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Abstract

The standard, Bayesian account of rational belief and decision is often argued

to be unable to cope properly with severe uncertainty, of the sort ubiquitous in some

areas of policy making. This paper tackles the question of what should replace it as

a guide for rational decision making. It defends a recent proposal, which reserves a

role for the decision maker’s confidence in beliefs. Beyond being able to cope with

severe uncertainty, the account has strong normative credentials on the main fronts

typically evoked as relevant for rational belief and decision. It fares particularly

well, we argue, in comparison to other prominent non-Bayesian models in the

literature.
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1 Introduction

What constitutes rationality for belief and decision? A variety of domains, from epis-

temology to economics, from decision theory to decision analysis, standardly look to

Classic Bayesianism for the answer. Founded on the idea that beliefs admit gradations

of strength between the extremes of categorical acceptance or rejection of a propo-

sition—Bayesians often speak of grades of uncertainty, degrees of belief, subjective

probability or credences—this position can be summarized in three intertwined tenets,

concerning belief, decision making, and learning respectively. This paper focusses on

the first two:

1. A thesis about rational belief: Gradations of belief strength are represented by

the assignment of a single number (between 0 to 1) to each proposition or event.

These numbers satisfy the laws of probability.

2. A thesis about rational decision: The chosen action in any decision is that

which maximises the expected utility or desirability on the basis of the agent’s

graded beliefs.

Bayesianism owes its status as the benchmark account of rational belief and deci-

sion making largely to its purported coherence with normative intuitions. Some jus-

tify the expected utility rule as directly capturing or following from some normatively

appealing pre-formal intuition or principle concerning how choices should be made;

Weirich (2001, Ch 3), for instance, purports to derive it directly from a ‘principle of

pros and cons’. A more popular route defends the account on the basis of the norma-

tive plausibility of its implications for the choices that are made. Dutch Book argu-

ments are of this sort: by purportedly showing that only those with probabilistic beliefs

will never accept a set of bets yielding a sure loss (or ‘Dutch Book’) they harness the

spontaneous normative attractiveness of this behavioral consequence in support of the

Bayesian position (see for example de Finetti 1937; Hájek 2008). The axiomatisations

common in economic decision theory can be put to similar use: they establish a set of

properties of preferences—the ‘axioms’—that characterise decision makers who can

be represented as adhering to the Bayesian tenets, and hence allow one to argue for the

latter by appealing to the normative intuitiveness of the former (Ramsey, 1931; Savage,

1954; Gilboa, 2009; Gilboa et al., 2010; Cozic and Hill, 2015).

Another important advantage of the Bayesian account relates to its scope: in par-

ticular, it purportedly applies to groups as well as individuals. Despite the difficulties
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in connecting individual and group attitudes and decisions (Mongin, 1995), few deny

the attractiveness of a single account of rationality applying at both levels. Much of

Bayesianism’s capacity to do this in practice is due to its conceptual clarity: it supports

a neat separation of doxastic attitudes—beliefs, uncertainty judgements—which are

entirely summarized by the probability measure, and conative attitudes—desires, val-

ues, tastes—which are fully captured by the utility function.1 In many social contexts,

one collection of people supplies the judgements about knowledge and uncertainty,

whilst another determines the relevant values: in policy decisions about the environ-

ment, energy investments, drug safety and many other domains, it seems desirable for

the experts to deliver the facts and policy makers (or some other representatives of so-

ciety) to provide the values. The neat separation of the uncertainty or belief element

from the value or taste one allows a Bayesian decision procedure to support such prac-

tice. Moreover, it allows the possibility of the value-free communication of beliefs that

this practice requires: without it, any judgement that fully summarises the beliefs of

an expert will concern not just the facts, but will inevitably be ‘contaminated’ by value

judgements.

Despite these qualities, the Bayesian hegemony as a normative account of belief

and decision making has been increasingly challenged, both by philosophers (Levi,

1974, 1986; Joyce, 2011a; Bradley, 2009) and economists (Gilboa et al., 2009; Gilboa

and Marinacci, 2013), as well as in fields such as decision analysis (Lempert and

Collins, 2007; Cox, 2012). In a word, the suggestion is that it suffers from signif-

icant limitations in its domain of application: there is an important class of ‘severe

uncertainty’ situations where it is not appropriate. A typical example concerns an

event about which information or evidence is scant, and contrasts it with one where

it is plentiful. To take a case in the style of Ellsberg (1961), consider two urns each

containing only black and white balls: for one of the urns (the unsampled urn), that is

all you know; for the other (the sampled urn), you have observed 1 million draws (with

replacement), half of which were black. Bayesianism enjoins you to have a precise de-

gree of belief about the colour of the next ball drawn, for each urn—say, 1
2 in it being

black for both urns. Note that, given the contrast in the amount of evidence supporting

these judgements, it is natural to be more sure of the degree of belief concerning the

sampled urn than the unsampled one.2 However Bayesianism ignores such differences

1‘Doxastic’, from the Greek doxa (‘opinion’), is the term used to qualify attitudes that have the charac-

ter of beliefs, and ‘conative’, from the Latin conari (‘to endeavour’), denotes attitudes related to desire or

volition.
2Bayesianism has been argued to reflect something akin to this difference in the resilience of the proba-
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when it comes to decision, as can be seen when comparing your attitudes to choosing

in the two cases: would you prefer to bet on the colour of the next ball drawn from the

sampled urn or the unsampled one? Under the Bayesian account, since the degrees of

belief concerning the events are the same, you must be indifferent between the bets,

despite the differences in how sure you are in the relevant degrees of belief. By con-

trast, if, as many people do, you prefer betting on the sampled urn, then it seems that

you are taking such a factor into account in your decision. Indeed, these preferences,

which typically violate the Bayesian ‘axioms’ (Ellsberg, 1961), have been argued to be

perfectly reasonable from a normative perspective on such grounds (Levi, 1986; Gilboa

et al., 2009).

Whilst artificial, the moral of this example extends to more realistic and significant

decisions. Compare two patients: for one, all the tests support the doctor’s degree of

belief of 2
3 that he has a particular disease which calls for a specific invasive treatment;

for the other, the evidence is contradictory, but the doctor’s best-guess judgement for

her having the disease is again 2
3 . As above, Bayesianism requires that the same treat-

ment be recommended in both cases; but would it be unreasonable for the doctor to

be more cautious in his recommendations for the second patient? Compare our world

with climate change to a counterfactual one where there is none: in the former, climate

science cannot justify precise probabilistic judgements for future regional climate pat-

terns; in the latter, statistics on past climate would provide a much greater deal of

precision. Many infrastructure decisions—say, whether to build flood or drought de-

fenses—depend on such climate forecasts, and Bayesianism dictates that the decisions

should be taken in the same way in both worlds. In particular, it recommends the same

policies in both worlds whenever the best-guess probabilities coincide. But would it

not be more reasonable to take how unsure we are about regional climate forecasts into

account when making policy decisions in the face of climate change, as recommended

by some risk analysts (for example, Lempert and Collins 2007; Cox 2012)?

Health and climate decisions are arguably among those where normative guidance

is most needed. Bayesianism’s inability to render the widely-shared intuition that how

sure we are in the decision-relevant judgements may reasonably have consequences for

choice thus counts as a critical weakness. Is there a better account of rational belief

and decision to be had?

bility judgements in the face of new information (Skyrms, 1977). This claim, which pertains to learning or

belief formation, does not affect the central point made here concerning decision, namely that such differ-

ences are denied any role in choice.
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Certainly, there is no lack of models that purport to capture the specificity of the

Ellsberg examples: the economic literature on decision theory has spawned a plethora

of ‘ambiguity’ models motivated by them, not to mention work in philosophy and

statistics on ‘imprecise probabilities’. However, there has been no comprehensive com-

parative discussion of their strengths and weaknesses as normative accounts. But it

is not enough for an account to accommodate the behaviour in Ellsberg-style exam-

ples: it should also retain as many as possible of the attractive characteristics of the

Bayesian benchmark. We need non-Bayesian alternatives with strong normative cre-

dentials across the board.

This paper will defend the account of belief and decision developed in Hill (2013a,

2016) on these grounds. At its heart is the notion of confidence: not the confidence

in the truth of a proposition—which Bayesian degrees of belief are supposed to cap-

ture—but rather one’s confidence in one’s beliefs themselves. To avoid confusion and

clumsiness, we tie down the multifarious term ‘confidence’ for the purposes of this

paper and use it to speak of one’s attitude of being more or less sure of one’s beliefs.

As such, it is a doxastic attitude—part of an agent’s state of belief. Following standard

terminology, we shall use the terms ‘belief’, ‘degree of belief’ or ‘credence’ for the

dimension (degree of endorsement of a proposition) considered by standard Bayesian-

ism. One way of formulating the central thesis is that rational individuals’ states of

belief—their doxastic states—do not necessary comprise only their beliefs, but include

their confidence in their beliefs.

The previous examples suggest that confidence in beliefs has a role in decision

making: they are all cases where one’s behaviour seems to be sensitive to how sure, or

confident, one is of the relevant beliefs. Indeed, the proposal comprises an approach

to rational decision making that incorporates confidence, according to the following

prima facie reasonable maxim: the higher the stakes involved in the decision, the more

confidence is required in a belief for it to play a role. This paper will focus on defending

and evaluating the proposal as an account of rational belief and decision; whilst there

is much to be said about the role of confidence in belief formation—its relationship to

evidence, for instance—we shall not be concerned with such issues here.

