and C in Figure IX.3(b), then dynamic
consistency does not imply anything about the choice in Figure IX.3(a). So the argument
against Ellsberg-style behavior no longer goes through. This illustrates a general point that
will be made precise in the sequel: consequentialism, non-expected utility preferences and
dynamic consistency are not necessarily incompatible, if dynamic consistency is defined
using subjective trees, with the contingencies the decision maker does in fact envisage.

4. To give another example, it also does not hold for a decision maker who thinks that he might learn
either whether the ball is yellow or not, or whether he has won his bet or not.
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IX.1.3 Outline of the paper

This paper has three aims. The first is to develop the rebuttal of the standard argument
from dynamic consistency and consequentialism to expected utility in the context of deci-
sion under uncertainty. The second, and economically most important aim is to confront
the proposed perspective with some of the toughest purported problems for non-expected
utility models in dynamic contexts, such as application in dynamic choice problems and
the question of value of information. The final aim is to fully defend the central notions of
the proposal, and in particular that of epistemic contingency.

A first step will be to propose a formal representation of epistemic contingencies. As-
suming, as is standard in this literature, that the decision maker’s utility function remains
fixed, we shall take contingencies to be states of belief, interpreted as the future states of
belief that the decision considers possible ex ante. Although most of the main points con-
tinue to hold for other non-expected utility models, for concreteness we shall work with
the maxmin expected utility model (Gilboa and Schmeidler, 1989), 5 and accordingly take
epistemic contingencies to be sets of priors. We thus implicitly assume that the decision
maker forms preferences according to the same decision rule in all contingencies as well
as ex ante (this assumption has been explicitly discussed in Eichberger and Kelsey (1996);
Sarin and Wakker (1998), for example).

We then go on to formulate a notion of dynamic consistency in terms of these epistemic
contingencies, and show that it is possible in general for non-expected utility decision mak-
ers to satisfy this condition in conjunction with consequentialism; the point illustrated in
the example above does indeed hold in general. The main conceptual contribution of the
paper lies in the observation that dynamic consistency in the context of decision under un-
certainty demands harmony between two sorts of belief: the beliefs the decision maker
currently has about the state of the world (which determine his current preferences, includ-
ing his preferences over plans), and the beliefs he has about what he will believe about the
states of the world (which correspond to the possible future preferences he envisages). As
an illustration, we characterise the constraints the decision maker’s anticipations about his
future beliefs place on his current beliefs, under dynamic consistency.

We then turn to the consequences of this refined version of dynamic consistency for

5. It seems that versions of all results except the representation theorem (Theorem IX.1) are relatively
easy to obtain for many other non-expected utility models.
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economic applications. In standard applications to dynamic situations, it is often implic-
itly assumed that the decision maker knows the decision tree with which he is faced, and
that this tree is as described by the theorist. In the current setup, these are cases where
the decision maker’s subjective tree corresponds to an objective one. We show that this
particular form of the subjective decision tree has consequences for the decision maker’s
current beliefs, if he is to satisfy dynamic consistency with respect to epistemic contin-
gencies. It implies that his ex ante set of priors satisfies a ‘factorisability’ property that
is the equivalent in our framework of Epstein and Schneider’s (2003) rectangularity. It is
sometimes suggested that the need for a restriction to such rectangular sets of priors is a
limitation of the Epstein and Schneider (2003) approach. Our result can be interpreted as
showing that this criticism is unfounded: the specific shape of the set of priors is a conse-
quence of the standard assumption that the decision maker is using the same decision tree
as the theorist. This non-arbitrary vindication of the use of a restricted family of sets of
priors of the sort suggested by Epstein and Schneider (2003) is perhaps the most significant
economic contribution of the paper. Since this is the key to treating sequential choice prob-
lems, it shows that the approach developed here provides a solid, well-defended account of
dynamic choice under non-expected utility.

Another pressing question concerning dynamic choice concerns the value of informa-
tion, which is standardly argued to be possibly negative for non-expected utility decision
makers (Al Najjar et al., 2009; Siniscalchi, 2011). The proposed approach implies a recon-
ceptualisation of the issue, insofar as the decision maker’s choice to accept an offer of
information that he had not previously anticipated obtaining entails a change in his envis-
aged future states of belief. Given the relationship between envisaged future beliefs and
current beliefs mentioned above, it follows that the latter may also change on learning that
he will obtain the information; indeed, this change will occur even before the information
is actually received. To the extent that this change is a result of his choice to accept the
information, the situation has the flavour of a moral hazard problem. Incorporating these
elements, we show that, when properly defined, the value of information is non-negative
whenever the information offered does not compromise the reception of other information
that the decision maker was previously expecting to receive.

An important difference between the objective and subjective trees on which the pre-
ceding considerations are based is the question of foundations. Whereas objective trees are
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part of the setup, as posed by the theorists, subjective trees incorporate the contingencies
that the decision maker envisages, and hence encapsulate elements of his state of mind.
However, without some connection to observable choice behavior (beyond the apparent
violation of dynamic consistency), the notion of epistemic contingency, and the previous
considerations building on it, are on shaky ground. The final contribution of the paper is to
treat this issue, by providing behavioral foundations for this notion.

The paper is organised as follows. Section IX.2 describes the framework and the repre-
sentation of epistemic contingencies used. In Section IX.3, the notion of dynamic consis-
tency on subjective trees is defined, and immediate consequences, including the possibility
of satisfying dynamic consistency in tandem with consequentialism and non-expected util-
ity, are explored. Section IX.4 examines the case of a decision maker whose subjective tree
corresponds to an objective one, and the consequences for the application of non-expected
utility models to dynamic problems. Section IX.5 analyses the consequences of the per-
spective developed here for the question of value of information. The final section, Section
IX.6, provides choice-theoretical foundations for the notion of epistemic contingency that
underlies the proposed approach. Proofs are collected in an Appendix.

IX.1.4 Related Literature

The literature on dynamic consistency is too large to be cited in its entirety. A thorough
discussion of the question and the literature on dynamic arguments for expected utility
under risk is given in Machina (1989); papers showing or discussing the inconsistency
between dynamic consistency, consequentialism and non-expected utility in the case of un-
certainty include Hammond (1988); Epstein and Le Breton (1993); Ghirardato (2002). Of
the papers introducing update rules for non-expected utility models or considering dynamic
choice in these models, the closest is without doubt Epstein and Schneider (2003). Indeed,
as explained in Section IX.4, the notion of P-rectangularity introduced here is essentially
a version of their rectangularity condition adapted to our framework, and there are evident
technical similarities between Proposition IX.4 and their results. However, as explained
in the subsequent discussion, the conceptual contributions are different, so much so that
our result can be read as a vindication of their restriction on sets of priors. Their approach
has been adopted with other non-expected utility models (for example Maccheroni et al.
(2006); Klibanoff et al. (2009)), and the perspective developed here applies similarly.
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Conceptually, the closest suggestion to the one proposed here that we have been able
to find was made in Gilboa et al. (2009), where it was suggested that some of the events
required to exhibit violations of Savage’s Sure Thing Principle (P2) in some of the Ells-
berg examples are ‘highly contrived’ and ‘will never be observed by the decision maker’.
However, as they remark, this point does not hold for the Ellsberg one-urn example that
we considered in Section IX.1.2. Indeed, the approach proposed here focusses on what the
decision maker expects to learn, rather than what he can learn or observe.

The argument that non-expected utility decision makers may exhibit aversion for infor-
mation has been proposed by Wakker (1988) for the case of decision under risk (see also
Machina (1989) and references within); see Eichberger et al. (2007); Al Najjar et al. (2009)
for an analogous argument for the case of decision under uncertainty. Siniscalchi (2011)
contains a thorough and insightful discussion of the issue, though arrives at a diagnosis
that is clearly very different from ours. 6 For Siniscalchi, the nub of the matter lies in the
trade-off between information acquisition and commitment: if commitment is more valu-
able than information acquisition, then the decision maker may turn down the information.
The approach set out here, by contrast, draws on the fact that the choice to accept an offer
of information will affect one’s envisaged possible future states of belief. If this change
involves a loss of some other information that the decision maker had previously expected
to receive, then he may turn down the offer.

As discussed in Section IX.6, the representation result proposed there can be understood
(technically) as a contribution to the literature on preference for flexibility or decision mak-
ing under unforeseen contingencies initiated by Kreps (1979, 1992); Dekel et al. (2001).
The closest result in that literature to the current one is doubtless Epstein et al. (2007, The-
orem 2), insofar as both our representation (IX.5) and their representation (8) involve a
set – of utilities in their case, of priors in ours – in each contingency, and use a maxmin
rule. However, they use an expected utility ‘aggregator’ to form ex ante preferences, where
we use a dominance aggregator (see Remark IX.7), and they use a richer framework (and,
accordingly, different proof methods), involving lotteries over menus. Other related ap-
proaches (though not in the menu framework) include Mukerji (1997); Ghirardato (2001).

Other relations (notably technical ones) with existing literature are mentioned at appro-
priate points in the discussion.

6. Machina (1989) attributes a similar approach to the issue for decision under risk to Edi Karni.
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IX.2 Preliminaries

IX.2.1 Setup and technical notions

We use a version of the standard Anscombe-Aumann framework (Anscombe and Au-
mann, 1963), as adapted by Fishburn (1970). Let S be a non-empty finite set of states,
and let ⌃ be the set of subsets of S, called events. �p⌃q is the set of probability measures
on pS, ⌃q. Where necessary, we use the Euclidean topology on �p⌃q. X is a nonempty
set of outcomes endowed with a metric under which it is compact; a consequence is a
Borel probability measure on X . �pXq is the set of consequences; where necessary, we
use the weak convergence topology, under which this space is compact metric (Billings-
ley, 2009, p 72). Acts are functions from states to consequences; A is the set of acts,
endowed with the product topology, under which it is compact metric. A is a mixture set
with the mixture relation defined pointwise: for f , h in A and ↵ P <, 0 § ↵ § 1, the
mixture ↵f ` p1 ´ ↵qh is defined by p↵f ` p1 ´ ↵qhqps, xq “ ↵fps, xq ` p1 ´ ↵qhps, xq.
The mixture relation is extended to sets of acts and acts pointwise: for A Ñ A, h P A
and 0 § ↵ § 1, ↵A ` p1 ´ ↵qh “ t↵f ` p1 ´ ↵qh | f P Au. We write f↵h as
short for ↵f ` p1 ´ ↵qh and similarly for A↵h. With slight abuse of notation, a con-
stant act taking consequence c for every state will be denoted c and the set of constant
acts will be denoted �pXq. We use } to denote the set of closed non-empty subsets of;
hence, in particular, }pAq is the set of closed non-empty subsets of A. Where required,
we use the Hausdorff topology on }pAq (see for example Aliprantis and Border (2007,
Section 3.17)). For any A P }pAq, convpAq is the set of finite mixtures of elements of
A: convpAq “ t∞n

i“1

↵ifi| ↵i P r0, 1s with
∞n

i“1

↵i “ 1, fi P Au. It is obvious that
convpAq P }pAq.

The symbol ® (potentially with subscripts) will be used to denote preference relations
over A; as standard † and „ denote the asymmetric and symmetric parts of ®. We adopt
the standard notion of null event with respect to a preference relation ®: an event A Ñ S

is ®-null iff f „ g whenever fpsq “ gpsq for all s P Ac. Throughout, we shall use ® to
denote the decision maker’s current preference relation.

Finally, we introduce some standard properties of functions J : <n Ñ <. J is: constant

additive if Jpx ` aeq “ Jpxq ` a for all x P <n, a P < and where e is the unit vector;
positively homogeneous if Jp↵xq “ ↵Jpxq for all x P <n, ↵ • 0; monotonic if Jpxq •
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Jpyq for all x,y P <n such that xi • yi for all i P t1, . . . , nu, and strongly monotonic if
it is monotonic and Jpxq ° Jpyq for all x,y P <n such that xi • yi for all i P t1, . . . , nu
with strict inequality for some i.

IX.2.2 Epistemic contingencies

Until Section IX.5, we shall work under the assumption that the set of epistemic con-
tingencies the decision maker envisages is given; in Section IX.6 we do away with this as-
sumption and give a choice-theoretic foundation for this set. Moreover, as is standard, we
shall implicitly assume a situation where there are two time periods: the current (ex ante)
one and the future (ex post) one. In accordance with a significant number of non-expected
utility models (Gilboa and Schmeidler, 1989; Ghirardato et al., 2004), we represent the de-
cision maker’s beliefs about the state of the world by sets of priors, that is convex, closed
subsets of �p⌃q. 7 The closed convex set C Ñ �p⌃q represents the decision maker’s current
beliefs. The set of closed convex sets tCiuiPI , where I is a finite index set, represents the fu-
ture beliefs the decision maker envisages himself as possibly having. These can be thought
of as the epistemic contingencies the decision maker anticipates possibly being in. To fo-
cus on the issue of dynamic (in)consistency related to non-expected utility, we assume, as
standard, that the decision maker uses the same affine utility function u : �pXq Ñ < ex
ante and ex post. Finally, we assume that the decision maker’s preferences (both ex ante
and ex post) can be represented according to the maxmin expected utility rule (Gilboa and
Schmeidler, 1989). According to this rule, preferences ®1 corresponding to a set of priors
C 1 are such that, for every f, g P A, f ®1 g iff

(IX.1) min

pPC1

ÿ

sPS

upfpsqqppsq § min

pPC1

ÿ

sPS

upgpsqqppsq

Note that expected utility preferences correspond to the special case where the set of priors
is a singleton.

It follows from these assumptions that ®, the decision maker’s current preference re-
lation, satisfies (IX.1) with respect to C. Let ®i be the preference relation on A satisfying

7. For simplicity, we abstract from the debate about the degree to which, given the lack of separability
of ambiguity and ambiguity attitude in some of these models, the sets of priors can be thought of as (purely)
beliefs.
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(IX.1) with respect to Ci (for all i P I). Note that, under the aforementioned assumptions,
using the set of envisaged ex post beliefs tCiuiPI to represent the set of epistemic contingen-
cies is equivalent to using a representation by the set of ex post preferences t®iuiPI , with
each preference relation satisfying the Gilboa and Schmeidler (1989) axioms. For ease
of presentation, we shall often use the representation in terms of preferences in the next
few sections. Note that, whilst ® can be taken as an observable primitive, the set t®iuiPI

cannot.

Remark IX.1. Consequentialism states that the decision maker’s ex post or conditional
preference does not depend on ‘other branches’ in the decision tree. The standard formu-
lation, which says that preferences conditional on an event A do not depend on what the
acts deliver on Ac (Ghirardato, 2002), does not capture consequentialism in the current
framework, since the ®i do not necessarily correspond to updating on events. Nevertheless
consequentialism is implied by the fact that the ex post preferences are determined entirely
by the set of priors and the utility function: if other parts of the tree had an influence on
the preferences under this contingency, then (IX.1) would not be an appropriate represen-
tation of these preferences. Given that it is tacitly assumed in the framework, we shall not
explicitly mention the condition in subsequent discussion.

Remark IX.2. An alternative setup would involve expanding the state space so that the
decision maker’s ex post beliefs are explicitly represented in the states. As discussed in
Appendix IX.A, under the appropriate assumptions, this framework is essentially equiva-
lent to the one proposed above; moreover, all the points made below could equivalently
have been in this ‘extended state space’ framework. Similar remarks apply to other pos-
sible setups, such as those involving a subjective state space in the style of Kreps (1992);
Dekel et al. (2001) or a space of ‘signals’ or an information structure, beyond the objective
state space S. See also Remark IX.6 (in Section IX.5) on the relation to information struc-
tures, and Remark IX.7 (in Section IX.6) on the relation to the literature on subjective state
spaces.

IX.3 Dynamic consistency on subjective trees

In Section IX.1.2, we saw on a simple example how dynamic consistency on subjec-
tive trees, involving epistemic contingencies, does not imply expected utility preferences,
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even in the presence of consequentialism. In the current section, this point is made more
rigorously: we formulate a version of dynamic consistency for subjective trees, and give
an example to show that dynamic consistency, consequentialism and non-expected utility
ex ante preferences are compatible, for all sets of anticipated ex post preferences (that is,
for all subjective decision trees). In order to explore what dynamic consistency implies for
non-expected utility models, we shall also briefly consider its consequences for the rela-
tionship between ex ante and ex post preferences in the case of maxmin expected utility
preferences.

IX.3.1 Introducing Dynamic Consistency

To introduce the definition of dynamic consistency over subjective trees, it is reasonable
to begin with the standard dynamic consistency condition over objective trees considered
in the literature. Despite considerable differences between authors, the following condition
seems to be fairly representative.

Standard Dynamic Consistency (SDC). For every f, g P A and partition tAjujPJ of S, if
f ®Aj g for every ®-non-null Aj , then f ® g, and moreover, if any of the ®Aj orderings
are strict, then so is the ® one.

Here ®Ai are the preferences conditional on Ai. Another standard condition used in the
literature (see for example Ghirardato (2002)) is the special case of this condition applied
to two-element partitions and acts which coincide on one element of the partition. It is
straightforward to show that, given transitivity of preferences, this condition is equivalent
to the one given above.

Standard Dynamic Consistency (SDC) captures the idea that when faced with any ob-
jective decision tree, comprising of a partition of events, if the decision maker will always
prefer one act to another in all of the future eventualities, then this is the case under his cur-
rent preferences. This corresponds to the requirement that his ex ante preferences should
be coherent with his ex post preferences in the relevant contingencies, under the assump-
tion that the relevant contingencies are the events of a partition. As argued previously, this
assumption does not hold in general, and when it does not, then the ex post preferences
that count are those in the (epistemic) contingencies that the decision maker does in fact
envisage ex ante – that is the set of anticipated future preferences ®i – rather than those
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in the contingencies corresponding to the events imposed by the theorist – the ®Aj . It is
straightforward to extend SDC to incorporate epistemic contingencies, and subjective trees.

Dynamic Consistency (DC). For all f, g P A, if f ®i g for all ®i, then f ® g, and
moreover, if any of the ®i orderings are strict, then so is the ® one.

This is a straightforward modification of Standard Dynamic Consistency, where the
preferences conditional on events in a partition are replaced by the anticipated future pref-
erences. Note that the non-nullness condition is not needed, because the set of preferences
t®i | i P Iu is assumed to contain only the future preferences that the decision maker en-
visages, and already leaves out future contingencies to which he gives ‘probability zero’.
This is the refined notion of dynamic consistency that we propose, and with which we shall
work throughout the rest of this paper.

Remark IX.3. Whilst SDC involves universal quantification over objective decision trees
(in the form of quantification over the partitions of the state space), DC does not involve
universal quantification over subjective decision trees (ie. over all possible sets of epis-
temic contingencies). One reason for this is that there is no normative justification for such
quantification, least of all from the (English-language formulation of the) dynamic con-
sistency principle itself. The principle is concerned with the decision maker’s preferences
over contingent plans, and these involve the contingencies he actually envisages, not a set
of contingencies that he could have but in fact does not envisage. Indeed, since he does
not envisage such counterfactual sets of contingencies, there is no need for him to plan for
them, so dynamic consistency has nothing to say about them. Moreover, adding quantifi-
cation over sets of epistemic contingencies to DC would yield an empty condition, which
can never be satisfied. 8 Finally, the apparent analogy between a quantified version of DC
and SDC may be an artefact of the setup adopted here; as shown in Appendix IX.A, when
SDC is formulated appropriately in an extended state space with epistemic contingencies
represented in the states, it turns out to be equivalent to DC.

8. A simple way to see this is to consider two sets t®
i

u
iPI , t®

j

u
jPJ of epistemic contingencies, where

an event A is null with respect to each preference relation in t®
i

u
iPI and A

c is null with respect to each
preference relation in t®

j

u
jPJ . No ex ante preference relation can satisfy DC with respect to both of these

sets.
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IX.3.2 Dynamic Consistency and Non-expected utility

As explained in the Introduction, a classic argument shows that Standard Dynamic Con-
sistency and Consequentialism (in tandem with other basic assumptions on preferences)
implies that the ex ante preferences are represented according to expected utility. This no
longer goes through when SDC is replaced by Dynamic Consistency, which makes ref-
erence to epistemic contingencies rather than partitions of events. Indeed, no matter what
epistemic contingencies the decision maker envisages, there exists a non-expected utility ex
ante preference that satisfies Dynamic Consistency with respect to this set of contingencies
(recall from Remark IX.1 that consequentialism is automatically satisfied in the framework
used here).

Proposition IX.1. For any set D of probability measures on I with ppiq ° 0 for all i P I

and p P D, let ®D be the preference relation represented according to (IX.1) with the

set of priors CD “ t∞iPI ppiq.qi| p P D, qi P Ciu. Then ®D and t®iuiPI satisfy Dynamic

Consistency.

This can be thought of as a possibility result, showing that once one recognises and
adopts the contingencies which the decision maker himself envisages, dynamic consistency
ceases to be inconsistent with non-expected utility theory. Rather, for any non-singleton set
of anticipated ex post preferences (ie. for any non-trivial subjective decision tree), there is
a non-expected utility ex ante preference satisfying dynamic consistency with respect to
them: it suffices to take CD for any non-singleton D.

IX.3.3 Respecting Dynamic Consistency

If Dynamic Consistency does not imply expected utility, then one might wonder what
conditions it does place on ex ante preferences. Conceptually, this is basically a question
concerning the relationship between two sorts of beliefs the decision maker has: his cur-
rent beliefs about the state of the world – which determine his ex ante preferences – and his
beliefs about what he will believe in the future about the state of the world – which corre-
spond to the epistemic contingencies he envisages. What constraints do what the decision
maker thinks about his future possible states of belief place on his current beliefs?

Technically, the question is analogous to the problem of aggregating non-expected util-
ity decision makers’ preferences. Indeed, dynamic consistency is evidently a strong dom-
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inance or Pareto condition on potential future preferences with respect to current prefer-
ences, of the sort commonly used in the literature on aggregation. Moreover, as noted by
Crès et al. (2011), forming ex ante preferences with the set of priors given in Proposition
IX.1 is equivalent to using a maxmin expected utility functional as the ‘aggregator’ of ex
post maxmin EU preferences into ex ante ones. 9 However, as has been noted in literature
on aggregating sets of priors, dynamic consistency does not imply that the decision maker
must aggregate his future preferences according to this maxmin EU aggregator. (Crès et al.
(2011, Section 2.3) give an example where this is not the case.) In fact, the aggregator may
be more general, albeit not very illuminating, as the following proposition shows.

Proposition IX.2. t®iuiPI and ® satisfy Dynamic Consistency if and only if there exists a

constant additive, positively homogeneous, monotonic function � : <I Ñ < that is strongly

monotonic on RappminpPCi
∞

sPS up¨qppsqqiPIq such that minpPC
∞

sPS upfpsqqppsq “
�ppminpPCi

∞
sPS upfpsqqppsqqiPIq for all f P A.

Here RappminpPCi
∞

sPS up¨qppsqqiPIq Ñ <I is the range of the pminpPCi
∞

sPS up¨qppsqqiPI .
Ghirardato et al. (2004) provide a representation of constant additive, positively homoge-
neous and monotonic functionals in terms of a generalised ↵-maxmin expected utility rep-
resentation, and this could be substituted into this proposition without changing its mean-
ing.

Whilst technically useful below, this result is conceptually not particularly enlighten-
ing. It does have the virtue of showing that the refined version of Dynamic Consistency
proposed here is not empty: it does impose non-trivial constraints on one’s current beliefs
(C) given one’s beliefs about one’s future beliefs (tCiuiPI). Whilst, for largely technical rea-
sons, there seems to be little more that can be said in general about the relationship between
the ex ante set of priors and the ex post sets of priors under DC, in certain specific cases the
relationship may be stronger and more interesting, as we shall see in the next section.

Remark IX.4. One can find supplementary conditions beyond DC that characterize the
maxmin EU aggregator used in Proposition IX.1. One such condition draws its intuition
from the observation that although there are cases where maxmin EU decision makers can
satisfy dynamic consistency without taking a maxmin EU aggregator of their anticipated

9. Their Propostion 1 shows that using the set of priors CD “ t∞
iPI ppiqq

i

| p P D, q

i

P C

i

u to form
maxmin EU preferences over acts is equivalent to evaluating an act by its maxmin expected ex post valuation,
taken with the set of priors D, over the set of ex post functionals.
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future preferences, such ways of aggregating future preferences are fragile in the sense
that, if the set of ex post preferences happened to be different, the aggregated current pref-
erences will generally not belong to the maxmin EU family. Hence the following notion of
robustness of an aggregator.

Definition IX.1. An aggregator � : <I Ñ < is robust if, for every set of maxmin EU prefer-
ences t®iuiPI , the derived preferences ®, defined by f ® g iff �ppminpPCi

∞
sPS upfpsqqppsqqiPIq §

�ppminpPCi
∞

sPS upgpsqqppsqqiPIq for all f, g P A, is a maxmin EU preference.

A rule for aggregating one’s anticipated future preferences into a current preference is
robust if, irrespective of what one’s future preferences are, whenever they are maxmin EU
one is guaranteed to have maxmin EU current preferences. This notion is all that needs to
be added to DC to characterize the maxmin EU aggregator.

Proposition IX.3. � is a robust aggregator satisfying DC iff there exists a unique set

D of probability measures on I with ppiq ° 0 for all i P I and such that �pxq “
minpPD

∞
iPI ppiqxi.

IX.4 Dynamic consistency and dynamic choice problems

We now turn to some economic consequences of the refined notion of dynamic con-
sistency. Economists are often interested in cases where the decision maker is told which
decision tree he is facing, and where this is the (objective) decision tree used by the the-
orist. At first glance, these cases would seem to pose a challenge for the approach de-
veloped above, given its reliance on the notion of subjective decision tree. Consider, for
example, a maxmin EU decision maker considering the Ellsberg urn, with set of priors
tp| ppBq P r0, 2

3

s, ppRq “ 1

3

u (where B is the event that the black ball is drawn and R

is the event that the red ball is drawn). Suppose that he is told that he will be faced with
the ‘Dynamic Ellsberg’ decision tree given in Section IX.1.2 (Figure IX.2(a)). This de-
cision maker cannot satisfy both dynamic consistency and consequentialism: herein lies
the problem, and, it seems, the introduction of a refined notion of dynamic consistency
involving epistemic contingencies does nothing to alleviate this difficulty. Moreover, in
many dynamic problems, such as planning problems, intertemporal portfolio problems and
applications to saving, these are precisely the sorts of implications of non-expected utility
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models that inhibit the use of standard techniques, such as backwards induction (or ‘fold-
ing back’) methods. In this section, we examine to what extent the proposed approach can
handle such cases.

From the perspective of the framework introduced above, the situations just described
concern decision makers whose subjective decision trees corresponds to objective ones.
An objective decision tree involves as contingencies the events in a (finite) partition P of
the state space. In the situations described, each of the decision maker’s epistemic contin-
gencies t®iuiPI corresponds to learning exactly one of these events (and no two epistemic
contingencies correspond to the same event). Hence, the subjective tree corresponds to
the objective tree with partition P precisely when, for each i P I , there exists exactly one
element Ai of P such that Ac

i is ®i-null, and for any i, j P I , if i ‰ j, then Ai ‰ Aj . If this
holds for a set of epistemic contingencies t®iuiPI and a partition P , we say that t®iuiPI is
P-ontic.

As the following result shows, under this assumption, dynamic consistency places a
strong constraint on the form of the decision maker’s ex ante set of priors.

Proposition IX.4. Let t®iuiPI and ® satisfy DC. Suppose moreover that, for some partition

P , t®iuiPI are P-ontic. Then there exists a unique set D of probability functions on I with

ppiq ° 0 for all i P I and p P D, such that C “ t∞iPI ppiq.qi| p P D, qi P Ciu.

For a partition P and a set of priors C, we say that C is P-rectangular if for every
Aj P P there exists a set Cj of probability measures with support in Aj , and there exists a
set C

0

of probability measures on P such that C “ t∞AjPP ppAjq.q | p P C
0

, q P Cju. A
P-rectangular set of priors has a particular ‘shape’: it can be ‘factorized’ into a set of priors
over P multiplied by sets of priors on each element of the partition. This may be thought
of as the equivalent in the present setup of the notion of rectangularity defined by Epstein
and Schneider (2003) .

Proposition IX.4 thus tells us that, under the assumption of Dynamic Consistency,
whenever the decision maker’s subjective decision tree corresponds to an objective tree
(it is P-ontic), then his ex ante set of priors has a special shape (it is P-rectangular). It
can be understood in the terms introduced in Section IX.3.3, namely, as concerning the
relationship between the decision maker’s current beliefs about the state of the world (the
ex ante set of priors) and his beliefs about his possible future states of belief (the epistemic
contingencies he envisages). By contrast with Proposition IX.2, which was relatively weak,
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Proposition IX.4 identifies a particularly strong relationship in a special case. First of all, it
implies that whenever the agent’s envisaged future beliefs have a particular form – the epis-
temic contingencies are P-ontic – the aggregator by which the current beliefs are related
to future ones is a maxmin EU one (of the sort discussed in Section IX.3). Furthermore,
and more importantly, it tells us that this particular form of the envisaged ex post beliefs
implies that the ex ante beliefs must also have a specific form: that is, they must be P-
rectangular. 10 Note that this form can be relatively straightforwardly verified on inspection
of the ex ante set of priors. (It suffices to check that the set tpp‚|Aiq | p P C, ppAiq “ xu
is the same for all x.) This renders the Proposition more interesting, because it makes the
contrapositive of the implication meaningful.

