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Abstract

Many decision situations involve two or more of the following divergences from

subjective expected utility: imprecision of beliefs (or ambiguity), imprecision of tastes

(or multi-utility), and state dependence of utility. This paper proposes and charac-

terises a model of uncertainty averse preferences that can simultaneously incorporate

all three phenomena. The representation supports a principled separation of (impre-

cise) beliefs and (potentially state-dependent, imprecise) tastes. Moreover, the repre-

sentation permits comparative statics separating the roles of beliefs and tastes, and is

modular: it easily delivers special cases involving various combinations of the phe-

nomena, as well as state-dependent multi-utility generalisations covering popular am-

biguity models.
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1 Introduction

Decision makers sometimes do not know precisely the probabilities of the relevant out-

comes given their actions; they may thus exhibit aversion to this uncertainty or ‘impreci-

sion in beliefs’ (Ellsberg, 1961).1 They sometimes may have trouble comparing the relevant

outcomes; this imprecision in tastes has long been studied in economics (Aumann, 1962;

Dubra et al., 2004) and has been connected to Allais-style violations of subjective expected

utility (Levi, 1986; Cerreia-Vioglio et al., 2015). They sometimes have state-dependent

utility (Arrow, 1974; Karni, 1983b). And sometimes, they may exhibit all three of these

effects in a single decision situation. For instance, although classic analyses of health

insurance—which are essentially monetary bets on one’s future state of health—focus

uniquely on state-dependent utilities (Cook and Graham, 1977), in many cases individu-

als have limited information about the probabilities of future health states—or imprecise

beliefs—and, given the lack of familiarity with some of the states, may have trouble eval-

uating their utility in them—or have imprecise tastes. Or, to take another example, whilst

some have proposed explanations of the equity premium puzzle in terms of belief impreci-

sion and uncertainty aversion (e.g. Ju and Miao, 2012), others have claimed to explain it

using state-dependent utility (e.g. Melino and Yang, 2003).

Applications typically focus on (at most) one of these factors, ignoring the others. How-

ever, their simultaneous presence poses the question of the robustness of the conclusions

drawn from single-factor analyses to the presence of other factors. Moreover, establish-

ing a potential role for several factors in explaining a given phenomenon naturally leads to

the question of their relative importance: is, say, state-dependence or belief imprecision a

bigger driver of a given asset pricing pattern? And if different factors impact an economic

variable in diverse ways, how do they trade off? Systematic study of such questions would

naturally be grounded in a formal model accommodating all of these phenomena. The

present paper provides such a model.

From a decision-theoretic perspective, these effects correspond to distinct violations of

the standard axioms of subjective expected utility (Savage, 1954),2 so the required model

1The term ‘imprecise probabilities’ is widely used in statistics and philosophy; see for example Walley

(1991); Bradley (2014) and the references therein.
2More precisely, in the Anscombe and Aumann (1963) framework and in the context of complete prefer-

ences: violations of the Independence axiom for imprecision of beliefs, of the restriction of Independence to
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should be able handle all of them simultaneously, whilst ideally preserving the separation

of beliefs and tastes. Such a model is still lacking in the theoretical literature, which almost

exclusively focusses on these violations taken in isolation: work on ambiguity, for example,

generally assumes precise tastes and state-independent utility, and that on state-dependent

utility mainly works in the context of precise beliefs and tastes. In fact, simultaneous

violations pose specific technical and conceptual challenges. Technically, the bulk of the

literature on state-dependent utility relies strongly on the expected utility framework (Karni

et al., 1983; Karni, 1993a), whereas many of the principal axioms in the ambiguity literature

explicitly use constant acts (Gilboa and Schmeidler, 1989; Maccheroni et al., 2006), which

lose their meaning as soon as utilities are state dependent. Conceptually, it is unclear

what functional form to use when modelling situations with imprecise tastes, imprecise

beliefs and state-dependent utility. We are aware of no proposed model accommodating all

three phenomena under uncertainty aversion; the closest related literature, on incomplete

preferences (Galaabaatar and Karni, 2013), suggests a functional form that violates one of

the central axioms we defend below (Section 4.1).

We propose and axiomatise the following state-dependent non-expected utility repre-

sentation:

min
pPC

¸
sPS

ppsq min
uPυpsq

upfpsqq (1)

where C is a (closed convex) set of probability measures over states and υ is a function

assigning to each state s a (closed convex) set of utility functions over consequences. This

representation can accommodate all the aforementioned phenomena. Indeed, it displays:

(i) imprecise beliefs, in the use of multiple priors C; (ii) imprecise tastes, in the multiple

utility functions υpsq; and (iii) state dependence of utility, in the possible dependence of

the set of utility functions used to evaluate consequences on the state.

On the axiomatic front, given the absence of expected utility both over states and con-

sequences, no form of the Independence axiom appears in our most general result. In its

stead is an uncertainty aversion condition that retains the same spirit as, though strengthens

the classic Uncertainty Aversion axiom due to Schmeidler (1989). Similarly, given the state

dependence of utility, there is no Monotonicity axiom, but instead State Consistency, which

basically says that one’s preferences regarding the consequence obtained in a given state is

risky prospects for imprecision of tastes, and of the Monotonicity axiom for state dependence of utility.
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independent of what one would get in the other states. This is a minimal axiom ensuring a

coherent notion of preferences conditional on a state; our results suggest moreover that it

is a basic axiom for state-dependent utility in the context of imprecise beliefs or tastes.

Whilst our benchmark model can accommodate all of the aforementioned violations of

subjective expected utility, it provides a springboard for the study of models incorporating

only some violations. As an illustration, we axiomatise special cases in which each of the

factors is ‘shut down’. Moreover, we provide a simple extension, permitting an extremely

general treatment of uncertainty that covers virtually all existing uncertainty averse models

in the literature. As such, our approach straightforwardly yields state-dependent multi-

utility generalisations of standard ambiguity models, beyond the Gilboa and Schmeidler

(1989) multiple prior representation used in (1) above.

To corroborate the interpretations of the different elements of the model, we provide

comparative statics separating their impacts on choice. In particular, our model clearly

separates the impact of belief imprecision from taste imprecision and state-dependence. It

thus can smoothly incorporate changes in or ‘addition’ of different factors in a given eco-

nomic application, hence lending itself naturally to the study of the previously mentioned

robustness or relative importance questions.

The paper is organised as follows. The framework is set out in Section 2. The bench-

mark model is stated and characterised in Section 3. Section 4 maps out special cases and

extensions, and clarifies the relationship to the existing literature on the various violations,

whilst Section 5 provides a comparative statics analysis. Proofs and technical material are

contained in the Appendix.

2 Preliminaries

We use a version of the standard Anscombe-Aumann (1963) framework. Let S be a finite

set of states; ∆ is the set of probability measures over S. Let X be the set of consequences.

An act is a function from states to consequences; A � XS is the set of acts. For state s

and acts f and g, the act fsg is defined as follows: fsgpsq � fpsq and fsgptq � gptq for all

t � s. With slight abuse of notation, a constant act taking consequence x in every state will

be denoted x and the set of constant acts will be denoted X .

We assume that X is the set of lotteries (Borel probability measures) over a compact
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metric space of prizes Z, with the topology of weak convergence. Special cases of this

setup include the set of (standard) lotteries over a closed interval of monetary prizes, or

over a finite set of prizes. Our results also hold for X any compact polyhedral convex

subset of a finite-dimensional vector space,3 so they apply in cases where consequences

are commodity bundles or allocations (e.g. as in social choice under uncertainty) taking

values in bounded intervals. X admits the standard mixing operation. Moreover, A is

also a compact convex subset of a vector space with the inherited mixture relation, defined

pointwise as standard. For f, h P A and α P r0, 1s, we write fαh for the mixture of f and

h; similarly, we write xαy for the mixture of x, y P X . A is endowed with the product

topology. For h, h1 P A, Ah,h1 � tf P A : @s P S, Dβ P r0, 1s s.t. fpsq � hpsqβh
1psqu.