We shall first present the confidence approach (Section 2), before turning to a de-

tailed evaluation of its normative credentials (Section 3). In Section 4, we compare it

on this front with some other recent proposals. Whilst the paper mainly focusses on

the normative question, Section 5 briefly discusses some prescriptive issues, relating to

the tractability of the approach for applications.
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2 Confidence in beliefs and decision: the proposal

The approach defended here comprises an account of beliefs (and confidence in them),

and of their role in decision.3 It draws upon, but differs significantly from, a popu-

lar current approach, often called ‘imprecise probabilities’ in philosophy or ‘multiple

priors’ in economics. To ease exposition, as well as to elucidate the relationship with

the existing literature, we shall present and discuss it in comparison with this latter

approach.

2.1 A model of confidence in beliefs

According to the imprecise probabilities representation (defended by Levi 1986;

Joyce 2011b, for example), an individual’s state of belief is represented not by a single

probability (or credence) measure but by a set C of such measures.4 As pointed out

by Joyce (2011b), such sets can be thought of as a formal representation of the agent’s

doxastic situation. So, for example, an agent will have a higher degree of belief for

a proposition A than B if p(A) ≥ p(B) for all probability measures p in the set C.

Similarly, her degree of belief in A will be greater than (respectively equal to) 1
2 if

p(A) ≥ 1
2 (resp. p(A) = 1

2 ) for all p in C. Let us call statements about degrees of

belief or credences—such as ‘A has a higher degree of belief than B’, ‘A has a higher

degree of belief than 1
2 ’, ‘A is probabilistically independent of B’ and so on—credal

statements, or credal judgements. It is well-known that the set of probability measures

involved in the imprecise probability representation can be ‘lifted’ to the level of credal

statements (for instance Halpern, 2003, Ch. 7). Each set of probability measures C
generates a collection of credal statements: those that hold for all of the probability

3In adopting the distinction between beliefs and decision, which is standard in the philosophy and eco-

nomics literatures (see, for instance, Joyce 1999, 2011a; Gilboa 2009; Bradley 2016), we by no means wish

to take a position on the relationship between the two. In particular, the discussion here is independent of

whether beliefs are taken to be ‘defined’ or ‘revealed’ from preferences—as often assumed in the economics

or parts of the statistics (Cozic and Hill, 2015)—or rather are conceptually primitive. All that is assumed

is that there is a meaningful distinction, in particular between the representation and role of beliefs in the

determination of preferences and the preferences themselves, which also depend on the decision maker’s

desires or values. For further discussion of the behavioural consequences of the account, see Section 3.2.
4Whilst the statistical literature on ‘imprecise probabilities’ is vast, and comprises several mathematical

models (see for instance Walley 2000; Augustin et al. 2014), the set of probability measures model is doubt-

less the most prominent in philosophical discussion. Henceforth we use the term ‘imprecise probabilities’ to

refer to this model. We discuss several other models sometimes placed under the ‘imprecise probabilities’

label, such as Dempster-Shafer belief functions, in Section 4. In our presentation, we also largely ignore

technical details, involving for instance continuity issues, which are tangential to the main points made.
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measures in the set. These are the credal statements to which the agent represented by

C adheres. Sometimes this is presented in terms of a committee metaphor. Considering

the probability measures in the set to be members of a committee, the accepted credal

statements are those held unanimously—that is, by all members of the committee.

Given this, the imprecise probability representation has an immediate interpretation

in terms of confidence in beliefs. An agent adheres to—and is confident in—each

credal statement that holds for all probability measures in the set; she does not adhere

to—and hence has no confidence in—the other credal statements. As a representation

of confidence in beliefs, imprecise probabilities are evidently unsatisfactory, for they

treat confidence as an all-or-nothing affair: either you hold a credal judgement with

full confidence, or you do not hold it, and have no confidence at all. It does not allow

for grades of confidence, of the sort seen above. For instance, it cannot represent an

agent who, in the urn example, holds the credence of 1
2 for drawing black for each of

the urns, but who is more confident in the judgement for one of the urns than for the

other.

To capture such confidence comparisons, the proposal is to replace the single set

of probability measures by a nested family of such sets: that is, a family where each

member is contained in or contains each other member (Hill, 2013a). Such a nested

family is called a confidence ranking. The sets in the family correspond to levels of

confidence, with larger sets corresponding to higher levels (see Figure 1). As noted

above, each set generates a collection of credal statements: these represent the credal

judgements the agent holds to the corresponding level of confidence. For larger sets

in the family, corresponding to higher confidence levels, the generated collections of

credal statements are smaller, and so fewer credal judgements are held by the agent at

higher confidence levels (as one would expect).

Just as sets of probability measures correspond to collections of credal statements,

confidence rankings induce an order on credal statements, which captures the relative

confidence that the agent has in them. Credal statements that hold for all probability

measures in larger sets are held with higher confidence than those that hold only in

smaller sets.5 So, for example, if the p(A) = 1
2 for all probability measures in a small

set in the confidence ranking, but not in larger sets, but p(B) = 1
2 for all probability

functions in a larger set in the confidence ranking, then this captures an agent who is

more confident in her assessment of 1
2 for her degree of belief in B than in her assess-

5And these are held with higher confidence than those statements that hold in none of the sets—which

themselves correspond to statements that the agent does not adhere to.
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p(A) = 1
2
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Figure 1: Representation of confidence in beliefs (black) and relation to decision (blue)

ment of 1
2 for her degree of belief in A (see Figure 1 for a graphical representation of

the confidence in judgements concerning A). Taking as A the event that the next ball

drawn from the unsampled urn is black, and similarly forB and the sampled urn, confi-

dence rankings can thus faithfully render the differing confidence levels in the previous

example. In terms of the committee metaphor, confidence rankings invite one to think

of a group with a hierarchical structure—at the centre, there are the leading scientists

(say, members of the Academies), then there is a larger collection including all full

professors, then a level with all active researchers, and so on up to the set of all mem-

bers of the scientific community. A credal statement unanimously held by all leading

scientists is adhered to by the community, but perhaps only with limited confidence,

whereas one which is unanimously held by all members has high confidence.

Whilst we adopt the terminology used by Hill (2013a), it is but one of a family of

representations based on similar ideas. To our knowledge, the first was proposed by

Gärdenfors and Sahlin (1982), who use a real-valued measure of ‘epistemic reliability’

over the space of probability measures. The confidence ranking discussed above can be

obtained from such a measure by ‘throwing away’ the numbers and keeping just the or-

der over probability measures.6 Nau (1992) develops a notion of ‘confidence-weighted

probabilities’, under which each probability statement is indexed by a real-valued con-

fidence number; again, the confidence ranking contains just the ordinal information,

6In this sense, the confidence ranking is ordinal whilst the epistemic reliability measure is cardinal (see

also Section 5). As Gärdenfors and Sahlin (1982) note, they only require the order established by their

epistemic reliability measure in their paper.
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but not the cardinal information (numbers) involved. Indeed, the confidence ranking

is related to ordinal representations in the literature on belief revision: where some

models there (see Gärdenfors 1988; Grove 1988 for example) amount to orders on the

set of states of the world, the confidence ranking is essentially an order on the space of

probability measures. The aforementioned authors do not necessarily share the same

account of how confidence is related to decision, a question to which we now turn.

2.2 Confidence in belief and decision making

As mentioned, we shall defend this account of belief in tandem with a story about

decision. The examples in the Introduction attest to the importance of confidence in

beliefs for choice. People’s confidence in their belief may play a role in their decision

making, and rightly so. But what sort of role should it play? The account we defend is

based on the following maxim:

Maxim the higher the stakes involved in the decision, the more confidence is required

in a belief for it to play a role.

This appears to be a sensible way of relating two aspects of a decision: its impor-

tance (or the stakes involved in it), and the beliefs one relies on to take it. It shall be

discussed in more detail below. For the moment, notice that it directly motivates the

following formal framework for decision.

We first assume that to each decision or option the decision maker is faced with, she

can associate a level of confidence appropriate for it. As noted above, the confidence

levels correspond to sets in the confidence ranking: so assigning a confidence level

to a decision amounts to assigning a set in the confidence ranking. Moreover, the

maxim requires that the assignment is made on the basis of the stakes involved: more

important decisions—or those involving larger stakes—call for more confidence, and

are thus associated to higher confidence levels, which correspond to larger sets in the

confidence ranking. In summary then, we take a function D that assigns a set in the

confidence ranking to each decision, such that decisions with higher stakes are sent

to larger sets (see Figure 1). Such a function is called a cautiousness coefficient. As

shall be discussed in Section 3.3, the cautiousness coefficient can be understood as a

reflection of certain of the decision maker’s attitudes, in much the same way as the

utility function in standard Bayesianism is often interpreted as a representation of her

desires.

The suggested rendition of the aforementioned maxim is simple: to evaluate an
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option, use the set of probability measures in the confidence ranking that corresponds

to the decision at hand according to the cautiousness coefficient. Why? This amounts

to using the credal judgements held to the corresponding level of confidence. But this

is the level picked out (by the cautiousness coefficient) as being appropriate for the

decision at hand, on the basis of the stakes involved. So using this set of probabil-

ity measures basically means that the agent only relies on beliefs that she holds with

enough confidence given the stakes involved in the decision. This procedure is thus

faithful to the maxim.