Indeed, taking the contrapositive, Proposition IX.4 implies that (assuming Dynamic
Consistency) if the decision maker’s ex ante set of priors is not P-rectangular – it does not
have the particular shape – then his set of epistemic contingencies is not P-ontic – he does
not think that he will necessarily learn exactly one event in the partition P and only that. In
other words, it allows the theorist to draw a conclusion about the future beliefs the decision
maker anticipates – and hence the subjective decision tree he is using – on the basis of a
property of his current beliefs about the state of the world.

To see the consequences for the application of non-expected utility models in dynamic
problems, consider the argument with which this section began. It is straightforward to
check that the set of priors given above is not tY, Y cu-rectangular. As Proposition IX.4
makes clear, it does not follow that this decision maker is not Dynamically Consistent: un-
der the assumption of Dynamic Consistency, it simply follows that he does not anticipate
learning Y and learning Y c as the only possible future states of belief. In other words, this
ex ante set of priors implies that his subjective decision tree is not the objective decision
tree given in Figure IX.2. Hence when he is told that he will be faced with the decision
tree given in Figure IX.2, he is learning something: namely, something about the future
contingencies that need to be planned for. Given that, as has been discussed in the pre-
vious section, DC implies that the decision maker’s beliefs concerning his future beliefs
place constraints on his current beliefs, it should not be surprising that when he updates
his beliefs about his future beliefs – to incorporate the information that the only two fu-

10. Note that the use of the maxmin EU aggregator alone does not imply the special rectangular shape of
the ex ante set of priors: that also requires that the supports of the ex post sets of priors are disjoint.
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ture contingencies are learning Y and learning Y c – this has consequences for his current
beliefs. Indeed, Proposition IX.4 implies that when (or if) he updates his beliefs about his
future beliefs to ‘adopt’ the decision tree in Figure IX.2, then he must also update his cur-
rent beliefs so that they are tY, Y cu-rectangular. Since the subjective tree then coincides
with an objective tree, the standard form of dynamic consistency will thus be satisfied, with
respect to the ex ante beliefs the decision maker has after having updated on the informa-
tion about the decision tree that he is facing. The decision maker has no trouble satisfying
Dynamic Consistency in this example: it is always satisfied with respect to the subjective
decision tree he thinks he is faced with and the ex ante beliefs he has when he thinks he
is faced with that tree. The purported problem posed by the example is the result of the
inappropriate comparison of his ex ante set of priors before learning that he is faced with
the tree in Figure IX.2 and his subjective decision tree after having learnt that he will be
faced with the tree in Figure IX.2.

We can thus draw two morals for the use of the maxmin expected utility model in
dynamic problems. 11 First of all, Dynamic Consistency can be assumed to be universally
satisfied without problem: indeed, given the reasonable intuition supporting it, it is a very
natural assumption. Secondly, DC implies a particular relationship between the decision
maker’s current set of priors and the decision tree he considers himself to be faced with.
Any theorist modelling decision makers must of course respect this relationship, if he is to
avoid making inconsistent modelling assumptions.

The concrete advice for applications to dynamic problems is simple: when applying the
maxmin expected utility model, the ex ante set of priors should be rectangular with respect
to the partition formed by the nodes in the tree. It is known, since the seminal work of
Epstein and Schneider (2003), that this is the only case in which the decision maker will
be dynamically consistent in the classic sense, and hence where standard techniques such
as folding back can be used. However, it is sometimes suggested that the restriction to
rectangular sets of priors is at best a partial solution, for the problem of dynamic inconsis-
tency remains when the set of priors is not rectangular with respect to an event of interest
(see, for example, Hanany and Klibanoff (2007, p282) and Al Najjar et al. (2009, §3.4)). 12

Proposition IX.4 provides a reply to this worry, in the form of a principled justification of

11. These points hold mutatis mutandis for other non-expected utility models.
12. Epstein and Schneider’s own conclusion (p14) is that ‘in some settings, ambiguity may render dynamic

consistency problematic.’
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the restriction to rectangular sets. If the set of priors is not of the appropriate rectangular
form, this does not imply that the decision maker is dynamically inconsistent, in the refined
sense given in Section IX.3. Rather, it implies that the decision maker is not using the same
decision tree as the theorist. So the restriction to appropriately rectangular sets amounts
to an assumption that the decision maker does indeed know the decision tree he is faced
with, and that this is the same as the one the theorist is using. As such, there is nothing
arbitrary or unnecessarily limitative about it; indeed, without such assumptions about the
way decision makers conceive the problems they are faced with, economic modelling can
hardly get off the ground!

We thus conclude that the proposed notion of dynamic consistency, and the subjective
framework for thinking about such issues, has no trouble coping with the purported difficul-
ties for non-expected utility models in dynamic choice problems. Quite to the contrary, it
provides a reasoned defense of a certain approach to applying non-expected utility models
to such problems, which has already been proposed in the literature. Non-expected utility
models can be used in dynamic problems, and even using folding back reasoning: this is
a consequence of the fact that there is no obstacle to non-expected utility decision makers
being dynamically consistent, with respect to decision tree they consider themselves to be
using. However, when using these models, one must respect the consequences of one’s
assumptions about what the decision maker takes the decision tree he is facing to be: the
lesson of Proposition IX.4 is that many purported violations of dynamic consistency are
just modelling errors on the part of the theorist.

Remark IX.5. Note that singleton sets of priors are the only sets that are P-rectangular for
every partition P . Consequently, the only ex ante preferences such that, for every partition
P , there exists a P-ontic set of epistemic contingencies with respect to which DC is sat-
isfied, are expected utility preferences. This is a version of the standard result concerning
SDC and expected utility, recovered in our framework. In the light of the preceding con-
siderations, this means that expected utility preferences are the only ones from which one
cannot immediately draw the sorts of implications just described about the decision tree
that the decision maker is using. The potential for the sorts of modelling errors discussed
above is thus reduced with expected utility preferences.
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IX.5 Value of Information

In this section, we consider another important economic issue raised in discussions
of dynamic consistency, the attitude towards information. A commonly noted purported
consequence of non-expected utility is that sophisticated decision makers may prefer not to
obtain free information: they are information averse (Wakker, 1988; Al Najjar et al., 2009).
This of course is in stark contrast with basic pre-theoretical intuition, as well as with the
standard Bayesian expected utility model, and is often taken to be an argument, if not one
of the strongest arguments, against non-expected utility theory. As a further illustration of
the power of the approach proposed here, we analyse the issue of value of information in
the framework introduced in the previous sections.

IX.5.1 Information aversion: debunking the standard argument

The standard argument that non-expected utility decision makers are information averse
can be formulated on a sequential extension of the dynamic Ellsberg example given in
Section IX.1.2. Consider a decision maker with standard Ellsberg preferences – he prefers
g
1

to f
1

at node A
1

in Figure IX.2(a), but prefers fRB to gRB at node B
1

in Figure IX.2(b)
– and suppose that he is given the choice between facing these two decision trees. 13 That
is, he is faced with the decision tree in Figure IX.4. Since he has the Ellsberg preferences
just specified, he knows that if he reaches decision node A he will choose g

1

and that if
he reaches decision node B he will choose fRB. Reasoning by backwards induction, 14 the
decision maker at node C knows that if he takes the upper branch NL of the tree, he will
essentially end up with g

1

, and if he takes the lower branch L he will end up with f
1

(given
that the decision maker does not know the resolution of the uncertainty at the chance node ˚,
the choice of fRB at node B essentially boils down to a choice of f

1

from the point of view
of a decision maker at C). Hence, since he prefers g

1

to f
1

, he chooses NL at C. However,
since the choice at C is essentially that between learning whether the ball is yellow before
deciding to bet (option L) or not learning whether it is yellow (option NL), by choosing

13. In this discussion, notations and numbering are taken from Section IX.1.2.
14. Decision makers who reason in this way in situations of dynamic inconsistency are sometimes said to

adopt ‘the strategy of consistent planning’, or to be ‘sophisticated’; see Strotz (1955); Karni and Safra (1990);
McClennen (1990); Siniscalchi (2011).



Dynamic Consistency and Ambiguity: A Reappraisal IX-26

C

NL

A

f
1

g
1

L

10

Y

RB

B

fRB
f

1

gRBg

1

Figure IX.4 – Information Aversion

NL, the decision maker betrays a preference for not obtaining free information. This is the
criticized information aversion.

In Section IX.4, we noted that the assumption of Dynamic Consistency implies a strong
modelling constraint on the theorist, which undermines the standard practice of taking a
decision maker with a given set of priors, subjecting him to a decision tree, and deducing
that he is dynamically inconsistent. An essential insight is that, when the decision maker
learns that he is faced with a particular decision tree, this may affect his current set of
beliefs. The same general point applies in the sequential situation described here. Let C be
the set of priors that decision maker has after having chosen not to learn – that is, at node
A. As specified above, this set of priors yields the standard Ellsberg preferences, and so is
not rectangular with respect to the partition tY, Y cu. However, if the decision maker choses
to learn, then even before learning whether the ball is yellow or not – that is, even at the
chance node ˚ – his set of priors will not be C. This is a consequence of Proposition IX.4:
at node ˚ he knows that he is facing an objective tree which will determine which element
of the partition tY, Y cu occurs, and so his set of priors must be rectangular with respect to
this partition (assuming Dynamic Consistency). Since C is not rectangular with respect to
this partition, it follows that his set of priors at node ˚ is not C. In other words, his choice of
whether to learn or not at node C affects the beliefs he has immediately after his decision,
but before any (other) learning has taken place.

This is a natural consequence of the discussion in the previous sections. If aspects of the
decision maker’s future beliefs are reflected in his current beliefs, then choices he makes
that determine the future beliefs he envisages as possibly having – such as the choice of



IX-27 Dynamic Consistency and Ambiguity: A Reappraisal

whether to obtain information or not – impact on his current beliefs. This impact occurs
even before he acquires any of the promised information: it is, if you will, the information
that he will acquire some information that induces this change in current beliefs, rather than
the information that will be acquired itself. And this ‘second-order’ information comes
directly from the choice he has made. As such, there is a strong analogy between the
choice of whether to learn and moral hazard problems. The decision maker above is in a
similar situation to an Agent whose chances of a particular reward under a given contract
depend on the effort he chooses to expend. In both cases, the decision makers’ beliefs
(about the colour of the ball, or about whether he will get the reward respectively) are
directly determined by their choices.

This analogy suggests a diagnosis of the argument sketched above purporting to estab-
lish information aversion. The argument considers that the choice between NL and L at
node C boils down to the choice between g

1

and f
1

. It assumes that the decision maker has
the Ellsberg set of priors C at node C, and evaluates the choice at that node on the basis
of the preferences over f

1

and g
1

corresponding to these priors. However, this amounts to
the assumption that the decision maker’s set of priors immediately after his choice at C are
independent of the choice made, and we have just seen that this is false. Since the choice at
node C alters his beliefs and hence his evaluations of acts, the decision maker should use
the interim beliefs (or if you wish, the beliefs conditional upon the choice to learn or not)
to evaluate the options NL and L at node C. This is the standard approach in sequential
choice situations of this sort. Consider an Agent who has to choose a level of effort, and
then will have the choice of which contract to sign, before observing the outcome of his
work (eg. the profits); assuming two levels of effort and two contracts, the decision tree for
this problem is given in Figure IX.5. Under the standard approach, one would not calculate
ex ante (ie. before knowing the choice of effort) whether the variable or fixed contract
is preferable, and then choose whatever effort level leads to that choice of contract at the
Contract nodes. Such reasoning, which is the analogue of the above argument for infor-
mation aversion, obviously errs by wrongly assuming that the optimal choice of contract
is independent of the effort exerted. 15 Indeed, the standard approach is to evaluate each

15. Another problem with the reasoning is that it relies on an ex ante probability distribution, which de-
pends on the choice of effort and so requires the Agent to estimate the probability of making a particular
choice in the decision he is currently deliberating upon. Similarly in the information case, properly deter-
mining the decision maker’s set of priors at node C in the tree in Figure IX.4 would require his beliefs about
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Figure IX.5 – Agent’s choice

of the available strategies – (High effort, variable contract), (High effort, fixed contract)
and so on – and these evaluations would use the probabilities (beliefs) of outcomes condi-
tional on the choice of effort made. The analogue of this sort of calculation in the case of
the choice of obtaining information does not immediately imply that non-expected utility
decision makers are information averse.

IX.5.2 Value of envisaged information

What, then, can be said about the value of information under the current proposal?
Since the proposal incorporates the beliefs the decision maker envisages himself as possibly
having, and hence implicitly the information he expects to receive, the question can be
naturally divided into two. On the one hand, what is the value of the information that he
expects to receive? On the other hand, what is the value of information that the decision
maker is offered but had not necessarily expected to receive? For expositional purposes, it
is convenient to treat the former question first.

The issue is essentially whether a decision maker would accept to delay his decision, on
the (subjective) decision tree he envisages, until he arrives at the future nodes. It is some-
times suggested that this is immediately implied by dynamic consistency (see for example
Ghirardato (2002)); however, such an interpretation involves identifying contingent plans
with pairs of acts, and hence it does not easily transfer over to the case of subjective trees.
Nevertheless it can be shown, by properly defining the value of information in a manner
analogue to the standard Bayesian literature, that it is indeed non-negative.

whether he will choose to learn or not at that node. Doubts may be raised as to whether such beliefs can be
formed or be economically meaningful.
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The value of information over envisaged contingencies involves the comparison be-
tween the value of choosing now and the value of waiting for the realisation of the con-
tingency before choosing. 16 Unlike the standard literature, the ex post value of the in-
formation and the ex ante value of the option of not receiving the information are calcu-
lated using the maxmin expected utility rule with the ex post and ex ante sets of priors.
However, to calculate the ex ante value of obtaining the information, an ‘aggregator’ con-
necting ex post and ex ante preferences is required. (In the standard Bayesian case, the
aggregator is the expected utility rule.) We thus assume that there is such an aggregator
� : <I Ñ <: i.e. that there exists � such that, for all f P A, minpPC

∞
sPS upfpsqqppsq “

�ppminpPCi
∞

sPS upfpsqqppsqqiPIq. By Proposition IX.2, such an aggregator exists when-
ever the decision maker satisfies DC. Under this assumption, the following definition of
non-negative value of information is correctly formulated.

Definition IX.2. Let C and tCiuiPI , for i P I represent ex ante and ex post sets of priors
and let � : <I Ñ < be the aggregator. The value of envisaged information for a menu

A P }pAq is non-negative if and only if:

(IX.2) �

˜˜
max

fPA
min

pPCi

ÿ

sPS

upfpsqqppsq
¸

iPI

¸
• max

fPA
min

pPC
ÿ

sPS

upfpsqqppsq

The value of envisaged information is always non-negative if it is non-negative for every
A P }pAq.

This notion of non-negative value of information is evidently analogous to the standard
notion, the difference being that it does not involve the assumption of expected utility deci-
sion makers, and is specific to the information that the decision maker envisages acquiring
ex ante – that is, to his subjective decision tree.

Proposition IX.5. If the decision maker satisfies DC, then the value of envisaged informa-

tion is always non-negative.

For the information the decision maker envisages receiving, the refined notion of Dy-
namic Consistency implies that it has non-negative value. The standard point concerning

16. We are following a standard approach to information value in, for example, Marschak and Miyasawa
(1968); Marschak and Radner (1972); Hilton (1981).
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SDC and objective trees thus continues to apply for DC and the decision maker’s subjec-
tive tree: he weakly prefers to wait for the information before deciding. Here there is no
possibility of information aversion.

IX.5.3 Value of offered information

The situation is more subtle in cases where the decision maker had not expected to learn
(just) the information on offer, and so learns something about his potential future beliefs –
or perhaps more accurately, about the fact that they will be modified – on choosing to obtain
the information. As explained above, such cases are analogous to moral hazard situations,
and should be analyzed accordingly. In particular, the value of information involves the
comparison of the value of choosing just after having rejected the offer of information, and
the value of accepting the offer and choosing after having received the information. As is
clear from the discussion in Section IX.5.1, this is not the standard way of reasoning about
attitude to information in the literature on non-expected utility theory.

For the analysis, consider an offer of acquisition of information I. Let C be the decision
maker’s set of priors immediately after having chosen not to obtain the information, and
let CpIq be his set of priors immediately after having chosen to obtain the information, but
before actually receiving it. Being slightly slack with terminology, we shall continue to call
these the ex ante sets of priors in the two cases. Let tCiuiPI , � : <I Ñ < and tCpIqkukPK ,
�pIq : <K Ñ < be the ex post sets of priors and aggregators just after having chosen not to
turn down and acquire the information respectively. 17

Remark IX.6. Note that this framework is broad enough to cover standard representations
of information structures or systems. One could consider a set of signals, and understand
each CpIqk to be a posterior set of beliefs after the reception of some signal, with �pIq re-
flecting the decision maker’s prior beliefs as to which signal will be received. As such, the
framework essentially corresponds to a standard representation of information structures
(for example Gollier (2004, Ch 24)), the only difference being that the beliefs and aggrega-
tor are not necessarily expected utility. Similarly, another standard representation of infor-
mation structures as partitions (eg. Marschak and Miyasawa (1968); LaValle (1968)) can

17. It is natural to assume that C, tC
i

u
iPI and � are independent of the information I offered, insofar as

they can be thought of as representing the decision maker’s state even before he envisaged the possibility of
being offered the information. Nothing in the analysis below depends on this assumption.
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be incorporated, by adding assumptions that the support of each CpIqk belongs to exactly
one element of the given partition. 18

Moreover, this setup is silent on the question of the relationship between the beliefs
in the case where the information is rejected and those in the case where it is accepted.
The development of update rules that determine how the decision maker’s envisaged future
beliefs are revised upon learning that he will receive some hitherto unexpected information
is a topic for future research.

The standard question of value of information involves comparison of the value of de-
ciding immediately after having chosen not to receive the information – so the relevant set
of priors is C – with the anticipated value of deciding after having received the information
– so the relevant elements are the sets of priors tCpIqkukPK and the opinion as to which
will be realized, given by �pIq. Hence the following definition of the non-negative value of
offered information.

Definition IX.3. Let C, tCiuiPI , �, CpIq, tCpIqkukPK , �pIq be the ex ante beliefs, envisaged
ex post beliefs and aggregators in the case where the decision maker chooses to reject the
information I or to accept it respectively, for some offered information I. The value of

offered information I for a menu A P }pAq is non-negative if and only if:

(IX.3) �pIq

˜˜
max

fPA
min

pPCpIqk

ÿ

sPS

upfpsqqppsq
¸

kPK

¸
• max

fPA
min

pPC
ÿ

sPS

upfpsqqppsq

The value of offered information I is always non-negative if it is non-negative for every
menu A P }pAq.

Envisaged information is recovered as the special case where the decision maker is
offered information which he already expected to learn (ie. where C “ CpIq, tCiuiPI “
tCpIqkukPK , � “ �pIq). In other cases, there are clear non-trivial necessary and sufficient
conditions for the value of offered information to be non-negative.

18. Note that there is not necessarily a one-to-one correspondence between the ‘objective’ signals or cells
of the partition and the ex post sets of priors, because the decision maker may have expected to learn other
information over and above the information offered. For example, if he expects to learn which of the events
B or B

c hold, and is offered the information of which of A and A

c hold, then there may be up to four relevant
ex post sets of priors – after learning A and B, after learning A and B

c, and so on – though the size of the
information partition offered is two.
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Proposition IX.6. Suppose that the decision maker satisfies DC. Then the value of infor-

mation I is always non-negative iff CpIq Ñ C.

This proposition provides the final piece in the analysis of the allegation that non-
expected utility decision makers necessarily exhibit information aversion. It tells us that the
value of information for any maxmin expected utility decision maker will be non-negative
as long as his set of priors immediately after having chosen to learn the information is
contained in the set of priors he has immediately after having chosen not to acquire the
information. Since the standard arguments, such as the one discussed in Section IX.5.1,
involve objective trees, the information offered comes in the form of a partition and this
adds another constraint: namely, that the set of priors immediately after accepting the in-
formation are P-rectangular. 19 These two constraints are simultaneously satisfiable: for
one, the singleton sets containing priors in C satisfy both conditions. Hence, for any deci-
sion maker who has a set of priors C if he decides not to accept the information, there exists
a set of priors such that, if he holds this set of priors after having chosen to acquire the in-
formation, he will have non-negative value of information. In other words, a non-expected
utility decision maker can always exhibit weak preference for information with respect to
any information partition offered. Once the fact that the decision maker may change his
beliefs after choosing to acquire information is properly incorporated into the calculation
of the value of that information, it is clear that claim that non-expected utility necessarily
implies information aversion is not only unfounded: it is false.

IX.5.4 Negative value of information and opportunity costs

One might nevertheless remain puzzled by the fact that it is possible, if the constraint
in Proposition IX.6 is not met, for a decision maker to give a negative value to some in-
formation (for some menu). Is the mere possibility of turning down free information not
itself an unacceptable consequence of non-expected utility? There is certainly a strong in-
tuition that one should never have a strict preference for refusing free information; but it
implicitly rests upon the assumption that the information acquisition does not compromise
the reception of information one had otherwise expected to obtain. Suppose that James,

19. Since, as noted in footnote 18, there may be more than one ex post preference that is non-null on a
given cell of the partition, Proposition IX.4 does not strictly speaking apply. However, it is straightforward to
extend it to cover this case.
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a manager of a firm, has a spy in a competitor’s board of directors, and expects to learn
from the spy the competitor’s strategy in a market B. He is offered the possibility to learn
‘for free’ the competitor’s strategy in another market A. If this information can be acquired
without consequence for the prospects of gaining information about market B, then it is
evidently of non-negative value. Suppose, however, that acquiring the information about
the strategy in market A involves blowing the spy’s cover, so he will no longer be able to
tell James anything about market B. In this case, it may well be reasonable to refuse the
offer of information about market A, because acquiring this information jeopardizes other
information that James had expected to receive. Of course, in this sort of case, the choice is
essentially between two different pieces of information: the information the decision maker
expected to get before the offer and the information he will get if he accepts the offer. If the
value of the former piece of information is greater than that of the latter – if the opportunity
cost of the offered information outweighs its value – then it is perfectly reasonable to turn
down the offer of ‘free’ information. The condition in Proposition IX.6, we suggest, can
be understood as reflecting this caveat.

A clear way to see this point is by considering what happens in situations where the
assumptions underlying the standard intuition in favour of non-negative value of informa-
tion are satisfied: that is, in cases where choosing to acquire the offered information does
not imply forgoing information that one already expected to obtain. Note firstly that, as
mentioned above (see Remark IX.6), the ex post priors and aggregators in the case where
the information is declined (tpCiuiPI ,�q) and the ex post priors and aggregators in the case
where the information is accepted (tpCpIqkukPK ,�pIqq) can be thought of as information
structures, and the decision of whether to accept the information is effectively a choice
between these two information structures. If no previously expected information is com-
promised on accepting the offer of information, then the latter information structure is more
informative than the former one. According to a standard definition, informativeness can be
defined in terms of decision makers’ attitudes to the information: one information structure
is more informative than another if every decision maker (no matter his utility function)
would prefer to learn according to the former information structure (Marschak and Miya-
sawa, 1968; Gollier, 2004). 20 This definition can be adapted to the current framework as

20. Naturally, there are a battery of important results showing that this definition is equivalent to other
possible definitions of informativeness under expected utility (Blackwell, 1953; Marschak and Miyasawa,
1968; Gollier, 2004). We are not aware of similar results for non-expected utility models; indeed, it is not
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follows.

Definition IX.4. Let C, tCiuiPI , �, CpIq, tCpIqkukPK , �pIq be the ex ante beliefs, envisaged
ex post beliefs and aggregators in the case where the decision maker chooses to reject the
information I or to accept it respectively. ptCpIqkukPK ,�pIqq is at least as informative as

ptCiuiPI ,�q if and only if, for every affine utility function u1
: �pXq Ñ <, and every menu

A P }pAq:

(IX.4)

�pIq

˜˜
max

fPA
min

pPCpIqk

ÿ

sPS

u1pfpsqqppsq
¸

kPK

¸
• �

˜˜
max

fPA
min

pPCi

ÿ

sPS

u1pfpsqqppsq
¸

iPI

¸

It follows directly from this definition and Proposition IX.5 that, whenever the infor-
mation structure one faces after accepting the information offered is at least as informative
as the information structure faced when declining the offer, then the value of the offered
information is non-negative.

Proposition IX.7. Suppose that the decision maker satisfies DC. Then the value of infor-

mation I is always non-negative whenever ptCpIqkukPK ,�pIqq is at least as informative as

ptCiuiPI ,�q.

Hence, in accordance with the standard intuition, non-expected utility decision makers
will not turn down free information when it does not compromise information they had
previously expected to receive.

We conclude that, even for non-expected utility decision makers, their attitude to in-
formation behaves exactly ‘as it should do’. On the one hand, the fact that they are non-
expected utility does not imply that they will necessarily ever have negative value of in-
formation: Proposition IX.6 implies that it is always possible for their beliefs after having
chosen to acquire the information to be such that the value of the information is non-
negative. On the other hand, it is possible for them to exhibit negative value of information
– the condition in Proposition IX.6 is non-trivial. However, when this happens, it does
so for good reason. In particular, Proposition IX.7 tells us that, whenever the information
offered does not compromise information that was expected to be acquired – whenever it is
a simple addition of information, with no subtraction, so to speak – the value they assign to

even evident what the analogues for some of the other proposed definitions would be for such models.
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the information offered is non-negative. If the value of the information offered is negative,
then this must be a case where the decision maker forgoes information he had expected to
receive on accepting the information offered. In these cases, aversion towards the informa-
tion offered is entirely acceptable: if the information lost by accepting the offer is worth
more than the information acquired, then it is entirely reasonable to decline the offer.

IX.6 Foundations

So far we have assumed a set of epistemic contingencies as given; however, they are
evidently not directly observable. The approach depends on the assumption that the de-
cision maker does envisage such epistemic contingencies; moreover, it is important, to
ascertain whether the refined notion of Dynamic Consistency is respected or not, to deter-
mine which epistemic contingencies the decision maker envisages. The aim of this section
is to present behavioral foundations for the notion of epistemic contingency in the context
of the maxmin EU model. To this end, we shall introduce a choice-theoretic situation and
propose axioms that are necessary and sufficient for a representation of choices involving
envisaged sets of future priors tCiuiPI . The result in this section should relieve worries
that the proposed reconceptualization of dynamic choice via the introduction of the notion
of epistemic contingency relies on notions with no independent behavioral meaning. The
notions have in-principle observable consequences (beyond the application to the question
of dynamic consistency), and the set of epistemic contingencies envisaged by the decision
maker can in principle be gleaned from choice behavior.

IX.6.1 Setup and representation

We continue to work in the setup set out in Section IX.2.1. Rather than assuming
(future) sets of priors or preference relations as primitives, we work now with choice func-
tions, where a choice function is a function c : }pAq Ñ }pAq such that, for any A P }pAq,
cpAq Ñ A. 21 The choice function c has the following interpretation, associated with the
time line given in Figure IX.6. The decision maker knows that he will have to choose an
act from a menu A at an ex post stage (before the realisation of the state of the world, but

21. This is sometimes called a choice correspondence in the literature.
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perhaps after receiving information), and has the opportunity in an ex ante stage of restrict-
ing the options left open to a subset of A, from which he will make his ex post choice. For
an example of such a choice situation, consider a committee deciding on the allocation of
a building contract or of a university post: they may in the first instance rule out some of
the candidates, producing a shortlist, from which they will later choose the winner. For any
A P }pAq, c yields the set of elements that the decision maker now wishes to keep as open
alternatives for his future choice; the elements not in cpAq are those which the decision
maker is willing to rule out now.

We shall consider the following representation:

(IX.5) cpAq “ tf P A | f P arg max

gPA
min

pPC1

ÿ

sPS

upgpsqqppsq for some C 1 P Pu

where u is a continuous affine utility function on �pXq and P is a set of convex, closed
subsets of �p⌃q. The sets of priors in P are interpreted as the future beliefs that the
decision maker anticipates himself as possibly having at the moment when he will be faced
with his final choice; they can be thought of as the epistemic contingencies he envisages.
(IX.5) represents a decision maker who envisages that he will hold one of the sets in P
as his set of priors at the specified future moment, and that he will form preferences with
that set according to the maxmin EU rule. He retains as an open option any act which is
optimal according to this rule with any of the sets of priors in P . To see this more clearly,
note that this representation can be reformulated in terms of the ex post preferences in the
different epistemic contingencies, as follows. Define the set R of preference relations on A
as follows: ®iP R if and only if there exists Ci P P such that ®i is represented according
to (IX.1) by Ci and u. R contains the decision maker’s anticipated ex post preferences,
formed on the basis of the ex post beliefs according to the maxmin EU rule. Representation
(IX.5) is equivalent to the following representation of ex ante choice in terms of a set R of
preference relations each of which is represented according to (IX.1):

(IX.6) cpAq “ tf P A | D ®iP R, @g P A, f ©i gu

In other words, the decision maker keeps open any act which is optimal in the menu
according to at least one of his anticipated ex post preferences, and rules out any act which
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Figure IX.6 – Time line

ex ante stage
choose shortlist B Ñ A

ex post stage
choose act f P B

realisation and payoff

is not optimal under any of the ex post preferences. The choice rule (IX.6) yielding a choice
function given a set of preferences has been studied in the choice-theoretic literature, where
it has been called pseudo-rationalisability (Moulin, 1985).