The binary relation © on A depicts the decision maker’s preferences over acts. The

symmetric and asymmetric parts of ©, � and ¡, are defined in the standard way. A state

s P S is said to be null if fsh � h for all f, h P A; otherwise it is non-null. A functional

V : AÑ < represents © if, for all f, g P A, f © g if and only if V pfq ¥ V pgq.

A utility function is a continuous function u : Z Ñ <. We endow U, the set of utility

functions, with the supnorm. With slight abuse of notation, for any x P X and u P U, we

set upxq �
³
udx. A set of utility functions U � U is non-trivial if, for every constant

function u1 P U , there exists x P X and a non-constant u P U with upxq   u1pxq. For any

c, c1 P X , U � U is c, c1-precise if there exists u P U such that upc1q � infu1PU u
1pc1q ¤

infu1PU u
1pdq ¤ infu1PU u

1pcq � upcq for all d P X . We define the following order on sets of

utility functions: U1 ¤ U2 if and only if, for every x P X and u P U2, there exists u1 P U1

with u1pxq ¤ upxq. Positive affine transformations of sets of utility functions are defined

pointwise: for any U � U, κ P <¡0 and λ P <, κU � λ � tκu� λ| u P Uu.
A function υ : S Ñ 2UzH is non-trivial, closed, convex and h, h1-precise, for

h, h1 P A, if υpsq is non-trivial, closed, convex and hpsq, h1psq-precise for every s P S.

It is h, h1-constant if, for every α P r0, 1s and s, t P S, minuPυpsq uphpsqαh
1psqq �

minuPυptq uphptqαh
1ptqq. Containment, unions and positive affine transformations are de-

fined statewise: for every pair of υ1, υ2 : S Ñ 2UzH, υ1 � υ2 if and only if υ1psq � υ2psq

for all s P S, υ1 Y υ2 : S Ñ 2UzH is defined by υ1 Y υ2psq � υ1psq Y υ2psq for

all s P S, and υ2 is a positive affine transformation of υ1 if there exists κ P <¡0 and

3A polyhedral convex set is a set of the points satisfying a finite collection of linear inequalities (Rock-

afellar, 1970). A polytope is an example of such a set.
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λ P < such that υ2psq � κυ1psq � λ for all non-null s P S. For any such υ, we let

υpXq �
�
sPStminuPυpsq upxq | x P Xu.4

Finally, a closed convex set of priors C � ∆ is null-consistent if, for every p, q P C, and

every s P S, ppsq � 0 if and only if qpsq � 0.

3 Benchmark model

3.1 Axioms

First consider the following three Basic Axioms on preferences, which are standard for

our consequence space.5

Axiom A1 (Weak Order). © is complete and transitive.

Axiom A2 (Non-degeneracy). There exists f, g P A such that f ¡ g.

Axiom A3 (Continuity). For all f P A, the sets tg P A| f ¨ gu and tg P A| f © gu are

closed.

Each of the following axioms has been used in standard treatments to impose state

independence of utility.

Axiom A4 (Monotonicity). For all f, g P A, if fpsq © gpsq for all s P S, then f © g.

Axiom A5 (State Independence). For all h, h1 P A, x, y P X and non-null s, t P S,

xsh © ysh if and only if xth1 © yth
1.

In the presence of the standard Independence axiom6 (and Weak Order), these two

axioms are equivalent; this is no longer the case in the context of imprecise beliefs and

tastes (Section 4.1). Since the aim is to go beyond state-independent utility, neither of them

will be imposed here. In their place, consider the following axiom.

Axiom A6 (State Consistency). For every h, h1 P A, x, y P X and s P S, if xsh © ysh,

then xsh1 © ysh
1.

4All terminology and notation extends immediately to notions such as a single set of utilities or a state-

dependent utility, considering them to be special cases where υ is constant or singleton-valued respectively.
5In the special case of a finite-dimensional consequence space, the topological Continuity axiom can be

weakened to mixture continuity.
6Independence states that, for all f, g, h P A and α P p0, 1q, f © g if and only if fαh © gαh.
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This is a considerable weakening of State Independence, concerning only cases involv-

ing a single state. As such, it says nothing about the relationship between preferences

conditional on different states, and so does not imply state independence of utility. On the

other hand, it does ensure that the standard notion of preference conditional on a state can

be coherently defined (see Proposition 6 in Appendix A). Note that State Consistency is

implied by the standard Independence axiom, and so holds automatically in the expected

utility context adopted by most of the state-dependent utility literature.

A crucial role shall be played by certain maximal and minimal elements under ©. To

be able to refer to such elements, we introduce the following definition.

Definition 1. h, h P A are ©-best-and-worst if, for every non-null s P S and h P A,

hpsqsh ¨ xsh ¨ hpsqsh for all x P X and phpsqqβphpsqqsh   hpsqsh for all β   1.

Note firstly that in the presence of the previous axioms, such acts always exist.

Proposition 1. If © satisfies the Basic Axioms and State Consistency, then there exist ©-

best-and-worst h, h P A.

In many cases where our framework typically applies, it is fairly straightforward to

identify ©-best-and-worst h, h. For instance, if X is the set of lotteries over a closed

interval (or finite set) of monetary prizes, in most cases (e.g. under first-order stochastic

dominance), h (respectively h) can be taken to be lottery yielding the top (resp. bottom)

prize for sure. Or, if X is a set of commodity bundles or allocations, in most cases (e.g.

under monotonicity or Pareto), h can be taken to be the bundle or allocation yielding the

maximal amount for each commodity or individual, and similarly for h.

In the absence of Monotonicity or State Independence, constant acts—acts taking the

same consequence in every state—cease to have any special status. This poses a signifi-

cant challenge, given their central role both as concerns state independence of utility and

uncertainty aversion. For the former, they are the acts having the same utility in all states,

and hence are key to ‘tying’ together the utilities assigned to consequences in different

states. For the latter, they constitute the ‘safe options’, of sure precise value, that play a

role in the axiomatisations of many popular ambiguity models (Schmeidler, 1989; Gilboa

and Schmeidler, 1989; Ghirardato et al., 2004; Maccheroni et al., 2006), as well as in the

definition of notions such as relative ambiguity aversion (Ghirardato and Marinacci, 2002).

In the face of this challenge, we mobilise an insight from the literature on state-dependent
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utility (Drèze, 1987; Karni, 1993a,b; Hill, 2009), namely to use essentially constant acts:

acts that, though they yield different consequences in different states, yield the same pre-

cise utility in all states. In our model, the set of mixtures of ©-best-and-worst acts h, h

(ie. thα h : α P r0, 1su) will be a set of essentially constant acts; this comes out in the

formulation of the uncertainty aversion axiom.

Recall firstly the classic uncertainty aversion axiom from Schmeidler (1989).

Axiom A7 (Uncertainty Aversion). For all f, g P A and α P r0, 1s, if f � g then fαg © g.

Now consider, for any h, h P A, the following axiom.

Axiom A8 (Strong Uncertainty Aversion with respect to h, h). For all f, g P A and

α, β, β1 P r0, 1s, if f © hβ h and g © hβ1 h then fαg © phβ hqαphβ1 hq.

The only instance of this axiom used here will involve ©-best-and-worst acts h, h; in

this case, it is a strengthening of Uncertainty Aversion. To understand it, consider first the

case where consequences are lotteries over monetary prizes, preferences over lotteries are

represented by a single state-independent utility function, and h, h are best and worst prizes

respectively. It then implies7 that if the decision maker values the act f at over $x, and the

act g at over $y, then he prefers the 50-50 mixture of the two acts, f 1
2
g, to the 50-50 lottery

over the two monetary payments $x and $y. This is just a strong version of the preference-

for-hedging motive behind classical Uncertainty Aversion: mixing over acts may bring a

hedging advantage with respect to (the mixing of) sure monetary payments.