The proposal does not amount to a single decision rule as much as a family of

rules. Indeed, it just picks out a set of probability measures—or an ‘imprecise proba-

bility measure’—but does not specify how to choose on the basis of it. Several decision

rules for imprecise probabilities have been proposed in the aforementioned literatures;

each one of these, when inserted into the framework, will result in a corresponding

confidence-based decision rule. For example, using the maximin-EU decision rule

(also called Γ-Maximin in robust statistics; Gilboa and Schmeidler 1989; Berger 1985),

which looks at the lowest expected utility calculated across the set of probability mea-

sures, naturally yields a rule which evaluates an act f according to:

(1) min
p∈D(f)

EUpf

where EUpf is the expected utility of f calculated with probability p and utility U ,7

and D is a cautiousness coefficient assigning to every act a confidence level. Alterna-

tively, if one uses the unanimity rule (or maximality; Bewley 2002; Walley 1991), then

act f will be chosen over g if and only if:

(2) EUpf > EUpg for all p ∈ D((f, g))

where D is a cautiousness coefficient assigning to every binary choice (pairs of acts) a

confidence level.8

As the two examples illustrate, models in the family may also differ on their treat-

ment of the stakes associated to a decision. (1) implicitly assumes the stakes to be

7Since the focus here is on belief, we follow standard Bayesianism in assuming throughout the paper a

precise utility or desirability function as a representation of desires over outcomes.
8There are different versions of this rule depending on the sort of dominance required (for example, strict

or weak order in (2)); such details are orthogonal to the present discussion.
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assigned to each option separately, and so the cautiousness coefficient is defined on

them; (2) takes stakes to be assigned to the choice (ie. sets of options on offer), and so

involves a cautiousness coefficient defined on those. For further technical details and

discussions of these models, their relationship, and stakes, readers are referred to Hill

(2013a) (for (1)) and Hill (2016) (for (2)).9

These two examples also illustrate how confidence-based decision rules are basi-

cally extensions of (corresponding) imprecise probability or ambiguity decision rules.

For example, the standard maximin-EU rule is just like (1) except that D(f) in the

minimum is replaced by a fixed set C, and similarly for the standard unanimity rule and

(2). So the confidence-based family of rules can account for any choice patterns that

imprecise probabilities can. For instance, in the previous example of betting on sam-

pled or unsampled urns, just as the maxmin-EU model can account for a preference

for betting on the sampled urn, so can the corresponding confidence model, (1). At

any reasonable confidence level, the decision maker will endorse the credal statement

that the probability of getting black from the sampled urn is 1
2 ; by contrast, whenever

the confidence level is high enough, she may not hold such a precise judgement on

the probability of getting black from the unsampled urn, instead restricting herself to

intervals, such as [ 1
4 ,

3
4 ]. When the stakes are high enough to merit such a confidence

level, she will use 1
2 to evaluate the act of betting on the sampled urn, whilst look at

the minimal expected utility over [ 1
4 ,

3
4 ] in evaluating the bet on the unsampled urn.

Since the latter value is lower than the former, she will prefer to bet on the sampled

urn. Similar points hold for the confidence-based unanimity rule (2) (see Hill, 2016).10

So the account is essentially a generalisation of standard approaches for sets of

probabilities or imprecise probabilities. Is anything gained by this generalisation?

9In their axiomatic analyses, the cited papers assume the appropriate notion of stakes as given. A sub-

sequent paper (Hill, 2015) dispenses with this assumption. We sidestep such technicalities and present a

simplified version of the approach here, which is in line with the 2015 paper. See the cited papers for further

discussion, and the 2016 paper on the interdefinability between stakes on options and stakes on choices.
10As for the representation of confidence discussed in the previous section, the account of decision here

is related to others in the literature. Although Gärdenfors and Sahlin (1982) do not propose a formal model

of how the confidence level is related to the decision at hand (and hence lack the notion of cautiousness

coefficient), (1) is close to the sort of decision procedure they discuss. The model proposed by Nau (1992)

is roughly a reduced form of a special case of (2) (see Hill, 2016), which lacks the distinction between

confidence ranking and cautiousness coefficient.

11



3 Why confidence? An appraisal

To evaluate the approach just set out, we will consider how it fares on the points typ-

ically raised in favour of Bayesianism. Recall the main ones from the Introduction.

Two concern an account’s coherence with normative intuitions—be it with some nor-

matively appealing pre-formal intuition captured by the rule or the attractiveness of its

implications for choice. A further one concerns its scope, and whether it can fruitfully

apply to both individuals and groups; on this front, an account’s conceptual clarity—in

particular whether it supports a neat separation of doxastic and conative attitudes—is

crucial. We now consider these in turn, comparing, where relevant, with the ‘imprecise

probability’ approach mentioned previously. (The relationship to other non-Bayesian

approaches will be discussed in the next section.)

3.1 Pre-formal intuition

A decision procedure built on reasonable and easily explainable normative princi-

ples or intuitions would ceteris paribus seem preferable to one that is not, and some

have argued for certain decision rules on such grounds. To the extent that the confidence-

based proposal was built on a reasonable non-formal maxim, it should be no surprise

that it can be defended on this front.

Firstly, the underlying maxim—the higher the stakes, the more confidence is re-

quired of a belief for it to play a role in the decision—might itself be defendable on

independent grounds. It calls for a level of adequacy between the decision to be taken

and the means—in particular the beliefs—mobilised in the taking of the decision. As

such, it can be thought of as a consequence of the following more general principle:

Appropriateness the tools employed in the execution of task should be appropriate

for the task at hand.

Considering one’s beliefs as (among) the tools, and the decision as the task, the upshot

would be a demand for some appropriateness of the former for the latter. Of course,

any reasonable account of decision involves some form of appropriateness, in partic-

ular in the ‘domain’ of the beliefs. Beliefs about the weather tomorrow are irrelevant

to (and inappropriate for use in) decisions about the investment of one’s fortune. To

employ a tool analogy, this would be like noting that a screwdriver is the wrong tool

for taking down a dividing wall—what is needed is a hammer. However, the current

proposal goes further, looking not only at the appropriateness in terms of the domain,
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but also in terms of the ‘intensity’. A medium-sized hammer is the appropriate tool

for breaking up a bookcase, a big hammer is appropriate for taking down a dividing

wall, and a wrecking ball is appropriate for demolishing a building. Using too big a

hammer or too small a hammer would be foolish (though perhaps not as foolish as

using a screwdriver). Likewise, demanding excessive confidence in (the relevant) be-

liefs to use them in the most trivial decisions appears unnecessarily pedantic, just as

it may seem irresponsible to rely entirely on hunches (beliefs in which one has little

confidence), if avoidable, in decisions where many lives are at stake. Note that, whilst

the confidence-based account captures this dimension of appropriateness of beliefs for

decision, many others in the literature do not. For instance, the Bayesian approach

mobilises all relevant beliefs—all the information concerning probability judgements

about relevant events—in the expected utility formula, apparently giving no heed to

such appropriateness considerations.

This principle, insofar as it concerns the intensity dimension of appropriateness,

ties into a long tradition in philosophy, going back at least as far as Aristotle’s views on

virtues, which emphasises the importance of avoiding extremes in favour of the ‘mean’.

Indeed, the demand for some adequacy of the confidence level required of beliefs to the

decision at hand reflects a sense of proportion that is often related to virtue in general,

and rationality in particular.

Moreover, any intuition that can be claimed by the general maxim is inherited, in

perhaps a more concrete form, by (reasonable) members of the proposed family of

decision rules. Take the confidence-based maximin-EU model (1). Under this rule,

when the act under evaluation involves higher stakes, the designated confidence level

is higher, the decision maker relies on fewer beliefs (the set D(f) is bigger), and so

the evaluation is more pessimistic or cautious (the range of expected utility values

over the larger set of probability measures is larger, so the minimum is lower). By

contrast, when the stakes are low or the decision maker is particularly confident in the

relevant beliefs, the set of expected utility values is smaller, and the evaluation is less

pessimistic. So the rule embodies the following principle, which can be thought of

as a special case of the general maxim above: choose boldly when one has sufficient

confidence for the decision at hand; choose cautiously if not.

To our knowledge, non-expected utility decision rules in the literature are rarely

defended by relating them to normatively appealing pre-formal principles such as this.

Certainly, the standard maximin-EU rule does not faithfully reflect a maxim of this

sort: it uses the same set of probability measures irrespective of the stakes—and so ad-
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vises the same degree of boldness or caution. Indeed, this rule is sometimes criticised

for being too cautious, insofar as it only looks at the worst case.11 So, to go back to

the urn example from the Introduction, if the set C0 = {p : 0 ≤ p(black) ≤ 1} is used

to evaluate a bet on black with $1 billion at stake, then it is also used to evaluate a bet

on black with $1 at stake. In the latter case, at least, this may seem too cautious. The

confidence-based refinement (1) provides some relief from this criticism: the caution

exhibited is sensitive to both the decision maker’s (lack of) confidence in the relevant

beliefs and the importance of the decision. For instance, whilst C0 may be used when

billions of dollars are at stake, a smaller set—even a single probability measure—could

be used where there are only a few dollars at stake. So the decision maker displays less

caution in the latter decisions compared to the former. Nothing suggests that the basic

point that confidence-based models are (pre-theoretically) more normatively reason-

able than their imprecise probability counterparts does not extend beyond the case of

the maximin-EU rule.

3.2 Implications for choice

A highly influential family of arguments seek to justify the Bayesian account of

belief and decision on the basis of the normative plausibility of its consequences for

choice. For instance, classic Representation Theorems (Savage, 1954; Anscombe and

Aumann, 1963; Gilboa, 2009; Gilboa and Marinacci, 2013) bring out these conse-

quences in a form of a set of ‘axioms’—properties of preferences—that hold of all and

only decision makers whose behaviour is consistent with the Bayesian tenets. To the

extent that these axioms can be argued to characterise rational behaviour, they support

the normative pretentions of the underlying Bayesian account.