Remark IX.7. Note that representation (IX.5) could alternatively be formulated in terms of
preferences over menus. To illustrate the relationship, define the preference relation 9† on
}pAq as follows: for all A, B P }pAq,

A 9†B iff cpA Y Bq X A “ H(IX.7)

It is straightforward to check that this preference over menus is represented by the u

and P featuring in representation (IX.5) as follows: for all A, B P }pAq, A 9†B iff

(IX.8) max

gPA
min

pPC1

ÿ

sPS

upgpsqqppsq † max

gPB
min

pPC1

ÿ

sPS

upgpsqqppsq for all C 1 P P

The relation 9† is a preference relation over menus in the style of Kreps (1979); Dekel
et al. (2001), but, unlike most preference relations studied in this literature, it will not satisfy
the standard conditions on preferences: in particular, the weak version of the relation will
not be complete. This is due to the representation. It is standard in the aforementioned
literature to assume that ex ante preferences are formed using an ‘aggregator’ that ensures
completeness; by contrast, representation (IX.8) combined with definition (IX.7) involves
a ‘neutral’ aggregator that only orders menus in cases of strict dominance. This difference
is related to the goal of the exercise in this section. Whereas most of the representation
theorems in the preference for flexibility literature deliver both ex post preferences (or states
of a subjective state space) and ex ante preferences that are aggregated in a particular way
with respect to the ex post ones, here the aim is to give foundations solely for ex post sets of
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priors or preferences (the epistemic contingencies), without making any assumptions about
the ex ante preferences. Indeed, the issue of the relationship between ex post and ex ante
preferences is essentially a question about dynamic consistency, and this should evidently
be kept separate from the behavioral foundation of the notion of epistemic contingency.

IX.6.2 Axioms and result

Consider the following axioms on the choice function c.

Axiom IX-A1 (Chernoff). For all A, B P }pAq, f P A, if A Ñ B and f P cpBq, then
f P cpAq.

Axiom IX-A2 (Aizerman). For all A, B P }pAq, if cpBq Ñ A Ñ B, then cpAq Ñ cpBq.

Axiom IX-A3 (Non-degeneracy). There exist d, e P �pXq such that d P cptd, euq and
e R cptd, euq.

Axiom IX-A4 (Fixed utilities). For all d, e P �pXq and A, B P }p�pXqq with A Ñ B, if
d, e P cpAq, then d P cpBq if and only if e P cpBq.

Axiom IX-A5 (Set C-Independence). For all A P }pAq, d P �pXq, and for all ↵ P p0, 1q,
cpA↵dq “ cpAq↵d.

Axiom IX-A6 (Union C-Independence). For all A P }pAq, ↵ P p0, 1q and d P �pXq with
d P cpAq, cpAq Ñ cpA Y A↵dq.

Axiom IX-A7 (Monotonicity). For all A, B P }pAq with A Ñ B, if, for each g P B, there
exists f P A with fpsq P cptfpsq, gpsquq for all s P S, then cpAq Ñ cpBq. Moreover, for
every g P B, if there exists f P B with gpsq R cptfpsq, gpsquq for all s P S, then g R cpBq.

Axiom IX-A8 (Uncertainty aversion). For all A, B P }pAq with B Ñ cpAq, f P cpAYtfuq
for all f P convpBq whenever there exist d P �pXq and g P B such that: i. f↵d P B for all
↵ P r0, 1s and all f P B; and ii. g↵d R cpA Y tf�euq for all f P B, all e P �pXq with e ° d

and all ↵, � P p0, 1q.

Axiom IX-A9 (Continuity). For all sequences of menus pAnqnPN and A P }pAq with
An Ñ A and all sequences of acts pfnqnPN with fn P An for each n P N , if fn Ñ f , then
f P cpAq.
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Chernoff (IX-A1) and Aizerman (IX-A2) are standard axioms in the choice-theoretical
literature. The former is just Sen’s axiom ↵, and requires no further comment; the latter
says that removing an alternative that does not belong to the choice set cannot lead to new
alternatives being chosen. The conjunction of the two is weaker than the Weak Axiom
of Revealed Preference, and equivalent to the pseudo-rationalisability of c (representation
(IX.6)); the reader is referred to Moulin (1985), from whom we borrow the nomenclature,
for further discussion. Fixed utilities (IX-A4) imposes Sen’s axiom � on the restriction of c

to menus containing only constant acts. It follows from standard choice theory results (see
for example Sen (1971)) that the restriction to constant acts is represented by a single tran-
sitive complete preference relation. This axiom translates the assumption that the decision
maker’s preferences over constant acts are the same in all envisaged future contingencies;
he only anticipates differences in beliefs. Non-degeneracy (IX-A3) requires that the choice
function is non-trivial on constant acts.

The remaining axioms can be thought of as choice-theoretical analogues of the Gilboa-
Schmeidler axioms on preferences (1989). The C-independence axioms (IX-A5 and IX-
A6) correspond to Gilboa and Schmeidler’s C-independence. Recall that the idea behind
their axiom is that mixing with a constant act does not ‘change’ the preference order. Sim-
ilarly here, Set C-independence (IX-A5) states that mixing a menu with a constant act does
not ‘change’ the choice set: if the decision maker wanted to keep an act as an open option
from a given menu, he would like to keep the mixture of the act as an open alternative from
a mixture of the menu. A consequence of the Gilboa-Schmeidler C-independence axiom
(in conjunction with other basic preference axioms) is that, for any act f and constant act d,
whichever of the acts is weakly preferred between f and d remains weakly preferred over
any mix f↵d of the two acts. Union C-independence states the equivalent of this for menus:
if the decision maker would keep open an act f and a constant act d from a menu, then
adding f↵d, or indeed any mixture of d with an element of the menu, does not ‘change’ his
decision to keep f and d open. This translates the idea that if f or d will be possibly chosen
in some future contingency when both are available, then f↵d will not be chosen over it.
The need for two C-independence axioms is due to the weak choice-theoretical properties
that are assumed: if Chernoff (IX-A1) and Aizerman (IX-A2) are replaced by the Weak Ax-
iom of Revealed Preference, it is straightforward to check that Set C-independence implies
Union C-independence.
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Monotonicity (IX-A7) is essentially the standard monotonicity or statewise dominance
axiom formulated for choice sets. It includes both a weak dominance and a strict dominance
clause, both of which are fairly intuitive. The first basically says that adding elements to
a menu that are weakly dominated by some element already on the menu does not lead
one to rule out any of the options that one initially left option. This translates the standard
intuition that adding a weakly dominated option should not prevent a previously chosen
option from being chosen. 22 The second clause just says that one does not leave strictly
dominated acts open: this translates the intuition that strictly dominated options are never
chosen. These conditions are in the spirit of the standard monotonicity condition.

Uncertainty Aversion (IX-A8) can be thought of as a weakening of the standard Gilboa-
Schmeidler axiom extended to the general menu setting. The standard axiom, formulated
on preferences, states that if there is indifference between a pair of acts, then any mixture is
weakly preferred to both. A natural extension to the case of general menus is obtained by
replacing the pair of indifferent acts by a subset of the menu that is contained in its choice
set, and the mixture by any mixture of the elements in the subset. That is, it states that, for
all A, B P }pAq with B Ñ cpAq, f P cpA Y tfuq for all f P convpBq. The axiom IX-A8
is evidently a weakening of this extension, stating that it holds under particular conditions.
In fact, the interpretation of the extension requires considering acts in the choice set to
be indifferent; however, whilst this is the case under WARP, it is no longer true under the
weaker choice-theoretic axioms used here. The conditions in IX-A8 guarantee that there
is an ex post preference relation according to which the acts in B are indifferent. 23 So
the axiom can be understood as stating that if the decision maker anticipates that he will

22. Note that the proposed interpretation of dominance is vindicated by the Fixed utilities axiom (IX-A4).
23. This can be seen as follows. Whenever a decision maker chooses to leave open the acts f , g, the

constant act d, and mixtures f

↵

d and g

↵

d from a menu, this means that he envisages contingencies where
each of these acts is optimal. Moreover, since, for any ex post maxmin EU preference, f

↵

d is optimal from
a menu containing f and d only if f and d are indifferent (this is a consequence of the Gilboa-Schmeidler
axioms), there is an possible contingency in which f , d and f

↵

d are all optimal. Similarly, there is a possible
contingency in which g, d and g

↵

d are all optimal. Finally, if, for any act dominating f

�

d, adding such an
act causes the mixtures g

↵

d to no longer be left open, this implies that any act dominating f

�

d is also strictly
preferred to g, d and g

↵

d according to the contingencies where they were all indifferent; so f

�

d, and hence
f and d are indifferent to g, d and g

↵

d under some contingency. Extending this reasoning to more than two
acts, the conditions in IX-A8 imply that the decision maker considers it possible that he will be indifferent
among the acts in B.
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be indifferent between the acts in B, then he anticipates that he will be willing to choose
any mixture – since mixtures may hedge the ambiguity in the acts – and so he leaves these
mixtures open. As such, IX-A8 captures the hedging intuition in the standard axiom, in the
context of the specific interpretation of the choice function employed here.

The final axiom, IX-A9, is the standard upper hemicontinuity property for choice func-
tions. It states that whenever a sequence of menus tends to a menu, then the limit of any
sequence of options left open in these menus is left open in the limit menu.

A foundation for the notion of epistemic contingency is given in the following repre-
sentation theorem.

Theorem IX.1. The following are equivalent:

(i) c satisfies IX-A1–IX-A9;

(ii) There exists a nonconstant continuous affine utility function u : �pXq Ñ < and a

set P of closed convex sets of probability measures on S such that:

(IX.5) cpAq “ tf P A | f P arg max

gPA
min

pPC1

ÿ

sPS

upgpsqqppsq for some C 1 P Pu

Moreover, u is unique up to positive affine transformation, and there is a unique mini-

mal P .

This theorem shows that, under certain conditions, a set of sets of priors – or a set
of epistemic contingencies – representing the choice function according to (IX.5) exists.
Moreover, there is a unique ‘canonical’ such set, namely the unique minimal set. We
conclude that the notion of epistemic contingency does have solid behavioral foundations.

Remark IX.8. Note that the results in this section can be combined with those in Section
IX.3 to provide a choice-theoretic axiomatization of a representation in terms of maxmin
expected utility ex post preferences and an aggregator that yields complete ex ante prefer-
ences. One potential interest for this development would be to translate the discussion in
Section IX.3 into purely choice-theoretic terms. One possibility would be to express the
Dynamic Consistency condition purely as a relationship between two choice functions – the
choice function represented according to (IX.5) and interpreted as discussed above, and a
choice function represented according to the Gilboa and Schmeidler (1989) representation
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(translated into choice-function language) and interpreted in the standard way. With this,
one would obtain a choice-theoretic formulation of the notion of dynamic consistency pro-
posed in Section IX.3, as well as a representation result for maxmin EU ex post preferences
with an aggregator of the sort given in Proposition IX.2. 24

Since these formulations do not seem particularly illuminating, we do not present them
here.

IX.7 Conclusion

It is commonly held that dynamic consistency, consequentialism and non-neutral atti-
tudes to ambiguity are incompatible. We have argued in this paper that this is not the case,
if the dynamic consistency condition is properly formulated. The central idea is that one
can only ask a decision maker to be dynamically consistent with respect to the contingen-
cies that he in fact envisages – rather than those imposed by the theorist – and when these
contingencies are properly taken into account, the apparent incompatibility is resolved.

To fully defend this rebuttal of the standard argument, we have given choice-theoretic
foundations to the central notion of a contingency that the decision maker envisages, on the
basis of the choices the decision maker makes to ‘leave options open’ for subsequent choice
at a future time. The representation result can be considered as an independent contribution
to the literature on preferences over menus and unforeseen contingencies, and is perhaps
the first result of the sort to consider incomplete preferences over menus.

Perhaps even more significant than the defense of this perspective and its ability to resist
the arguments against ambiguity models are its conceptual and economic consequences.
First of all, it emphasizes that dynamic consistency is fundamentally concerned with the
relationship between two sorts of belief: one’s current beliefs about the state of the world
and one’s beliefs about one’s possible future beliefs about the state of the world.

Secondly, the perspective provides a principled justification for the use of a restricted
family of sets of priors in applications to dynamic choice problems. Applications typically
adopt the tacit assumption that the decision maker knows what the decision tree is and that
it is the way the theorist describes it. It turns out that Dynamic Consistency, in the refined

24. Along similar lines, replacing the Dynamic Consistency axiom by a choice-theoretic equivalent of the
Expert Uncertainty Aversion axiom in Crès et al. (2011), one obtains a representation where the decision
maker has maxmin ex post preferences and aggregates them using a maxmin functional.
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sense introduced here, implies that this assumption can only hold if the decision maker’s
ex ante beliefs are of a specific form. A decision maker whose beliefs are not of this form
may be perfectly dynamically consistent: he just will not consider himself to be facing the
decision tree that the modeler is using. That, of course, is not a problem for the decision
maker; it is a problem for the modeler.

Finally, the perspective reveals that the issue of information aversion has been wrongly
analyzed in the standard arguments. Non-expected utility decision makers need not be
information averse, and will in fact not be whenever the information on offer does not
compromise information they had previously expected to receive. They may turn down
an offer of ‘free’ information, but this only occurs when its opportunity cost – in terms of
information they had otherwise expected to receive but that is jeopardized by accepting the
offer – outweighs its value.
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IX.A Incorporating the epistemic contingencies into the

state space

It was claimed in Remark IX.2 that the analysis conducted in this paper goes through in
other setups; in this Appendix, we illustrate this point by considering a framework where
the epistemic contingencies (ie. future states of belief) are explicitly represented in the state
space.

We adopt the terminology and assumptions in Section IX.2; recall that S is the ‘objec-
tive’ state space. Let E be the set of closed convex subsets of �p⌃q; this is the set of sets
of priors over S, and will represent the potential future states of belief (or epistemic con-
tingencies) of the decision maker. The ‘extended state space’, incorporating the epistemic
contingencies, is ⌦ “ S ˆ E . The first ‘coordinate’ s1 of a state ps1, C 1q P ⌦ represents the
state of the world that is realized; the second ‘coordinate’ C 1 is the decision maker’s future
state of belief. Note that this state space is rich enough to represent the arrival of any piece
of information: the information is represented by the ex post, or ‘conditional’, beliefs it
induces. Although ⌦ is rich enough to represent all ex ante uncertainty, both about the state
of the world and the ex post state of belief, S is sufficient to represent all payoff-relevant
uncertainty. As such, the domain of (ex ante and ex post) preferences is still the set A
defined in Section IX.2, which corresponds naturally to a subset of �pXq⌦. Similar points
hold for the sets of priors involved in the representation of preferences, which are defined
over S, considered as the partition ttsu ˆ E | s P Su of ⌦.

In the setup used above (Section IX.2.1), an ex ante set of priors C and a set of epis-
temic contingencies (ex post sets of priors) tCiuiPI were assumed. As noted, the for-
mer corresponds to a set of priors over the partition ttsu ˆ E | s P Su of ⌦. The set
of epistemic contingencies corresponds in this setup to a subset of ⌦, namely the set
tps1, C 1q P ⌦ | Di P I, C 1 “ Ciu. We call this set EC. 25

Given the lack of a preference relation over �pXq⌦, some remarks are in order about
what should count as (the equivalent of a) ‘null event’ in ⌦. On the one hand, states not

25. Whilst we do not assume a preference relation on �pXq⌦ or a set of priors over ⌦, the analysis
undertaken below continues to hold under such an assumption, as long as the preference relation or set of
priors is appropriately consistent with the ex ante set of priors (C) and the set of epistemic contingencies
(EC).
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belonging to EC can be thought of as ‘null’ insofar as the decision maker does not consider
it possible for them to hold (he does not consider it possible for him to be in the future states
of belief coded in these states). Moreover, any state ps1, C 1q such that s1 is null according
to the ex ante preference relation ® can naturally be thought of ‘null’. We will say that
EC X NN is the set of ⌦-non-null states, where NN “ tps1, C 1q P ⌦ | s1 ®ea -non-nullu.
Any event with non-empty intersect with EC X NN will be said to be ⌦-non-null.

Note that, given the interpretation of the extended state space, it does not make sense to
consider learning or conditioning upon certain events of ⌦. To characterize the events that
could conceivably be learnt, we introduce the following definition.

Definition IX.5. An event A Ñ ⌦ is learnable if it satisfies the following two conditions:

1. C 1 “ C2 for all ps1, C 1q, ps2, C2q P A.

2. If ps1, C 1q P A, then ps2, C 1q P A, for every s2 for which pps2q ° 0 for some p P C 1.

Moreover, a partition of ⌦ is learnable whenever it consists entirely of learnable events.

Learnable events are those which can conceivably be learnt; this motivates the condi-
tions in the definition. 26 The first condition corresponds to the assumption that, in the ex
post stage, the agent has no uncertainty about his ex post beliefs; these are represented by
a single set of priors. So the only events in ⌦ that can be learnt are those which have the
same ex post beliefs for every state they contain. The second condition reflects the fact
that the set of states of the world that the decision maker considers to be non-null in the ex
post stage must respect the set of beliefs he has at this stage. In particular, a state s1 P S

cannot be ruled out by the information A (ie. there is no state ps1, C 1q P A) but nevertheless
possibly have non-zero probability according to the ex post beliefs established by A.

Note that, for any learnable event A, the preferences conditional on A, ®A, are gener-
ated by the set C˚ such that C 1 “ C˚ for all ps1, C 1q P A.

We claimed that, with these constraints in mind, this framework yields the same analysis
as that carried out above. One way to back up this claim is to show that the standard
definition of dynamic consistency (SDC) applied on this framework is equivalent to the
refined notion of dynamic consistency proposed in Section IX.3 (DC). Translated into this
framework, SDC becomes:

26. Recall that we are working in a simple setup with two time periods. So we are considering the learning
of an event between the ex ante and ex post stage.
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Standard Dynamic Consistency on ⌦. For every f, g P A and learnable partition tAjujPJ

of ⌦, if f ®Aj g for every ⌦-non-null Aj , then f ® g, and moreover, if any of the ®Aj

orderings are strict, then so is the ® one.

Proposition IX.A.1. Standard Dynamic Consistency on ⌦ is equivalent to DC.

Note that this result can be thought of giving another argument that DC is the appropri-
ate equivalent to SDC for the case of epistemic contingencies.

IX.B Proofs

Throughout the Appendix, B will denote the space of real-valued functions on S, and
bapSq will denote the set of real-valued set functions on S, both under the Euclidean topol-
ogy. B is equipped with the standard order: a § b iff apsq § bpsq for all s P S. For x P <,
x˚ is the constant function taking value x; we use <˚ to denote the set of constant func-
tions. Addition with acts and positive scalar multiplication is extended to sets as standard:
for A Ñ B, a P B, ↵ ° 0, ↵A “ t↵b | b P Au and A ` a “ tb ` a | b P Au. Finally, for
any subset A Ñ B, we shall use copAq to denote the convex closure of A.

IX.B.1 Proofs of Propositions

For the proofs of Propositions IX.1–IX.4, let J : A Ñ < be the maxmin EU functional
represented by C (ie. Jpfq “ minpPC

∞
sPS upfpsqqppsq for all f P A), and likewise for

Ji and Ci. RapJIq is the range of the vector pJiqiPI over A, and RapJiq the range of the
function Ji for each i. Note that, since the utility functions are the same for all ®i, RapJiq “
RapJjq for all i, j; call this set R. conepRapJIqq is the cone spanned by RapJIq. We use e

to denote the unit vector in <I .

Proofs of Proposition IX.1 and Proposition IX.2. Proposition IX.1 and the ‘if’ direction Propo-
sition IX.2 are straightforward, and their proofs are omitted.

The proof of the ‘only if’ direction of Proposition IX.2 draws on the developments in
Crès et al. (2011). By their Lemmas 1–4, there exists a constant additive, positively homo-
geneous, monotonic real-valued function � on conepRapJIqq such that Jpfq “ �ppJipfqqiPIq
for all f P A. Cerreia-Vioglio et al. (2013, Theorem 1) show that the real-valued function
¯� on <I , defined by ˆ�pyq “ supt�pxq`b | x P RapJIq, b P <, x`be § yu for all y P <I ,
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extends � and is constant additive and monotonic. It is clear from the definition and the
positive homogeneity of � that ˆ� is positively homogeneous. Finally, strong monotonicity
on RapJIq is a direct consequence of DC.

Proof of Proposition IX.3. The right to left direction is essentially Proposition IX.1. As for
the left to right direction, by Proposition IX.2, � is positively homogeneous, constant addi-
tive and monotonic. Applying (Hill, 2012, Lemmas 4 and 7), it follows that � is concave,
so it satisfies all the properties required for the Gilboa and Schmeidler (1989) agrument.
Applying this reasoning (see also Crès et al. (2011)), we obtain a unique closed convex ⇤

representing � as described in the Proposition. Finally, since, by (Hill, 2012, Lemma 4),
RapJiq is fully dimensional, it follows from the strong monotonicity of � on RapJIq and
its positive homogeneity that � is strongly monotonic, so every p P D is such that ppiq ° 0

for all i P I .

Proof of Proposition IX.4. As shown by Crès et al. (2011, Lemmas 1–4), DC implies that
Jpfq “ �ppJipfqqiPIq where � is a constant additive, positively homogeneous, monotonic
real-valued function on RapJIq. Consider any vector x P RI . For each i P I , since
xi P R “ RapJiq, there exists a constant act cxi P �pXq with Jipcxi q “ xi. Hence, defining
gx P A by gpsq “ cxi psq whenever s P Ai, it follows from the fact that t®iuiPI is P-ontic
that ppJipgxqqiPIq “ ppJipcxi qqiPIq “ x. It follows that RI Ñ RapJIq; by the definition of
RapJIq, this inclusion is in fact an equality. Now consider any pair of vectors x,y P RI .
By definition, Jip↵gx ` p1 ´ ↵qgyq “ Jip↵cxi ` p1 ´ ↵qcyi q “ ↵Jipcxi q ` p1 ´ ↵qJipcyi q “
↵Jipgxq`p1´↵qJipgyq “ ↵xi`p1´↵qyi, where the middle equality holds by the definition
of the maxmin EU functional. Hence �p↵x` p1 ´↵qyq “ �ppJip↵gx ` p1 ´↵qgyqqiPIq “
Jp↵gx `p1´↵qgyq • ↵Jpgxq`p1´↵qJpgyq “ ↵�ppJipgxqqiPIq`p1´↵q�ppJipgyqiPIq “
↵�pxq ` p1 ´↵q�pyq, where the inequality in the middle holds because of the concavity of
the maxmin EU functional J . Hence � is concave.

Using standard arguments, � can be extended to a monotonic, positively homogeneous,
constant additive, concave function on <I . Application of the argument in Gilboa and
Schmeidler (1989) (see also (Crès et al., 2011, Lemma 8)) implies that there exists a closed
convex D Ñ �pIq such that �pxq “ minpPD

∞
iPI pixi. The strict positivity of the elements
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in D follows directly from DC and the fact that RapJIq “ Rn. The form of the set of priors
C representing J follows from Crès et al. (2011, Proposition 1).

Proof of Proposition IX.5. By Proposition IX.2, DC implies that the aggregator � is mono-
tonic. Consider any A P }pAq, and let g “ arg maxfPA minpPC

∞
sPS upfpsqqppsq “

arg maxfPA �
`pminpPCi

∞
sPS upfpsqqppsqqiPI

˘
. For every i P I , by defini-

tion, maxfPA minpPCi
∞

sPS upfpsqqppsq • minpPCi
∞

sPS upgpsqqppsq; it follows
from the monotonicity of � that �

`pmaxfPA minpPCi
∞

sPS upfpsqqppsqqiPI

˘ •
�

`pminpPCi
∞

sPS upgpsqqppsqqiPI

˘ “ maxfPA minpPC
∞

sPS upfpsqqppsq, as required.

Proof of Proposition IX.6. To show the right to left direction, suppose that CpIq Ñ
C. Take any A P }pAq let g “ arg maxfPA minpPC

∞
sPS upfpsqqppsq. By

the definition of the maxmin EU rule (representation (IX.1)), the containment of
sets of priors implies that minpPCpIq

∞
sPS upgpsqqppsq • minpPC

∞
sPS upgpsqqppsq “

maxfPA minpPC
∞

sPS upfpsqqppsq; however, it follows from Proposition IX.5 that
�pIq

´`
maxfPA minpPCpIqk

∞
sPS upfpsqqppsq˘

kPK

¯
• minpPCpIq

∞
sPS upgpsqqppsq. Com-

bining these two inequalities, one obtains that the value of information I is always non-
negative.

Now consider the other direction, and suppose that CpIq Ü C; we shall show
that there exists A P }pAq with �pIq

´`
maxfPA minpPCpIqk

∞
sPS upfpsqqppsq˘

kPK

¯
†

maxfPA minpPC
∞

sPS upfpsqqppsq. Since CpIq Ü C, there exists p P �p⌃q with p P CpIqzC.
By a separation theorem (Aliprantis and Border, 2007, 5.80), there is a nonzero linear
functional � on bapSq and ↵ P < such that �ppq § ↵ † �pqq for all q P C. Since
S is finite (so B is finite-dimensional), B is reflexive, and, by the standard isomor-
phism between bapSq and B˚, it follows that bapSq˚ is isometrically isomorphic to B

(Dunford and Schwartz, 1958, IV.3); hence there is a real-valued function a P B such
that �pqq “ ∞

sPS apsqppsq for any q P bapSq. Without loss of generality �, a can be
chosen so that a takes values in the range of u. Take g P A such that u ˝ g “ a,
and consider the menu tgu. �pIq

´`
maxfPtgu minpPCpIqk

∞
sPS upfpsqqppsq˘

kPK

¯
“

�pIq
´`

minpPCpIqk
∞

sPS upgpsqqppsq˘
kPK

¯
“ minpPCpIq

∞
sPS upgpsqqppsq.

However, by the definition of g, minpPCpIq
∞

sPS upgpsqqppsq †
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minpPC
∞

sPS upgpsqqppsq “ maxfPtgu minpPC
∞

sPS upfpsqqppsq. Hence
�pIq

´`
maxfPtgu minpPCpIqk

∞
sPS upfpsqqppsq˘

kPK

¯
† maxfPtgu minpPC

∞
sPS upfpsqqppsq,

as required.

Proof of Proposition IX.A.1. By the definition of learnable events, for each Aj , there exists
Cj such that ®Aj is represented by Cj according to (IX.1). By the definition of ⌦-nullness,
for any ⌦-non-null Aj , Cj P tCiuiPI (it is one of the epistemic contingencies). Moreover, for
any Aj1 , Aj2 P tAjujPJ , Cj1 ‰ Cj2: if not, then for any state s such that ppsq ° 0 for some
p P Cj “ Cj1 “ Cj2 , ps, Cjq P Aj1 XAj2 , contradicting the disjointness of the elements of the
partition. So, for any learnable partition tAjujPJ , there is an injective map from the non-
null elements of tAjujPJ to the set of epistemic contingencies tCiuiPI . Moreover, this map
is surjective: for any epistemic contingency Ci, there is a ⌦-non-null state ps, Ciq, and hence
there is a cell Aj1 of the partition such that the associated set of priors Cj1 “ Ci. So, for
any learnable partition, there is a bijection between the cells of this partition and the set of
epistemic contingencies; moreover, this bijection is such that, for each cell of the partition,
the preferences conditional on this cell coincide with the epistemic contingency related to
it by the bijection. The equivalence between the two conditions follows immediately.

IX.B.2 Proof of Theorem IX.1

We first consider the direction (i) to (ii). The proof proceeds as follows. Firstly, using
monotonicity (IX-A7) we show that c generates a choice function on a subset of the set of
real-valued functions on S, which can be extended to a choice function on the whole set
satisfying Chernoff, Aizerman, upper hemicontinuity and choice-function versions of con-
stant linearity, superadditivity, monotonicity and union C-independence (Lemmas IX.B.1
and IX.B.2). The most important step in the proof is Proposition IX.B.1, which shows
that, for any set ˆA and any â P cp ˆAq, there exists a closed convex set of finitely additive
probability measures such that the maxmin expectation represents c in the sense that any
maximal element over A1 according to maxmin expectation with this set of priors is in
cpA1q, and such that â maximises the maxmin expctation on ˆA. Taking the union of such
sets of probability measures over all pairs a, A with a P cpAq yields the required set P .
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IX.B.2.1 Preliminary Lemmas

By IX-A1 and IX-A4 and standard choice theory results (for example Sen (1971)), the
restriction of c to sets containing only constant acts is represented in the standard way by a
reflexive transitive complete order. By IX-A3, IX-A5 and IX-A9 and the Herstein-Milnor
theorem, this order (and hence the restriction of the choice function) is represented by a
non-degenerate affine utility function u; by IX-A9, u is continuous. Let K “ up�pXqq
and BpKq be the set of functions in B taking values in K. Without loss of generality, it
can be assumed that 0 P K, and it is not on its boundary.

Lemma IX.B.1. For A, B Ñ A, suppose that there is a bijection � : A Ñ B such that, for

all f P A, cptfpsq, �pfqpsquq “ tfpsq, �pfqpsqu for all s P S. Then cpBq “ �pcpAqq.