Strong Uncertainty Aversion with respect to ©-best-and-worst h, h is the formulation

of precisely this condition when nothing can be assumed about the precision, form and state

independence of utility. In this context, mixtures hβ h are a proxy for ‘sure’ acts—monetary

payments in the previous example. The axiom, when formulated for©-best-and-worst acts,

says that this hedging motive holds on this ‘scale’ of essentially constant acts. Since, as

remarked previously, it is fairly straightforward in many cases to identify©-best-and-worst

acts, Strong Uncertainty Aversion with respect to such acts is in practice as easy to test as

other typical decision-theory axioms.

Finally consider, for any h, h P A, the following axiom.

Axiom A9 (EC-Independence with respect to h, h). For all f, g P Ah,h and α P r0, 1s, β P

p0, 1q, f © g if and only if fβphα hq © gβphα hq.
7The implication is immediate noting that, in this case, Independence holds over constant acts.

8



Brian Hill Non-Bayesian Theory of State-Dependent Utility

This is Gilboa and Schmeidler’s C-Independence,8 but formulated in terms of mix-

tures of h, h and acts yielding such mixtures as consequences. As noted, in the context

of state dependence and imprecision of tastes, constant acts lose their special status; so

C-independence no longer has its original sense. By contrast, mixtures of ©-best-and-

worst h, h are essentially constant—they yield the same precise utility in all states. So,

in using these in the place of constant acts, EC-Independence (for Essentially Constant-

Independence) with respect to ©-best-and-worst h, h retains the essence of the original

axiom even in our more general setting.

3.2 Representation Theorem

The previously discussed axioms yield the following representation.

Theorem 1. Let © be a preference relation on A, and h, h P A. The following are equiva-

lent:

(i) © satisfies the Basic Axioms, State Consistency, Strong Uncertainty Aversion and

EC-Independence with respect to h, h, and h, h are ©-best-and-worst acts

(ii) there exists a non-trivial, closed, convex, h, h-constant, h, h-precise function υ :

S Ñ 2UzH and a null-consistent, closed, convex set of priors C � ∆ such that © is

represented by a continuous V : AÑ R with:

V pfq � min
pPC

¸
sPS

ppsq min
uPυpsq

upfpsqq (1)

Note that, by Proposition 1, the first two axioms in part (i) imply the existence of ©-

best-and-worst acts, so the final clause of (i) really only identifies h, h as two such acts. So

the second half of part (i) just says that Strong Uncertainty Aversion and EC-Independence

hold with respect to©-best-and-worst acts h, h P A; we use this shorter formulation below.

Theorem 1 tells us that the axioms yield a general state-dependent utility representa-

tion, incorporating imprecision of both beliefs and tastes. On the one hand, tastes for con-

sequences are represented by a function υ assigning a set of utility functions to each state.

To the extent that sets of utilities are involved, this captures imprecision of tastes; to the
8C-Independence states that, for every f, g P A, every constant act c P A and every α P p0, 1q, f © g if

and only if fαc © gαc.
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extent that the set may depend on the state, state-dependence is also accommodated. The

non-triviality, closure and convexity of υ are familiar in the literature. The other properties

translate the (double) role of h, h-mixtures as essentially constant acts: h, h-constancy says

that they receive the same evaluation in all states, and h, h-precision ensures that they can

be seen as ‘sure options’, insofar as hedging among them provides no particular advan-

tage.9 Since the set of utilities depends on the state, we call the non-trivial, closed, convex,

h, h-constant, h, h-precise function υ a h, h-state-dependent multi-utility, or simply a state-

dependent multi-utility when h, h is clear from the context.

On the belief side, the representation involves a set of priors C; as such, it is a straight-

forward extension of the maxmin EU model (Gilboa and Schmeidler, 1989) to incorporate

state-dependence of utility and imprecision of tastes. Closure and convexity of C are stan-

dard; null-consistency is a non-nullness condition, guaranteeing that if a state is non-null

according to one probability measure in C, then it is non-null according to all of them.

Mimicking the terminology used for utilities, we refer to C as a multi-prior.

3.3 Uniqueness

To discuss the uniqueness of the representation, we require some terminology. A state-

dependent multi-utility υ representing © in tandem with multi-prior C according to (1) is

said to be tight if there exists no state-dependent multi-utility υ1 representing © in tandem

with C according to (1) such that υ1psq � υpsq for all s P S, with strict containment for

some s. A tight state-dependent multi-utility is as small as a representation can be, in the

sense that there are no extraneous members of the relevant sets.

Proposition 2. Let© satisfy the Basic Axioms, State Consistency, Strong Uncertainty Aver-

sion and EC-Independence with respect to ©-best-and-worst h, h P A. Then there exists a

tight υ and C representing © according to (1). Moreover, C is unique and υ is unique up to

positive affine transformation.

A central challenge in the state-dependent utility literature (under expected utility) is

to provide a suitably unique representation, separating in particular the (state-dependent)

utility part from the belief side. This result shows that our representation has the desired

uniqueness: the state-dependent multi-utility is unique up to positive affine transformation,

and the multi-prior is unique.
9h, h-precision implies that the restriction of V to the set of h, h-mixtures is affine.
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4 Special cases and Extensions

The three phenomena—state-dependence of utility, imprecision of tastes and imprecision

of beliefs—can be straightforwardly separated in representation (1); indeed, any combi-

nation of them can be ‘shut down’, yielding potentially useful special cases. Moreover,

the treatment of uncertainty can be extended beyond the multi-prior approach adopted in

representation (1). The relevant special cases and extensions are summarized in Table 1,

which involves the following two axioms.

Axiom A10 (State-wise Independence). For every x, y, z P X , h P A, α P p0, 1q and s P S,

xsh © ysh if and only if pxαzqsh © pyαzqsh.

Axiom A11 (Restricted Independence with respect to h, h). For all f, g, h P Ah,h and

α P p0, 1q, f © g if and only if fαh © gαh.

The table is to be read in the context of the following result.

Proposition 3. Let © be a preference relation on A. Then, for each row of Table 1, the

following are equivalent:

(i) © satisfies the axioms in Theorem 1 augmented by (for the 1st three rows) or with

the exception of (last row) the axiom in second column of Table 1

(ii) there exists a pair as stated in the third column of Table 1 such that © is represented

by a continuous V : AÑ R as specified in that column.

Moreover, any combination of the axiom additions or removals in the second column

of Table 1 characterises the corresponding combination of the representations in the third

column.

Finally, in each case, the uniqueness of the representation is the specification or natural

generalisation of that in Proposition 2.10

We now discuss these characterisations in turn.

10More precisely: C and p are unique, tight U , u and υ are unique up to positive affine transformation, and

tight α is unique up to the corresponding transformation (see Theorem 2 in Appendix A for details).

11



Brian Hill Non-Bayesian Theory of State-Dependent Utility

Table 1: Special cases and Extensions
Shut down Add Axiom Representation

State-

dependence
Monotonicity

V pfq � min
pPC

¸
sPS

ppsqmin
uPU

upfpsqq (2)

U � U: a non-trivial, h, h-precise, closed, convex set of

utility functions; C as in Theorem 1

Taste impre-

cision

State-wise Indepen-

dence

V pfq � min
pPC

¸
sPS

ppsqups, fpsqq (3)

u : S � Z Ñ <: a non-trivial, h, h-constant function that

is continuous in its second coordinate; C as in Theorem 1

Belief

imprecision

Restricted Indepen-

dence with respect to

©-best-and-worst h, h

V pfq �
¸
sPS

ppsq min
uPυpsq

upfpsqq (4)

p P ∆: probability measure on S; υ as in Theorem 1

Extend Remove Axiom Representation

Treatment of

uncertainty

EC-Independence

with respect to ©-

best-and-worst h, h

V pfq � min
pP∆, pa,bqPαppq

�
a
¸
sPS

ppsq min
uPυpsq

upfpsqq � b

�

(5)

α : ∆ Ñ 2<¡0�<: a non-trivial, null-consistent, grounded,

calibrated, closed, convex function; ν as in Theorem 111

11α : ∆ Ñ 2<¡0�< is: non-trivial if there exists p P ∆ such that αppq � H; convex if, when-

ever pa, bq P αppq and pa1, b1q P αpp1q, then for all λ P r0, 1s, pλa � p1 � λqa1, λb � p1 � λqb1q P