Existing research into the confidence-based family includes several Representation

Theorems (Hill, 2013a, 2016) that play a similar role of bringing out the behavioural

consequences of the confidence-based approach. These are formulated in a common,

albeit technical setup in the economic literature on decision theory; evaluation of the

axioms thus requires some explanation of the framework. However the general morals

of these results can be brought out, perhaps more distinctly, in the much simpler context

of the standard Dutch Book Argument. Whilst controversial, this is sometimes held as

a typical pragmatic argument in favour of the Bayesian representation of belief.12

11The extent to which this criticism is fair may depend on how one interprets the set of probability mea-

sures in the rule; see for example Gilboa (Ch 18, 2009).
12On the relationship between Representation Theorems and Dutch Book Arguments, see Gilboa (2009),

for example. Note that our aim is not to enter into the debate into the validity of Dutch Book Arguments,
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The standard argument goes as follows. For each event A, consider the bet, with

stakes S, yielding $S if A and $0 if not. You are asked to price every such bet: that

is, give the monetary value $qS for which you would be indifferent between buying

and selling the bet. q (or q(A) when the event is not evident from the context) is

called the betting quotient for the event A. The argument invokes a characterisation

of probability measures in terms of properties of betting quotients, sometimes known

as the Dutch Book Theorem. It states that the values q(A) satisfy the laws of the

probability calculus if and only if you are not vulnerable to a Dutch Book—a sets of

bets that, taken together, lead to a sure loss.13 But, the thought goes, accepting bets

that lead to a sure loss has to be irrational. Interpreting the betting quotients as your

degrees of belief, this, the argument goes, establishes that they should be probabilities.

Does this mean that anyone who diverges from the Bayesian tenets—and in partic-

ular anyone who adopts the confidence-based approach—leaves himself open to Dutch

Books? It turns out that the answer is no, because the argument involves some auxil-

iary assumptions, which are debatable. First of all, it rests on an assumption of Buy-sell

coincidence: that the highest price for which you are willing to buy a bet is equal to

the lowest price for which you are willing to sell it. But there is no reason why there

should necessarily be a ‘knife-edge’ price at which you are willing to both buy and sell

a given bet. A decision maker who knows that there is at least 10 black balls and 20

white balls in an urn containing 100 balls may be willing to buy a $1 million bet on the

next ball drawn being black for $0.1 million but not more, and she may be willing to

sell this bet for $0.8 million but not less. It is not clear why this is irrational, or indeed

why rationality should dictate that she specify a price between $0.1 million and $0.8

million at which she would be willing to both buy and sell the bet.

In the light of this, it would seem reasonable to specify two values for each gamble:

q(A), where $q(A)S is the most you would be willing to buy a bet on A with stakes

S for, and q(A), where $q(A)S is the least you would be willing to sell a bet on A

with stakes S for. It is well-known that the standard Dutch Book Theorem no longer

holds under such a weakening: satisfying the laws of probability is no longer the only

but to bring out the differences—in terms of behaviour—between the confidence approach and others. We

thus accept for the sake of the exercise all the standard assumptions made in the Dutch Book framework,

including linearity and state-independence of utility, and act-independence of states. Moreover, despite the

relationship to no-arbitrage arguments in the finance literature, we follow standard philosophical treatments

in ignoring the market dimension in the exposition here. For similar reasons, we adopt a simple presentation,

ignoring technical details, some of which are provided in the Appendix.
13Some authors distinguish one direction of the implication (which they call the Dutch Book Theorem)

from the other (the Converse Dutch Book Theorem); see for example Hájek (2008).
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way to guarantee avoiding Dutch Books. Setting one’s betting quotients according

to (standard) imprecise probabilities also ensures Dutch Book invulnerability (Smith,

1961; Walley, 1991).

However, this is one way among many (Walley, 1991, Ch 2 & 3): invulnerability

to Dutch Books does not force one’s betting quotients to be set according to imprecise

probabilities. To obtain a characterisation of imprecise probabilities, further conditions

are required. (For readers interested in the technical details, the Appendix states one

such characterisation for general gambles; see Walley 1991, Ch 2 & 3 for a thorough

treatment.) Since precise probabilities are a special case, all of these conditions are

also satisfied by the Bayesian approach. One such condition is Stakes-Independence:

that the betting quotient is independent of the stakes.

However, like Buy-sell coincidence, the rational credentials of this principle are far

from obvious. There is no reason to expect you to price bets the same way irrespec-

tive of the stakes involved. In the previous example of an urn containing at least 10

black balls out of 100, the decision maker may well be willing to pay much more than

$0.10 to buy a bet on the next ball drawn from the urn being black when only $1 is at

stake. This would suggest that the betting quotients relevant for buying or selling bets

may depend on the stakes involved. Certainly, such dependence does not appear to be

irrational. Moreover, it naturally seems to go in a particular direction: when the stakes

are higher, the decision maker may reasonably refuse to buy or sell at betting quotients

that she would have accepted at lower stakes.14

For an event A and stakes S, let $q
S

(A)S be the most you would be willing to

buy a bet on A with stakes S for. Stakes-Independence demands that, for any stakes

S and T , q
S

(A) = q
T

(A). Whilst this is too strong, the observation above suggests

that q
S

(A) ≤ q
T

(A) when the stakes S are higher than T : that is, any betting quotient

accepted at higher stakes is accepted at lower stakes, but not necessarily vice versa.

(Similar points hold for selling bets.)

If one takes a characterisation of imprecise probabilities and weakens Stakes-

Independence in this way, one obtains a characterisation of the confidence-based ap-

proach; see the Appendix for details. That is, swapping Stakes-Independence for this

form of stakes-dependence implies, in the presence of the other conditions yielding

imprecise probabilities, that betting quotients are effectively derived from a confidence

ranking and a cautiousness coefficient. For example, the betting quotient q
S

(A) for a

14Armendt (2010), in the context of a discussion of stakes-sensitivity of beliefs, also questions Stakes-

Independence, whilst holding on to Buy-Sell Coincidence.
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bet on A at stakes S will be the worst-case probability for A over the set of probabil-

ities measures in the confidence ranking corresponding to stakes S (according to the

cautiousness coefficient).

Note first of all that this suggests a ‘rule-of-thumb’ way of understanding confi-

dence in beliefs. For all its faults, the interpretation of degrees of belief in terms of

betting quotients at the heart of the Dutch Book Argument gives a useful grasp on the

concept, which can help guide intuition. The previous discussion suggests a similar

‘proxy’ for confidence: the confidence in a degree of belief is reflected in the stakes to

which one is willing to let that degree of belief guide one’s betting behaviour. As such,

the introduction of confidence in belief appears a natural addition to degrees of belief:

beyond the odds one gets (reflecting degrees of belief), there is the issue of how much

one is willing to bet on those odds (reflecting confidence in those beliefs).15

More importantly, as mentioned above, such behavioural characterisations can be

used to guage the account’s normative credentials. As for the original Dutch Book

Theorem, the characterisation tells us that, to the extent that the conditions involved

can be argued to be rational, they provide support for the confidence-based approach.

In particular, it clarifies that the behavioural differences between the Bayesian, impre-

cise probability and confidence approaches are not to be found in the vulnerability to

Dutch Books: they are all invulnerable to them (see Appendix for details). Rather,

the normative ‘battleground’ is pinpointed to two conditions: Buy-sell coincidence and

Stakes-Independence. Denying that these constitute rational obligations leads to the

confidence approach, whereas accepting one or both yields more standard accounts.

This moral generalises beyond the simple Dutch Book framework, as evidenced by

the aforementioned representation results for cases (1) and (2) of the confidence family

(Hill, 2013a, 2016, Thms 1). They confirm that a first choice-based difference between

confidence-based models and standard Bayesian expected utility theory is common

with imprecise probabilities. The behavioural difference between the confidence-based

and imprecise probability approaches fundamentally boils down to the issue of stakes

independence. The latter, but not the former, assume that preferences are, in an appro-

priate sense, independent of stakes.16

15Of course, this is only a rough proxy: just as the standard rendition of degrees of beliefs as betting odds

neglects the specificities of the utility function, thinking of confidence in terms of stakes ignores the role of

the cautiousness coefficient.
16The cited results make it clear that the stakes independence at issue cannot be captured by some property

of the utility function—a point that may not come out clearly in the Dutch Book framework, given the

assumption of linear utility.
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The first difference is the subject of a long-standing debate, focussing mainly on

whether non-Bayesian models are embarassed in dynamic or sequential choice situ-

ations. Roughly, accommodating the behaviour in the severe-uncertainty examples

discussed in the Introduction requires that one relinquish either an axiom (or choice

property) called completeness (the equivalent of Buy-Sell Coincidence in the previous

discussion) or the independence axiom (or sure-thing principle). Different dynamic

arguments have been proposed against the violation of each of these axioms. Whilst

there is no space here to enter into the details, two remarks are in order. Firstly, non-

Bayesian replies proposed to date either hold onto independence and defend violations

of completeness (as recommended by Seidenfeld 1988; Bradley and Steele 2016, for

instance), or retain completeness at the price of independence (a more common route

in the ambiguity literature, see Machina and Siniscalchi, 2013). Both of these reactions

are available to the defender of the confidence approach: (2) is an example of a rule

retaining independence but dropping completeness (Hill, 2016), whereas (1) holds onto

completeness at the price of independence (Hill, 2013a). Secondly, whilst some have

tried to refute the dynamic arguments or their menace for non-Bayesian approaches

(Bradley and Steele, 2013, 2016; Hill, 2013b), it suffices that Bayesianism’s limitations

in the sorts of severe-uncertainty situations discussed in the Introduction outweigh any

advantage it might have as regards dynamic choice. Several have argued that this is

indeed the case (Gilboa et al., 2009; Siniscalchi, 2009). As suggested at the outset, we

adopt such a view here, and refer the interested reader to the cited papers for further

discussion of these dynamic arguments.

The second difference—the weakening of stakes independence—is what sets the

current proposal apart from other non-Bayesian accounts. And it is far from unrea-

sonable. On the contrary, stakes independence appears to be overly restrictive as a

normative condition, and as discussed previously, may be reasonably violated in some

cases. So, for anyone who thinks that Bayesianism’s troubles with severe uncertainty

outweigh its purported dynamic advantages, such as proponents of imprecise probabil-

ity, there are no choice-based reasons not to shift to the confidence-based approach.