Proof. Let A and B satisfy the properties specified, and let f P cpAq. By applying IX-A7
on the sets A and AYB, we have that cpAq Ñ cpAYBq. We distinguish two cases. If there
exists d P �pXq with d R cptfpsq, duq for all s P S, then consider cppA Y Bq↵d Y t�pfquq
for ↵ P p0, 1q. By IX-A7, f↵d R cppAYBq↵dYt�pfquq, whence cpAq↵d Ü cppAYBq↵dY
t�pfquq; it thus follows from IX-A2 and IX-A5 that �pfq P cppA Y Bq↵d Y t�pfquq. By
IX-A9 and the fact that, as ↵ Ñ 1, pA Y Bq↵d Y t�pfqu Ñ A Y B, �pfq P cpA Y Bq.
By IX-A1, �pfq P cpBq as required. If there is no d P �pXq with d R cptfpsq, duq for
all s P S, then take any e P �pXq with upeq non-minimal in K and � P p0, 1q. There
exists d P �pXq with d R cptf�epsq, duq for all s P S; applying the previous argument
to ppA Y Bq�eq↵d Y tp�pfqq�eu yields the conclusion that p�pfqq�e P cpB�eq. It follows
by IX-A5 that �pfq P cpBq as required. By a similar argument on g P cpBq, the result is
obtained.

There is thus a many-to-one mapping between acts in A and elements of BpKq, given
by a “ u ˝ f , for f P A. Define the choice function cBpKq, on BpKq, as follows: for
A P }pBpKqq, and A1 P }pAq such that A “ u ˝ A1, cBpKqpAq “ u ˝ cpA1q By Lemma
IX.B.1, cBpKq is well-defined. Let }bbdpBq be the set of closed bounded subsets of B.

Lemma IX.B.2. There exists a choice function c : }bddpBq Ñ }bddpBq on B such that:

i. for all A P }pBpKqq, cpAq “ cBpKqpAq
ii. c satisfies Chernoff and Aizerman (that is, IX-A1 and IX-A2) 27

27. Henceforth, we shall refer to these properties by these names.
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iii. c is constant linear: for all A P }bddpBq, ↵ ° 0 and x P <, cp↵A`x˚q “ ↵cpAq `x˚

iv. c is constant independent: for all A P }bddpBq, ↵ P p0, 1q and x P < with x˚ P cpAq,

cpAq Ñ cpA Y p↵A ` p1 ´ ↵qx˚qq
v. c is monotonic: for all A, B P }bddpBq with A Ñ B, if for each b P B, there exists

a P A with a • b, then cpAq Ñ cpBq, and, for any b P B, if there exists a P B with

a ° b, then b R cpBq.

vi. c is superadditive: for all A P }bddpBq, A1 Ñ cpAq, a1 P cpAYta1uq for all a1 P copA1q
whenever there exist x P < and b P A1 such that: i. ↵a` p1´↵qx˚ P A1 for all a P A1,
↵ P p0, 1q; and ii. ↵b ` p1 ´ ↵qx˚ R cpA1 Y ta ` y˚uq for all a P A1, y ° 0 and

↵ P p0, 1q.

vii. c is upper hemicontinuous: for all sequences pAnqnPN , An P }bddpBq and A P
}bddpBq with An Ñ A and for all sequences panqnPN , an P B, with an P An for

all n P N , if an Ñ a, then a P cpAq.

Proof. Define c on BpKq by clause i. Note that, applying IX-A5 on the inverse image
of A and the inverse image of 0

˚, we have that, for any A P }pBpKqq and ↵ P p0, 1q,
cp↵Aq “ ↵cpAq. It follows that, for any A P }pBpKqq with ↵A P }pBpKqq where
↵ ° 1, cp↵Aq “ ↵cpAq. c can thus be coherently extended to }bddpBq as follows: for
A P }bddpBq, cpAq “ 1

↵
cp↵Aq, where ↵ ° 0 is such that ↵A P }pBpKqq. Note that

c is positively homogeneous and satisfies the choice properties (point ii) by IX-A1 and
IX-A2. Moreover, it is constant additive: applying IX-A5 to the inverse image of 2A

and 2x˚ (or appropriate products with a sufficiently small ↵), we have that cpA ` x˚q “
cp1

2

p2Aq ` 1

2

p2x˚qq “ 1

2

cp2Aq ` 1

2

p2x˚q “ cpAq ` x˚, as required. So c is constant linear.
The remaining properties are a direct consequence of axioms IX-A6–IX-A9 (multiplying
by a sufficiently small ↵ where appropriate).

IX.B.2.2 Proposition IX.B.1

As stated above, the following proposition is the central part of the proof.

Proposition IX.B.1. Let c : }bddpBq Ñ }bddpBq be a choice function satisfying the prop-

erties in Lemma IX.B.2, and suppose that, for some â P ˆA P }bddpBq, â P cp ˆAq. Then there

exists a closed convex set Câ, ˆA of finitely additive probability measures such that:
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(1) For all A P }bddpBq,

(IX.9) b P arg max

b1PA
min

pPCâ,Â

ÿ

sPS

b1psqppsq ñ b P cpAq

(2) â P arg maxb1P ˆA minpPCâ,Â
∞

sPS b1psqppsq

Proof. We consider the case where â is not a constant act; the case where is it a constant
act is treated similarly, by using the construction below with a non-constant act a such that
t↵a ` p1 ´ ↵qâ| ↵ P r0, 1su “ cpt↵a ` p1 ´ ↵qâ| ↵ P r0, 1suq.

We begin with some notation. First, recall that B is (isomorphic to) Euclidean space, so
for ease we may use Euclidean notation and intuition at points. In particular, let } ¨ } be the
Euclidean norm. Let Uâ “ tb P B | infxP< }b ´ x˚} § infxP< }â ´ x˚}u: this is the smallest
‘tube’ around the ray generated by the unit vector containing â. By the assumption that â

is not constant, it is not a ray. Moreover, for any a P B, let a “ t↵a ` x˚| ↵ • 0, x P <u;
this is the positive half-plane generated by a and the unit vector, with as boundary the ray
generated by the unit vector. It is straightforward to check that the taz<˚| a P Bz<˚u form
a partition of Bz<˚; call the set of equivalence classes of the partition Q.

For a P B, x P <, we define ra, x˚s “ t↵a ` p1 ´ ↵qx˚| ↵ P r0, 1su, and ⌅ “
tra, x˚s| a P B, x P <, cpra, x˚sq “ ra, x˚su. Moreover, for any A P }bddpBq and x P <,
XA

x “ î
aPAra, x˚s. Note that, since A is closed and bounded, so is XA

x .

Now consider the set Z of pairs pO, Iq where:

1. O is a non-empty convex closed subset of B such that:

a. for all a P B, if a P O, then a Ñ O

b. â P O

2. I : O Ñ < is a functional with the following properties:

a. I is monotonic: for all a, b P B, if a • b, Ipaq • Ipbq
b. I is constant linear (ie. constant additive and positively homogeneous): for all

a P O, x P <, ↵ ° 0, Ip↵a ` x˚q “ ↵Ipaq ` x

c. I is superadditive: for any ↵ P r0, 1s, Ip↵a ` p1 ´ ↵qbq • ↵Ipaq ` p1 ´ ↵qIpbq
d. I represents c on O: for all A P }bddpOq, arg maxA I Ñ cpAq
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e. â P arg max

ˆAXO I

f. for any A1 P }bddpOq with A1 Ñ ta P O|Ipaq “ Ipâqu, A1 Ñ cpA1 Y X
ˆA

Ipâqq
g. for every A P }bddpOq with pta P O|Ipaq “ Ipâqu X Uâq Y X

ˆA
Ipâq Ñ A, and for

every a1 P ta P O|Ipaq “ Ipâqu X Uâ and every z ° 0, ↵â ` p1 ´ ↵qpIpâqq˚ R
cpA Y ta1 ` z˚uq for every ↵ P p0, 1q.

Note that, by property 2f, Chernoff, and the definition of Uâ, râ, Ipâq˚s Ñ ta P O|Ipaq “
Ipâqu X Uâ.

Z is equipped with the order §, defined as follows: pO
1

, I
1

q § pO
2

, I
2

q iff:
— O

1

Ñ O
2

— I
1

“ I
2

|O1

This is evidently a partial order. In a pair of auxiliary lemmas (proved in Section
IX.B.3), we show that any element of this order not containing some b P B can be ex-
tended to another element in Z containing it (Lemma IX.B.4) and that Z is non-empty
(Lemma IX.B.12). Since, for each pO, Iq P Z , O is the convex hull of a set of half-planes,
and B is finite dimensional, all chains of elements of Z must be finite. Hence every chain
has an upper bound, which is in fact its top element. Take any maximal chain, in the sense
that there is no pO2, I2q P Z which is pO2, I2q ° pO1, I 1q for all pO1, I 1q in the chain. For
the top element of this chain, O “ B; if not, then there exists b R O, whence, by Lemma
IX.B.4, there is a pO1, I 1q P Z with pO1, I 1q ° pO, Iq. Hence there is an element pB, Iq P Z ,
with I being a monotonic, constant linear, superadditive functional on B representing c (in
the sense of property 2d) and satisfying property 2e.

By the result in Gilboa and Schmeidler (1989) (in particular Lemma 3.5 onwards),
there exists a unique closed convex set of probability measures Câ, ˆA such that Ipaq “
mincPCâ,Â

∞
sPS apsqppsq. By the fact that I represents c, it follows that (IX.9) holds for Câ, ˆA.

Moreover, by property 2e, â P arg max

ˆA I , and so â P arg maxbP ˆA minpPCâ,Â
∞

sPS bpsqppsq,
as required.

IX.B.2.3 Conclusion of the proof of Theorem IX.1

We conclude the direction (i) to (ii). Let P “ tCâ, ˆA | ˆA P }bddpBq, â P cp ˆAqu, where
the Câ, ˆA are as in Proposition IX.B.1. By the definition of the choice function c on B, and
clause 1 of Proposition IX.B.1, for any C P P , if f P arg maxgPA minpPC

∞
sPS upgpsqqppsq,
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then f P cpAq. Moreover, for any f P A and A P }pAq, if f P cpAq, then, by clause
2 of Proposition IX.B.1, f P arg maxgPA minpPCu˝f,u˝A

∞
sPS upgpsqqppsq. Hence P and u

represent c according to (IX.5).

As concerns the necessity of the axioms (the (ii) to (i) direction), all axioms are
evident or have been shown to be necessary elsewhere in the literature (see for exam-
ple Moulin (1985) for the necessity of IX-A1 and IX-A2), except IX-A8. To estab-
lish the necessity of this axiom, we first claim that the conditions of the axiom im-
ply that there is a set C P P such that B Ñ arg maxhPA minpPC

∞
sPS uphpsqqppsq.

Suppose that this is not the case and consider the act g P B mentioned in the ax-
iom. Take any set C

1

P P such that g↵d P arg maxhPA minpPC1
∞

sPS uphpsqqppsq for
some ↵ P p0, 1q. By the reductio assumption, there must be an act f P B such that
f R arg maxhPA minpPC1

∞
sPS uphpsqqppsq; take such an f . By the facts just estab-

lished, and the fact that d P A, we have that minpPC1
∞

sPS upg↵dpsqqppsq • updq and
minpPC1

∞
sPS upg↵dpsqqppsq ° minpPC1

∞
sPS upfpsqqppsq. It thus follows that there exists

e ° d and � P p0, 1q such that minpPC1
∞

sPS upg↵dpsqqppsq • minpPC1
∞

sPS upf�epsqqppsq,
and hence, by the representation (IX.5), that g↵d P cpA Y tf�euq, contradicting IX-A8.
Hence there is a set C P P such that B Ñ arg maxhPA minpPC

∞
sPS uphpsqqppsq, as re-

quired. It follows by the concavity of the maxmin expected utility representation that, for
any f P convpBq, minpPC

∞
sPS upfpsqqppsq • maxhPA minpPC

∞
sPS uphpsqqppsq, and so

by the representation (IX.5), it follows that f P cpA Y tfuq for all such f , as required.

The uniqueness of u follows from the standard von Neuman-Morgenstern result. We
now show the existence of a unique minimal P representing c. Let tPmumPM be the sets
of sets of priors representing c according to (IX.5) and let P “ î

mPM Pm. Let I index P .
Note that P also represents c according to (IX.5). Pick any d P �pXq and for each Ci P P ,
let Ai “ tf P A | minpPCi

∞
sPS upfpsqqppsq “ updqu. Since P represents c according to

(IX.5), cpAiq “ Ai for all Ai. Define the following order on tAi | i P Iu: for all i, j P I ,
Ai Ö Aj iff there exists f P Ai, e P �pXq with e † d and ↵ P p0, 1q such that f↵e P Aj .
Note that, by the definition of Ai, and the fact that, for all i, j P I , Ai ‰ Aj , Ñ is complete,
and the strict relation is transitive. We say that a set Ai is essential if there exists no set
J Ä Iztiu such that Ai á Aj for all j P J and

î
jPJ Aj Ö Ai.

To get a preliminary understanding of these notions, note that, for any i P I , if f P Ai

then f↵d P Ai for all ↵ P r0, 1s. Moreover, it follows from the representation that, if
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Ai Ö Aj , then there exists f P Ai such that f °j d. Hence, by the properties of the maxmin
EU representation, for all ↵ P r0, 1q, f↵d R th P Ai | h ©j g, @g P Aiu. Moreover, once
again by the properties of the EU maxmin representation, we have that, for any act f 1 with
f 1

�d P Ai X Aj for all � P r0, 1s, f 1
�d R th P Ai | h ©j g, @g P Aiu for all � P r0, 1q. It

follows that not only th P Ai | h ©j g, @g P Aiu ‰ Ai for any Aj such that Ai Ö Aj , but
also that

î
j s.t. AiÖAj

th P Ai | h ©j g, @g P Aiu ‰ Ai. This motivates the definition of
essential sets: they are those sets Ai for which the fact that Ai “ cpAiq cannot be ‘attained’
using a set of sets Aj . Uniqueness follows from Lemma IX.B.3 below, which implies that
there is a unique minimal subset of P representing c; it follows in particular that this is
contained in every set of sets of priors Pm representing c.

Lemma IX.B.3. tCi | i P I, Ai essentialu represents c according to (IX.5), and for any set

tCk | k P Ku with K Ñ I that represents c, K Ö ti P I | Ai essentialu.

Proof. For ease of presentation, we reason on the preference relations ®i generated by
the sets of priors Ci; recall that the corresponding representation in terms of preference
orderings is (IX.6), and that we use R to denote the set of preference relations generated
by P . We first show that t®i | i P I, Ai essentialu represents c. Since t®i | i P Iu “ R
represents c, for each ®iP t®i | i P I, Ai essentialu and each set A P }pAq, tf P A | f ©i

g, @g P Au Ñ cpAq. So for every A P }pAq,
î

i s.t.Ai essentialtf P A | f ©i g, @g P Au Ñ
cpAq. It remains to show the inverse inclusion. For reductio, suppose that it does not hold,
that is, that there exists A P }pAq and f 1 P A such that f 1 R î

i s.t.Ai essentialtf P A | f ©i

g, @g P Au but f 1 P cpAq. By the properties of the maxmin EU functional, the fact that R
represents c, and the definition of Ai, it follows that there exists f P î

iPI AizîAi essential Ai.
Take any Ai with f P Ai that is Ö-maximal – ie. for every Ak such that f P Ak, Ai Ö Ak.
Since Ö is complete and the strict relation generated by it is transitive, such a maximal
element exists. For such Ai, every set J Ä Iztiu such that

î
jPJ Aj Ö Ai must contain

some k such that f P Ak; however, by the definition of Ai, it follows that Ai Ö Ak. Hence
Ai is essential, contrary to the definition of f . So, by reductio, there exists no such f , and
î

i s.t.Ai essentialtf P A | f ©i g, @g P Au “ cpAq; so t®i | i P I, Ai essentialu represents
c, as required.

We now show that any subset of R representing c must contain all elements yielding
essential Ai. For reductio, suppose that there exists K Ñ I with t®k | k P K Ñ Iu
representing c and K á ti P I | Ai essentialu. Take any i P ti P I | Ai essentialuzK, and
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consider Ai. Since cpAiq “ Ai by definition, there must exist J Ñ K such that
î

jPJ Aj Ö
Ai and Ai á Aj for all j P J . However, the existence of such a set contradicts the
assumption that Ai is essential. Hence there exists no such K representing c, as required.
Hence the claim is established.

IX.B.3 Auxiliary Lemmas for the Proof of Proposition IX.B.1

Lemma IX.B.4. Let pO, Iq P Z be such that, for b P B, b R O. Then there exists pO1, I 1q •
pO, Iq with b P O1.

Proof of Lemma IX.B.4. Since b R O, b X O “ <˚. Let O1 “ copO Y bq. We now extend
I to I 1 on O1. Throughout the proof of this Lemma (and in particular Lemmas IX.B.5–
IX.B.11), I will remain fixed; as a point of notation, for any a P O, we let xa P < be such
that Ipaq “ xa.

Let rxâsO “ ta P O|Ipaq “ Ipâqu X Uâ. Note that, by the monotonicity and constant
linearity of I and the fact that Uâ is closed, rxâsO is closed and bounded. Note also that,
by the constant linearity of I , for any a P rxâsO and � P r0, 1s, �a ` p1 ´ �qx˚̂

a P rxâsO;
hence, in particular, �rxâsO ` p1 ´ �qx˚̂

a Ñ rxâsO.
Let Fb “ pO1zOq X Uâ˚ X ta P B | ∞

sPS apsq “ xâu. (Geometrically, this is the
intersection between the closure of O1zO, Uâ˚ and the hyperplane normal to the unit vector
going through x˚̂

a.) Fb is evidently closed and bounded and hence compact. Finally, for
a compact subspace F Ñ B and a continuous bounded function � : F Ñ <, we let
Y� “ ta ` �paq˚ | a P F u. Note that Y� is closed and bounded, because it is the image of a
continuous map from a compact space to a Hausdorff one. We use § to denote the standard
dominance order on functions � (� § �1 iff �paq § �1paq for all a P F ).

Now consider the following set:

(IX.10) Cb “

$
’’’’’&

’’’’’%

� : Fb Ñ <

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

rxâsO Y Y� Ñ c
´

rxâsO Y Y� Y X
ˆA

xâ

¯
&

@d P Y�, rd, x˚̂
as Ñ Y� &

@a1 P rxâsO Y Y�, @z ° 0, @↵ P p0, 1q,
↵â ` p1 ´ ↵qx˚̂

a R c
´

rxâsO Y Y� Y ta1 ` z˚u Y X
ˆA

xâ

¯

,
/////.

/////-

Note that, since rxâsO, Y� and X
ˆA

xâ
are closed and bounded, so is rxâsO Y Y� Y X

ˆA
xâ

.
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Lemma IX.B.5. Cb ‰ H.

Proof. Consider t� : Fb Ñ <| rxâsO Ñ cprxâsO Y Y� Y X
ˆA

xâ
qu. This set is non-empty

by property 2f of I and the monotonicity of c (property v in Lemma IX.B.2). Moreover,
by the monotonicity of c and Chernoff, for any �1, �2

: Fb Ñ < with �1 • �2 if �1 is in
this set, then so is �2. It follows by continuity (property vii in Lemma IX.B.2) that this
set has a maximum element; let � be any such element. By definition, we thus have that
rxâsO Ñ cprxâsO YY� YX

ˆA
xâ

q. Now consider any c P Fb and ✏ ° 0. By the maximality of �,
rxâsO Ü cprxâsO Y Y�`✏

c
Y X

ˆA
xâ

q, where �`✏
c pcq “ �pcq ` ✏ and �`✏

c pdq “ �pdq for d ‰ c; by
Chernoff, it follows that rxâsO Ü cprxâsO Y Y� Y tc ` p�pcq ` ✏q˚u Y X

ˆA
xâ

q. It follows from
Aizerman that c`p�pcq`✏q˚ P cprxâsO YY� Ytc`p�pcq`✏q˚uYX

ˆA
xâ

q. Since this holds for
any ✏ ° 0, it follows from continuity (property vii) that c ` �pcq˚ P cprxâsO Y Y� Y X

ˆA
xâ

q.
Since this holds for all c P Fb, we have that rxâsO Y Y� Ñ cprxâsO Y Y� Y X

ˆA
xâ

q. (Note that
it follows in particular, using monotonicity, that for all a P rxâsO X Fb, �paq “ 0.)

We now show that rd, x˚̂
as Ñ Y� for all d P Y�. Take any d P Y� and any � P p0, 1q,

and consider cprxâsO Y Y� Y X
ˆA

xâ
Y p�

´
rxâsO Y Y� Y X

ˆA
xâ

¯
` p1 ´ �qx˚̂

aqq. Since, by their

definition, �rxâsO ` p1 ´ �qx˚̂
a Ñ rxâsO and �X ˆA

xâ
` p1 ´ �qx˚̂

a Ñ X
ˆA

xâ
, cprxâsO Y Y� Y

X
ˆA

xâ
Y p�

´
rxâsO Y Y� Y X

ˆA
xâ

¯
` p1 ´�qx˚̂

aqq “ cprxâsO Y Y� Y p�Y� ` p1 ´�qx˚̂
aq Y X

ˆA
xâ

q.
Since x˚̂

a P rxâsO, it follows from constant independence (property iv) that rxâsO Y Y� Ñ
cprxâsO Y Y� Y p�Y� ` p1 ´ �qx˚̂

aq Y X
ˆA

xâ
q. Moreover, it follows from the maximality of Y�

that, for every z ° 0, rxâsO Ü cprxâsO Y Y� Y td ` z˚u Y X
ˆA

xâ
q, so, by constant linearity

�rxâsO ` p1 ´ �qx˚̂
a Ü cp�

´
rxâsO Y Y� Y td ` z˚u Y X

ˆA
xâ

¯
` p1 ´ �qx˚̂

aq, whence, by
Chernoff �rxâsO ` p1 ´ �qx˚̂

a Ü cprxâsO Y Y� Y t�pd ` z˚q ` p1 ´ �qxâu Y p�Y� `
p1 ´ �qx˚̂

aq Y X
ˆA

xâ
q. By Aizerman it follows that �pd ` z˚q ` p1 ´ �qx˚̂

a P cprxâsO Y
Y� Y t�pd ` z˚q ` p1 ´ �qx˚̂

au Y p�Y� ` p1 ´ �qx˚̂
aq Y X

ˆA
xâ

q for every z ° 0, so by
continuity �d ` p1 ´ �qx˚̂

a P cprxâsO Y Y� Y p�Y� ` p1 ´ �qx˚̂
aq Y X

ˆA
xâ

q. Since d P Y�,
it follows by the definition of Y� that there exists x P < such that �d ` x˚ P Y�. Hence,
�d ` x˚, �d ` p1 ´ �qx˚̂

a P cprxâsO Y Y� Y p�Y� ` p1 ´ �qx˚̂
aq Y X

ˆA
xâ

q; by monotonicity
(property v), it follows that x “ p1 ´ �qxâ, and so �d ` p1 ´ �qx˚̂

a P Y�. Since this holds
for every � P p0, 1q, we have that rd, x˚̂

as Ñ Y�, as required.

It remains to show that ↵â ` p1 ´ ↵qx˚̂
a R c

´
rxâsO Y Y� Y ta1 ` z˚u Y X

ˆA
xâ

¯
for

all a1 P rxâsO Y Y�, z ° 0 and ↵ P p0, 1q. First note that, by property 2g,
↵â ` p1 ´ ↵qx˚̂

a R c
´

rxâsO Y Y� Y ta1 ` z˚u Y X
ˆA

xâ

¯
for all a1 P rxâsO, z ° 0 and
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↵ P p0, 1q. We show that this is in fact the case for every a1 P rxâsO Y Y�. For re-
ductio, take any d P Y� and z ° 0 and ↵ P p0, 1q and suppose that ↵â ` p1 ´ ↵qx˚̂

a P
c

´
rxâsO Y Y� Y td ` z˚u Y X

ˆA
xâ

¯
. Consider any a1 P rxâsO and � P p0, 1q; by prop-

erty 2g, ↵â ` p1 ´ ↵qx˚̂
a R c

´
rxâsO Y Y� Y t�pa1 ` y˚q ` p1 ´ �qx˚̂

a, d ` z˚u Y X
ˆA

xâ

¯

for any y ° 0. It follows from Aizerman that �pa1 ` y˚q ` p1 ´ �qx˚̂
a P

c
´

rxâsO Y Y� Y t�pa1 ` y˚q ` p1 ´ �qx˚̂
a, d ` z˚u Y X

ˆA
xâ

¯
, and hence by continuity

(property vii), �a1 ` p1 ´ �qx˚̂
a P c

´
rxâsO Y Y� Y td ` z˚u Y X

ˆA
xâ

¯
. Since

this holds for every � P p0, 1q and a1 P rxâsO, it follows that rxâsO Ñ
c

´
rxâsO Y Y� Y td ` z˚u Y X

ˆA
xâ

¯
, contradicting the maximality of �. Hence ↵â ` p1 ´

↵qx˚̂
a R c

´
rxâsO Y Y� Y td ` z˚u Y X

ˆA
xâ

¯
for any d P Y�, z ° 0 and ↵ P p0, 1q, and so

↵â ` p1 ´ ↵qx˚̂
a R c

´
rxâsO Y Y� Y ta1 ` z˚u Y X

ˆA
xâ

¯
for all a1 P rxâsO Y Y�, z ° 0 and

↵ P p0, 1q, as required.

Lemma IX.B.6. For all d P Fb, ↵ ° 0 and x P < such that ↵d ` x˚ P Fb, and all � P Cb,

�p↵d ` x˚q “ p1 ´ ↵qx˚̂
a ´ x˚ ` ↵�pdq.

Proof. It suffices to show this for all ↵ P p0, 1s; the other cases follow immediately. Sup-
pose that d,↵d ` x˚ P Fb for ↵ P p0, 1s, and � P Cb. Since d ` �pdq˚ P Y�, it follows from
the definition of Cb that ↵pd ` �pdq˚q ` p1 ´ ↵qx˚̂

a P Y�. It thus follows by monotonicity
(property v) and the definition Cb, �p↵d ` x˚q is such that ↵d ` x˚ ` �p↵d ` x˚q˚ “
↵pd ` �pdq˚q ` p1 ´ ↵qx˚̂

a. So �p↵d ` x˚q “ p1 ´ ↵qx˚̂
a ´ x˚ ` ↵�pdq, as required.

Take any element � P Cb; Lemma IX.B.5 guarantees that such an element exists. Let
I2

: O Y Fb Ñ < to be the functional extending I and such that I2pdq “ xâ ´ �pdq for
d P Fb. By Lemma IX.B.6, I2 is constant linear where defined; hence, by the definition of
Fb and O1, there exists a unique constant linear extension to O1, which we call I 1. By the
definition of Cb, the constant linearity of c and Chernoff, I 1 satisfies properties 2f and 2g.
We now establish several other properties of I 1.

Lemma IX.B.7. I 1 satisfies property 2e: for all d P O1, if d P ˆA, then I 1pdq § xâ.

Proof. Since for d P O this follows from the properties of I , it suffices to consider d P
O1zO. Suppose for reductio that d P ˆA and I 1pdq ° xâ. By the definition of Fb, there exists
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� P p0, 1s, x P < such that �d ` x˚ P Fb; hence 1

�
pxâ ´ �p�d ` x˚q ´ xq “ I 1pdq ° xâ.

By the definition of Cb, we have that �d ` x˚ ` �p�d ` x˚q˚ P cprxâsO Y Y� Y X
ˆA

xâ
q;

however, by the monotonicity of c (property v of Lemma IX.B.2), since �d ` p1 ´ �qx˚̂
a P

X
ˆA

xâ
Ñ rxâsO Y Y� Y X

ˆA
xâ

and x ` �p�d ` x˚q † p1 ´ �qxâ, �d ` x˚ ` �p�d ` x˚q˚ R
cprxâsO Y rb ` z˚, x˚̂

as Y X
ˆA

xâ
q, which is a contradiction. So I 1pdq § xâ, as required.

Lemma IX.B.8. I 1 is superadditive: for all a, a1 P O1 and ↵ P r0, 1s, then I 1p↵a ` p1 ´
↵qa1q • ↵I 1paq ` p1 ´ ↵qIpa1q.

Proof. We show the result for a, a1 P Uâ; it extends to other cases by the constant linearity
of I 1. Suppose for reductio that for some a, a1 P O1 X Uâ, ↵ P r0, 1s, I 1p↵a ` p1 ´ ↵qa1q †
↵I 1paq ` p1 ´ ↵qI 1pa1q. By the convexity of Uâ and the definition of rxâsO, Fb and I 1,
↵a`p1´↵qa1`pxâ´I 1p↵a`p1´↵qa1qq˚ P rxâsOYY�. Similarly, a`pxâ´I 1paqq˚, a1`pxâ´
I 1pa1qq˚ P rxâsO Y Y�. It follows from the definition of Cb and superadditivity (property
vi of Lemma IX.B.2) that d P c

´
rxâsO Y Y� Y tdu Y X

ˆA
xâ

¯
for all d P coprxâsO Y Y�q;

hence ↵pa ` pxâ ´ I 1paqq˚q ` p1 ´ ↵qpa1 ` pxâ ´ I 1pa1qq˚q P cprxâsO Y t↵pa ` pxâ ´
I 1paqq˚q ` p1 ´↵qpa1 ` pxâ ´ I 1pa1qq˚qu YY� YX

ˆA
xâ

q. However, since I 1p↵a` p1 ´↵qa1q †
↵I 1paq`p1´↵qIpa1q, ↵a`p1´↵qa1 `pxâ ´I 1p↵a`p1´↵qa1qqq˚ P Y� strictly dominates
↵pa`pxâ ´I 1paqq˚q`p1´↵qpa1 `pxâ ´I 1pa1qq˚q, and so it follows from that monotonicity
of c (property v of Lemma IX.B.2) that ↵pa`pxâ ´I 1paqq˚q`p1´↵qpa1 `pxâ ´I 1pa1qq˚q R
cprxâsO Y t↵pa ` pxâ ´ I 1paqqq˚q ` p1 ´ ↵qpa1 ` pxâ ´ I 1pa1qqq˚qu Y Y� Y X

ˆA
xâ

q, which is
a contradiction. Hence I 1p↵a ` p1 ´ ↵qa1qq • ↵I 1paq ` p1 ´ ↵qIpa1q, as required.