α
�

λa
λa�p1�λqa1 p�

p1�λqa1

λa�p1�λqa1 p
1
	

; closed if, whenever pan, bnq P αppnq with pn Ñ p and pan, bnq Ñ

pa, bq P <¡0 �<, then pa, bq P αppq; grounded if there exists p P ∆ such that p1, 0q P αppq; calibrated (with

respect to υ) if, for all p P ∆, pa, bq P αppq and z P υpXq, az � b ¥ z; null-consistent (with respect to υ)

if, for every p, q such that αppq, αpqq � H, ppsq � 0 and qpsq � 0 for some s P S if and only if, for each

r P pintpυpXqqq
S , there exists p1 P ∆ and pa1, b1q P αpp1q such that a1

°
sPS p

1psqrs�b
1   a

°
sPS ppsqrs�b

for all pa, bq P αppq. We adopt the convention that, when αppq is empty, p is not involved in the minimisation.
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4.1 ‘Shutting down’ factors

The first row of Table 1 gives a general state-independent representation with imprecise

beliefs and tastes. The set of utilities U is state-independent; hence the state-dependence

of utility is ‘shut down’ by adding the standard Monotonicity axiom (Section 3.1).12 The

same representation is obtained by replacing State Consistency with the State Independence

axiom (see Proposition 7 in Appendix A). In particular, unlike in the expected utility case,

these two axioms are not equivalent in the presence of imprecise beliefs and tastes. The

maxmin multi-utility representation over consequences in (2) is similar to that obtained by

Maccheroni (2002) in the context of decision under risk, though his characterisation uses a

weakened version of the Independence axiom in the place of Strong Uncertainty Aversion.

The second row involves what, to our knowledge, is the first precise state-dependent

utility uncertainty averse representation. The function u is a standard (precise) state-

dependent utility function as in the state-dependent utility literature; its uniqueness is com-

parable to that obtained in this literature (Karni, 1993a,b, 2011).13 Hence taste imprecision

is ‘shut down’ by the addition of a weakened independence axiom, applying only to pref-

erences conditional on states.

The third row provides a state-dependent multi-utility representation with a single-prior

belief. Hence, imprecision in beliefs (and thus uncertainty aversion) is ‘shut down’ by the

restriction of the standard independence axiom to acts yielding mixtures of ©-best-and-

worst h, h as consequences in every state (i.e. acts in Ah,h ; see Section 2).

The second clause of Proposition 3 implies that concurrent shut downs of several factors

are obtained by combining the axioms in the table, yielding representations that can be read

off from those provided. For instance, the combination of the axioms for the first and third

rows characterises a single prior and state-independent multi-utility representation. (Riella,

2015, Thms 5 & 6) proposes a representation for precisely this case; though, unlike the

representations involved here, it uses the certainty equivalents of consequences rather than

12The fact that Monotonicity yields the expected effects—namely state-independence of the multi-

utility—is a non-trivial property of the representation. For instance, the representation V pfq �

minpPC minuPU
°
sPS ppsqupfpsqq, which is the uncertainty averse counterpart of the incomplete preference

imprecise belief and taste model due to Galaabaatar and Karni (2013), is basically incompatible with Mono-

tonicity (Hill, 2017). In fact, that representation violates State Consistency.
13Other approaches (Karni et al., 1983; Karni and Schmeidler, 2016, 1993; Karni and Mongin, 2000) yield

a weaker uniqueness: up to cardinal unit comparable transformation (Karni et al., 1983).
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their utility values, in the style of Cerreia-Vioglio et al. (2015).

4.2 Extensions

The final row of Table 1 shows that dropping EC-Independence yields a representation

with a more general treatment of uncertainty. It encompasses many of the main theories of

uncertainty averse preferences proposed in the literature. One way to see this is to com-

pare such models, which generally assume precise state-independent utility, with the cor-

responding special case of (5). By Proposition 3, removing EC-Independence and adding

Monotonicity and State-wise Independence yields this case:

V pfq � min
pP∆, pa,bqPαppq

�
a
¸
sPS

ppsqupfpsqq � b

�
(6)

where u is a precise state-independent utility, and α is as in the final row of Table 1.

This representation clearly contains not only maxmin EU preferences, but also other

families such as variational preferences (Maccheroni et al., 2006) and confidence prefer-

ences (Chateauneuf and Faro, 2009) as special cases.14 The α generalises similar sets of

priors, ‘ambiguity indices’ or ‘confidence functions’ in these models. In fact, represen-

tation (6) is essentially the class of uncertainty averse preferences (Cerreia-Vioglio et al.,

2011) that can be represented by a concave functional on A (Appendix A.1). Since the

vast majority of existing uncertainty averse models involve concavifiable functionals15—

including uncertainty averse Choquet (Schmeidler, 1989) and smooth ambiguity prefer-

ences (Klibanoff et al., 2005)—they belong to the family of preferences characterised by

representation (6). They can thus be extended to incorporate state dependence and impre-

cision of tastes by mobilising the insight behind the EC-Independence axiom in Theorem

1: use essentially constant acts—mixtures of h, h—in the roles played by constant acts in

standard axiomatisations.

Note that further extensions of (5) can be obtained by weakening Strong Uncertainty

Aversion to standard Uncertainty Aversion (and adding some technical assumptions); in
14Precisely: variational preferences correspond to the case where a � 1 for all p P ∆ and pa, bq P αppq,

confidence preferences to the case where uphpsqq � 0 and b � 0 for all p P ∆ and pa, bq P αppq, and maxmin

EU to the case a � 1 and b � 0 for all p P ∆ and pa, bq P αppq.
15A functional I is concavifiable if there exists a strictly monotone transformation of it which is con-

cave. For instance, the smooth ambiguity functional under uncertainty aversion—often presented as Ipϕq �

φ�1
�³

∆
φ
�³
S
ϕdp

�
du
�

for concave, strictly increasing φ—is concavifiable because φ � I is concave.

14
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doing so, however, the simple multi-utility representation of tastes in (1) and (5) is lost.

See Hill (2018, Appendix A) for details.

5 Comparative Statics

We now explore the comparative statics of our benchmark representation (1). (Similar

results hold for the representations in Section 4; see Appendix A.4.) A popular notion of

relative uncertainty aversion is formulated in terms of the propensity of decision makers to

prefer an act over a constant act. Such comparisons rely on the constant act having a fixed,

precise value across states for the decision maker, and so lose their intuition when utility

may be state dependent or imprecise. Fortunately, in the context of (5), there is a suitable

proxy for constant acts, namely mixtures of ©-best-and-worst acts h, h. Substituting them

into the standard definition of comparative uncertainty aversion yields the following notion.

Definition 2. The (decision maker with) preference ©1 with ©1-best-and-worst acts h
1
, h1

is more imprecision averse than (one with) preference ©2 with ©2-best-and-worst acts

h
2
, h2 if and only if, for each f P A and α P r0, 1s,

f ©1 h 1
α h

1 implies f ©2 h 2
α h

2 (7)

Definition 2 does not assume that the decision makers are using the same best and

worst acts and hence it does not assume that the decision makers share the same essentially

constant acts. For a given imprecision aversion comparison, this makes it difficult to disen-

tangle aspects pertaining to the decision makers’ tastes from those concerning their beliefs:

what is a comparison of essentially constant acts for one decision maker—and hence one

involving only tastes—may not be for the other. Indeed, to conduct comparative statics in

the context of state-dependent utility, it is not uncommon to invoke some assumption of

comparability between the decision makers’ preferences (Karni, 1979, 1983a,b; Drèze and

Rustichini, 2004). For our main result, we only require the mild assumption that the less

imprecision-averse decision maker’s best act h
2

is considered a maximal act by the more

imprecision-averse decision maker.