3.3 Conceptual clarity

One attractive feature of a prospective account of rational belief and decision is that

it apply to both individuals and groups. Since in group settings doxastic and conative

attitudes—beliefs and values or tastes—may be under the remit of different actors, this

basically requires a neat separation of these two sorts of attitude. Under the standard
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interpretation, the Bayesian model delivers such a separation: the state of belief is

entirely summarized by the probability measure, while the desires, values or tastes

are fully captured by the utility function. Moreover, this is not a mere artefact of the

expected utility formula: in some areas of economics it is formalised in ‘comparative

statics’ results which show, more or less, that modifications of the utility function lead

to changes in the ‘taste’ aspects of choices.17

Compared to Bayesianism, the confidence-based approach involves two novel el-

ements: the confidence ranking and the cautiousness coefficient.18 As explained in

Section 2.1, the confidence ranking captures the decision maker’s state of belief, incor-

porating in particular her confidence in her beliefs. As for the cautiousness coefficient,

it can be understood as a representation of her attitude to choosing in face of limited

confidence. This interpretation is suggested by its role in the model. It involves a

judgement as to the appropriate confidence level for the decision at hand, and hence

reflects the extent to which the decision maker is willing to rely on beliefs held with

limited confidence in such a decision. Suppose Ann and Bob have the same confi-

dence ranking, and are each evaluating the bet on black from the unsampled urn in the

Introduction with stakes of $1 billion. Suppose that Ann’s cautiousness coefficient as-

signs this decision to the set C0 = {p : 0 ≤ p(black) ≤ 1} in their confidence ranking,

whereas Bob’s assigns it to the smaller set C1 = {p : 0.25 ≤ p(black) ≤ 0.75}. Since

C1 is in Ann’s confidence ranking, it represents beliefs that she holds (eg. she holds

a credence for black greater than or equal to 0.25); however, she feels uncomfortable

relying on beliefs held with that level of confidence in such a high-stakes decision.

Bob, by contrast, is less averse to mobilising beliefs held with this much confidence in

decisions of such importance. If you will, he is readier to take the ‘epistemic risk’ of

relying on beliefs held with limited confidence when the stakes are so high. Ann and

Bob differ in their attitudes, or tastes, for choosing on the basis of beliefs held with

limited confidence.

The important point is that the cautiousness coefficient is conative in character:

it reflects a taste or value judgement, rather than something of the order of a belief.

The model thus neatly separates the doxastic element—fully captured by the confi-

dence ranking—from conative attitudes—reflected entirely by the utility function and

17A paradigmatic example is the standard analysis showing that (under expected utility) differences in risk

aversion correspond to specific comparisons in the utility function (Arrow, 1971; Pratt, 1964), which is often

taken to confirm that it fully captures attitudes to risk.
18The final element in the models is the utility function, which, as standard, can be interpreted as reflecting

the decision maker’s desires for outcomes, and hence deserves no further discussion here.
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the cautiousness coefficient.

This is corroborated by the sort of ‘comparative statics’ considerations common

in the economic literature on decision. This literature has developed a preference-

based notion of relative attitude to uncertainty that can compare the extent to which

one decision maker is more averse to options involving uncertainty than another.19 For

example, under a typical notion of this sort, Ann is more uncertainty averse than Bob if

whenever she chooses an uncertain option over one that involves no uncertainty, then so

does Bob.20 Such notions are generally intended to be the equivalent for uncertainty of

the standard economic notion of comparative risk aversion (Pratt, 1964; Arrow, 1971)

and, as such, reflect decision makers’ tastes for bearing uncertainty. By looking at what

comparisons in terms of such notions correspond to at the level of the primitives of the

model, one can draw conclusions about which primitives reflect this sort of taste. Under

the confidence approach, they correspond to differences in the cautiousness coefficient,

corrobating the interpretation of it as reflecting a taste (see Hill, 2013a, Thm 2 and Hill,

2016, Cor 1).

Such a clean separation of doxastic and conative attitudes turns out to be fairly rare

in the non-Bayesian world. In particular, decision rules built on imprecise probabilities

generally lack it, as can be illustrated on the maximin-EU rule. Recall that under this

model, an act f is evaluated according to:

(3) min
p∈C

EUpf

where C is a set of probability measures (and the rest of the notation is as specified

in Section 2.2). A tempting, and perhaps even popular interpretation of C is as repre-

senting the decision maker’s state of belief: after all, it seems to be the equivalent in

this model of the Bayesian probability, which is supposed to represent beliefs. How-

ever, this interpretation does not fit well with the sorts of ‘comparative statics’ exercises

alluded to above. In particular, under the maximin-EU model, relative uncertainty aver-

sion—a taste notion—corresponds to differences in the set of probability measures C:

if Ann is more uncertainty averse than Bob, then CAnn contains CBob (Ghirardato and

Marinacci, 2002, Thm 17). So how are we to understand the set of probability mea-

19We use the term ‘uncertainty’ here in the economists’ sense, covering cases where probabilities are not

given, as opposed to situations of risk, where they are.
20We give the general sense of the notion; the precise statement distinguishes between risk and uncer-

tainty (see previous foonote), and corrects for differences in utilities between the decision makers that are

compared. The reader is referred to Ghirardato and Marinacci (2002); Gilboa and Marinacci (2013) for such

technical details.
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sures in this model: as capturing the decision maker’s beliefs or her tastes for bearing

uncertainty?21

In the economic literature, one generally draws the conclusion that there is no

clean interpretation of the set C: it reflects aspects of both belief and uncertainty at-

titude (see Klibanoff et al., 2005, Sect 3 & 5.1, for example). Consider the unsam-

pled urn from the Introduction. On the basis of the ‘objective’ information available,

any composition of the urn is possible; so the information is summarised by a set of

probability measures C0 = {p : 0 ≤ p(black) ≤ 1}. What are we to say about a deci-

sion maker who chooses in this situation according to the maximin-EU rule, but with

C1 = {p : 0.25 ≤ p(black) ≤ 0.75} instead of C0? Does she have further beliefs, be-

yond the available information, that allow her to restrict the set of probability measures?

Or does the restriction of this set reflect a greater tolerance of uncertainty—or less cau-

tious attitude—on her part? The basic point is that the use of imprecise probabilities in

the context of the maximin-EU model is not rich enough to decide this question—or,

indeed, to represent the difference between these two possibilities. To that extent, it

fails to support a clear interpretation of the set of probability measures.22

Although such comparative statics considerations have received relatively little

traction in the philosophical literature, they can be seen as indicative of deeper, interre-

lated problems, concerning belief communication and incorporation of evidence. For

instance, since the set of probability measures can reflect the decision maker’s attitude

to uncertainty, how are we sure, when an agent reports a set of probability measures

in good faith for use to guide choice in the context of such a rule, that she is not inad-

vertantly letting her tastes for uncertainty contaminate her report, and the subsequent

choice? Such an issue has been raised in the literature on (experimental) elicitation

of imprecise probabilities (Smithson, 2014; Yaniv and Foster, 1995, 1997). Reporting

probability intervals requires subjects to trade-off between the accuracy of the estimate

21Note that, under the revealed preference results for the maximin-EU model (Gilboa and Schmeidler,

1989), the representing set of priors is (essentially) unique, suggesting that the issue of separation is distinct

from that of the uniqueness of the ingredients of the representation.
22Whilst we have just discussed the maximin-EU rule, these considerations (and those below) appear to

generalise to other decision rules for imprecise probabilities, such as the standard version of the unanimity

rule (Section 2). For some rules, the situation is further complicated by issues with the representation and

its uniqueness, as appears to be the case for the Hurwicz or α-maximin-EU rule, which evaluates an act by

the (α-)mixture of the minimum and maximum expected utilities over a set (Gilboa and Marinacci, 2013).

However, refinements of imprecise probability decision models that explain how the set C ‘results’ from

beliefs and uncertainty attitudes might be able to exhibit the desired separation (a potential example is Gajdos

et al., 2008).
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and its informativeness, so the interpretation of any intervals elicited depends on how

subjects make these trade-offs. To the extent that they may involve value judgements

(as to whether it is better to be more precise but wrong, or not, for the decision in hand),

this is basically a consequence of the lack of a clear separation between doxastic and

conative attitudes.

In practice, the sorts of trade-offs just mentioned are often related to the incorpo-

ration of evidence. One thought could be that imprecise-probability decision makers

adopt (and report) the set of all measures that are consistent with their evidence: since

this set is ‘objectively’ defined, there is no risk of infiltration of values. However, such

a set is obviously too large in many situations: for instance, in the case of the sampled

urn in the Introduction, with 1 million observations, this is the set of all probability

measures except those giving probability one to black or to white (Walley, 1991). So

they have to cut down the set of probability measures they report or use in the maximin-

EU rule. However, this can involve weighing up not only the strength of the evidence

but also how cautious one wants to be (which is reflected in the size of the set), and the

imprecise probability framework provides no tools for separating the purely doxastic

considerations from those involving value judgements. As noted, this is particularly

problematic for the use of these models to guide public decision making, insofar as it

jeopardises value-free communication of beliefs.

In summary, the confidence framework offers a clear story about its central ele-

ments.23 On the one hand, there are beliefs and confidence in them, represented by the

confidence ranking. On the other hand, there are tastes for, or value judgements con-

cerning choosing on the basis of limited confidence.24 Whilst lacking for some popular

non-Bayesian approaches, and in particular imprecise probabilities, a clear separation

of this sort is central for public decision making: in application of the confidence ap-

proach to such decisions, one should look to the experts to provide the confidence

ranking, and to the policy maker to fix the cautiousness coefficient.