Lemma IX.B.9. I 1 is monotonic: for every a, d P O1, if d § a, then I 1pdq § I 1paq.

Proof. We show the result for a, d P Uâ; it extends to other cases by the constant linearity
of I 1. Consider a, a1 P O1 X Uâ; by the definition of rxâsO, Fb and I 1, a ` pxâ ´ I 1paqq˚, d `
pxâ ´ I 1pdqq˚ P rxâsO Y Y�. If d § a, then, by the monotonicity of c, for each y ° 0, since
d ` pxâ ´ I 1paq ´ yq˚ † a ` pxâ ´ I 1paqq˚, d ` pxâ ´ I 1paq ´ yq˚ R cprxâsO Y Y� Y td `
pxâ ´ I 1paq ´ yq˚u Y X

ˆA
xâ

q, and so xâ ´ I 1paq ´ y ‰ xâ ´ I 1pdq. Hence I 1paq • I 1pdq, as
required.
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It remains to show that I 1 represents c on O1 (property 2d). For this, we need the
following preliminary lemma.

Lemma IX.B.10. Let A P }bddpO1q, A Ä P for some P P Q, and let x P < be such that

x • I 1pa2q for all a2 P A. Then there exists a P P such that cpA Y ra, x˚sq “ ra, x˚s.

Proof. By the constant linearity of I 1, there exists a1 P P with I 1pa1q “ x. Moreover, for
any d P A, since a1, d P P , it follows from the definition of Q that d “ ↵a1 ` z˚ for
some ↵ • 0 and z P <. Hence there exists �d • 1, �1 P r0, 1s and y1 P < such that
d “ �1p�da1 ` p1 ´ �dqx˚q ` p1 ´ �1qy1˚; take any such �d. Since A is closed and bounded,
there exists � • �d for all d P A; let a “ �a1 `p1´�qx˚. By construction (and the constant
linearity of I 1), I 1paq “ x, and, for each d P A, there exists � P r0, 1s and y P < such that
d “ �a ` p1 ´ �qy˚. It follows that, for any d P A with I 1pdq “ x, d P ra, x˚s.

First we show that, for each d P A with I 1pdq † x, d R cpA Y ra, x˚sq. Let d P A be
such that I 1pdq † x. By the previous observation, there exists � P r0, 1q and y P < such
that d “ �a ` p1 ´ �qy˚. Since, by constant linearity of I 1, I 1pdq “ �I 1paq ` p1 ´ �qy †
x “ I 1paq, we have that y † x. Hence, by the monotonicity of c, d “ �a ` p1 ´ �qy˚ R
cpt�a`p1´�qy˚, �a`p1´�qx˚uq. Since �a`p1´�qx˚ P ra, x˚s, it follows by Chernoff
that d R cpA Y ra, x˚sq, as required.

It follows that cpA Y ra, x˚sq Ñ ra, x˚s. By Chernoff and Aizerman, 28 it follows that
cpA Y ra, x˚sq “ cpra, x˚sq “ ra, x˚s, where the second equality holds by property 2f of I 1,
the constant linearity of c, and Chernoff.

Lemma IX.B.11. I 1 represents c on O1: for any A P }bddpO1q, arg maxA I 1 Ñ cpAq.

Proof. If A Ñ O, the result follows from that fact that I 1 extends I and the fact that
pO, Iq P Z . So suppose that this is not the case, and consider a P arg maxA I 1. By Lemma
IX.B.10, for each P P Q with A X P ‰ H, there exists a1

P P P with I 1pa1
P q “ I 1paq

and cppA X P q Y ra1
P , xåsq “ ra1

P , xås. For such each P , let Aa
P “ pA X P q Y ra1

P , xås.
By Chernoff and Aizerman, 29 cpîP s.t AXP ‰H Aa

P q “ cpîP s.t AXP ‰Hra1
P , xåsq. More-

28. Note that, in the presence of Chernoff, Aizerman is equivalent to: cpBq Ñ A Ñ B ñ cpBq “ cpAq.
(See, for example, Moulin (1985).)

29. Chernoff and Aizerman imply that cpî
iPI A

i

q “ cpî
iPI cpA

i

qq. See for example Moulin (1985,
Lemma 6), whose proof for the case of finite unions is straightforwardly extended to infinite unions.
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over, cpîP s.t AXP ‰Hra1
P , xåsq “ î

P s.t AXP ‰Hra1
P , xås, by property 2f of I 1, the con-

stant linearity of c, and Chernoff. Hence, in particular, a P cpîP s.t AXP ‰H Aa
P q; since

A Ñ î
P s.t AXP ‰H Aa

P , it follows by Chernoff that a P cpAq, as required.

So pO1, I 1q P Z such that b P O1 and pO, Iq § pO1, I 1q. This concludes the proof of
Lemma IX.B.4.

Lemma IX.B.12. Z is non-empty.

Proof of Lemma IX.B.12. Define Câ as follows:

(IX.11) Câ “

$
’’&

’’%
y P <

ˇ̌
ˇ̌
ˇ̌
ˇ̌

râ, y˚s Ñ c
´
X

ˆA
y

¯
&

@a1 P râ, y˚s, @z ° 0, @↵ P p0, 1q,
↵â ` p1 ´ ↵qy˚ R c

´
ta1 ` z˚u Y X

ˆA
y

¯

,
//.

//-

We first establish the non-emptyness of Câ, by an argument related to,
but not identical to, that used in the proof of Lemma IX.B.5. Consider!
� : r0, 1q Ñ <

ˇ̌
ˇ â P c

´
ˆA Y t↵â ` p1 ´ ↵q�p↵q˚ | ↵ P r0, 1qu

¯)
. By the monotonicity

of c and the fact that â P cp ˆAq, this set is non-empty. Moreover, by the monotonicity
and continuity of c, it has a maximal element; let � be such an element. By the maximality
of �, â P c

´
ˆA Y t↵â ` p1 ´ ↵q�p↵q˚ | ↵ P r0, 1su

¯
. For ↵ P r0, 1q and ✏ ° 0, define �`✏

↵

by: �`✏
↵ p↵q “ �p↵q ` ✏ and �`✏

↵ p�q “ �p�q for � ‰ ↵. By the maximality of �, for any
↵ P r0, 1q and ✏ ° 0, â R c

´
ˆA Y t↵â ` p1 ´ ↵q�`✏

↵ p↵q˚ | ↵ P r0, 1qu
¯

. It follows by Aizer-

man that ↵â`p1´↵qp�p↵q`✏q˚ P c
´

ˆA Y t↵â ` p1 ´ ↵q�`✏
↵ p↵q˚ | ↵ P r0, 1qu

¯
. Since this

holds for all ✏ ° 0 and ↵ P r0, 1q, it follows from continuity that t↵â ` p1 ´ ↵q�p↵q˚ | ↵ P
r0, 1qu Ñ c

´
ˆA Y t↵â ` p1 ´ ↵q�p↵q˚ | ↵ P r0, 1su

¯
. Let y “ �p0q; in particular, we

have that y˚ P c
´

ˆA Y t↵â ` p1 ´ ↵q�p↵q˚ | ↵ P r0, 1qu
¯

. It follows, by repeated appli-
cations of constant independence and Chernoff, that t↵̂, y˚u Y t↵â ` p1 ´ ↵q�p↵q˚ | ↵ P
p0, 1qu Ñ c

´
ty˚u Y în

k“0

p�k
ˆA ` p1 ´ �kqy˚q Y t↵â ` p1 ´ ↵q�p↵q˚ | ↵ P p0, 1qu

¯
. Tak-

ing the limit as � Ñ 1 and n Ñ 8, it follows from continuity that tâ, y˚u Y t↵â ` p1 ´
↵q�p↵q˚ | ↵ P p0, 1qu Ñ c

´
X

ˆA
y Y t↵â ` p1 ´ ↵q�p↵q˚ | ↵ P p0, 1qu

¯
.

We now show that �p↵q “ y for all ↵ P p0, 1q. Take any � P p0, 1q. Since �X
ˆA

y `
p1 ´ �qy˚ Ñ X

ˆA
y , X

ˆA
y Y t↵â ` p1 ´ ↵q�p↵q˚ | ↵ P p0, 1qu Y p�pX ˆA

y Y t↵â ` p1 ´
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↵q�p↵q˚ | ↵ P p0, 1quq ` p1 ´ �qy˚q “ X
ˆA

y Y t↵â ` p1 ´ ↵q�p↵q˚ | ↵ P p0, 1qu Y p�t↵â `
p1 ´ ↵q�p↵q˚ | ↵ P p0, 1qu ` p1 ´ �qy˚q. It follows from the constant independence of c

that tâ, y˚u Y t↵â ` p1 ´ ↵q�p↵q˚ | ↵ P p0, 1qu Ñ cpX ˆA
y Y t↵â ` p1 ´ ↵q�p↵q˚ | ↵ P

p0, 1qu Y p�t↵â ` p1 ´ ↵q�p↵q˚ | ↵ P p0, 1qu ` p1 ´ �qy˚qq. However, for any z ° 0, by
monotonicity, â R c

´
X

ˆA
y Y t↵â ` p1 ´ ↵q�p↵q˚ | ↵ P p0, 1qu Y tâ ` z˚u

¯
, so by constant

linearity and Chernoff, �â ` p1 ´ �qy˚ R cpX ˆA
y Y t↵â ` p1 ´ ↵q�p↵q˚ | ↵ P p0, 1qu Y

p�t↵â`p1´↵q�p↵q˚ | ↵ P p0, 1qu`p1´�qy˚qYt�pâ`z˚q`p1´�qy˚uq. It follows from
Aizerman that �pâ`z˚q`p1´�qy˚ P cpX ˆA

y Yt↵â`p1´↵q�p↵q˚ | ↵ P p0, 1quYp�t↵â`
p1 ´ ↵q�p↵q˚ | ↵ P p0, 1qu ` p1 ´ �qy˚q Y t�pâ ` z˚q ` p1 ´ �qy˚uq; since this holds for
every z ° 0, we have, by continuity that �â`p1´�qy˚ P cpX ˆA

y Yt↵â`p1´↵q�p↵q˚ | ↵ P
p0, 1qu Y p�t↵â ` p1 ´ ↵q�p↵q˚ | ↵ P p0, 1qu ` p1 ´ �qy˚qq. However, as noted above,
�â`p1´�q�p�q˚ P cpX ˆA

y Yt↵â`p1´↵q�p↵q˚ | ↵ P p0, 1quYp�t↵â`p1´↵q�p↵q˚ | ↵ P
p0, 1qu ` p1 ´ �qy˚qq; it follows from the monotonicity of c that �pbq “ y. Applying
this to all � P p0, 1q, we have that the required conclusion. It follows in particular that
râ, y˚s Ñ cpX ˆA

y q.

It remains to show that ↵â ` p1 ´ ↵qy˚ R c
´

ta1 ` z˚u Y X
ˆA

y

¯
for all ↵ P p0, 1q,

a1 P râ, y˚s and z ° 0. We proceed by reductio: let ↵ P p0, 1q, a1 P râ, y˚s
and z ° 0 be such that ↵â ` p1 ´ ↵qy˚ P c

´
ta1 ` z˚u Y X

ˆA
y

¯
for all ↵ P p0, 1q.

By definition a1 “ �â ` p1 ´ �qy˚; we distinguish cases according to whether � §
↵ or not. First suppose that � § ↵. Chernoff implies that ↵â ` p1 ´ ↵qy˚ P
c

´
t�â ` p1 ´ �qy˚ ` z˚u Y t↵d ` p1 ´ ↵qy˚ | d P ˆAu

¯
. But since t�â ` p1 ´ �qy˚ `

z˚u Y t↵d ` p1 ´ ↵qy˚ | d P ˆAu “ ↵ptp�
↵
â ` p1 ´ �

↵
qy˚q ` 1

↵
z˚qu Y X

ˆA
y q ` p1 ´ ↵qy˚,

it follows from constant linearity of c that â P cptp�
↵
â ` p1 ´ �

↵
qy˚q ` 1

↵
z˚qu Y X

ˆA
y q, con-

tradicting the maximality of �p�
↵

q “ y. Now suppose that � ° ↵. Take any � † ↵
�

; by

constant independence, ↵â ` p1 ´ ↵qy˚ P c
´

ta1 ` z˚, �pa1 ` z˚q ` p1 ´ �qy˚u Y X
ˆA

y

¯
,

and so, by Chernoff, ↵â ` p1 ´ ↵qy˚ P c
´

t�pa1 ` z˚q ` p1 ´ �qy˚u Y X
ˆA

y

¯
. Since

�pa1 ` z˚q ` p1 ´ �qy˚ “ ��â ` p1 ´ ��qy˚ ` �z˚, the conditions of the previous case
are satisfied; the previous argument can thus be employed, yielding a contradiction. So
↵â`p1´↵qy˚ R c

´
ta1 ` z˚u Y X

ˆA
y

¯
for all ↵ P p0, 1q, a1 P râ, y˚s and z ° 0, as required.

The construction of a functional I on â proceeds in an analogous way to the proof of
Lemma IX.B.4; the proofs that it satisfies the appropriate conditions are either trivial or
follow the same reasoning as used in the proof of Lemma IX.B.4.



IX-63 Dynamic Consistency and Ambiguity: A Reappraisal



Bibliography IX-64

Bibliography

Al Najjar, N., Weinstein, J., and Al-Najjar, N. I. (2009). The Ambiguity Aversion Litera-
ture: A critical assessment. Economics and Philosophy, 25(Special Issue 03):249–284.

Aliprantis, C. D. and Border, K. C. (2007). Infinite Dimensional Analysis: A Hitchhiker’s

Guide. Springer, Berlin, 3rd edition.

Anscombe, F. J. and Aumann, R. J. (1963). A Definition of Subjective Probability. The

Annals of Mathematical Statistics, 34:199–205.

Billingsley, P. (2009). Convergence of Probability Measures. John Wiley & Sons.

Blackwell, D. (1953). Equivalent Comparisons of Experiments. The Annals of Mathemat-

ical Statistics, 24(2):265–272.

Cerreia-Vioglio, S., Maccheroni, F., Marinacci, M., and Rustichini, A. (2013). Niveloids
and Their Extensions: Risk Measures in Small Domains.

Crès, H., Gilboa, I., and Vieille, N. (2011). Aggregation of multiple prior opinions. Journal

of Economic Theory, 146:2563–2582.

Dekel, E., Lipman, B. L., and Rustichini, A. (2001). Representing Preferences with a
Unique Subjective State Space. Econometrica, 69(4):891–934.

Dunford, N. and Schwartz, J. T. (1958). Linear Operators. Part I: General Theory. Inter-
science Publishers, New York.

Eichberger, J., Grant, S., and Kelsey, D. (2007). Updating Choquet beliefs. Journal of

Mathematical Economics, 43(7–8):888–899.

Eichberger, J. and Kelsey, D. (1996). Uncertainty Aversion and Dynamic Consistency.
International Economic Review, 37(3):625–640.

Epstein, L. G. and Le Breton, M. (1993). Dynamically Consistent Beliefs Must Be
Bayesian. Journal of Economic Theory, 61(1):1–22.

Epstein, L. G., Marinacci, M., and Seo, K. (2007). Coarse contingencies and ambiguity.
Theoretical Economics, 2:355–394.



IX-65 Bibliography

Epstein, L. G. and Schneider, M. (2003). Recursive multiple-priors. Journal of Economic

Theory, 113(1):1–31.

Fishburn, P. C. (1970). Utility Theory for Decision Making. Wiley, New York.

Ghirardato, P. (2001). Coping with ignorance: unforeseen contingencies and non-additive
uncertainty. Economic Theory, 17(2):247–276.

Ghirardato, P. (2002). Revisiting Savage in a conditional world. Economic Theory,
20(1):83–92.

Ghirardato, P., Maccheroni, F., and Marinacci, M. (2004). Differentiating ambiguity and
ambiguity attitude. J. Econ. Theory, 118(2):133–173.

Gilboa, I., Postlewaite, A., and Schmeidler, D. (2009). Is it always rational to satisfy
{S}avage’s axioms? Economics and Philosophy, pages 285–296.

Gilboa, I. and Schmeidler, D. (1989). Maxmin expected utility with non-unique prior. J.

Math. Econ., 18(2):141–153.

Gollier, C. (2004). The Economics Of Risk And Time. MIT Press.

Hammond, P. J. (1988). Consequentialist foundations for expected utility theory. Theory

and Decision, 25:25–78.

Hanany, E. and Klibanoff, P. (2007). Updating preferences with multiple priors. Theoretical

Economics, 2:261–298.

Hill, B. (2012). Unanimity and the aggregation of multiple prior opinions.

Hilton, R. W. (1981). The Determinants of Information Value: Synthesizing Some General
Results. Management Science, 27(1):57–64.

Karni, E. and Safra, Z. (1989). Dynamic Consistency, Revelations in Auctions and the
Structure of Preferences. The Review of Economic Studies, 56(3):421–433.

Karni, E. and Safra, Z. (1990). Behaviorally consistent optimal stopping rules. Journal of

Economic Theory, 51(2):391–402.



Bibliography IX-66

Klibanoff, P., Marinacci, M., and Mukerji, S. (2009). Recursive smooth ambiguity prefer-
ences. Journal of Economic Theory, 144(3):930–976.

Kreps, D. M. (1979). A Representation Theorem for ‘Preference for Flexibility’. Econo-

metrica, 47:565–576.

Kreps, D. M. (1992). Static choice in the presence of unforeseen contingencies. In Eco-

nomic Analysis of Markets and Games: Essays in Honor of Frank Hahn, pages 258–281.

LaValle, I. H. (1968). On Cash Equivalents and Information Evaluation in Decisions Un-
der Uncertainty: Part I: Basic Theory. Journal of the American Statistical Association,
63(321):252–276.

Maccheroni, F., Marinacci, M., and Rustichini, A. (2006). Dynamic variational prefer-
ences. Journal of Economic Theory, 128(1):4–44.

Machina, M. J. (1989). Dynamic consistency and non-expected utility models of choice
under uncertainty. Journal of Economic Literature, 27(4):1622–1668.

Marschak, J. and Miyasawa, K. (1968). Economic Comparability of Information Systems.
International Economic Review, 9(2):137–174.

Marschak, J. and Radner, R. (1972). Economic Theory of Teams. Yale University Press,
New Haven.

McClennen, E. F. (1990). Rationality and Dynamic Choice: Foundational Explorations.
Cambridge University Press.

Moulin, H. (1985). Choice Functions Over a Finite Set: A Summary. Social Choice

Welfare, 2:147–160.

Mukerji, S. (1997). Understanding the nonadditive probability decision model. Economic

Theory, 9(1):23–46.

Sarin, R. and Wakker, P. P. (1998). Dynamic choice and nonexpected utility. Journal of

Risk and Uncertainty, 17(2):87–120.

Savage, L. J. (1954). The Foundations of Statistics. Dover, New York.



IX-67 Bibliography

Sen, A. K. (1971). Choice Functions and Revealed Preference. Rev. Econ. Stud., 38(3):307–
317.

Siniscalchi, M. (2009). Two out of three ain’t bad: a comment on "The Ambiguity Aver-
sion Literature: A Critical Assessment”. Economics and Philosophy, 25(Special Issue
03):335–356.

Siniscalchi, M. (2011). Dynamic choice under ambiguity. Theoretical Economics, 6:379–
421.

Strotz, R. H. (1955). Myopia and Inconsistency in Dynamic Utility Maximization. Rev.

Econ. Stud., 23(3):165–180.

Wakker, P. (1988). Nonexpected utility as aversion of information. Journal of Behavioral

Decision Making, I(July 1987):169–175.



X Uncertainty aversion, multi utility rep-
resentations and state independence of
utility

Abstract

This paper proposes and characterises a model of uncertainty averse preferences that can
simultaneously accommodate three divergences from subjective expected utility: impreci-
sion of beliefs (or ambiguity), imprecision of tastes (or multi utility), and state dependence
of utility. Moreover, it characterises, in this context, a notion of state independence of util-
ity borrowed from the literature on incomplete preferences. This notion is then shown to
be basically inconsistent with the standard state-independence axiom, monotonicity, when-
ever tastes are imprecise. A new notion of state independence in the context of imprecise
tastes, which is characterised by monotonicity, is proposed. 1

Keywords: State independence of utility, imprecise tastes, uncertainty aversion, multi
utility, multiple priors, state-dependent utility.

JEL classification: D81

1. This is a forthcoming HEC Paris Research Paper. It was writing during, and partially inspired by, the
preparation of this thesis.

X-1
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X.1 Introduction

Consider a decision maker who has been diagnosed with a serious yet rare degenera-
tive disease, and is faced with the choice between not doing anything or paying to receive
a new, expensive but not very well understood treatment. If he does nothing, there is a
40% chance of an uncomfortable but largely normal life (and lifespan) and a 60% chance
of a significantly impeded lifestyle for the rest of his days. The chances of success of
the treatment are between 25% and 75%; in case of success, it will be life as usual (with
no discomfort); in case of failure, he will have a seriously degraded quality of life. This
decision has a marked resemblance with Ellsberg’s (1961) examples, insofar as the prob-
abilities of various outcomes are known for one of the options, and they are not known
precisely for the other. Borrowing a term from statistics, we will say that there may be
imprecision in beliefs. 2 It is well-known that in such cases, the decision maker may exhibit
non-neutral attitudes to uncertainty, such as uncertainty aversion. Moreover, given that few
people know what it’s like to live in a severely handicapped situation, this decision may
also involve what could be called imprecision in tastes: the decision maker may not be able
to compare the impairment resulting from failed treatment with the impeded quality of life
resulting from inaction. Finally, as is well-known (Drèze, 1987; Arrow, 1974; Cook and
Graham, 1977; Karni, 1983), such health-related decisions often involve state-dependent
utility: one’s utility for the money saved by not undergoing the treatment may depend on
one’s state of health.

Examples such as this, which we take as representative of an important class of real-life
cases that are relevant in health economics, the theory of insurance and beyond, involve sev-
eral distinct violations of the standard axioms of subjective expected utility (Savage, 1954;
Anscombe and Aumann, 1963). 3 These violations have generally been studied in isolation:
the literature on ambiguity, for example, almost universally assumes precise tastes and state
independence of utility. The first aim of this paper is to propose and characterise a theory
of decision that displays uncertainty aversion and is sufficiently rich to capture all of these

2. The term ‘imprecise probabilities’ is widely used in statistics and philosophy; see for example Walley
(1991); Bradley (2014) and the references therein.

3. Explicitly, in the Anscombe-Aumann framework and in the context of complete preferences: violations
of the independence axiom for imprecision of beliefs, of the restriction of independence to risky prospects
for imprecision of tastes, and of the monotonicity axiom for state independence of utilities.
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violations simultaneously. Such a theory will be applicable in the sorts of situations just
described.

Our basic result will involve the representation of preferences by the following func-
tional form, for acts (that is, state-contingent consequences) f :

(X.1) min

UPU
ÿ

sPS

Ups, fpsqq

where U is a (closed convex) set of real-valued functions on states and consequences, which
we call evaluations. 4 Evaluations occur in the literature on state-dependent utility, where
they have been recognised to provide a natural representation of preferences in cases where
state-independence axioms are violated, which is sufficient for many economic applica-
tions. For example, they can be used to determine the choice made in the decision dis-
cussed above, as well as to perform comparative statics on, for example, the cost of the
treatment (Hill, 2010). We provide a representation theorem showing that, in the presence
of some mild technical conditions, the standard order, continuity and uncertainty aversion
axioms – without monotonicity or any form of independence – are necessary and sufficient
for preferences to be representable according to (X.1). It follows that (X.1) also generalises
the vast majority of existing models of uncertainty averse preferences.

Despite its uses, representation (X.1) does not allow discussion of beliefs and tastes.
For this, a separation is required. We shall focus on state-independent separations, of
which the most notable example comes from standard subjective expected utility: there
is a separation of the single evaluation in the singleton version of (X.1) into a (suitably
unique) state-independent utility function and a probability measure, which is ensured by
the state-independence axioms (monotonicity, in the Anscombe-Aumann framework). The
main finding of this paper is that the issue of separation, and with it the meaning of state
independence of utility, is considerably more complex when there is both uncertainty aver-
sion and imprecision of tastes.

4. Some authors use the term ‘state-dependent utilities’ to refer to such functions. By contrast, we follow
the literature on state-dependent utility (for example Karni et al. (1983); Karni (1993b,a); Karni and Schmei-
dler (1993); Karni and Mongin (2000); Karni (2011); Hill (2010)) in reserving the term ‘state-dependent
utility’ for a representation involving a principled separation of beliefs and tastes: for example, a suitably
unique probability and (state-dependent) utility.
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Our first result is a characterisation of the following analogue, for uncertainty averse
preferences, of a representation recently proposed by Galaabaatar and Karni (2013) in the
context of incomplete preferences:

(X.2) min

pu,pqPUsi

ÿ

sPS

ppsqupfpsqq

where U si is a (closed convex) set of pairs of probabilities and state-independent utilities.
Here there is separation evaluation-wise into a taste factor – the state-independent utility –
and a belief factor – the probability. Since the state independence at issue holds at the level
of each utility-probability pair, we shall refer to such representations as involving multi

state-independent utility.
Surprisingly, this representation turns out to be in a sense inconsistent with the standard

axiom for state independence, monotonicity. More precisely, multi state-independent utility
and monotonicity taken together imply that, unless beliefs satisfy a particularly restrictive
condition, preferences are represented by a single utility function. In other words, once
there is imprecision in tastes, monotonicity – the standard axiom for state independence of
utility – is incompatible with the notion of state independence embodied by (X.2) in all but
a few special cases.

Investigating further, we show that, in the context of uncertainty averse preferences
with imprecise tastes, monotonicity implies a particular representation of preferences, of
which the following is a suggestive yet paradigmatic special case:

(X.3) min

pPC
ÿ

sPS

ppsq min

uPUut
upfpsqq

where C is a (closed convex) set of probability measures on the state space and Uut is
a (closed convex) set of utility functions on the set of consequences. So monotonicity
implies that the set of utilities involved is state independent, insofar as the same set is used
in every state (in the second minimisation). We shall speak of state-independent multi

utility, to emphasise that the state-independent separation applies at the level of sets, rather
than individual utility-probability pairs.

These findings suggest that, once one leaves the realm of precise tastes, the single no-
tion of state independence is replaced by two potentially relevant and basically incompati-
ble notions. One, which is fast becoming the standard in studies of incomplete preferences,
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involves state independence at the level of each probability-utility pair involved in the rep-
resentation. The other, which is implied by the most popular axiom for state independence,
involves state independence at the level of the set of utilities. Of course, the difference
between them may have consequences for behaviour, and in applications.

The paper is organised as follows. The framework is set out in Section X.2. The
basic result is stated and discussed in Section X.3, which also contains a corollary for
preferences over risky prospects. Section X.4 contains the analysis of the issue of state
independence: Section X.4.1 focusses on multi state-independent utility and its incompat-
ibility with monotonicity; Section X.4.2 considers state-independent multi utility. Related
literature is discussed in Section X.5. Proofs are contained in an Appendix.

X.2 Framework

We use the standard Anscombe-Aumann (1963) framework, as adapted by Fishburn
(1970). Let S be a finite set of states; � is the set of probability measures over S. Let
X be a finite set of outcomes. Consequences are lotteries over X: that is, probability
measures over X . �pXq is the set of consequences; of course �pXq Ä <X . An act is a
function from states to consequences; let A “ �pXqS be the set of acts. A is a mixture
set with the mixture relation defined pointwise: for f , h in A and ↵ P r0, 1s, the mixture
↵f ` p1 ´↵qh is defined by p↵f ` p1 ´↵qhqps, xq “ ↵fps, xq ` p1 ´↵qhps, xq. We write
f↵h as short for ↵f ` p1 ´ ↵qh. For state s and acts f and g, the act fsgsc is defined as
follows: fsgscpsq “ fpsq and fsgscptq “ gptq for all t ‰ s. With slight abuse of notation, a
constant act taking consequence c for every state will be denoted c and the set of constant
acts will be denoted �pXq.