Proposition 4. Let ©1 and ©2 be represented according to (1) by pairs of h
1
, h1- (re-

spectively h
2
, h2-)state-dependent multi-utilities and multi-priors pυ1, C1q and pυ2, C2q, and

15
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suppose that they are normalised so that υ1pXq � υ2pXq. Suppose that h
2

is a maximal

element of ©1. Then the following are equivalent.

(i) ©1 is more imprecision averse than ©2

(ii) C2 � C1 and υ1psq ¤ υ2psq for all ©1-non-null states s P S.

Imprecision aversion corresponds to simultaneous but separate comparisons of the be-

lief and taste elements. Less imprecision-averse preferences have higher state-dependent

multi-utilities and smaller multi-priors than more imprecision-averse ones. In particular,

this means that the utilities involved in the representation of less imprecision-averse pref-

erences are ‘redundant’ with respect to more imprecision-averse preferences: adding them

does not change the fact of representing ©1 (see also Proposition 8, Appendix A.4).

These effects on tastes and beliefs can be characterised separately by using more refined

notions of comparative imprecision aversion.

Definition 3. Preference©1 with©1-best-and-worst acts h
1
, h1 is more imprecision averse

on consequences than ©2 with ©2-best-and-worst acts h
2
, h2 if and only if, for every ©1-

non-null s P S, h P A, x P X and α P r0, 1s,

xsh ©
1 ph 1

α h
1qsh implies xsh ©

2 ph 2
α h

2qsh (8)

Moreover, preference ©1 is more imprecision averse on states than ©2 if and only if,

for every α P r0, 1s, every f P Ah
1
,h1

, and for f̂ P Ah
2
,h2

with f̂psq � h
2

β h
2psq if and only

if fpsq � h
1

β h
1psq for all s P S,

f ©1 h 1
α h

1 implies f̂ ©2 h 2
α h

2 (9)

These notions are as to be expected. Imprecision aversion on consequences compares

consequences with the ‘essentially constant’ mixtures of best and worst acts on each non-

null state, but eschews comparisons of acts differing on several states. Imprecision aversion

on states considers only acts f yielding ‘essentially constant’ consequences, and asks that

if f is preferred to an essentially constant act by decision maker 1, then 2 retains the same

preference. A complication with the latter condition is that the decision makers may have

different essentially constant acts: because of this, it uses the ‘equivalent’ act to f but

formulated in terms of decision maker 2’s essentially constant acts (f̂ ).

16
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Proposition 5. Let ©1 and ©2 be represented according to (1) by pairs of h
1
, h1- (re-

spectively h
2
, h2-)state-dependent multi-utilities and multi-priors pυ1, C1q and pυ2, C2q, and

suppose that they are normalised so that υ1pXq � υ2pXq. Then:

(i) ©1 is more imprecision averse on consequences than©2 if and only if υ1psq ¤ υ2psq

for all ©1-non-null s P S.

(ii) ©1 is more imprecision averse on states than ©2 if and only if C2 � C1.

These results are consistent with known characterisations of uncertainty attitudes. A

standard notion of relative uncertainty aversion (Ghirardato and Marinacci, 2002) coincides

with Definition 2 in the special case of precise state-independent utility—when constant

acts are essentially constant in our sense. Proposition 4 then yields the known characterisa-

tion of uncertainty aversion for the maxmin-EU model (Ghirardato and Marinacci, 2002):

©1 is more uncertainty averse than ©2 if and only the latter’s representing multi-prior is

contained in the former’s and the decision makers share the same (normalised) utilities.

Hence the essential change in the notion of relative uncertainty aversion required under

taste imprecision and state dependence of utility is the switch from standard constant acts

to essentially constant ones (mixtures of h, h). Interestingly, imprecision aversion on states

separates out the containment of multi-priors from the identity of (normalised) utilities,

only implying the former (Proposition 5 (ii)).

Similarly, in the presence of state-independent utility, the notion of imprecision aver-

sion on consequences can be reformulated with preferences over constant acts in the place

of preferences conditional on states. It is a straightforward corollary of Proposition 5 (i)

that, in this case, ©1 is more imprecision averse on consequences than ©2 if and only if

there is the appropriate ordering of the representing multi-utilities in (2): U1 ¤ U2. Whilst

this is, to our knowledge, the first comparative static result for the maxmin multi-utility

representation featuring in (1), it echoes results obtained for other multi-utility-style rep-

resentations in the case of monetary lotteries (e.g. Cerreia-Vioglio et al., 2015). It also

corroborates the interpretation of υ as state-dependent multi-utility.

In summary, the proposed model permits comparative statics, relating a state-dependent-

utility extension of standard relative uncertainty aversion to concordant changes in the two

primitives of model—the multi-prior and the state-dependent multi-utility. Moreover, the

changes in the two primitives can be separately characterised, in terms of more refined

17



Brian Hill Non-Bayesian Theory of State-Dependent Utility

imprecision aversions on consequences and on states.16 This attests to the possibility of

separately studying changes in the belief- and taste-factors under this model. Importantly,

it allows a grasp on cases where beliefs and tastes do not move in the same direction. Con-

sider a hurricane in a region that has never known natural disasters. Given the novelty of

the experience, the inhabitants’ tastes concerning the consequences of a hurricane would

typically become more precise after the event. Moreover, since it may be unclear whether

it was a one-off or a new trend, their ex ante (quasi-)certainty of the absence of hurricanes

would naturally give way to a wider range of probabilities of future hurricanes ex post—

betraying an increase in belief imprecision. In such cases, tastes and beliefs may move

in opposite directions. Whereas the general notion of imprecision aversion does not ap-

ply, the more refined notions provide the foundations for the study of such changes. By

allowing clearly understood and separate interventions on the belief and taste parameters,

representation (1) provides the modeling tools required to investigate the consequences of

such simultaneous yet diametric movements on, say, insurance purchasing.

16Indeed, Propositions 4 and 5 show that the general notion of imprecision aversion can be ‘factorised’

into the conjunction of more refined imprecision aversions on consequences and on states.
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Appendix A Proofs

Throughout the Appendices, ¤ on Rn is the standard order, given by a ¤ b iff ai ¤ bi for

all 1 ¤ i ¤ n, for all a, b P Rn. Note that X is a closed convex subset of the Banach space

capZq of signed Borel measures of bounded variation over Z, under the total variation norm

(denoted here }�}). Moreover, since Z is compact, capZq (under the total variation norm) is

isometrically isomorphic to the topological dual of U (which, recall, is the set of continuous

real functions on Z), under the duality   f, x ¡�
³
udx. This duality generates the weak�

topology on capZq; unless specified, we adopt this topology throughout the Appendix. � is

the standard scalar product of vectors in finite-dimensional vector spaces, and the duality

for pU, capZqq (in particular, u � x �
³
udx for x P X , u P U).

A.1 General result

We begin with a preparatory proposition.

Proposition 6. For every non-null s P S, the relation ©s defined by, for all x, y P X ,

x ©s y if and only if xsh © ysh for some h P A is a continuous weak order.

Proof. For all x, y P X , if x «s y, then there exists no h P Awith xsh « ysh, so xsh   ysh

for all h P A, so x ¨s y. Hence ©s is complete. Moreover, for all x, y, z P X if x ©s y

and y ©s z, then for some h, h1 P A xsh © ysh and ysh1 © zsh
1. It follows by A6 that

ysh © zsh, so xsh © zsh by A1 and hence x ©s z; so ©s is transitive. Finally, for any

y P X , tx P A : x ©s yu � tx P A : Dh P A, xsh © yshu � tx P A : xsh © ysh, @h P

Au �
�
hPAtx P A : xsh © yshu (where the middle equality is due to A6), which is

closed since, by A3, each of the sets tx P A : xsh © yshu is. A similar argument holds for

tx P X : x ¨s yu, so ©s is continuous.

The following is the fundamental technical result, which underpins the others. A pair

pυ, αq representing © according to (5) below is tight if there exists no pυ1, α1q representing

© according to (5) such that υ1psq � υpsq and α1ppq � αppq for all s P S and p P ∆, with

strict containment for some s or p.