The upshot is that the confidence-based approach can not only cope comfortably

with the severe-uncertainty situations where Bayesianism struggles, but also fairs well

on the normative fronts typically raised in its favour. To summarize: the approach is

based on a reasonable pre-formal intuition, its hallmark in terms of implications for

23Note that this does not hold for the accounts of confidence in belief cited in Sections 2.1 and 2.2 that

lack the distinction between the confidence ranking and the cautiousness coefficient.
24It should come as no surprise that, compared to the Bayesian expected utility model, there is a new

conative element: as is well-known (Gilboa, 2009; Gilboa and Marinacci, 2013), the Bayesian model is

uncertainty neutral, whereas other decision rules may allow for differing attitudes to, or tastes for, uncertainty.
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choice—dependence on stakes—is far from a sign of irrationality, and it supports a

clean separation of beliefs and desires (or tastes). This provides a strong case in favour

of the approach as an adequate account of rational belief and decision. Indeed, the

discussion suggests that it has better normative credentials than a leading non-Bayesian

approach, that of imprecise probabilities. We now briefly consider some other major

non-Bayesian proposals.

4 Some other non-Bayesian approaches

There is a large non-Bayesian literature on belief and decision, and we cannot hope

to treat it in full. Here we briefly compare the confidence approach to some major

accounts other than imprecise probabilities, concentrating in particular on those with

some motivation in the Ellsberg-type examples, and which are not entirely focussed on

descriptive (rather than normative) questions.

One strand of the literature retains the assumption that the belief concerning an

event can be fully summarised in a (single) real number, but denies that they must

satisfy the laws of probability. Belief functions (Dempster, 1967; Shafer, 1976) are

examples of such representations that have been widely studied in statistics and philos-

ophy. Whilst these functions have been motivated drawing on considerations pertaining

to learning and evidence,25 they are known to be equivalent to a special class of sets of

probability measures, so the points made above regarding the use of imprecise proba-

bilities to guide decision carry over to them. More generally, they are special cases of

the non-additive probabilities (or, to use mathematical terminology, capacities) studied

in economics (Schmeidler, 1989). As is well-known, the main decision rule involving

such functions that does not violate a dominance principle and several other standard

axioms is the Choquet Expected Utility rule (Schmeidler, 1989; Gilboa and Marinacci,

2013). That is, an act f is evaluated according to:26

(4)
∑
xi

ν({s : U(f(s)) ≥ xi}) [xi − xi+1]

25As stated in the Introduction, we do not consider the issue of learning here, and focus uniquely on belief

and decision aspects in this discussion.
26For ease of exposition, we assume throughout that everything (states, outcomes, supports of probability

measures etc) is finite, and so use sums in the place of integrals. Note that, when ν is a belief function (or

more generally a convex capacity), (4) is equivalent to the maximin-EU rule over a derived set of probability

measures (Schmeidler, 1989; Gilboa, 2009).
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where ν is the capacity. (U is the utility function; xi are the utility values of outcomes,

organised in decreasing order.) It has proved difficult to give a solid pre-formal norma-

tive intuition or justification for the use of this rule to guide choice under uncertainty.

As concerns implications for choice, it involves a weakening of expected utility com-

parable to that yielding the maximin-EU rule (Gilboa, 2009; Gilboa and Marinacci,

2013), though not necessarily involving aversion to uncertainty. For our purposes the

essential point is that, like imprecise probability rules, it assumes stakes independence

(Hill, 2013a). Moreover, on the conceptual front, results similar to those cited above for

the maximin-EU rule (Section 3.3) suggest that there is no clean separation of beliefs

and tastes: ν, which is often presented as a representation of the state of belief, also

reflects uncertainty attitude (Ghirardato and Marinacci, 2002, Thm 17). In summary, as

concerns its normative credentials for rational decision making, the non-additive prob-

ability approach does not clearly do better than the imprecise probability one discussed

previously.

A large family of recent approaches use second-order representations on the space

of probability measures, in a way akin to ours, and are sometimes interpreted in terms

of confidence. Examples in the decision-theoretic literature include the variational pref-

erences model (Maccheroni et al., 2006) and the so-called confidence model (Chateauneuf

and Faro, 2009).27 The former is closely related to the literature on robustness in

macroeconomics: one of the models developed by Hansen and Sargent (2001) is a

special case. The latter is motivated by and technically related to the literature on

fuzzy sets. Despite differences in the details, each employs a real-valued function on

the space of probability measures, which is sometimes interpreted as representing con-

fidence (Marinacci, 2015; Chateauneuf and Faro, 2009). Moreover, as is clear from the

sorts of comparative statics results alluded to previously, these models do not cleanly

separate doxastic and conative attitudes: the real-valued functions in question, which

are the only elements in these models that could reflect beliefs, capture uncertainty

attitudes (Maccheroni et al., 2006, Prop 8; Chateauneuf and Faro, 2009, Prop 8). As

concerns their choice-theoretical properties, they are relatively mild weakenings of the

maximin-EU decision rule (3), though we are aware of no defense of their specific

weakenings on grounds of rationality. They are motivated by the relationship to the

robustness literature in macroeconomics and engineering, or the notion of fuzzy sets

27For completeness: the former evaluates an act f by minp∈∆ (EUpf + c(p)) where c is a real-valued

function on the space of probability measures ∆, and the latter evaluates it by minp∈Lα0φ
1

φ(p)
EUpf

where φ is a [0, 1]-valued function on ∆ and Lα0φ is a set of probability measures depending on φ and a

number α0.
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respectively, but, to our knowledge, no other pre-formal normative intuition has been

proposed for these rules.

Perhaps the most popular ‘second-order’ approach represents the state of belief

by a second-order probability over first-order probability measures (over events). Such

second-order probabilities have been discussed in the philosophical literature by Skyrms

(1980), for example. The most natural decision rule involving such a representation ap-

plies expected utility at both stages, evaluating an act f by:

(5)
∑

(EUpf)µ(p)

where µ is the second-order probability (and the sum is taken over all first-order prob-

abilities to which it gives non-zero weight). However, this representation is easily seen

to be equivalent to the standard expected utility representation with the ‘reduced’ prob-

ability
∑
pµ(p); hence it does no better than the Bayesian theory at accommodating the

uncertainty-sensitive behaviour mentioned in the Introduction.28 Recently, researchers

in economics have proposed the following variant:

(6)
∑

φ (EUpf)µ(p)

where φ is a real-valued function on utility values (in much the same way that the utility

function U is real-valued function on outcomes). This smooth ambiguity representa-

tion, most forcefully defended by Klibanoff et al. (2005)29 and increasingly popular in

economic modelling, can accommodate Ellsberg behaviour when φ is non-linear. They

emphasise that this model admits a separation of beliefs from uncertainty attitudes:

the second-order probability µ can be understood as a representation of the decision

maker’s state of belief, whereas the transformation function φ represents her attitudes

to uncertainty. This interpretation is backed up by the sort of comparative statics con-

siderations discussed above (Klibanoff et al., 2005, Sect 3).

As concerns the approach’s normative credentials, a central question is clear from

(6): if the decision maker can form precise second-order probabilities, which she can

‘reduce’ to precise first-order probabilities, then why doesn’t she just use those—or

28Moreover, as noted by Gilboa and Marinacci (2013), it seems to ignore the difficulty in providing precise

probabilities in, for example, climate decisions (Bradley and Steele, 2015).
29Related approaches have been proposed by Nau (2006); Ergin and Gul (2009); Seo (2009) with early

work by Segal (1987).
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equivalently (5)—to choose? This issue translates, in one of the most elegant charac-

terisations of this sort of model, into a violation of the axiom of reduction of lotteries

(Seo, 2009, Cor 5.2), which essentially says that the decision maker should treat a

20% chance of having a 50% chance of winning a prize the same as having a 10%

chance of winning. It has been suggested that such violations, which ressemble inabil-

ities to properly multiply probabilities, may undermine the rational credentials of the

approach.

Perhaps the most explicit reply to these objections, and the only one we are aware

of, is proposed by Marinacci (2015). He defends the use of representations of the

form (6) for decision analysis, relying on the distinction between ‘physical uncer-

tainty’—essentially the randomness in the relevant mechanisms or processes—and

‘epistemic uncertainty’ (or ‘model uncertainty’)—reflecting the decision maker’s lack

of knowledge about the underlying mechanism. He suggests an interpretation in which

the first-order probabilities in (6) correspond to physical uncertainty and the second-

order probabilities (the µ) capture epistemic uncertainty. The idea is that these corre-

spond to different ‘sources of uncertainty’ and that it is legitimate to have ‘different

attitudes toward the two uncertainty sources’ (ibid. p1052). This is precisely what rep-

resentation (6) does: U represents the attitude to physical uncertainty and φ ◦ U the

attitude to epistemic uncertainty. Marinacci explains this clearly showing that, when

all of the uncertainty is physical, U is the relevant utility used by the model, whereas

when all of the uncertainty is epistemic, φ ◦ U is used instead. In particular, the same

probability distribution will lead to different evaluations under this model according to

whether it captures physical uncertainty (with no epistemic uncertainty) or epistemic

uncertainty (with no physical uncertainty). As he puts it:

‘different confidence in such [probability] judgements (whatever feature of

a source causes it) translate as different degrees of aversion to uncertainty

across sources, and so in different von Neumann-Morgenstern utility func-

tions [U and φ ◦ U ].’ (Marinacci, 2015, p1052)

But the formal translation of the relationship between sources of uncertainty, confi-

dence and uncertainty attitudes into decision rule (6) risks undermining one of its most

vaunted qualities. Confidence (in this context, at least) is a doxastic attitude: more

confidence means that you are more sure about your beliefs. However, the suggestion

seems to be that differences of confidence ‘translate’ or correspond to something par-

tially reflected in the transformation function φ—which was only supposed to capture

uncertainty attitudes, that is tastes for bearing uncertainty. Formally rendering a dox-
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astic judgement in what was supposed to be a conative element of the model seems to

jeopardise its purported separation of beliefs and tastes.