An evaluation is a function U : S ˆ X Ñ <. We assume <SˆX as well as A to be
endowed with the Euclidean norm | |. For evaluation U P <SˆX , consequence c P �pXq
and state s P S, we let Ups, cq “ ∞

xPX Ups, xqcpxq. Evaluations U, U 1 P <SˆX are
cardinally equivalent if there exists b P <S with

∞
sPS bpsq “ 0 such that U 1 “ U ` b. 5

U 1 P <SˆX is a positive affine transformation of U if there exists a P <°0

and b P <
such that U 1 “ aU ` b. An evaluation representing preferences according to (X.1) with
a singleton U is unique up to cardinal equivalence and positive affine transformation (see

5. Cardinally equivalent evaluations are such that
∞

sPS Ups, fpsqq “ ∞
sPS U

1ps, fpsqq for all f P A.
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for example Karni et al. (1983)). We extend these notions to sets of evaluations as follows.
For U ,U 1 Ñ <SˆX , U 1 is cardinally equivalent to U if, for each U 1 P U 1, there exists
U P U such that U and U 1 are cardinally equivalent, and similarly for each U P U . U 1

is a positive affine transformation of U if there exist a P <°0

and b P <, such that U 1 “
aU ` b “ taU ` b | U P Uu. We adopt analogous notation and terminology for state-
independent utilities (ie. functions in <X). Fix an arbitrary x̂ P X , and let N 1 “ tU P
<SˆX | @s P S, Ups, x̂q “ 0, |U | “ 1u. Up to cardinal equivalence and positive affine
transformation, N 1 contains a representative of each evaluation: it can thus be thought of
as a set of appropriately normalised evaluations.

The binary relation ® on A represents the decision maker’s preferences over acts. The
symmetric and asymmetric parts of ®, „ and †, are defined in the standard way. A func-
tional V : A Ñ < represents ® if and only if, for all f, g P A, f ® g iff V pfq § V pgq.

An evaluation U is constant if
∞

sPS Ups, fpsqq “ ∞
sPS Ups, gpsqq for all f, g P A.

A set U Ñ <SˆX is non-trivial if it contains at least one non-constant evaluation. Let
F Ñ 2

<SˆX be a family of closed convex sets of evaluations (for example, F could contain
all closed convex sets). For any U P F representing ® according to (X.1), let UpAq “
tminUPU

∞
sPS Ups, fpsqq | f P Au. Since A is closed, and the minimal functional and the

U are continuous, this is a closed set. For any U P F representing ® according to (X.1), we
shall say that U is a tight closed convex representation of ® from the family F if there exists
no proper subset in the family, U 1 à U with U 1 P F , representing ® according to (X.1).
A tight set is as small as a representation can be, in the sense that there are no extraneous
evaluations. U is a minimal tight closed convex set from F representing ® if for every
tight closed convex set U 1 P F representing ® with U 1pAq “ UpAq, and for each f P A
and U 1 P U 1 there exists U P U such that

∞
sPS U 1ps, fpsqq • ∞

sPS Ups, fpsqq. A minimal
representing set contains evaluations taking the minimal values possible, compared to other
representing sets that are suitably normalised (so as to take the same range of values).
Explicit mention of the family F will be omitted where it is evident from the context.
Again, analogous notions are employed for sets of state-independent utilities (ie. functions
in <X).
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X.3 The base result

X.3.1 Axioms

Consider the following axioms.

Axiom X-A1 (Weak order). For all f, g, h P A: if f ® g and g ® h, then f ® h; and
f ® g or g ® f .

Axiom X-A2 (Non-degeneracy). There exists f, g P A such that f ° g.

Axiom X-A3 (Continuity). For all sequences fn, gn P A, fn Ñ f and gn Ñ g, if fn © gn

for all n, then f © g.

Axiom X-A4 (Uncertainty aversion). For all f, g P A and ↵ P p0, 1q, if f „ g then
f↵g © g.

Axiom X-A5 (Local non-satiation). For every f P A, either f © g for all g P A or there
exists g P A such that g↵f ° f for all ↵ P p0, 1s.

X-A1–X-A4 require little comment: X-A1 and X-A2 are totally standard, X-A3 is
a standard topological continuity condition (equivalence with the more common mixture
continuity axiom does not evidently hold here, given the absence of any independence
axiom), 6 and X-A4 is the standard uncertainty aversion axiom from Schmeidler (1989);
Gilboa and Schmeidler (1989). Local non-satiation, X-A5, is a version of a standard condi-
tion in consumer theory (for example, (Mas-Colell et al., 1995, Ch 3)), which ensures that
all indifference curves are ‘thin’. It is a consequence of monotonicity and independence,
which are not generally assumed here.

One further axiom shall be of interest, for which the following notion will prove useful.
For acts f, g, h P A with g † f † h, f is a potential fifty-fifty mixture of g and h if there
exist g1, h1 P A with g1 „ g, h1 „ h and h1

1
2
g1 „ f . The potential fifty-fifty mixtures of g

and h are those acts that are indifferent to a fifty-fifty mixture of – or if you will, to a fair
coin toss yielding – two acts which are indifferent to g and h respectively. In the presence
of independence, the set of potential fifty-fifty mixtures is the indifference class of the

6. Cerreia-Vioglio (2009) shows that mixture continuity implies upper semi-continuity in our framework;
however, the result used in the proof of Theorem X.1 (by Kannai (1977)) requires full continuity.
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fifty-fifty mixture of g and h; to this extent, the notion of potential fifty-fifty mixture can be
thought of as an analogue of the standard notion of fifty-fifty mixture for cases where the
axiom is not satisfied. Moreover, f is a conservative potential fifty-fifty mixture of g and
h if it is a potential fifty-fifty mixture and for any other potential fifty-fifty mixture, f 1, of
these acts f 1 © f . Conservative potential fifty-fifty mixtures are the lowest acts, in the ®
order, that are potential fifty-fifty mixtures.

Now consider the following axiom.

Axiom X-A6 (Coherent calibration). For any f, g, h P A with g † f † h, there exists
✏ ° 0 such that, for every sequence pfiq0§i§n with f

0

“ g, fn “ h, fi ° fi´1

for all
1 § i § n and such that fi is a conservative potential fifty-fifty mixture of fi´1

and fi`1

for all 1 § i § n ´ 1, maxfi®f i

n
§ 1 ´ ✏.

A sequence of acts, each consecutive triple of which involves a conservative potential
fifty-fifty mixture, can be thought of as forming a ‘ruler’ with equally-spaced gaps (in terms
of preferences) between the elements of the sequence. (As such, there is conceptual anal-
ogy with the notion of standard sequence common in measurement theory (Krantz et al.,
1971).) Coherent calibration, X-A6, demands that for any act strictly between two acts g

and h, every such ruler gives a measurement of the position of f that is strictly bounded
away from the distance between g and h. The intuition is obvious: if f † h, then f must
be strictly ‘closer’ to g, according to any such ruler, than h. One could consider this ax-
iom as guaranteeing that sequences of conservative potential fifty-fifty mixtures constitute
reasonable ‘rulers’ to calibrate preferences. (Note that this is automatically the case in the
presence of independence.) As will be noted below, the vast majority of uncertainty averse
decision models proposed in the literature satisfy X-A6.

X.3.2 Representation Theorem

The following is the first basic result of the paper.

Theorem X.1. Let ® be a preference relation on A. The following are equivalent:

(i) ® satisfies X-A1–X-A6,

(ii) there exists a non-trivial minimal tight closed convex set of evaluations U Ñ <SˆX

such that ® is represented by:
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(X.1) V pfq “ min

UPU
ÿ

sPS

Ups, fpsqq

Moreover, for any minimal tight closed convex set U 1 Ñ <SˆX representing ® accord-

ing to (X.1) there exist U‹ Ñ <SˆX , a P <°0

and b P < such that U is cardinally equivalent

to U‹ and U 1 “ aU‹ ` b.

Hence the axioms given above – which, bar two largely technical assumptions, boil
down to standard ordering, continuity and uncertainty aversion – characterise the multi
evaluation representation of preferences mentioned in the Introduction. Since no mono-
tonicity or independence assumptions are involved (not even independence on risky
prospects), this representation is sufficiently rich to capture simultaneous violations of these
axioms. In particular, it can accommodate state dependence of utility, imprecision of tastes
and imprecision of beliefs, when the preferences exhibit aversion to uncertainty.

Indeed, representation (X.1) can be seen as a natural development of existing research
focussing on some of these violations in isolation from the others. It is a natural extension
of the single evaluation representation (where U is a singleton), which is obtained when
one removes the state-independence axioms from the standard axiomatisation of subjective
expected utility. 7 Moreover, it is a natural analogue, for uncertainty averse preferences,
of recent representations of incomplete preferences obtained by Seidenfeld et al. (1995);
Nau (2006); Galaabaatar and Karni (2013), which demand preference only when the ex-
pression in (X.1) is higher for all evaluations in U . Such representations can accommodate
imprecision in tastes and state dependence of utility, though not uncertainty aversion of
preferences. Finally, representation (X.1) can also be thought of as a generalisation of the
popular Maxmin Expected Utility model (Gilboa and Schmeidler, 1989) in the ambiguity
literature, insofar as it involves minimisation over sets of evaluations as opposed to minimi-
sation over sets of probability measures (with a single state-independent utility function).
In fact, despite its prima facie resemblance to this model, the use of the minimum over a
set of evaluations rather than something more refined is not restrictive: representation (X.1)
generalises a large class of ambiguity models.

7. This is a straightforward consequence of the von Neumann-Morgenstern theorem in the Anscombe-
Aumann framework (Karni et al., 1983). Wakker and Zank (1999); Hill (2010) propose analogous results in
the Savage framework.
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This is clear from the proof of the Theorem (see Appendix X.A.1), where it is shown
that the axioms are equivalent to the representation of preferences by a continuous con-
cave functional on A. Since the vast majority of existing uncertainty averse decision the-
ories involve continuous concave functionals – including the uncertainty averse Choquet
preferences (Schmeidler, 1989), maxmin EU preferences (Gilboa and Schmeidler, 1989),
variational preferences (Maccheroni et al., 2006), confidence preferences (Chateauneuf and
Faro, 2009), and uncertainty averse smooth preferences (Klibanoff et al., 2005) – they are
special cases of representation (X.1). This also indicates how mild the only new axiom, Co-
herent calibration (X-A6), is. To the knowledge of the author, the only uncertainty averse
theory that does not fall under representation (X.1) is the general case of the uncertainty
averse preference representation given in Cerreia-Vioglio et al. (2011b).

X.3.3 An Alternative Formulation

For future reference, it is useful to note that, by standard duality (Rockafellar, 1970),
representation (X.1) is equivalent to the representation of ® by the functional

(X.4) V pfq “ min

UPN 1,pa,bqP↵pUq

˜
ÿ

sPS

a.Ups, fpsqq ` bpsq
¸

where ↵ : N 1 Ñ 2

<°0ˆ< is a function with the following properties: 8

— non-triviality: there exists non-constant U P N 1 such that ↵pUq ‰ H;
— convexity: if pa, bq P ↵pUq, pa1, b1q P ↵pU 1q then for all � P r0, 1s, p�a ` p1 ´

�qa1,�b ` p1 ´ �qb1q P ↵p�U ` p1 ´ �qU 1q;
— upper hemicontinuity: if pan, bnq P ↵pUnq with Un Ñ U and pan, bnq Ñ pa, bq, then

pa, bq P ↵pUq;
— tightness: there exists no convex upper hemicontinuous ↵1 representing ® according

to (X.4) with ↵1pUq Ñ ↵pUq for all U P N 1 where the inclusion is proper for at
least one U P N 1;

— minimality: for any other tight convex upper hemicontinuous ↵1 representing ®
according to (X.4) such that tminUPN 1,pa,bqP↵1pUq p∞sPS a.Ups, fpsqq ` bpsqq |f P

8. Note that ↵ is not a correspondence: ↵pUq may be empty for some U P N 1. We adopt the convention
that when ↵pUq is empty, U is not involved in the minimisation.
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Au “ tminUPN 1,pa,bqP↵pUq p∞sPS a.Ups, fpsqq ` bpsqq |f P Au, and for all f P A,
U 1 P N 1 and pa1, b1q P ↵1pU 1q, there exists U P N 1 and pa, bq P ↵pUq with
∞

sPS a.Ups, fpsqq ` bpsq § ∞
sPS a1.U 1ps, fpsqq ` b1psq.

In fact, we have the following direct translation between representations (X.1) and
(X.4): 9

↵pUq “ tpa, bq | a ° 0, b P <, aU ` b P U‹u(X.5)

U‹ “  
aU ` b | U P N 1, pa, bq P ↵pUq(

(X.6)

where U‹ is the set of evaluations cardinally equivalent to U such that Ups, x̂q “ Upt, x̂q
for all s, t P S and U P U‹. 10

Instead of involving a set of evaluations, representation (X.4) works with suitably nor-
malised evaluations – elements of N 1. As noted in Section X.2, the elements of N 1 suffice
to represent preferences according to the version of (X.1) with a singleton set: any prefer-
ence relation represented by an evaluation in this way can be represented by a member of
N 1. When several evaluations are involved in the representation, the function ↵ determines
how they are ‘calibrated’ for the decision maker (the a and b determine where the zero and
unit are). Given the use of the maxmin rule, this in turn determines the ‘weight’ given to
the different evaluations in the assessment of an act. 11

X.3.4 Risk preferences

It is useful to remark that, applied in the special case of a state space containing a single
state, Theorem X.1 yields the following axiomatisation of preferences under risk.

Corollary X.1. Let ® be a preference relation on �pXq. ® satisfies X-A1–X-A6 if and

only if there exists a non-trivial minimal tight closed convex set of utility functions ˆU Ñ <X

such that ® is represented by:

9. The equivalence of the representations and the properties of ↵ follow directly from this translation.
10. Recall that x̂ is an arbitrary outcome used in the normalisation defining N 1; see Section X.2.
11. This can be formulated alternatively using a set of evaluations-as-a-group analogy: one could consider

the elements of N 1 as representing the different possible preferences of members of a group and the ↵ as
setting the interpersonal comparison of evaluations among the group members.
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(X.7) V pcq “ min

uP ˆU
upcq

Moreover, for any minimal tight closed convex ˆU 1 Ñ <X representing ® according to (X.7)

there exists a P <°0

and b P < such that ˆU 1 “ a ˆU ` b.

Moreover, it follows that, for each U representing a preference relation ® over A (with
a potentially non-singleton state space), one can define a unique ‘restriction’ of U which
represents the restriction of ® to constant acts �pXq.

Proposition X.1. Let ® be a preference relation on A. Suppose that ® satisfies X-A1–X-

A6, and is represented by a non-trivial minimal tight closed convex U Ñ <SˆX according to

(X.1). Then there exists a unique non-trivial tight closed convex U
�pXq Ñ <X representing

the restriction of ® to constant acts �pXq according to (X.7), such that for each u P U
�pXq,

there exists U P U with upxq “ ∞
sPS Ups, xq for all x P X .

Henceforth, for U representing ®, we call the set U
�pXq identified in this Proposition

the restriction of U to constant acts (and continue to use the notation U
�pXq).

X.4 A Tale of Two State Independences

Representation (X.1) does not provide the basis for consideration and discussion of be-
liefs and tastes. For this, a representation involving utilities (the standard representations of
tastes) and probabilities (which are often interpreted as beliefs) is required. Representation
(X.1) does however provide a springboard for studying such representations: the task is to
provide a principled separation of the set of evaluations U into utilities and probabilities. 12

We shall focus here on representations involving state independence of utility.
Galaabaatar and Karni (2013) provide inspiration. Working with incomplete pref-

erences, they consider a ‘dominance’ condition that, under their other assumptions, is
stronger than the monotonicity axiom standard in the Anscombe-Aumann framework. They

12. As has been noted in the literature on state-dependent utility, any evaluation can be separated into
a (state-dependent) utility and probability in many ways. The challenge is to provide a suitably unique
separation. Demanding state-independence of the utility is a possible way of doing so, though it is not the
only one.
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show that, in the context of a representation that may be thought of as an analogue of (X.1)
for incomplete preferences, this condition is necessary and sufficient for preferences to be
representable as follows: for f, g P A, f † g if and only if

(X.8)
ÿ

sPS

ppsqupfpsqq †
ÿ

sPS

ppsqupgpsqq for all pp, uq P U si

where U si is a set of pairs of probability measures over S and state-independent utilities
over X . In other words, they study a notion of state independence that involves the sep-
aration of each evaluation into a state-independent utility and a probability, yielding a set
of state-independent utility-probability pairs. This representation involves what we called
multi state-independent utility.

In this section, we first characterise uncertainty averse preferences involving multi state-
independent utility, and then go on to consider in depth the relationship with and conse-
quences of monotonicity.

X.4.1 Multi state-independent utility

X.4.1.1 Basic state-independent representation

We begin by introducing a new axiom. To formulate it, we shall introduce the notion
of �-shift. Firstly, let ZUR “ te P <X | ∞xPX epxq “ 0, |e| “ 1u. For every c P �pXq,
� P p0, 1q and e P ZUR, the �-shift of c by e is c ` �e. If c ` �e P �pXq we shall say
that that �-shift exists. A �-shift from c can be thought of as an act obtained by the addition
of a small zero-sum risk, �e, to c. (ZUR is the set of zero-sum unit risks.) We denote the
�-shift of c by e, if it exists, by ce,�.

A state s P S is locally null at f P A if, for each e P ZUR, there exists ✏ ° 0 such
that for all � P p0, ✏s, fpsqe,� exists and fpsqe,�

s fsc „ f . For every s P S, let Nullpsq “
cl ptf P A | s locally null at fuq. 13 s P S is locally nonnull at f P A if f R Nullpsq.

Axiom X-A7 (Local state independence). For all f P A, s, t P S locally nonnull at f , and
all e P ZUR such that fpsqe,� and fptqe,� exist for some � ° 0, there exists ✏ ° 0 such that
fpsqe,�

s fsc © f for all � § ✏ if and only if fptqe,�
t ftc © f for all � § ✏.

13. For a set X , clpXq is the closure of X .
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This axiom has the spirit of a state-independence condition, to the extent that it demands
that adding a small zero-sum risk at a nonnull state of an act will have the same effect on
preferences, irrespective of the nonnull state where it is added. It is local, because this
only holds for sufficiently small perturbations to the consequences obtained in the relevant
states.

It turns out that this axiom is precisely what is required for a refinement of representa-
tion (X.1) where each evaluation is decomposed (uniquely) into a state-independent utility
function and a probability measure.

Theorem X.2. Let ® be a preference relation on A. The following are equivalent:

(i) ® satisfies X-A1–X-A6 and X-A7,

(ii) there exists a non-trivial minimal tight closed convex set of utility-probability pairs

U si Ñ <X ˆ � such that ® is represented by:

(X.2) V pfq “ min

pu,pqPUsi

ÿ

sPS

ppsqupfpsqq

Moreover, for any minimal tight closed convex U si1 Ñ <X ˆ � representing ® according

to (X.2), there exist a P <°0

and b P < such that U si1 “ aU si ` b. 14

This representation, as well as the uniqueness obtained, can be thought of as the ana-
logue of Galaabaatar and Karni’s representation (X.8) for uncertainty averse preferences.
Like theirs, it involves a state-independent separation of beliefs and tastes (probabilities
and utilities) evaluation-by-evaluation. The notion of state independence at issue here ap-
plies at the level of each utility-probability pair; for this reason, we call (X.2) a multi

state-independent utility (multi prior) representation.

X.4.1.2 Set factorisation

Representation (X.8) involves a set of state-independent utility-probability pairs, but it
does not guarantee that this set can be factorised into a set of state-independent utilities and
a set of probabilities. Galaabaatar and Karni (2013) go on to provide a characterisation of

14. It is understood in this result and those below that minimality and tightness are defined as stated in
Section X.2, with the obvious family F ; in this case F is the set of all closed convex subsets of <X ˆ �.
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what they dub a ‘complete separation of beliefs and tastes’. It is possible to provide an
analogous extension of Theorem X.2 in the case of uncertainty averse preferences.

To this end, we formulate a strong version of the Belief consistency axiom proposed
by Galaabaatar and Karni (2013). Like them, we shall make use of the following notion,
introduced by Ok et al. (2012). For an act f P A and a probability measure p P �, let f p P
�pXq be defined by: f ppxq “ ∞

sPS ppsqfps, xq. 15 Let P “ tp P � | @f P A, f p © fu.

Axiom X-A8 (Strong belief consistency). For all f, g P A, f © g if and only if for all
p P P , there exists q P P such that f p © gq.

Strong belief consistency can be interpreted in a similar way to the Belief consis-
tency axiom proposed by Galaabaatar and Karni (2013). They point out that an act in
the Anscombe-Aumann framework can be thought of as a tacit compound lottery, with as
probabilities in the first stage the subjective probabilities that implicitly govern behaviour.
They go on to interpret f p as the reduction of this compound lottery (when the subjective
probability is p). Applying this to sets of probability measures, one comes naturally to the
idea that preferences over acts should correspond to preferences over appropriate reduc-
tions, where the reductions are taken with respect to the ‘probability distributions that are
consistent with preferences’, as they call them (in the current case, the set P).

This axiom ensures the desired factorisation into a set of state-independent utility func-
tions and a set of probability measures, as the following result shows.

Theorem X.3. Let ® be a preference relation on A. The following are equivalent:

(i) ® satisfies X-A1–X-A6, X-A7 and X-A8,

(ii) there exists a non-trivial minimal tight pair of closed convex sets of utility functions

and probability measures, Uut Ñ <X and C Ñ �, such that ® is represented by:

(X.9) V pfq “ min

uPUut, pPC

ÿ

sPS

ppsqupfpsqq

Moreover, for any minimal tight pair of closed convex sets Uut1 Ñ <X and C 1 Ñ � repre-

senting ®, C 1 “ C and there exist a P <°0

and b P < such that Uut1 “ aUut ` b. 16

15. The reader is referred to the cited papers for extended discussion of the interpretation of this notion.
16. Minimality and tightness are defined as stated in Section X.2, with the obvious family F ; in this case

F is the set of all closed convex subsets of <X ˆ � that can be factorised into the product of a subset of <X

and a subset of �.
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X.4.1.3 Multi state-independent utility and Monotonicity

Despite its adequacy for characterising representations involving multi state-independent
utility, local state independence (X-A7) is far from standard. The standard state-independence
condition in the Anscombe-Aumann framework is the following monotonicity axiom. 17

Axiom X-A9 (Monotonicity). For all f, g P A, if fpsq © gpsq for all s P S, then f © g.

The vast majority, if not all, ambiguity theories incorporate this axiom. Moreover, as
noted in the Introduction, the vast majority also assume precise tastes. We shall say that a
preference relation ® represented by a minimal tight closed convex U according to (X.1)
involves:

— precise tastes if U
�pXq is a singleton;

— rudimentary beliefs if there exists E Ñ S and concave real-valued functions �s :

UpAq Ñ < for all s P E such that ® is represented by:

(X.10) V pfq “ min

sPE
�s

ˆ
min

uPU�pXq
uppfpsqq

˙

Preferences involve precise tastes if there is a single utility function (recall from Section
X.3.4 that U

�pXq is the restriction of U to constant acts). They involve rudimentary beliefs
if there is no probabilistic dimension to beliefs: they are summed up by a set of states, over
which the decision maker applies a maxmin rule.

For c, c1 P �pXq, c † c1, let ®rc,c1s be the restriction of ® to tf P A | @s P S, c1 ®
fpsq ® cu. We call ®rc,c1s a section of the preferences. If ® can represented according
to (X.1), then any section can also be represented this way. A preference ® representable
according to (X.1) exhibits section-wise precise tastes-rudimentary beliefs if there exists a
sequence c

0

, . . . , cn P �pXq with c
0

® f ® cn for all f P A and ci † ci`1

for each i † n,
such that for each i † n, ®rci,ci`1s involves precise tastes or rudimentary beliefs.

The following proposition sheds some light on the relationship between multi state-
independent utility and monotonicity.

Proposition X.2. Let ® be a preference relation on A represented according to (X.2). If ®
satisfies X-A9, then it exhibits section-wise precise tastes-rudimentary beliefs.

17. In the presence of complete transitive preferences, monotonicity is implied by the following alternative
condition for state independence: for every f, g P A, c, d P �pXq and s, t P S, c

s

f

s

c ® d

s

f

s

c if and only if
c

t

g

t

c ® d

t

g

t

c . The main results stated below thus continue to hold for this state-independence condition.
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This result says that whenever a multi state-independent utility representation satis-
fies monotonicity, it basically involves either a single utility function or non-probabilistic
beliefs at every point in the preference order. It can be interpreted as an impossibility
result: in the presence of all but the most simple beliefs, imprecision of tastes, multi state-
independent utility and the monotonicity axiom are incompatible, when preferences are
uncertainty averse. 18 If one takes the idea of imprecise tastes seriously, there is thus a
tension between the prevalent notion of state independence for multi utility multi prior rep-
resentations – according to which each utility in the representing set is state independent –
and the standard axiom for state independence – namely monotonicity.

To gain some intuition for the result, consider the following simple example, to which
we shall return below. Suppose that there are two states, s and t and two outcomes c

and d. Let u
1

, u
2

be state-independent utilities with u
1

pcq “ 0, u
1

pdq “ 1, u
2

pcq “ 1,
u

2

pdq “ 0 and p be a probability with ppsq “ 1

4

. Consider a multi state-independent utility
representation (X.2) by the set U si, which is the convex closure of the following utility-
probability pairs: pu

1

, pq, pu
2

, pq. It is evident that according to this representation c „ d,
but csdsc ° c, contradicting monotonicity.

Proposition X.2 suggests that, when tastes are imprecise, one can retain either multi
state-independent utility or monotonicity, but not both. We have already considered one of
the options; it is time to investigate the other.

X.4.2 State-independent multi utility

Does monotonicity deliver any form of state independence at all in the context of un-
certainty averse preferences with imprecise tastes? The main result of this section provides
an answer.

To formulate it, recall representation (X.4) (Section X.3.3), which is equivalent to the
basic multi evaluation representation (X.1) but involves a function from evaluations to sets
of pairs, satisfying certain properties. We shall continue to use such functions (albeit on
probabilities rather than evaluations), with properties as defined in Section X.3.3, 19 and two

18. For reasons suggested below, we conjecture that this incompatibility extends to weak ordered continu-
ous preferences exhibiting a larger range of (non-neutral) uncertainty attitudes.

19. To be precise, all properties are translated without change into the current context (N 1 is replaced by
�, representation (X.4) by (X.11) and so on), except for non-triviality, where the requirement that the element
is non-constant is removed.
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new properties. We shall say that a function ↵ : � Ñ 2

<°0ˆ< is grounded if there exists
p P � such that p1, 0q P ↵ppq. It is calibrated with respect to a set of utilities Uut Ñ <X if,
for all p P �, pa, bq P ↵ppq, and x P Uutp�pXqq, 20 ax ` b • x. (Where it is obvious from
the context, the set of utilities Uut will not be mentioned.) Equipped with these notions, we
now state the main theorem of this section.

Theorem X.4. Let ® be a preference relation on A. The following are equivalent:

(i) ® satisfies X-A1–X-A6 and X-A9,

(ii) there exist a non-trivial minimal tight closed convex set of utility functions Uut Ñ
<X and a non-trivial, tight, grounded, calibrated, upper hemicontinuous, convex

function ↵ : � Ñ 2

<•0ˆ< such that ® is represented by:

(X.11) V pfq “ min

pP�, pa,bqP↵ppq

˜
a

ÿ

sPS

ppsq min

uPUut
upfpsqq ` b

¸

Moreover, for any minimal tight closed convex Uut1 Ñ <X and tight, grounded, calibrated

upper hemicontinuous, convex function ↵1
: � Ñ 2

<•0ˆ< representing ®, there exists

a P <•0

and b P < such that Uut1 “ aUut ` b and ↵1 “ ↵.

Monotonicity does imply a separation of tastes for outcomes and beliefs: the former
are represented by a set of (state-independent) utilities and the latter are incorporated into
a function that only operates at the level of states (and probabilities measures over them).
Moreover, this separation does involve a form of state independence: the same set of utility
functions is used to assess the consequence of every act in every state. It is this set – this
multi utility – that is independent of the state. We shall thus refer to (X.11) as a state-

independent multi utility (multi prior) representation.
In order to elucidate the relationship with the notion of multi state-independent utility

considered in Section X.4.1, it is useful to rewrite representation (X.11) in the same form as
(X.1). To this end, for any Uut Ñ <X , let pUutqS “ tu : SˆX Ñ < | @s P S, ups, ‚q P Uu.
pUutqS is the set of state-dependent utilities whose restriction to any state coincides with a
utility in Uut. 21 Let

@pUutqS
D “ taUS ` b |@a P <°0

, b P <u.

20. We continue to use the notation introduced in Section X.2: Uutp�pXqq “ tmin

uPUut
upcq | c P

�pXqu.
21. Note that, unless Uut is a singleton, pUutqS will contain at least one state-dependent utility.
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A set U Ñ <SˆX is rectangular if i. there exist Uut Ñ <X , C Ñ � such that U Ñ
@pUutqS

D ˆ C and ii. for all p P C and U P pUutqS , if pp, au ` bq P U 1 for some a P <°0

,
b P <, then pp, au1 ` bq P U for every u1 P pUutqS . A rectangular set is, in an appropriately
generalised sense, a product of a set of probabilities and the set of state-dependent utilities
that are ‘generated’ from a set of utilities. In particular, rectangular sets consist of pairs
of probability measures and state-dependent utility functions, with an added constraint that
any probability that appears somewhere in the set is matched with every state-dependent
utility that appears somewhere.

It is straightforward to show that any preference relation can be represented according to
(X.11) if and only if it can be represented according to (X.1) by a minimal tight rectangular
convex closed set Umon Ñ <SˆX . Umon is a set of probability-utility pairs, but the utilities
will not all be state independent in general. State independence at the level of sets of
utilities and probabilities – as embodied in state-independent multi utility representations –
thus yields state dependence at the level of probability-utility pairs, except in very special
cases. Hence the incompatibility reported in Proposition X.2.