Theorem 2. Let © be a preference relation on A, and h, h P A. The following are equiva-

lent:
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(i) © satisfies the Basic Axioms, State Consistency and Strong Uncertainty Aversion

with respect to h, h, and h, h are ©-best-and-worst acts

(ii) there exists a tight pair consisting of a non-trivial, closed, convex, h, h-constant,

h, h-precise function υ : S Ñ 2UzH and a non-trivial, null-consistent, grounded,

calibrated, closed, convex function α : ∆ Ñ 2<¡0�< such that © is represented by a

continuous V : AÑ R with:

V pfq � min
pP∆, pa,bqPαppq

�
a
¸
sPS

ppsq min
uPυpsq

upfpsqq � b

�
(5)

Moreover, for any other tight pair pυ1, α1q representing © according to (5), there exists

κ P <¡0 and λ P < such that υ1psq � κυpsq � λ for all non-null s P S, and α1ppq �

tpa, κb� λp1 � aqq | @pa, bq P αppqu for all p P ∆.

We shall refer to a function α : ∆ Ñ 2<¡0�< with the properties specified in this

Theorem as an ambiguity index.

Proof of Theorem 2. Consider firstly the (i) implies (ii) direction.

By State Consistency and the fact that h, h are ©-best-and-worst, hpsq ¡s hpsqα hpsq

for all α P p0, 1q, whence it follows from A1 and A6 that h ¡ hα h for all α P p0, 1q. We

now show the following stochastic dominance property for h, h: for every α, β P r0, 1s,

α ¥ β iff hα h © hβ h. If α ¥ β, then hα h � h α�β
1�β

phβ hq. Since hβ h © hβ h and

h © hβ h, it follows from A8 that hα h © hβ h, as required. For the other direction,

suppose for reductio that there exist α, β P r0, 1s with α   β, and hα h © hβ h. It follows

from the previous argument that hα h � hβ h. Without loss of generality, we can assume

that rα, βs is a maximal interval with this property, in the following sense: for every α1   α

and every β1 ¡ β, hα1 h   hα h � hβ h   hβ1 h. Since hα1 h   h for all α1 P p0, 1q, β   1.

Take any γ P
�
0, β�α

1�α

�
(this set is non-empty since β ¡ α). So hγphα hq � hδ h for some

α   δ   β. By the previous result, hδ h � hα h � hβ h. However, since hβ h ¨ hα h, it

follows from A8 that hγ�βp1�γq h � hγphβ hq ¨ hγphα hq � hδ h � hβ h, whence, by the

previous result hγ�βp1�γq h � hβ h, contradicting the maximality of rα, βs. So hα h   hβ h

whenever α   β, as required.

20



Brian Hill Non-Bayesian Theory of State-Dependent Utility

Relying on this result, we apply standard arguments to obtain a real-valued functional

representing ©. It follows from the fact that h, h are ©-best-and-worst, A1 and A6 that

h © f © h for all f P A. It follows from this observation, the previous one and A3 that,

for each f P A, there exists a unique αf P r0, 1s with f � hαf h. Define V : A Ñ r0, 1s

by V pfq � αf for each f P A. By definition and A1, V represents ©. By A2, V is non-

constant. It follows from A8 that, for all f, g P A, α P r0, 1s, V pfαgq ¥ αV pfq � p1 �

αqV pgq. So V is concave. By A3, V is continuous.

Now fix a non-null s P S. We proceed as above, but now for ©s. We first show

that for every α, β P r0, 1s, α ¥ β iff hpsqα hpsq ©s hpsqβ hpsq. If α ¥ β, then

hα h � h α�β
1�β

phβ hq. Since hβ h © hβ h and hsphβ hq © hβ h, it follows from A8 for

h, h that phα hqsphβ hq © hβ h, so, by A6, hpsqα hpsq ©s hpsqβ hpsq as required. For

the other direction, suppose for reductio that there exist α, β P r0, 1s with α   β, and

hpsqα hpsq ©s hpsqβ hpsq. It follows from the previous argument that hpsqα hpsq �s

hpsqβ hpsq. Without loss of generality, we can assume that rα, βs is a maximal interval

with this property, in the same sense as above. By State Consistency and the fact that

h, h are ©-best-and-worst, hpsqα1 hpsq  s hpsq for all α1 P p0, 1q, so β   1. Take any

γ P
�
0, β�α

1�α

�
(this set is non-empty since β ¡ α). So hpsqγphpsqα hpsqq � hpsqδ hpsq

for some α   δ   β. By the previous result, hpsqδ hpsq �s hpsqα hpsq �s hpsqβ hpsq.

However, since, by A6, hβ h ¨ phα hqsphβ hq, it follows from A8 that hγ�βp1�γq h �

hγphβ hq ¨ hγpphα hqsphβ hqq � phδ hqsphγ�βp1�γq hq � phβ hqsphγ�βp1�γq hq, whence,

by the previous result hγ�βp1�γq h �s hβ h, contradicting the maximality of rα, βs. So

hpsqα hpsq  s hpsqβ hpsq whenever α   β, as required.

By this observation, Proposition 6 and the fact that h, h are©-best-and-worst, for every

x P X , there is a unique αxs such that x �s hpsqαxs hpsq. Define the function Vs : X Ñ

r0, 1s by Vspxq � αxs . By Proposition 6, Vs represents ©s. Moreover, for any x, y P X ,

by A6, xsphαxs hqsc � hαxs h and ysphαys hqsc � hαys h, whence it follows from A8 that

pxγyqsphγαxs�p1�γqαys hqsc © hγαxs�p1�γqαys h for all γ P r0, 1s, so Vspxγyq ¥ γVspxq � p1 �

γqVspyq and Vs is concave. By Proposition 6, Vs is (weak�-)continuous.

We have the following consequence.

Lemma A.1. For each non-null s P S, there exists a non-trivial hpsq, hpsq-precise closed

convex set of utility functions Us such that Vspxq � minuPUs u � x for all x P X . Moreover

there exists such a set which is such that every other non-trivial hpsq, hpsq-precise closed
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convex set of utility functions with these properties is a superset.

Proof. Fix a non-null s P S. Let 1 : Z Ñ R be the constant function yielding value 1. We

first extend Vs to the set of non-negative measures ca�pZq � capZq: V̄s : capZq Ñ < is

defined by V̄spµq � p1 � µqVsp
µ
1�µ
q. For µ, ν P ca�pZq and λ P r0, 1s, we have:

V̄spλµ� p1� λqνq �1 � pλµ� p1� λqνqVs

�
λµ� p1� λqν

1 � pλµ� p1� λqνq




�1 � pλµ� p1� λqνqVs

�
λ1 � µ

1 � pλµ� p1� λqνq
.
µ

1 � µ
�

p1� λq1 � ν

1 � pλµ� p1� λqνq.

ν

1 � ν




¥1 � pλµ� p1� λqνq

�
λ1 � µ

1 � pλµ� p1� λqνq
Vsp

µ

1 � µ
q �

p1� λq1 � ν

1 � pλµ� p1� λqνq
Vsp

ν

1 � ν
q




�λV̄spµq � p1� λqVspνq

where the inequality follows from the concavity of Vs. Hence V̄s is concave. Since Vs
is weak�-continuous (and the duality is weak�-continuous), it follows that V̄s is weak�-

continuous. It follows that V̄s is superdifferentiable at every µ P intpca�pZqq (Aliprantis

and Border, 2007, Thm 7.12)—that is, for each such µ, there exists u P U with u � ν �

V̄spµq � u � µ ¥ V̄spνq for all ν P ca�pZq. Note that if this holds for u P U at µ P ca�pZq

with µ � 0, then we have, for u1 P U defined by u1pzq � upzq � V̄spµq � u �µ for all z P Z,

that u1 � ν ¥ V̄spνq for all ν P ca�pZq and u1 �µ � Vspµq. With slight abuse of terminology,

we will refer to u1 satisfying these conditions for µ P ca�pZq with µ � 0 as a subgradient

at µ. It follows from the definition of V̄s that u is a subgradient of µ P X if and only if it is

a subgradient of λµ, for all λ ¡ 0.