Indeed, this defense seems to face a dilemma. Either the separation of beliefs and

tastes argued for by Klibanoff et al. (2005) holds, so the state of belief is fully captured

by the (second-order) probability distribution—but this risks undermining the norma-

tive defense of the use of the transformation function φ proposed above. Consider

the aforementioned example where the same probability distribution is evaluated dif-

ferently according to whether it represents physical or model uncertainty. Under the

separation of beliefs and tastes, this probability fully captures the decision maker’s state

of belief—and hence her confidence in beliefs—concerning the physical and epistemic

sources of uncertainty respectively. But since the probability distribution is the same

for both sources, her confidence is the same in both cases, and thus there would seem to

be no justification for different uncertainty attitudes, contrary to the claim in the quote

above.

The other horn of the dilemma endorses the defense proposed above, thus admitting

that aspects of a decision maker’s belief state, in particular her confidence in probabil-

ity judgements, are captured by the transformation function rather than the probability

distribution. But this appears to clash with the separation of beliefs and tastes. To illus-

trate, compare three situations faced by a policy maker: (1) scientific experts provide

a single probability distribution, in which they are very confident, reflecting entirely

physical uncertainty (with no epistemic uncertainty); (2) the experts provide the same

distribution, in which they are very confident, but it is entirely epistemic uncertainty

(with no physical uncertainty); (3) the experts are not confident in any distribution as

capturing the epistemic uncertainty, but when pushed for a precise distribution (as the

model demands) provide the same one as in (2) (fully epistemic uncertainty, no physi-

cal uncertainty).30 Representation (6) allows the policy maker to decide differently in

situations (1) and (2), according to her φ. She is supposed to be able to justify such a

difference on the basis of differing confidence in the probability judgements. But this

justification is hard to square with the expectation that the experts are the best judges of

how much confidence there is, and the fact that they are equally confident in (1) and (2).

Moreover, the representation implies that the policy maker should take the same deci-

sion in situations (2) and (3), since the probability distribution reported and the source

30For instance: in (1), there is an objectively chancy mechanism determining the quantity of interest, which

is fully understood, while in (2) and (3), the underlying process is fully deterministic (and predictable), but

the scientists have (more or less severe) uncertainty about its properties.
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are the same (epistemic uncertainty in both cases). Following the previous reason-

ing, this would seem to suggest that the confidence in the probability judgements is the

same between the two situations. But here the experts do judge there to be difference in

confidence, although the model, in asking them only for a probability distribution, does

not give them the means to express this difference. Under this horn of the dilemma, the

model leaves the judgement on a doxastic issue (confidence in probability judgements)

to the actor who should be determining the values: an indication that attitudes might

not be properly separated. As noted previously, and as illustrated by this example, this

may lead to problems in the application of the model in public decision making. There

thus seems to be a tension between the proposed defense of the rational credentials of

the smooth ambiguity model and its promise of providing a clear separation of beliefs

and attitudes to uncertainty.

The idea of ‘source dependence’ behind this interpretation of (6) is common to sev-

eral approaches in economics and psychology,31 and the central point seems to apply

to this literature more generally. Most ‘source dependent’ models share two character-

istics that are central to the preceding dilemma: the assumption of precise probabilistic

beliefs within each source; and the assumption of potentially differing conative at-

titudes towards sources, which are crucial in accounting for Ellsberg-type examples

(such as those in the Introduction). As argued above, any defense of the rationality of

differing attitudes towards sources on the basis of confidence in beliefs jeopardises the

clean separation of beliefs and tastes in the primitives of the model. This will have to

be taken into account when evaluating the normative credentials of such accounts.

Bradley (2015) proposes a different interpretation of (6) that makes no reference

to source dependence. There, the first-order probabilities are objective chances and

the second-order probabilities represent beliefs,32 but there is no confidence or uncer-

31The notion of source dependence is often traced to experimental work by Tversky and Fox (1995);

Fox and Tversky (1995), and plays a central role in current prominent approaches (Abdellaoui et al., 2011;

Wakker, 2010). As for the other accounts discussed here, the focus is entirely on the normative question,

leaving aside considerations pertaining to the approaches’ descriptive relevance.
32He is applying the (philosophical) distinction between objective chances and subjective probabilities.

It is unclear to what extent it coincides with the distinction between physical and epistemic (or model)

uncertainty, as it is used in practice. In particular, it is crucial for Bradley’s position that objective chances

are ‘features of the world’. By contrast, a typical application of (6) to climate change, for example, takes as

a proxy for ‘physical uncertainty’ probability distributions of the relevant climate variable drawn from the

literature (Millner et al., 2012; Marinacci, 2015), but given the known inexactness of the climate models and

the Bayesian methods, including prior probabilities (sometimes provided by experts), used to provide such

distributions, it is unclear that they should necessarily be interpreted as objective ‘features of the world’.
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tainty attitude: φ represents the decision maker’s attitude towards objective chances.

As Bradley points out, his account is fully Bayesian concerning uncertainty: it di-

verges with the standard account only on the case of risk (in particular, attitudes to

objective chances). As such, it does not treat the general issue under discussion here:

that of belief representation and decision in the absence of readily available precise

probabilities.33

The size of the literature prohibits an extensive review, and we can only encourage

further evaluation and development of models in the light of the criteria considered.

Nevertheless, this brief discussion of several prominent approaches suggests some ten-

tative conclusions. First of all, the confidence-based account is relatively rare in claim-

ing a clean separation of doxastic and conative attitudes, the smooth ambiguity model

doubtless being the main existing proposal in the literature to be associated with this

property. However, the previous considerations suggest that further work is required

on the normative foundations of that model: there seems to be a deep tension between

its claims of normative plausibility and separation of attitudes. Hence, the confidence-

based account would seem to be the only approach to date to possess a pre-formal nor-

matively plausible intuition and a clean separation of attitudes, as well as reasonable

implications for choice relative to other non-Bayesian approaches. This only bolsters

the case for it as an adequate account of rational belief and decision.

5 On Tractability

Whilst this paper is dedicated to the normative question, it is perhaps worth mentioning

the related prescriptive issue. An important driver of the use of a model of beliefs

and decision is tractability: not so much whether it provides a reasonable guide to

rational choice, but rather how easy it is to actually implement in real-life cases, such

as policy decisions. Whilst there is nothing better than actual application to bring out

the strengths and weaknesses of the approach defended here, some comments on this

topic are perhaps in order.

The first concerns how to find the optimal choice in complex decisions. Since it

piggybacks on existing models, one would expect existing methods and techniques to

extend to the confidence approach. For instance, it is common to use specific parametri-

33Though Bradley (2015) shows that non-neutral attitudes to chances can account for the standard Ellsberg

behaviour without calling into question the Bayesian position on beliefs, he does not suggest that it can be

fruitfully applied to the other cases mentioned in the Introduction, such as climate decisions.
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sations of the set of priors in the standard maximin-EU model (3), under which there

exist techniques for calculating optima in decision problems. Examples include sets of

priors which are ‘balls’ centered on a given measure, such as the ε-contaminations pop-

ular in robust statistics (Berger, 1985) or the ‘entropy’ balls used in the robustness liter-

ature in macroeconomics (Hansen and Sargent, 2001).34 Such parametrisations—and

thus the optimisation techniques relying on them—can be easily extended to the con-

fidence framework. It suffices to take as confidence ranking the set of all balls, of

differing radii, centered on a given probability measure. Moreover, the confidence ap-

proach provides a story on how to fix the radius of the ball—the main free parameter

in the standard accounts—via a specific value judgement reflected in the cautiousness

coefficient.

A second issue, which is particularly relevant for the motivating examples where

current science and statistics do not provide (reasonably justfied) precise probabili-

ties, is that of the elicitation of the beliefs required by the model, from an expert for

instance.35 Of course, simpler representations of belief states generally require less

information from the agent, and so are usually easier to elicit. The representation of

the belief state under the current proposal—the confidence ranking—certainly seems

more complicated than the Bayesian representation (by a probability measure), or the

standard imprecise probability representation (a set of probability measures). However,

it is, in a certain sense, the ‘least complicated step up’ from the latter, insofar as it is

ordinal at the second-order level—it only involves an order on the space of probability

measures (Hill, 2013a, Prop 2). So, to elicit a confidence ranking from an agent, it

is sufficient to collect her qualitative confidence comparisons between credal judge-

ments, ie. comparisons of the sort: I am more confident in the credence for A being

greater than 0.5 than in the credence for B being less than 0.3.

By contrast, under the other second-order representations mentioned in Section 4,

the numbers count: the representations are cardinal at the second-order level. So more

information is required to pin down an agent’s belief state under this representation:

not just whether she is more confident in one judgement than another, but how much

34Hansen and Sargent (2001) show that for a class of decision problems, maximin-EU with such balls

yields the same decisions as a subclass of variational preferences (Section 4), which themselves correspond

to a special case of the second-order probability model in the style of (6) (Strzalecki, 2011). So techniques

developed for any of these models can be mobilised to solve optimisation problems under corresponding

versions of the confidence model.
35The importance of expert elicitation has been emphasised in several of the domains mentioned as moti-

vation (see for example Morgan, 2014).
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more confident she is. These quantitive comparisons—for example, I am confident to

degree 0.7 in the credence for A being greater than 0.5 but only confident to degree

0.6 in the credence forB being less than 0.3—are significantly more difficult to extract

from agents. So these models are more demanding on an expert who is to provide the

doxastic judgements for use in guiding decision.

So whilst not the simplest representation of beliefs, the proposed confidence repre-

sentation is at least at the simple end of the spectrum: it is ordinal. Indeed, it is the only

non-Bayesian approach we are aware of that both provides a clean separation between

doxastic and conative attitudes and is ordinal at the second-order level. This suggests

that, in principle at least, it may be more applicable in situations where opinions need

to be elicited from experts.