The contrast may be illustrated on a continuation of the example given in Section
X.4.1.3. Using the same setup and notation, consider a state-independent multi utility
representation (X.11) with as set of utilities Uut the convex closure of tu

1

, u
2

u and with
sole probability p. 22 It is straightforward to check that c „ d and csdsc „ c, as mono-
tonicity demands. This is because, in the assessment of csdsc , the value assigned to the
consequence c obtained in s is 0 as given by u

1

, but the value assigned to the consequence
d obtained in t is also 0, following u

2

. So a state-dependent utility, which agrees with u
1

in
state s and with u

2

in state t, is essentially involved in the assessment of this act under the
state-independent multi utility representation. This is the sense in which this representation
is state dependent.

On the other hand, the multi state-independent utility representation (X.2) with U si

(see Section X.4.1.3) assigns a value higher than 0 to csdsc because it uses the same state-
independent utility to assess c in s and d in t (and when this utility gives a low value to one,
it gives a high value to the other). This means in particular that whilst the utility u

1

, giving
value 0 to c, is used to assign a value to the constant act c, it is not used to assign a value
to the consequence c at state s in the context of the act csdsc . The set of utilities involved

22. More precisely, the ↵ is defined as follows: ↵ppq “ tp1, 0qu, and ↵pqq “ H for q ‰ p.
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in the assessment of consequences under the multi state-independent utility representation
may depend on the state and the act. In this sense, the representation is state dependent.

Remark X.1. Like representation (X.1), representation (X.11) generalises many of the main
theories of uncertainty averse preferences proposed in the literature (see references in Sec-
tion X.3.2). It does not assume a single utility function – characterised axiomatically by the
restriction of independence to risky prospects 23 – whereas, as already mentioned, the vast
majority of ambiguity theories do. Moreover, the function ↵ generalises similar ‘ambiguity
indices’ and ‘confidence functions’ in the variational and confidence models respectively
(Maccheroni et al., 2006; Chateauneuf and Faro, 2009). It is relatively straightforward to
show that, in the special case of a singleton Uut:

— preferences represented by (X.11) are variational (Maccheroni et al., 2006) when-
ever a “ 1 for all p P � and pa, bq P ↵ppq;

— preferences represented by (X.11) are confidence preferences (Chateauneuf and
Faro, 2009) whenever minUutp�pXqq “ 0 and b “ 0 for all p P � and pa, bq P
↵ppq; 24

— preferences represented by (X.11) are maxmin EU preferences (Gilboa and Schmei-
dler, 1989) when there exists a closed convex C Ñ � with ↵ppq “ tp1, 0qu for all
p P C and ↵ppq “ H for all p R C.

Naturally, using the general form of (X.11) under any of these specifications yields
multi utility versions of variational, confidence and maxmin EU preferences respectively.
Axiomisation of these special cases involves relatively straightforward translations of the
results in the aforementioned papers, combined with the insights in the proof of Theorem
X.4, and are omitted.

Finally, when there is a single utility function, representation (X.11) becomes a special
case of the ‘uncertainty averse preferences’ characterised by Cerreia-Vioglio et al. (2011b),
which are represented by a functional of the following form:

(X.12) V pfq “ inf

pP�

Gp
ÿ

sPS

ppsqupfpsqq, pq

23. This axiom is dubbed Risk Independence by Cerreia-Vioglio et al. (2011b,a).
24. If one removes the condition that minUutp�pXqq “ 0, one obtains the more general class of homo-

thetic preferences, as Cerreia-Vioglio et al. (2011b) call them. They do not involve Chateauneuf and Faro’s
assumption of a minimal element.
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It is straightforward to see that representation (X.11) with singleton Uut corresponds
to the special case where Gpt, pq “ minpa,bqP↵ppq at ` b. By duality, it is thus evident that
representation (X.11) with singleton Uut corresponds to the subclass of Cerreia-Vioglio et
al’s uncertainty averse preferences where G is concave in the first coordinate. As noted in
Section X.3.2, all major theories of uncertainty averse preferences, except for the general
case of Cerreia-Vioglio et al. (2011b), belong to this class.

X.5 Related literature

As suggested previously, the results presented here tie into several different literatures.
The relationship to some of these literatures has been discussed already: for example, the
ambiguity literature in Sections X.3.2 and X.4.2, the state-dependent utility literature in the
Introduction and Section X.3.2. The literature on multi utility multi prior representations
under incomplete preferences focusses on two of the three issues brought up in the Intro-
duction (imprecise tastes and state dependence), and is discussed at various points in the
paper. Beyond Galaabaatar and Karni (2013), whose relation to the work here has been ex-
plained in detail, Ok et al. (2012), who characterise a multi state-independent utility single
prior representation, is also relevant.

Another related literature involves multi utility-style representations of preferences un-
der risk. Maccheroni (2002) proposes a maxmin multi utility representation of preferences
under risk, of which representation (X.7) is a generalisation. Moreover, Corollary X.1 is
comparable to the result for convex preferences under risk obtained by Cerreia-Vioglio
(2009). Using a conditions reminiscent of our X-A1–X-A4, he obtains a representation by
the infimum of a function of (suitably normalised) utility functions and the expected util-
ity calculated with these functions. Rewriting (X.7) in a way similar to (X.4), it becomes
clear that it is a special case of representation (2) in Cerreia-Vioglio (2009), with a specific
function of utilities and expected utility values.

A final piece of related literature, at least technically, concerns the existence and unique-
ness of representations of preference relations by concave functions. The proof of Theorem
X.1 draws on a characterisation result provided by Kannai (1977). This contribution and
that of Debreu (1976) investigate uniqueness properties that play a role in our results.
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X.6 Conclusion

There are apparently many important real-life decisions in which decision makers have
difficulty forming precise probabilities, but also furnishing precise utilities. This paper
proposes a theory of uncertainty aversion decision making that incorporates both of these
imprecisions. Technical axioms aside, the basic model, which can also accommodate state
dependence of utility, results from dropping the independence and monotonicity axioms
from standard axiomatisations of subjective expected utility.

The central finding of the paper is the subtlety of the meaning of state independence of
utility in this context. If tastes are imprecise, and beliefs sufficiently non-trivial, there turn
out to be two incompatible notions of state independence of utility. One, which is popular
in the burgeoning literature on incomplete preferences, involves sets of probability-utility
pairs, and imposes state independence on each pair. The other, which corresponds to a
standard state-independence axiom, requires state independence at the level of the sets of
utilities used in the assessment of the various acts at the different states. The paper provides
axiomatic characterisations of these different notions, thus identifying the behavioural dif-
ferences between them.
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X.A Proofs

Throughout the Appendix, § on <n is the standard order, given by a § b iff ai § bi for
all 1 § i § n, for all a, b P <n. ¨ is the standard scalar product of vectors.

X.A.1 Proofs of results in Section X.3

Proof of Theorem X.1. Consider firstly the (i) implies (ii) direction. X-A1, X-A2 X-A3, X-
A4, along with (Cerreia-Vioglio et al., 2011b, Lemma 56) imply that ® is a non-degenerate
continuous convex complete preference order. X-A5 implies that, for each f that is not
maximal under ®, there is no non-empty open subset of tg P A | g „ fu.

For every f
1

, f
2

, f
3

P A such that f
1

† f
2

† f
3

, let

(X.13)

↵pf
1

, f
2

, f
3

q “ sup

" |g
1�g

3

´ g
1

|
|g

3

´ g
1�g

3

| | gi P A, � P r0, 1s, g
1

„ f
1

, g
3

„ f
3

, g
1�g

3

„ f
2

*

Note that A is a convex closed bounded subset of <SˆX . For any x̂ P X , A is isomor-
phic to a closed bounded subset of <SˆXztx̂u which has non-empty interior. 25 By (Kannai,
1977, Theorem 2.4 and Remark 2.7), the following condition is necessary and sufficient for
the existence of a concave continuous functional representing ®.

Condition 1 There exists a dense sequence of finite sequences of elements of A, tfi,nu,
0 § i § n, where f

0,n † f
1,n † ¨ ¨ ¨ † fn,n, f

0,n is minimal with respect to ® and fn,n

is maximal, such that for every f P A such that, when n is large enough, there exists
j “ jpf, nq with fj,n “ f : 26

lim

nÑ8

«
nÿ

k“1

n´1π

i“k

↵ pfi´1,n, fi,n, fi`1,nq
�´1 jÿ

k“1

n´1π

i“k

↵ pfi´1,n, fi,n, fi`1,nq † 1(X.14)

25. Explicitly: the image of f P A is ˆ

f P <SˆXztx̂u, where ˆ

fps, xq “ fps, xq for all s P S, x P Xztx̂u.
26. Here we adopt the same conventions about sums and products as Kannai (1977): the summation over

an empty set of indices is equal to 0, and the product is equal to 1. We also use his definition of a dense
sequence of sequences: for every g, h P A such that g † h, there exists N such that for every n • N , there
exists i with g † f

i,n

† h.
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Claim X.1. Condition 1 holds.

Proof. Let g be a minimal element with respect to ® and h be a maximal element (such
elements exists because A is compact as a subset of <SˆX and ® satisfies X-A3). For each
l P A, g † l † h with ↵pg, l, hq † 1 (note that by definition ↵pg, l, hq ‰ 0), define the
following sequence by induction.

— f l
0

“ g, f l
1

“ l

— suppose f l
i has been defined. If ↵pf l

i´1

, f l
i , hq § 1, then, by the continuity of ®,

there exists h1 ° f l
i such that ↵pf l

i´1

, f l
i , h

1q “ 1; in this case, let f l
i`1

“ h1. If
↵pf l

i´1

, f l
i , hq ° 1, then stop the construction; f l

i is the last element of the sequence.

By construction, ↵pf l
i´1

, f l
i , f

l
i`1

q “ 1 for all i in this sequence. For a given l, let the
length of the constructed sequence be nl, and let hl “ f l

nl
. It is straightforward to show that

for f
1

† f
2

† f 1
2

† f
3

, ↵pf
1

, f
2

, f
3

q § ↵pf
1

, f 1
2

, f
3

q (it suffices to consider the triple where
the supremum in (X.13) is reached; such a triple exists because A is compact). Moreover,
for acts f

1

, f
2

and sequences pf
2

qj and pf
3

qj with pf
2

qj Ñ f
2

, if f
1

† pf
2

qj, f2

† pf
3

qj and
↵pf

1

, pf
2

qj, pf
3

qjq “ 1 for all j, then by the continuity of ® and the fact that A is compact,
there exists f

3

and pf
3

q1
j „ pf

3

qj for all j such that pf
3

q1
j Ñ f

3

and ↵pf
1

, f
2

, f
3

q “ 1. Hence
it follows from the construction that, for any lj, lk, if lj † lk then nlj • nlk and if lj † lk

and nlj “ nlk “ n, then f
lj
n † f lk

n . Moreover, if lj Ñ l, then f
lj
i Ñ f l

i for each i where this
element exists.

Take any n • 2, and take any l such that nl1 • n for all l1 † l and nl1 † n for all l1 ° l;
it is clear from the construction that such l exists. By the continuity property mentioned
above, since l is a the limit of a sequence lj with lj † l and nlj • n for all j, nl • n. By the
continuity property again, for any sequence lj such that lj ° l and nlj § n´1 for all j, and
lj Ñ l, ↵pf lj

n´2

, f
lj
n´1

, hq Ñ ↵pf l
n´2

, f l
n´1

, hq. So if ↵pf l
n´2

, f l
n´1

, hq † 1, then there exists
lj ° l such that ↵pf lj

n´2

, f
lj
n´1

, hq † 1, and hence, by construction, there exists an element
f

lj
n , contradicting the assumption that nl1 † n for all l1 ° l. Hence ↵pf l

n´2

, f l
n´1

, hq “ 1,
and h „ f l

n. Hence, for any n • 2, there exists a sequence f
0,n, . . . fn,n of length n with

f
0,n “ g, fn,n “ h and ↵ pfi´1,n, fi,n, fi`1,nq “ 1 for all 1 § i § n ´ 1. Take a sequence of

such sequences, tfi,nu.

Now we show that this sequence is dense in ®. Without loss of generality, we may
assume that g † h↵g † h for all ↵ P p0, 1q (if not, replace g with the maximal h�g

such that h�g ® g, and similarly for h; such acts exist by the continuity of ®). For each
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sequence pfi,nq
0§i§n in the sequence of sequences, and for each 0 § i § n, let ↵i,n “

mint� P r0, 1s | h�g © fi,nu (the minimum exists by the continuity of ®). p↵i,nq
0§i§n is

a strictly increasing sequence with ↵
0,n “ 0 and ↵

1n “ 1. We claim that, for each � ° 0,
there exists N ° 0 such that for all n • N , ↵i`1,n ´ ↵i,n § � for all 0 § i § n ´ 1; it
follows straightforwardly that the sequence is dense. (For any f, f 1 P A such that f † f 1,
take ↵1 “ mint� P r0, 1s | h�g © f 1u and ↵ “ maxt� P r0, 1s | � § ↵1, h�g ® fu: it
follows from the claim there exists N ° 0 such that for all n • N , ↵i`1,n ´ ↵i,n † ↵1 ´ ↵

for all 0 § i § n ´ 1, so there exists ↵ † ↵i,n † ↵1 and thus f † fi,n † f 1.) To establish
the claim, note firstly that, for all 1 § i § n ´ 1 and all n, since ↵ pfi´1,n, fi,n, fi`1,nq “ 1,
↵i,n ´ ↵i´1,n § ↵i`1,n ´ ↵i,n. So it suffices to show that, for every � ° 0 there exists
N ° 0 such that, for all n • N , ↵n,n ´ ↵n´1,n § �. Suppose that this is not the case,
and that ↵n,n ´ ↵n´1,n • ✏ ° 0 for all sufficiently large n. Consider h

1´✏g; since ✏ ° 0,
g † h

1´✏g † h. By the assumption, for every sequence pfi,nq
0§i§n,

maxfj,n®h1´✏g
j

n
“ n´1

n
.

So
maxfj,n®h1´✏g

j

n
Ñ 1, contradicting X-A6. Hence for every � ° 0 there exists N ° 0 such

that, for all n • N , ↵n,n ´ ↵n´1,n § �, and the sequence of sequences tfi,nu is dense as
required.

For f
1

† f
2

† f
3

, since A is compact, the supremum in (X.13) is obtained; let
f 1

1

„ f
1

, f 1
3

„ f
3

and pf 1
1

q�f 1
3

„ f
3

be a triple where the supremum is attained. Since
|pf 1

1q�f 1
3´f 1

1|
|f 1

3´pf 1
1q�f 1

3| “ �|f 1
3´f 1

1|
p1´�q|f 1

3´f 1
1| “ �

p1´�q , if ↵pf
1

, f
2

, f
3

q “ 1, then � “ 1

2

. It follows that,
if ↵pf

1

, f
2

, f
3

q “ 1, then f
2

is a conservative potential fifty-fifty mixture of f
1

and f
3

.
Hence, for any sequence in the sequence of sequences tfi,nu defined above, fi,n is a con-
servative potential fifty-fifty mixture of fi´1,n and fi`1,n for all 0 § i § n. For each
such sequence and each f “ fj,n,

∞j
k“1

±n´1

i“k ↵ pfi´1,n, fi,n, fi`1,nq “ j “ maxfi,n®f i

and
∞n

k“1

±n´1

i“k ↵ pfi´1,n, fi,n, fi`1,nq “ n. So, if f is such that there exists j for each n

with f “ fj,n, the expression in the limit in (X.14) is
maxfi,n®f i

n
. X-A6 implies that this

expression is bounded away from 1, so the limit in (X.14) is less than 1, as required.

By Kannai (1977, Theorem 2.4 and Remark 2.7), there exists a concave continuous
non-constant functional V : A Ñ < representing ®. In fact, as noted by (Kannai, 1977,
p11), there exists a minimally concave functional (see also Debreu (1976)) in following
sense: for any concave functional V 1 representing ® such that V 1phq “ V phq and V 1pgq “
V pgq where g and h are minimal and maximal elements with respect to ® respectively,
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V 1pfq • V pfq for all f P A. We henceforth assume that V is minimal in this sense.

Let x̂ be a generic element of X . An evaluation U P <SˆX is canonical if Ups, x̂q “ 0

for all s P S. Let CE be the set of canonical evaluations. Note that for each evaluation,
there exists a cardinally equivalent canonical evaluation.

Since A is a closed bounded convex subset of a finite-dimensional space, and V is
concave and finite, for each f P ripAq, 27 there exists a canonical evaluation supporting
V at f , ie. U P CE such that U ¨ g • V pgq for all g P A and U ¨ f “ V pfq. Let
U be convex closure of the set of all canonical evaluations supporting V at some f P
ripAq. By construction, V pfq “ minUPU U ¨ f for all f P ripAq; by the continuity of
V , this establishes representation (X.1). By construction U is closed and convex. Since
there is a dense subset of ripAq on which V is differentiable – and hence at which it
has unique supergradients – and the supergradients at all other points are contained in the
convex closure of the supergradients at points where V is differentiable (Rockafellar, 1970,
Theorems 25.5 and 25.6), U is tight. That U is minimal follows from the minimality of V

and the following lemma.

Lemma X.A.1. Let V be a concave continuous function representing ®, and let U “
clpconvtU P CE | @g P A Upgq • V pgq, Df P A, Upfq “ V pfquqq. 28 Then U is a

minimal (as a tight closed convex set representing ®) if and only if V is minimal (as a

concave representation).

Proof. Suppose that V is a minimally concave. Consider any tight closed convex U 1 rep-
resenting ® according to (X.1) such that U 1pAq “ UpAq, and let V 1pfq “ minUPU 1 U ¨ f

for all f P A. Let g, h be minimal and maximal elements of A with respect to ® (such
elements exist by X-A3 and the fact that A is compact); it follows from the assumptions
that V 1pgq “ V pgq and V 1phq “ V phq. So, by the minimality of V , V 1pfq • V pfq for all
f P A. Consider any f P A and U 1 P U 1. By the representation, U 1 ¨ f • V 1pfq. However,
by the representation, there exists U P U such that U ¨f “ V pfq § V 1pfq, so U 1 ¨f • U ¨f .
Since this holds for every f P A and U 1 P U 1, U is minimal.

Now suppose that U is minimal. Let g, h be minimal and maximal elements of A with
respect to A. Let V 1 be any concave continuous functional representing ® with V 1pgq “
V pgq and V 1phq “ V phq, and let U 1 “ clpconvptU P CE | @g P A Upgq • V pgq, Df P

27. For a set X , ripXq is the relative interior of X .
28. For a set X , clpXq is its closure and convpXq its convex hull.
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A, Upfq “ V 1pfquqq. Noting that U 1pAq “ V 1pAq “ V pAq “ UpAq, and that U 1 is a tight
closed convex set representing ®, minimality of U implies that for each U 1 P U 1 and f P A,
there exists U P U with U 1 ¨f • U ¨f . Hence minU 1PU 1 U 1 ¨f • minUPU U ¨f for all f P A,
so V 1pfq • V pfq for all f P A. Hence V is minimally concave, as required.

Necessity The implication (ii) to (i) is standard for all axioms except X-A5 and X-A6.
Suppose that ® is represented by U according to (X.1) and let V pfq “ minUPU U ¨ f for all
f P A.

For X-A5, consider any f, g P A with g ° f . By the representation, for all U P U ,
U ¨ f • V pfq and U ¨ g • V pgq, so U ¨ f↵g • ↵V pfq ` p1 ´ ↵qV pgq. Since g ° f , it
follows that g↵f ° f for all ↵ P p0, 1s, as required.

As concerns X-A6, note that for any finite sequence tfiu of the sort described in the
axiom, maxfi®f i

n
† 1, so it needs to be shown that there do not exist any sequence of

such sequences tfi,nu, each of length n, with
maxfi,n®f i

n
Ñ 1 as n Ñ 8. By Kannai

(1977, Theorem 2.4 and Remark 2.7), if ® is representable by a concave functional, then
for all g † f † h and for all dense sequences of sequences tfi,nu from g to h satisfying
the properties described in Condition 1, (X.14) holds. By the argument in the proof of
Claim X.1, for any g † h, any sequence of sequences tfi,nu with fi,n being a conservative
potential fifty-fifty mixture of fi´1,n and fi`1,n for all consecutive triples of elements is a
dense sequence of sequences from g to h; hence (X.14) holds. Since, as noted in the proof
above, the expression in (X.14) simplifies to

maxfi,n®f i

n
in the case of sequences involving

conservative potential fifty-fifty mixes, it follows that
maxfi,n®f i

n
Û 1. So X-A6 holds.

Uniqueness Suppose that U ‰ U 1 are non-trivial minimal tight closed convex sets
representing ®. Let g, h be minimal and maximal elements of ® respectively. Let
V pfq “ minUPU U ¨ f and V 1pfq “ minU 1PU 1 U 1 ¨ f for all f P A. Let a P <°0

and
b P < be such that aV 1pgq ` b “ V pgq and aV 1phq ` b “ V phq (it is straightforward to
show that such a and b exist), and let U2 “ aU 1 ` b and V 2 “ aV 1 ` b. If V “ V 2, then
since U is the convex closure of the set of supergradients of V , for each member of U , there
exists a cardinally equivalent member of U2. Since both sets are tight, it follows that U and
U2 are cardinally equivalent. It thus suffices to show that V 2 “ V . By the minimality of
U and Lemma X.A.1, V 2pfq • V pfq for all f P A. By the minimality of U 1 and Lemma
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X.A.1, V pfq • V 2pfq for all f P A. Hence V 2 “ V , and U “ aU 1 ` b as required.

Proof of Proposition X.1. Let U represent ®, and let V pfq “ minUPU U ¨ f for all f P A.
Let ®

�pXq be the restriction of ® to �pXq. For each c P �pXq, there exists a U P U
such that U supports V at c. Evidently,

∞
sPS Ups, ‚q supports V |

�pXq at c. Let U
�pXq “

clpconvpt∞sPS Ups, ‚q |Dc P �pXq s.t. U supports V at cuqq. Note that, since U is closed
and convex, if u P U

�pXq, there exists U P U such that u “ ∞
sPS Ups, ‚q. U

�pXq is closed
and convex; by arguments similar to those used in the proof of Theorem X.1, it is tight.
Uniqueness follows by a similar argument to that used in the proof of Theorem X.1.

X.A.2 Proofs of Results in Section X.4

Proof of Theorem X.2. First consider the (ii) to (i) direction. The necessity of all axioms
apart from X-A7 follows from Theorem X.1. As concerns this axiom, let U si represent ®
according to (X.2) and let V pfq “ minpu,pqPUsipu.pq ¨ f for all f P A.

First note that if s P S is locally null at g P A and there is a unique pu, pq P U si

supporting V at g, then since pu.pq ¨ pgpsq ` �eqsgsc “ �ppsqu ¨ e ` pu.pq ¨ g “ pu.pq ¨ g

for all e P ZUR and � ° 0 sufficiently small, either ppsq “ 0 or u is constant. By the
closure properties of supergradients (Rockafellar, 1970, Theorem 25.6), Nullpsq contains
all and only acts g where there exists a pu, pq P U si supporting V at g with ppsq “ 0 or
u constant. In particular, if f R Nullpsq, then by the continuity and closure properties of
supergradients (Rockafellar, 1970, Theorem 25.5 and 25.6), any pu, pq P U si supporting V

at f is such that ppsq ‰ 0 and u is not constant. So if s is locally nonnull at f then for every
pu, pq P U si supporting V at f , ppsq ‰ 0 and u is not constant.

Consider f P A and s, t P S locally nonnull at f . By the previous observation, for
every pu, pq P U si supporting V at f , ppsq ‰ 0 and pptq ‰ 0. For e P ZUR and ✏ ° 0

small enough, fpsqe,�
s fsc © f for all � § ✏ if and only if pu.pq ¨ pfpsq ` �eqsfsc “ �ppsqu ¨

e ` pu, pq ¨ f • pu.pq ¨ f for all � § ✏ and every pu, pq supporting f at V . This holds if and
only if u ¨ e • 0 for every pu, pq supporting f at V . Similarly, fptqe,�

t ftc © f for all � § ✏

for some ✏ small enough, if and only if u ¨ e • 0 for every pu, pq supporting f at V . Hence
there exists ✏ ° 0 such that fpsqe,�

s fsc © f for all � § ✏ if and only if fptqe,�
t ftc © f for all

� § ✏, and X-A7 is satisfied.
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Now consider the (i) to (ii) implication. By Theorem X.1, there is a representation of
® by a non-trivial minimal tight closed convex U Ñ <SˆX according to (X.1). We will say
that U P <SˆX decomposes into pu, pq P <Xˆ� if, for all g P A,

∞
sPS

∞
xPX Ups, xqgps, xq “

∞
sPS

∞
xPX ppsqupxqgps, xq. It suffices to show that every U P U decomposes into a state-

independent utility-probability pair.

Let V pfq “ minUPU U ¨ f for all f P A. For each f P A and s P S, let �pXqf,s “
tcsfsc | c P �pXqu. Let UCSf,s “ tg P �pXqf,s | V pgq • V pfqu, the upper contour set
of f in �pXqf,s. Finally, for any affine functional � : <X Ñ <, we denote, with slight
abuse of notation, the corresponding functional on �pXqf,s – that is, the functional taking
the value �pcq on csfsc – by �.

We first establish the following lemma.

Lemma X.A.2. For every f P ripAq and every s, t P S locally nonnull at f , if tg | �pgq “
�u is a hyperplane supporting UCSf,s in �pXqf,s at f , then there exists �

1 such that

tg | �pgq “ �

1u supports UCSf,t in �pXqf,t at f .

Proof. Let UCSo
f,s “ td ´ fpsq P <X | V pdsfscq • V pfqu be the mapping of the upper

contour set of f in �pXqf,s into <X with the vertex shifted to 0 and let conepUCSo
f,sq be

the cone generated by it. Note that by X-A4, if a P UCSo
f,s then �a P UCSo

f,s for every
� P p0, 1q.

Claim X.2. For every f P ripAq and every s, t P S locally nonnull at f , conepUCSo
f,sq “

conepUCSo
f,tq.

Proof. Suppose, for reductio, that conepUCSo
f,sq ‰ conepUCSo

f,tq and, without loss of
generality, that a P conepUCSo

f,sqzconepUCSo
f,tq. Since f P ripAq, there exists ✏ ° 0 such

that, for s1 “ s, t, p✏a ` fps1qqs1fs1c P A. By the definition of conepUCSf,sq, there exists
✏1 † ✏ such that p�a ` fpsqqsfsc © f for all � § ✏1. X-A7 implies that p�a ` fptqqtftc © f

for all � § ✏2, for some ✏2 ° 0, so a P conepUCSo
f,tq, contradicting the assumption. So

conepUCSo
f,sq “ conepUCSo

f,tq as required.

Since the cones coincide, a hyperplane will support UCSo
f,s if and only if it sup-

ports UCSo
f,t. Since any hyperplane supporting UCSf,s is a translation of one supporting

UCSo
f,s, this is sufficient to establish the desired lemma.
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We now distinguish two cases.

Firstly, consider f P ripAq such that V is differentiable at f , so there is a unique U P U
supporting V at f . If U is a constant evaluation, then it trivially decomposes; suppose
henceforth that this is not the case. Consider s P S. If Ups, ‚q is constant (ie. Ups, xq “
Ups, x1q for all x, x1 P X), then U ¨pfpsq`�eqsgsc “ �Ups, eq`U ¨f “ U ¨f for all e P ZUR
and � sufficiently small. Since U is the unique support for V at f , this implies that s is
locally null at f . If Ups, ‚q is non-constant, then by similar reasoning, the fact that U is the
unique support at f and the continuity of the superdifferential mapping (Rockafellar, 1970,
Theorem 24.4), s is locally nonnull at f . Note that, since U is a non-constant evaluation,
there exists a cardinally equivalent U 1 such that U 1ps, xq “ 0 for all x P X and all s such
that U 1ps, ‚q is constant; we henceforth assume without loss of generality that Ups, ‚q “ 0

for all s P S such that U 1ps, ‚q is constant. Now consider s P S such that Ups, ‚q is non-
constant. Note that since V is differentiable at f , its restriction to �pXqf,s is differentiable
at f , so the hyperplane defined by U , tg P �pXqf,s | Upgq “ V pfqu is the unique support
for UCSf,s. Note that this hyperplane can be written as tcsfsc | c P �pXq, Ups, cq “ �u,
for some constant �. For every other t P S such that Upt, ‚q is non-constant, s and t are
locally nonnull, so by Lemma X.A.2, tctftc | c P �, Ups, cq “ �

1u supports UCSf,t at f

for some �

1. Since, by the previous argument, tctftc | c P �, Upt, cq “ �

2u also supports
UCSf,t for some �

2, and UCSf,t has a unique supporting hyperplane at f , it follows that
Upt, xq “ aUps, xq ` b for some a P <°0

and b P <. This implies that, for each s P S

such that Ups, ‚q non-constant, there exists as P <°0

and bs P < such that Ups, xq “
as
∞

s1PS Ups1, xq ` bs. Taking upxq “ ∞
s1PS Ups1, xq for all x P X and ppsq “ as

∞
s1PS as1 for

s such that Ups, ‚q non-constant and ppsq “ 0 otherwise, it is straightforward to show that,
for all g P A,

∞
sPS

∞
xPX Ups, xqgps, xq “ ∞

sPS

∞
xPX ppsqupxqgps, xq, so U decomposes

into pu, pq.