X is weak�-compact because Z is compact (Aliprantis and Border, 2007, Thm 15.11),

and since it linearly spans capZq, capZq is weakly compactly generated in the sense of

Phelps (1993, Defn 2.41). Since V̄s is weak�-continuous (and the norm topology is stronger

than the weak�-topology), it is norm-continuous. It follows from Phelps (1993, Thm 2.45)

that the set of points in intpca�pZqq where V̄s is Gâteaux differentiable—and hence at

which it has unique supergradients—is dense in intpca�pZqq. Let Us be convex closure of

the union of the subgradients at all µ P intpca�pZqq where V̄s is Gâteaux differentiable.

It follows from the upper hemi-continuity of the superdifferential mapping (Phelps, 1993,

Prop 2.5), that, for each point in intpca�pZqq, some supergradient at this point is contained

in Us. It follows that V̄spµq � minuPUs u � µ for all µ P intpca�pZqq, and, by the continuity
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of V̄s, this holds for all µ P ca�pZq. By construction Us is closed and convex, and we

have that Vspxq � minuPUs u � x for all x P X . Since Vs is not a constant function, Us is

non-trivial. Since, by construction, Vs is linear on thα h | α P r0, 1su, there exists u P Us
supporting Vs at every point in thα h | α P r0, 1su; it follows from this, and the fact that

h, h are ©-best-and-worst that Us is hpsq, hpsq-precise. Finally, any other U 1s representing

Vs as stated must contain supergradients at points where V̄s is Gâteaux differentiable, and

hence be a superset of Us, as required.

Take any non-null s P S, and for all null s1 P S, define Vs1 � Vs and Us1 � Us. By

construction, Vsphpsqα hpsqq � α � Vs1phps
1qα hps

1qq for every α P r0, 1s and s, s1 P S, so

υ : S Ñ 2UzH defined by υpsq � Us for all s P S, is h, h-constant. Moreover, by Lemma

A.1, it is non-trivial, closed, convex and h, h-precise.

Let B � r0, 1sS . For every f P A, define V̂ pfq P B by V̂ pfqpsq � Vspfpsqq for all

s P S. By A1 and A6, for every f, g P A, if fpsq �s gpsq for every s P S, then f � g,

so the functional I : B Ñ < defined by Ipaq � V pfq for any f such that V̂ pfq � a is

well-defined. By definition V pfq � IpV̂ pfqq.

Lemma A.2. I is concave, continuous, monotonic, and normalised (ie. for all z P r0, 1s,

Ipz�q � z, where z� is the constant function in B taking value z). Moreover, for every

z, w P r0, 1s with z � w, a P B and s P S, Ipzsaq � Ipwsaq if and only if s P S is null.17

Proof. The Lemma follows from standard arguments. Normalisation follows from the

definition of I , Vs and A6. Monotonicity of I is immediate from A6. Continuity of I

follows from the continuity of V and the fact that V̂ is a quotient map. As concerns

concavity, for every a P B, let ha P A be such that hapsq � hapsq h for all s P S.

By construction, V̂ phaq � a. Note moreover that, for every a, b P B and γ P r0, 1s,

V̂ phaγh
bq � γa � p1 � γqb. By the concavity of V , Ipγa � p1 � γqbq � V phaγh

bq ¥

γV phaq � p1 � γqV phbq � γIpaq � p1 � γqIpbq, so I is concave. As concerns the final

property, if s P S is null, then V pxsfq � V pysfq for all x, y P X , f P A by defini-

tion, and the corresponding property for I follows immediately. If s P S is non-null,

then, since, as shown above hpsqα hpsq �s hpsqβ hpsq for α � β, it follows from A6 that

17zsa is defined in an analogous way to xsf P A.
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V pphpsqα hpsqqqsfq � V pphpsqβ hpsqqsfq for all f P A; the corresponding property for I

follows immediately.

Since B is closed, bounded and convex and I is concave, for each a P ripBq, there

exists an affine functional φ : <S Ñ < supporting I at a: i.e. such that φpbq ¥ Ipbq for all

b P B and φpaq � Ipaq. Each such φ can be written as φpbq � η � b � µ for some η P <S ,

µ P <. We first show that ηs ¥ 0 for every s P S. Take any a P ripBq such that φ supports

I at a, and consider as P B defined by aspsq � apsq � ε, asps1q � apsq for s1 � s, where

ε ¡ 0 such that apsq � ε P r0, 1s. By the monotonicity of I , Ipasq ¥ Ipaq; since φ supports

I at a, we have that φpasq � η � as � µ ¥ Ipasq ¥ Ipaq � η � a � µ, so ηs.ε ¥ 0. Since

this holds for every s P S, we have that ηs ¥ 0 for every s P S. We now show that ηs � 0

if and only if s is null. Take any a P ripBq such that φ supports I at a, and consider as as

defined previously and a�s P B defined by a�spsq � apsq � δ, a�sps1q � apsq for s1 � s,

where δ ¡ 0 such that apsq � δ P r0, 1s. If ηs � 0, then φpasq � φpaq � Ipaq, whence it

follows, since φpasq ¥ Ipasq, that Ipasq � Ipaq, so s is null, by the final clause in Lemma

A.2. Conversely, by the final clause in Lemma A.2, if s is null, then Ipa�sq � Ipaq; since

φpa�sq � η � a�s � µ � φpaq � ηs.ε, it follows from the fact that φ supports I at a that

ηs ¤ 0, and thus, in the light of the previous result, that ηs � 0, as required.

Let Φ � cl pconvtpη, µq | Da P ripBq s.t. φpbq � η � b� µ supports I at auq. By the

continuity of the superdifferential mapping and of I , Ipaq � minpη,µqPΦ η � a � µ for all

a P B. Since I is differentiable on a dense subset of B and supergradients at differentiable

points determine the supergradients elsewhere (Rockafellar, 1970, Theorem 25.6), this does

not hold for any proper closed convex subset of Φ. Moreover, since I is normalised, for all

µ1   1, p0, µ1q R Φ. (It is clear from the construction that p0, µ1q R Φ for all µ1 ¡ 1.) Hence,

for every pη, µq P Φztp0, 1qu, there is a unique p P ∆ � <S and ā P <¡0 such that η � ā.p.

Let P � tpp, ā, b̄q P ∆ � <¡0 � < | pā.p, b̄q P Φztp0, 1quu.

By the previous observations, for all a P B, Ipaq ¤ minpp,ā,b̄qPPpā.pq � a � b̄ with

equality whenever a R I�1p1q. Since I is normalised, it follows that ār � b̄ ¥ r for all

pp, ā, b̄q P P and r P r0, 1s. We now show that there exists p P ∆ such that pp, 1, 0q P P .

To establish this, note firstly that for every r ¡ 0, there exists no pp, a, bq P P such that

a ¡ 1 and a.r � b � r: if there were such a, b, then for any r1 P r0, 1s with r1   r,

a.r1 � b � r � a.pr � r1q   r1, contradicting the fact that P represents I and that I is
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normalised. Similarly, for every r   1, there exists no pp, a, bq P P such that a   1 and

a.r � b � r. Since I is normalised, it follows from the previous observation about the

representation of I by P that there exists p P ∆ with pp, 1, 0q P P . Since, for any p P ∆

and a P B, p �a ¤ 1, it follows from the fact that P represents I on pI�1p1qqc that, for every

pp, 1, 0q P P and a P I�1p1q, p �a � 1. Hence Ipaq � minpp,ā,b̄qPPpā.pq �a� b̄ for all a P B.

Define α : ∆ Ñ <¡0�< by αppq � tpa, bq P <¡0�< | pp, a, bq P Pu. By the definition

ofP , the properties of Φ (in particular non-emptiness, closure, convexity, the fact about null

states) and the continuity of the superdifferential mapping, α is non-trivial, null-consistent,

closed and convex. By the last two properties of P mentioned above, α is calibrated (with

respect to υ) and grounded. So α is a non-trivial, null-consistent, grounded, calibrated,

closed, convex function representing © along with υ according to (5), as required.