6 Conclusion

Decisions under severe uncertainty are becoming increasingly relevant. The Bayesian

benchmark for rational belief and decision fails to provide a reasonable guide in such

cases; this paper looks at the issue of what, if anything, should replace it. An adequate

account should not only cope with severe uncertainty, but it should have strong norma-

tive credentials across the board. We defend a particular approach on these grounds,

founded on the intuition that one’s confidence in one’s beliefs has a role to play in

decision making. The confidence-based framework is argued to possess a normatively

plausible pre-formal intuition, to have relatively reasonable consequences for choice,

and to clearly separate the roles of beliefs on the one hand, and desires, values or tastes

on the other. It appears to be unique in the existent literature to possess all these qual-

ities. Moreover, the framework defended involves a simpler representation of beliefs

than some other recent approaches, which may prove useful for the elicitation of opin-

ions from experts.
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Appendix: Behavioural Characterisations

In this appendix, we state simple behavioural characterisations of the confidence-based

and imprecise probability approaches, which underlie the discussion in Section 3.2. We

add this material to keep the paper self-contained and permit a simple comparison: the

technical material is either drawn almost directly from the literature, or uses techniques

developed elsewhere.

We adopt the following fairly standard setup. Consider a set of states Ω; for

simplicity of exposition, we assume it to be finite. Gambles, or random values, are

real-valued functions on Ω. A bet on an event A with stakes S is a gamble paying

out S when ω ∈ A and 0 if not. (Addition of gambles and multiplication by real

numbers is defined pointwise, as standard.) For a gamble X and a probability mea-

sure p on Ω, Ep(X) =
∑

ω∈ΩX(ω)p(ω) is the expectation of X with respect to p.

For a gamble X, the stakes involved in X are given by its maximum absolute value

SX = maxω∈Ω |X(ω)|. Unit gambles are gambles with stakes of 1. For any gamble

X , let X be the associated (‘normalised’) unit gamble: X(ω) = X(ω)
SX

for all ω ∈ Ω.

For any gamble X and positive real number S, the gamble X with stakes S is given

by XS(ω) = SX(ω) for all ω ∈ Ω; when the stakes S = SX , specific mention of

them is omitted. As in the text, qS(X) is the lower betting quotient at stakes S, where

qS(X)S is the highest amount for which the agent is willing to buy the gamble X with

stakes S; similarly, qS(X) is the upper betting quotient at stakes S, where qS(X)S is

the lowest amount for which the agent is willing to sell the gamble X with stakes S.

Note that qS(X) is definable from qS(X) in the standard way: qS(X) = −qS(−X).

So the clauses below on selling gambles are unnecessary, but added for completeness.

We say that a set of betting quotients q
S
, qS is derived from a confidence rank-

ing and a cautiousness coefficient if there exist a confidence ranking Ξ and a cau-

tiousness coefficient D assigning the set D(S) to any gamble with stakes S such that

q
S

(X) = minp∈D(S)Ep(X) and qS(X) = maxp∈D(S)Ep(X) for every gamble X

and stakes level (positive real number) S. In particular, the betting quotient for a bet

on an event A at stakes S is the worst case probability that a decision maker using the

confidence ranking deems possible for this event, at the level of confidence correspond-

ing to that level of stakes (according to the cautiousness coefficient). Similarly, a set of

betting quotients is derived from a set of probability measures if there exists set of prob-

ability measures C such that q
S

(X) = minp∈C Ep(X) and qS(X) = maxp∈C Ep(X)

for every gamble X and stakes level (positive real number) S. It is derived from a
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probability measure if there exists a probability measure p such that if there exists set

of probability measures C such that q
S

(X) = Ep(X) = qS(X) for every gamble X

and stakes level (positive real number) S.

We now formally state several conditions. The first is the standard Dutch Book

invulnerability condition; the next three were discussed in detail in Section 3.2.

Dutch Book Invulnerability If the agent is willing to buy gamblesX1, . . . Xn at prices

p1, . . . , pn respectively, then max
∑n

i=1 (Xi − pi) ≥ 0 .

Buy-sell coincidence For every gamble X and stakes level S, qS(X) = qS(X).

Stakes-Independence For any positive S, T , the agent is willing to buy the gamble X

with stakes S for qS if and only if she is willing to buy the gambleX with stakes

T for qT . (And similarly for selling gambles.)

Stakes-Dependence If the agent is willing to buy the gamble X with stakes S for qS,

then for any T ≤ S she is willing to buy the gamble X with stakes T for qT .

(And similarly for selling gambles.)

The following two conditions are drawn, with some slight modifications, from Walley

(1991).36

Accepting Sure Gains There is a price p ≥ minω∈ΩX(ω) for which the agent is

willing to buy X .

Packaging If the agent is willing to buy a gamble X1 with stakes S for a price of q1S

and he is willing to buy the gamble X2 with stakes S for a price of q2S, then he

is willing buy to the gambleX1 +X2 with stakes S for a price of q1SX1
+q2SX2

SX1+X2
S.

(And similarly for selling gambles.)

For comparison, here are behavioural characterisations of the confidence, imprecise

probability and Bayesian approaches in this framework.

Characterisations A set of betting quotients q
S
, qS :

1. satisfies Accepting Sure Gains, Packaging, Stakes-Independence and Buy-sell

coincidence if and only if it satisifies Dutch Book Invulnerability and Buy-sell

coincidence if and only if it is derived from a probability measure.
36They are related to conditions discussed in the philosophical literature: the former appears to be a weak

form of ‘Czech Book Invulnerability’ as discussed by Hajek (2008); the latter is a version of the Package

Principle which has received some attention in the philosophical literature (Schick, 1986; Hajek, 2008).
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2. satisfies Accepting Sure Gains, Packaging and Stakes-Independence if and only

if it is derived from a set of probability measures. Moreover, in this case, Dutch

Book Invulnerability is satisfied.

3. satisfies Accepting Sure Gains, Packaging and Stakes-Dependence if and only if

it is derived from a confidence ranking and a cautiousness coefficient. Moreover,

in this case, Dutch Book Invulnerability is satisfied.

These characterisations are either just a reminder of known results for precise and im-

precise probabilities (in particular Walley (1991, §§3.3.3 & 3.2.2)), or can be simply

proved by combining these results with techniques developed in a more refined setup

in Hill (2013a, 2016).

For completeness, we sketch the proof of the least well-known characterisation,

3. For every gamble X , let PS(X) = q
S

(X)SX ; PS gives the highest buying

price for each gamble, considered “as if” it had stakes S. We show that, for every

S, PS is a coherent lower prevision in the sense of Walley (1991, §2.3.3): that is,

it satisfies three conditions that he calls accepting sure gains, positive homogeneity

and superlinearity. Fix an arbitrary stakes level (positive real number) S. By Ac-

cepting Sure Gains, PS(X) ≥ SX
S minXS = minX for all gambles X(accepting

sure gains). By definition, PS(λX) = qS(X)λSX = λPS(X) (positive homogene-

ity). Finally, Packaging holds if and only if PS(X + Y ) = q
S

(X + Y )SX+Y ≥
qS(X)SX+qS(Y )SY

SX+Y
SX+Y = PS(X) + PS(Y ) (superlinearity). So by Walley (1991,

§§3.3.3 & 3.2.2), for each stakes level S, there exists a set of probability measures

CS such that PS(X) = minp∈CS Ep(X) for all gambles X . Moreover, there is a

unique maximal such set for each S; let CS be the maximal such set. By the aforemen-

tioned properties of these sets, for each probability measure p, p ∈ CS if and only if

Ep(X) ≥ PS(X) for all gambles X . However, by Stakes-Dependence, for any S, T

with S ≤ T , PS(X) = qS(X)SX ≥ qT (X)SX = PT (X). Thus for every p ∈ CS ,

Ep(X) ≥ PS(X) ≥ PT (X), and hence p ∈ CT ; so CS ⊆ CT . Let Ξ = {CS : S > 0};
this is a nested family of sets of probability measures, and hence a confidence ranking,

in the sense of Section 2.1. Let D be the function on gambles assigning the set CSX to

gamble X . Note that D assigns sets to gambles uniquely on the basis of their stakes,

and moreover, for any pair of gamblesX,Y ,D(X) ⊇ D(Y ) whenever SX ≥ SY ; so it

is a well-defined cautiousness coefficient. We henceforth useD(S) for the set assigned

to gambles of stakes S. By construction, q
S

(X) = minp∈D(S)Ep(X), establishing

the existence of the required confidence ranking and cautiousness coefficient.
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Conversely, suppose that the specified confidence ranking and cautiousness co-

efficient exist. For T ≤ S, since D(T ) ⊆ D(S), minp∈D(S)Ep(X) ≤
minp∈D(T )Ep(X), so Stakes-Dependence holds. Moreover, by Walley (1991, §§3.3.3

& 3.2.2), for any S, PS satisfies superlinearity, whence Packaging holds. Since

minp∈D(SX)Ep(X) ≥ minω∈ΩX(ω), Accepting Sure Gains holds. Finally, since

the confidence ranking is nested, there exists p ∈
⋂

C∈Ξ C. For any such p and any

gamble X , Ep(X) ≥ qSX (X)SX , whence by Walley (1991, §3.3.3), Dutch Book

Invulnerability holds.

2. is just a reformulation of Walley’s definition of coherent lower previsions and

results concerning them (1991, §§2.3.3 & 3.3.3). This can be seen simply by noting

that Stakes-Independence holds if and only if PS = PT for all stakes levels S, T , so

Walley’s lower prevision P , defined by P (X) = PSX
(X) for all gambles X , satisfies

his three conditions. The representation by a single set of probability measures follows

immediately. 1. is just a reminder of standard results for precise probabilities (recalled

in Walley (1991, §§2.3.6 & 2.8)), including the classic Dutch Book Theorem.
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