Now consider any f P ripAq that does not fall into the above case. Note that the set of
points where V is differentiable is dense in ripAq (Rockafellar, 1970, Theorem 25.5), and
at each of these points, by the previous case, the supporting U is decomposable into a state-
independent utility and probability. Hence, there exists a sequence pfiqi•1

with fi Ñ f

such that, for each i • 1 there exist unique Ui supporting V at fi, for which Uips, ‚q and
Uipt, ‚q are positive affine transformations of one another for all s, t P S for which they are
not constant. Hence U , the limit of Ui, supports V at f (Rockafellar, 1970, Theorem 24.4)
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and is such that Ups, ‚q and Upt, ‚q are positive affine transformations of one another for all
s, t P S for which they are not constant; so, by the previous argument, U decomposes into
a state-independent-probability pair. Moreover, every support (or supergradient) of V at f

is a convex combination of such limits of sequences (Rockafellar, 1970, Theorem 25.6);
hence every U supporting V at f decomposes into a state-independent utility-probability
pair.

Hence every U P U supporting V at a point in ripAq decomposes into a state-independent
utility-probabilty pair. By the tightness of U , U is the convex closure of the set of such
U . By the argument above, it follows that every element of U decomposes into a state-
independent utility-probabilty pair, as required. Let U si be the set of such pairs, for all
U P U . By construction, this set represents ® according to (X.2) and is minimal tight
closed and convex.

Uniqueness follows immediately from the uniqueness clause in Theorem X.1 and the
decomposition into state-independent utility-probability pairs.

Proof of Theorem X.3. The (ii) to (i) direction is straightforward; consider the (i) to (ii)
implication. By Theorem X.2, there is a representation of ® by a minimal tight convex
closed U si Ñ <X ˆ � according to (X.2). Let V pfq “ minpu,pqPUsipu.pq ¨ f , for all f P A.
Let Uut “ cl

`
convtu P RX | pu, pq P U si, Dc P �pXq s.t. u supports V |

�pXq at cu˘
, and

C “ cl pconvtp P � | @f P A f p © f , Dg P ripAq s.t. gp „ guq. We will show that Uut, C
represent ® according to (X.9).

For any act f P A, let cf P �pXq be the minimal constant act (in the order ®) of
the form f p for some p P C. It follows from X-A8 that, for all f, g P A, cf © cg if
and only if f © g. Since V represents ®, it follows that V pfq • V pgq if and only if
V pcf q • V pcgq. By the definition of cf and Uut, for every f, g P ripAq, V pcf q • V pcgq if
and only if minuPUut

minpPCpu.pq ¨ f • minuPUut
minpPCpu.pq ¨ g; by the continuity of V ,

this equivalence continues to hold for all f, g P A. This yields the desired representation.

By Proposition X.1 and its proof, Uut is a tight representation of the restriction of ®
to �pXq. In particular, no proper closed convex subset of Uut represents the restriction
of ® to �pXq; so, to show that Uut and C are tight, it suffices to show that there is no
proper closed convex subset of C which, taken with Uut, represents ®. If pu, pq P Uut ˆ �

supports V at f P ripAq, then gp © g for all g P A and f p „ f . If moreover V is
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differentiable at f , then pu, pq is the unique support for V at f . Hence, for all other p1 P �

such that gp1 © g for all g P A, f p1 ° f : if not, there would be another supergradient
at f , contradicting the assumption that V is differentiable there. Let D “ tp P � | Df P
ripAq, V differentiable at f, Du P Uut s.t. pu, pq supports V at fu; as just noted, D Ñ C. If
pu, pq P Uut ˆ � supports V at f P ripAq where V is not differentiable, p P cl pconvpDqq
(Rockafellar, 1970, Theorem 25.6). Since, for any p P � such that gp © g for all g P A and
f p „ f for some f P ripAq, there exists u P Uut such that pu, pq supports V at f , it follows
that C “ cl pconvpDqq. So there is no convex closed proper subset of C representing ® in
tandem with Uut according to (X.9). So the pair Uut and C is tight. Minimality follows
from the minimality of U si.

As concerns the uniqueness clause, let Uut1 and C 1 be another pair representing ® ac-
cording to (X.9). Since Uut1 and Uut both represent the restriction of ® to �pXq, and
are minimal tight convex closed sets, it follows from the uniqueness clause in Theorem
X.1 (see also Corollary X.1) that Uut1 “ aUut ` b for some a P <°0

, b P <. We may
thus assume without loss of generality that Uut1 “ Uut. Note that since, for each f P A,
there exists p P � such that f p „ f , Uut ˆ C 1 and Uut ˆ C generate the same functional
V : A Ñ < representing ® according to (X.9). Since both of these sets contain the convex
closure of the set of supergradients of V , and C 1 and C are tight, it follows that C 1 “ C, as
required.

Proof of Proposition X.2. Let U si Ñ <X ˆ � be a minimal tight closed convex set rep-
resenting ® according to (X.2), and let V be the corresponding functional. Suppose that
X-A9 holds. As a point of notation, for every s P S, let �s P � be the degenerate measure
putting all weight on s: �spsq “ 1, �sptq “ 0 for t ‰ s. If p “ �s for some s P S, then
we shall say that p is degenerate. Let ZR “ te P <X | ∞

xPX epxq “ 0u. Finally, for
c, c1 P �pXq with c † c1, let pU siqrc,c1s Ñ U si be a minimal tight closed convex repre-
sentation of ®rc,c1s according to (X.2); by the uniqueness clause in Theorem X.2 and the
properties of minimality (Kannai, 1977), a unique such set exists.

For c, c1 P �pXq such that c † c1, let pc, c1q “ td P �pXq| c † d † c1u; we call this
the interval from c to c1. An interval pc, c1q is single-utilitied if there exists non-constant
u P <X such that, for every d P pc, c1q, every support for V |

�pXq at d is a positive affine
transformation of u. When writing sets of intervals tpc

1

, c
1

q, . . . , pcn, cnqu, we shall hence-



X-33 Uncertainty aversion, multi utility and state independence

forth adopt the convention that the intervals are pair-wise disjoint, and that ci ® ci`1

for
all i. For any pair of sets of single-utilitied intervals, the appropriately defined union of
them contains single-utilied intervals. There is thus a unique set I of pair-wise disjoint
single-utilitied intervals that is maximal under containment: for any other set I 1 of single-
utilitied intervals,

î
pci,ciqPI1pci, ciq Ñ î

pci,ciqPIpci, ciq. We shall refer to this set henceforth
as I “ tpc

1

, c
1

q, . . . , pcn, cnqu.

By X-A9, there exist c, c P �pXq such that c ® f ® c for all f P A. Fix any such pair
of constant acts c, c for reference throughout the proof. Define the following sequence of
elements of �pXq: if c

1

„ c and cn „ c, then take the sequence c
1

, c
1

, c
2

, . . . , cn´1

, cn, cn;
if c

1

° c and cn † c, then take the sequence c “ c
0

, c
1

, c
1

, c
2

, . . . , cn´1

, cn, cn, cn`1

“ c;
and similarly for the other cases.

The result will be a consequence of the following two claims.

Claim X.3. If an interval pci, ciq is single-utilitied, then pU siqrci,cis
�pXq is a singleton.

Claim X.4. For each i, there exists f P A such that ci † fpsq † ci`1

for all s P S.

Moreover, for any such f , if V is differentiable at f with support pu, pq, then p is degenerate.

Proof of Claim X.3. Since pci, ciq is single-utilitied, there exists û P <X such that for each
u P pU siqrci,cis

�pXq , u “ aû ` b for some a P <°0

, b P <. Note that û represents the restriction

of ® to pci, ciq: for if û ¨ c • û ¨ d, then for every u P pU siqrci,cis
�pXq , u ¨ c • u ¨ d, so by

representation (X.2), c © d, and similarly for strict inequalities.

Let w : �pXq Ñ < be given by: wpcq “ min

uPpUsiqrci,cis
�pXq

u ¨ c “ min

aû`bPpUsiqrci,cis
�pXq

aû ¨
c ` b. w is obviously a concave functional, which represents the restriction of ® to pci, ciq.
We now show that w is linear: if this is the case, then all the pa, bq are equal, so since
pU siqrci,cis

�pXq “ clpconvptu |Dc P pci, ciq s.t. pu, pq P U si supports V at cuqq (by the proofs
of Theorem X.1 and Proposition X.1), it is a singleton. Suppose for reductio that w is not
linear. Let u1 “ Aû ` B be such that u1pciq “ inf wppci, ciqq and u1pciq “ sup wppci, ciqq.
Note that u1 represents the restriction of ® to pci, ciq. Moreover, by the (strict) concavity of
w, u1 ¨ d § wpdq for all d P pci, ciq with strict inequality for some d P pci, ciq, and u1 ¨ d •
wpdq for all d R pci, ciq. Let v1

: �pXq Ñ < be defined by: v1pcq “ minuPUsi
�pXqYtu1u upcq.

It is a concave function representing the restriction of ® to �pXq. Moreover, V |
�pXqpcq •

v1pcq for all c P �pXq with strict inequality for some such c P pci, ciq. Hence V |
�pXq is not

a minimal concave representation of the restriction of ® to �pXq. This contradicts the fact,
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established by Lemma X.A.6 in the proof of Theorem X.4, that in the presence of X-A9,
V |

�pXq is minimal. So w is linear and the claim is established.

Proof of Claim X.4. To establish the claim, we require the following two Lemmas, which
contain the basic insight at the heart of the whole result.

Lemma X.A.3. Suppose that V is differentiable at f P A, with support pu, pq, where u is

non-constant. Then for all s P S, if ppsq ° 0, then every support of V |
�pXq at fpsq is a

positive affine transformation of u.

Lemma X.A.4. Let f P A be such that V is differentiable at f , with support pu, pq, where

u is non-constant. Suppose that for s P S, ci † fpsq † ci`1

for some i. If ppsq ° 0, then

p “ �s.

Proof of Lemma X.A.3. Let pu, pq be the unique support of V at some f P ripAq. Take
s P S such that ppsq ° 0. Since V is differentiable at f , its restriction to tcsfsc | c P �pXqu
is differentiable at f ; by representation (X.2), u is the unique support at this point. We show
that every support for V |

�pXq at fpsq is a positive affine transformation of u. Suppose that
this is not the case, and that u1, which is not a positive affine transformation of u, supports
V |

�pXq at fpsq. Hence there exists c1, d1 P �pXq such that upc1q ° upd1q and u1pc1q §
u1pd1q. So, taking e “ c1 ´ d1 yields e P ZR with u ¨ e ° 0 and u1 ¨ e § 0. Since f P ripAq,
for sufficiently small � ° 0, fpsq ` �e P �pXq. The preceding facts, combined with the
fact that u is the unique support to the restriction of V tcsfsc | c P �pXqu at f , imply that
for sufficiently small � ° 0, pfpsq ` �eqsfsc ° f whereas fpsq ` �e ® fpsq, contradicting
X-A9. Hence every support of V |

�pXq at fpsq is a positive affine transformation of u. This
establishes the claim for f P ripAq. By the continuity of superdifferentials (Rockafellar,
1970, Theorem 24.4), the claim holds for f P A where V has a unique support.

Proof of Lemma X.A.4. Let f be such that V is differentiable at f , with support pu, pq,
where u is non-constant, and suppose that there exists s

1

P S such that ci † fps
1

q †
ci`1

. Suppose for reductio that pps
1

q ° 0 and pps
2

q ° 0, for some s
2

‰ s
1

. Since V is
differentiable at f with support pu, pq, by Lemma X.A.3 every support of V |

�pXq at fps
1

q
is a positive affine transformation of u, and similarly for fps

2

q.
Take any d P �pXq such that d „ fps

1

q and let g “ ds1fsc1
. By representation (X.2),

there exists e
1

, e
2

P ZR and ✏ ° 0 such that, for all � † ✏, pfps
1

q ` �e
1

qs1fsc1
⇢ f ,
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pfps
2

q ` �e
2

qs2fsc2
⇢ f , and pfps

1

q ` �e
1

qs1pfps
2

q ` �e
2

qs2fts1,s2uc „ f . By the continuity
of ®, for each � † ✏, there exists e�

1

, e�
2

P ZR such that gps
1

q`e�
1

„ fps
1

q`�e
1

and gps
2

q`
e�
2

„ fps
2

q ` �e
2

. By X-A9, it follows that pgps
1

q ` e�
1

qs1gsc1
⇢ g, pgps

2

q ` e�
2

qs2gsc2
⇢ g but

pgps
1

q ` e�
1

qs1pgps
2

q ` e1
2

qs2gts1,s2uc „ g for every � (and associated e�
1

). By representation
(X.2), it follows that V is supported at g by pu1, p1q where p1ps

1

q ° 0 and p1ps
2

q ° 0, and
that it is not supported by pu2, p2q with p2ps

1

q ° 0 and p2ps
2

q “ 0 or p2ps
1

q “ 0 and
p2ps

2

q ° 0.

By the maximality of I, the density of differentiable points of V and the determina-
tion of supergradients by supergradients at differentiable points (Rockafellar, 1970, The-
orems 25.5 and 25.6), for every subinterval of pci, ci`1

q containing fps
1

q, there exists
d1 P pci, ci`1

q with V differentiable at g1 “ d1
s1

fsc1
and V |

�pXq not supported at d1 by
a positive affine transformation of u. Taking successively smaller intervals yields a se-
quence of di with these properties, with di Ñ d. Since, as shown above, V is supported at
g “ ds1fsc1

by pu1, p1q where p1ps
1

q ° 0 and p1ps
2

q ° 0 and it is not supported by pu2, p2q
with p2ps

1

q ° 0 and p2ps
2

q “ 0 or p2ps
1

q “ 0 and p2ps
2

q ° 0, by the continuity of the
superdifferential mapping (Rockafellar, 1970, Theorem 24.4), for i sufficiently large, V is
supported at gi “ pdiqs1fsc1

by pui, piq with ui non-constant, pipsq ‰ 0 and pips1q ‰ 0. Con-
sider any such i: since V |

�pXq is supported at fps
2

q only by positive affine transformations
of u, whereas it is not supported at di by any positive affine transformation of u, we have
a contradiction by Lemma X.A.3. Hence there does not exist s

2

P S with pps
2

q ° 0, so
p “ �s1 , as required.

Now return to Claim X.4. For any i, consider the interval pci, ci`1

q. By the conti-
nuity of preferences, the indifference curve in �pXq containing ci is determined by the
unique utility function in pU siqrci,cis

�pXq (this set is a singleton by Claim X.3), and similarly
for ci`1

. So if ci “ ci`1

, these two indifference curves are identical, so the utility rep-

resenting pU siqrci,cis
�pXq is a positive affine transformation of that representing pU siqrci`1,ci`1s

�pXq ,
contradicting the maximality of I. pci, ci`1

q is thus non-empty, as required.

As concerns the other part of the claim, note that, by X-A9, for any f P A such that
ci † fpsq † ci`1

for all s P S, f † ci`1

, so it is not supported by pu, pq with u constant.
So, for any such f with V is differentiable at f and having support pu, pq there, it follows
directly from Lemma X.A.4 that p is degenerate, as required.
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Claim X.3 establishes that each section ®rci,cis exhibits precise tastes. We now show
that each section ®rci,ci`1s has rudimentary beliefs. Consider ®rci,ci`1s. By Claim X.4, and
the fact that supergradients of V are determined by supergradients at differentiable points,
for every f P A with ci ® fpsq ® ci`1

for all s P S, V is supported at f by some pu, pq
with degenerate p. We first show that for every s P S such that there exists pu, �sq P U si

supporting V at some f with ci † fps1q † ci`1

for all s1 P S, tu | pu, �sq P U siu represents
the restriction of ® to td P pci, ciq | dscsc † cu.

Consider any such s P S. By representation (X.2), there exists d P pci, ci`1

q with
dscsc † c. We show that, for every d, d1 P pci, ci`1

q with either dscsc † c or d1
scsc † c,

if d1 ° d then d1
scsc ° dscsc . Suppose that this is not the case: by X-A9 it follows that

there exist d, d1 P pci, ci`1

q with dscsc † c and d1 ° d but d1
scsc „ dscsc . By X-A9, for

every c P �pXq such that d1 © c © d, cscsc „ dscsc . For every g P A, if gpsq © d,
then d ® gpsq↵d ® d1 for sufficiently small ↵ P p0, 1q. Since, by the aforementioned
properties and Lemma X.A.4, there exists pu1, �sq P U si such that pu1.�sq ¨ g↵pdscscq “
pu1.�sq ¨ pgpsq↵dqscsc “ V pdscscq, it follows that g↵pdscscq ® dscsc for sufficiently small
↵ P p0, 1q. By X-A9, the same holds for g P A with gpsq ® d. So, for every g P A, for
sufficiently small ↵ P p0, 1q, g↵pdscscq ® dscsc , contradicting X-A5. Hence the restriction
of ® to tdscsc | d P pci, ci`1

q, dscsc † cu coincides with the restriction of ® to td P
pci, ciq | dscsc † cu. Since, by Lemma X.4 and representation (X.2), tu | pu, �sq P U siu
represents the former relation, it also represents the latter.

By Lemma X.A.6 in the proof of Theorem X.4, V |
�pXq is a minimal concave represen-

tation of the restriction of ® to �pXq. So, for each s P S such that there exists pu, �sq P U si

supporting V at some f with ci † fpsq † ci`1

for all s P S, since tu | pu, �sq P U siu rep-
resents the restriction of ® to td P pci, ciq | dscsc † cu, there exists a concave function
 s : pV |

�pXqpciq, V |
�pXqpci`1

qq Ñ < such that minpu,�sqPUsi upcq “  s ˝ V |
�pXqpcq for all

c P �pXq. ( s is constant on V |
�pXqpd P pci, ciq | dscsc „ cuq.) Let �s : V |

�pXqp�pXqq Ñ
< be any concave function extending  S . Hence, for every act f with ci † fpsq † ci`1

for
all s P S, V pfq “ minsPE �spminuPUsi

�pXq
upfpsqqq, where E is the set of s P S such that

there exists pu, �sq P U si supporting V at some f with ci † fpsq † ci`1

for all s P S. By
the continuity of ®, this representation continues to hold for f with ci ® fpsq ® ci`1

for
all s P S; hence ®rci,ci`1s involves rudimentary beliefs, as required.
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Proof of Theorem X.4. The (ii) to (i) direction is straightforward; consider the (i) to (ii) im-
plication. Theorem X.1 implies that there is a representation of ® by a non-trivial minimal
tight closed convex U Ñ <SˆX according to (X.1). Let V pfq “ minUPU U ¨f for all f P A;
as noted in the proof of Theorem X.1 (see Lemma X.A.1), V is a minimally concave rep-
resentation, in the sense of (Kannai, 1977, p11). Let Uut “ U

�pXq “ t∞sPS Ups, ‚q |Dc P
�pXq s.t. U supports V at cu. By Proposition X.1 and its proof, Uut is a tight closed
convex set of utilities representing the restriction of ® to �pXq according to (X.7). Let
V ut

: �pXq Ñ < be defined by V utpcq “ minuPUut u ¨ c; by definition, it is the restriction
of V to �pXq. Let K “ V utp�pXqq, and BpKq be the set of functions from S Ñ K.
With slight abuse of notation, for f P A, we use V utpfq to denote the element of BpKq
with V utpfqpsq “ V utpfpsqq for all s P S. By X-A9, the function I : BpKq Ñ < de-
fined by Ipaq “ V pfq for any f such that V utpfq “ a is well-defined. By definition,
V pfq “ IpV utpfqq.

Lemma X.A.5. I is concave, continuous, monotonic, and normalised (ie. for all x P K,

Ipx˚q “ x, where x˚ is the constant function in BpKq taking value x).

Proof. Normalisation follows from the definition of I . Monotonicity of I is immediate
from X-A9. Continuity follows from the continuity of V and the fact that V ut is a quotient
map. To establish concavity, we first introduce the following notion. For any f, g P A, a
state-wise calibrated sequence from f to g is a sequence pfiq0§i§n with f

0

“ f , fn “ g

such that for every 1 § i § n ´ 1 and every s P S, `pfi´1

psq, fipsq, fi`1

psqq “ 1

2

, where:

(X.15)

`pg, f, hq “

$
’’’’&

’’’’%

supt↵ | Dg1, h1 P A s.t g1 „ g, h1 „ h, h1
↵g1 „ fu if g † f † h

supt1 ´ ↵ | Dg1, h1 P A s.t g1 „ g, h1 „ h, h1
↵g1 „ fu if g ° f ° h

1

2

if g „ f „ h

0 otherwise

We begin with the following claim.

Claim X.5. For every f, g P A, for every state-wise calibrated sequence pfiq0§i§n from f

to g and every 0 § i § n, V pfiq • n´i
n

V pfq ` i
n
V pgq.

Proof. Let pfiq0§i§n be a state-wise calibrated sequence, and consider three successive
elements fi´1

, fi, fi`1

. We first show that V pfiq • 1

2

V pfi´1

q ` 1

2

V pfi`1

q. Since the se-
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quence is state-wise calibrated, for each s P S, fipsq „ cs
1
2
ds for some cs, ds P �pXq

with cs „ fi´1

psq and ds „ fi`1

psq. (Notice that the suprema in the definition of
` are obtained because A is compact.) Define f 1

i´1

, f 1
i`1

P A by f 1
i´1

psq “ cs and
f 1

i`1

psq “ ds for all s P S. By X-A9, fi „ f 1
i´1

1
2
f 1

i`1

. Since V represents ® and is
concave, V pfiq • 1

2

V pf 1
i´1

q ` 1

2

V pf 1
i`1

q “ 1

2

V pfi´1

q ` 1

2

V pfi`1

q, as required.
Applying this fact inductively yields that V pfiq • 1

i`1

V pf
0

q` i
i`1

V pfi`1

q, and V pfiq •
n´i

n´i`1

V pfi´1

q ` 1

n´i`1

V pfnq. It follows (plugging the second inequality into the first) that
V pfiq • n´i

n
V pf

0

q ` i
n
V pfnq, as required.

To establish the concavity of I , it suffices to show that, for every a, b P BpKq, Ip1

2

a `
1

2

bq • 1

2

Ipaq ` 1

2

Ipbq. Consider any such a, b with a ‰ b, and let f, g P A be such that
a “ V utpfq and b “ V utpgq.

Take a sequence of state-wise calibrated sequences f “ f
0,n, . . . , fi,n, . . . , f

2n,n “ g

from f to g; such a sequence can be constructed as in the proof of Theorem X.1. Since
A is compact, there is a subsequence of fn,n that converges as n Ñ 8. Consider this
subsequence of the sequences tfi,nu and let fn,n Ñ h. Since a ‰ b, there exists s P S such
that fpsq ⇢ gpsq. It follows from the definition of state-wise calibrated sequences and of
the function ↵ introduced in the proof of Theorem X.1 (equation (X.13)), that, for every
s P S such that fpsq ⇢ gpsq, and every n and 0 † i † 2n:

↵pfi´1,npsq, fi,npsq, fi`1,npsqq “ `pfi´1,npsq, fi,npsq, fi`1,npsqq
1 ´ `pfi´1,npsq, fi,npsq, fi`1

psqq
“1

Consider any s P S such that fpsq ⇢ gpsq and suppose without loss of generality that
fpsq † gpsq. It follows from the construction used by Kannai (1977, Theorem 2.4) that
the restriction of V to tf 1 P A | fpsq ® f 1 ® gpsqu is the limit of a sequence of con-
cave functions Vn, each of which takes value

∞n
k“1

±2n´1
i“k ↵pfi´1,npsq,fi,npsq,fi`1,npsqq

∞2n
k“1

±2n´1
i“k ↵pfi´1,npsq,fi,npsq,fi`1,npsqqV pfpsqq `

∞2n
k“n`1

±2n´1
i“k ↵pfi´1,npsq,fi,npsq,fi`1,npsqq

∞2n
k“1

±2n´1
i“k ↵pfi´1,npsq,fi,npsq,fi`1,npsqq V pgpsqq on fn,npsq. Since this tends to 1

2

V pfpsqq `
1

2

V pgpsqq as n Ñ 8, V phpsqq “ 1

2

V pfpsqq ` 1

2

V pgpsqq. Since this holds for every
s such that fpsq ⇢ gpsq, V utphq “ 1

2

a ` 1

2

b. By Claim X.5, for each sequence n,
V pfn,nq • 1

2

V pfq ` 1

2

V pgq, so by the continuity of V , V phq • 1

2

V pfq ` 1

2

V pgq. Hence
Ip1

2

a ` 1

2

bq • 1

2

Ipaq ` 1

2

Ipbq, as required. So I is concave.
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Since BpKq is closed and bounded and I is concave and continuous, for each a P
BpKq, there exists an affine functional � : <S Ñ < supporting I at a: i.e. such
that �pbq • Ipbq for all b P BpKq and �paq “ Ipaq. Each such � can be written as
�pbq “ x ¨ b ` µ for some x P <S , µ P <. We first show that, if such a � supports I at an
interior point, then xpsq • 0 for every s P S. Take any a P ripBpKqq such that � supports
I at a, and consider as P BpKq defined by aspsq “ apsq ` ✏, asps1q “ apsq for s1 ‰ s,
where ✏ ° 0 such that apsq ` ✏ P K. By the monotonicity of I , Ipasq • Ipaq; since �
supports I at a, we have that �pasq “ x ¨ as ` µ • Ipasq • Ipaq “ x ¨ a ` µ, so xpsq.✏ • 0.
Since this holds for every s P S, we have that xpsq • 0 for every s P S. Moreover, since
I is non-constant, x ‰ 0. So each � supporting I at an interior point can be written in
the form �paq “ pā.pq ¨ a ` ¯b for some p P � Ñ <S , ā P <°0

and ¯b P <. Let P “
cl

`
convtpp, ā,¯bq P � ˆ <°0

ˆ < | Da P ripBpKqq s.t.pā.pq ` ¯b supports I at au˘
. By the

fact that I is differentiable on a dense subset of ripBpKqq, the continuity of the superdiffer-
ential mapping, and the continuity of I , Ipaq “ minpp,ā,¯bqPPpā.pq ¨ a ` ¯b for all a P BpKq.
By the fact that supergradients at differentiable points determine the supergradients else-
where (Rockafellar, 1970, 25.6), P is tight: no proper closed convex subset of it represents
I in this way. For all x P K, since Ipx˚q “ x, āx ` b • x for all pp, ā,¯bq P P . Moreover,
we argue that there exists p P � such that pp, 1, 0q P P . To show this, note firstly that for
every x ° min K, there exists no pp, a, bq P P such that a ° 1 and a.x ` b “ x: if there
were such a, b, then for any y P K with y † x, a.y ` b “ x ´ a.px ´ yq † y, contradicting
the fact that P represents I and Ipy˚q “ y. Similarly, for every x † max K, there exists
no pp, a, bq P P such that a † 1 and a.x ` b “ x. Since I is normalised, it follows from the
representation of I by P that there exists p P � with pp, 1, 0q P P .

Define ↵ : � Ñ <°0

ˆ < by ↵ppq “ tpa, bq P <°0

ˆ < | pp, a, bq P Pu. By the
definition of P , and in particular the fact that it is non-empty, closed, convex and tight,
↵ is non-trivial, upper hemicontinuous, convex and tight. By the last two properties of
P mentioned above, ↵ is calibrated (with respect to Uut) and grounded. So ↵ is a non-
trivial, tight, grounded, calibrated, upper hemicontinuous, convex function representing ®
according to (X.11), as required.

It remains to show that Uut is minimal. This is established by the following lemma.

Lemma X.A.6. U
�pXq is a minimal tight closed convex representation of the restriction of

® to �pXq.
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Proof. By Lemma X.A.1, it suffices to show that V |
�pXq is a minimal concave represen-

tation of the restriction of ® to �pXq. Suppose that this is not the case, so there exists a
concave functional on �pXq, v1, representing the restriction of ® to �pXq and such that
v1p�pXqq “ V |

�pXqp�pXqq and V |
�pXqpcq • v1pcq for all c P �pXq with strict inequality

for some c (Kannai, 1977; Debreu, 1976). By Lemma X.A.5, there exists a normalised,
monotone, concave functional I such that V “ I ˝ V |

�pXq. Hence V 1 “ I ˝ v1 represents
®, is concave and is such that V pfq • V 1pfq for all f P A with strict inequality for some
f , contradicting the minimality of V . So U

�pXq is minimal, as required.

Consider finally the uniqueness clause. The uniqueness of Uut follows from the argu-
ments used to establish the uniqueness clause in Theorem X.1, applied to the restriction to
constant acts. Suppose that Uut and ↵, and Uut and ↵1 represent ®. Then ↵ and ↵1 both rep-
resent the same functional I : BpKq Ñ <: Ipaq § Ipbq iff minpP�, pā,¯bqP↵ppq āpa ¨ pq ` ¯b §
minpP�, pā,¯bqP↵ppq āpb ¨ pq ` ¯b, for all a, b P BpKq, and similarly for ↵1. Since ↵ and ↵1 are
grounded and calibrated, Ipaq “ minpP�, pā,¯bqP↵ppq āpa¨pq`¯b “ minpP�, pā,¯bqP↵1ppq āpa¨pq`¯b

for all a P BpKq. By the arguments in the proof of Theorem X.1, ↵ “ ↵1, as required.
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