Since no proper closed convex subset of Φ represents I in the specified way, there is no

closed, convex α1 : ∆ Ñ <¡0 � < with α1ppq � αppq for all p P ∆ where the inclusion

is proper for at least one p P ∆ that represents © along with υ according to (5). It follows

from this and Lemma A.1 that the pair pυ, αq is tight.

Now consider the (ii) to (i) implication. It is standard for the Basic Axioms: Weak Order

is immediate, Non-degeneracy follows from the non-triviality of υ and α and Continuity

follows from the continuity of V . State Consistency follows immediately from the form of

the representation, and the fact that α is null-consistent. By the null-consistency of α, for

every non-null state s P S, x, y P X and h P A, xsh © ysh if and only if minuPυpsq upxq ¥

minuPυpsq upyq. Since υ is h, h-precise, it follows that, for every non-null s P S, hpsq  s

phpsqqβphpsqq  s hpsq for all β P p0, 1q and hpsq ¨s x ¨s hpsq for all x P X . Hence

h, h are ©-best-and-worst acts. Since υ is h, h-constant and h, h-precise, for each β P

r0, 1s, V phβ hq � βV phq � p1 � βqV phq; and hence, by the representation, f © hβ h iff

a
°
sPS ppsquspfpsqq�b ¥ βV phq�p1�βqV phq for all p P ∆, pa, bq P αppq and us P υpsq.

Strong Uncertainty Aversion with respect to h, h follows immediately from the form of the

representation.

Finally, consider the uniqueness clause, and suppose that pυ, αq, and pυ1, α1q are tight

pairs of state-dependent multi-utilities and ambiguity indices representing ©. Let Vυ,α and

Vυ1,α1 be the functionals defined from them according to (5). By Lemma A.3 below, we

can assume without loss of generality that υ and υ1 are calibrated and constant with respect

to the same h, h. Let κ P <¡0 and λ P < be such that κVυ1,α1phq � λ � Vυ,αphq and
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κVυ1,α1phq � λ � Vυ,αphq (it is straightforward to show that such κ and λ exist). Define

V 2 � κVυ1,α1�λ, υ2 � κυ1�λ and α2 by α2ppq � tpa, κb� λp1 � aqq | @pa, bq P α1ppqu for

all p P ∆; it is clear that V 2, υ2 and α2 are related according to (5) and that V 2 represents

©. υ2 is h, h-precise and h, h-constant since pυ1, α1q is, and because υ is h, h-precise and

h, h-constant, V 2phα hq � V phα hq for all α P r0, 1s. It follows by the fact that for each

f P A there exists an unique α P r0, 1s with f � hα h and the fact that they both represent

© that V 2 � V . Since υ and υ2 are h, h-constant, it follows that, for all s, t P S, and

β P r0, 1s, Vsphpsqβ hpsqq � Vtphpsqβ hpsqq � V phβ hq � V 2phβ hq � V 2
t phpsqβ hpsqq �

V 2
s phpsqβ hpsqq, where Vspxq � minuPυpsq u � x and similarly for V 2

s . Since, for each non-

null s P S and x P X , there exists a unique β with x �s hpsqβ hpsq, it follows that V 2
s � Vs

for each non-null s P S. Since υpsq is tight, by the reasoning in the proof of Lemma A.1,

it is the convex closure of the set of supergradients of Vs; however, since υ2psq is tight, the

same holds for it, and so the two sets are identical. So υpsq � υ2psq � κυ1psq � λ for all

non-null s P S as required.

Let K � V pXq � V 2pXq; since υ and υ2 are h, h-constant, K � tminuPυpsq u � x | x P

Xu � tminuPυ2psq u � x | x P Xu for all non-null s P S. Let I be the functional on KS

defined from V as in the proof of Theorem 2, and similarly for I2 and V 2. Since V � V 2,

I � I2. By the construction in the proof of Theorem 2, since α is tight, it is generated by

the set of supergradients of I; however, since α2 is tight, the same holds for it, so α � α2.

So α � tpa, κb� λp1 � aqq | @pa, bq P α1ppqu for all p P ∆, as required.

Lemma A.3. Let pυ, αq and pυ1, α1q be pairs of h, h- (respectively h
1
, h 1-)state dependent

multi-utilities and ambiguity indices representing © according to (5). Then hα h � h
1

α h
1

for all α P r0, 1s. It follows in particular that υ and υ1 are both h, h-constant, h, h-precise

and h
1
, h 1-constant, h

1
, h 1-precise.

Proof. By Theorem 2 and its proof, the Strong Uncertainty Aversion holds with respect

both to h, h and h
1
, h 1. Since pυ1, α1q represents ©, we have that h

1
and h 1 are maximal and

minimal elements of ©, respectively, and similarly for h and h. So h � h
1

and h � h 1.

It follows that, for any α P r0, 1s, by Strong Uncertainty Aversion with respect to h, h,

that h
1

α h
1 © hα h, and by Strong Uncertainty Aversion with respect to h

1
, h 1, that hα h ©

h
1

α h
1, whence hα h � h

1

α h
1, as required. The remaining clauses in the lemma follow

immediately.
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A.2 Proofs of results in Section 3

Proof of Proposition 1. For every non-null s P S, it follows from Proposition 6 and the

compactness of X that there exists a minimal and maximal element of ©s; for each such

s, let cs and cs respectively be such elements. Without loss of generality, we can assume

that cs and cs are such that cs  s pcsqβpcsq  s cs for all β P p0, 1q. If this is not the case

for some cs and cs, take the maximum and minimum pcsqβpcsq for which it is; they exist

by the continuity of ©s. Pick any non-null s1 P S, and define the acts h, h by: hpsq � cs

(respectively hpsq � cs) for every non-null s P S; and hptq � cs1 (resp. hptq � cs1)

otherwise. By construction, h, h are ©-best-and-worst acts.

Proof of Theorem 1. We first consider the (i) to (ii) implication. By Theorem 2, © is rep-

resented according to (5) by a tight pair pυ, αq. Let V and I be as in the proof of Theorem

2, so Ipcq � minpP∆,pa,bqPαppq pa.c � p� bq for all c P V pAqS . By standard arguments

(see for instance Gilboa and Schmeidler (1989)), it follows from EC-Independence that

I is positive homogeneous (Ipλcq � λIpcq for all c P V pAqS , λ P <¡0) and constant

additive (Ipc � r�q � Ipcq � r, where r� is the constant function taking value r P < ev-

erywhere). Consider any p, a, b with pa, bq P αppq such that ap � b is the unique support

to I at some c P ripV pAqSq; such points exist by the arguments in the proof of Theo-

rem 2. So ap � c � b � Ipcq. Now consider c � ε� for some ε P B with |ε| sufficiently

small, so that c � ε� P V pAqS . By the representation Ipc � ε�q ¤ ap � pc � ε�q � b �

ap � c � b � a.ε � Ipcq � a.ε. But by the constant additivity of I , Ipc � ε�q � Ipcq � ε.

It follows, taking ε ¡ 0, that a ¥ 1; however, taking the case of ε   0 implies that a ¤ 1.

So a � 1. Similarly, considering λc for λ ¡ 0, λ � 1 such that λc P V pAqS , we have

Ipλcq ¤ ap � pλcq� b � λpap � c� bq� p1�λqb � λIpcq� p1�λqb. Positive homogeneity

implies that Ipλcq � λIpcq. Again, taking λ   1 implies that b ¥ 0 whereas the case with

λ ¡ 1 implies that b ¤ 0; so b � 0. It thus follows that at all points where I has a unique

support, a � 1 and b � 0 for the supporting ap � b. It follows from the arguments in the

proof of Theorem 2, and in particular the fact that α is determined by the closure of such

points, that a � 1 and b � 0 for every pa, bq and p P ∆ such that pa, bq P αppq. By the

closure and convexity of α, it reduces to a closed convex set C � ∆, yielding representation

(1). Since α is null-consistent, for every p, q P C and s P S, if ppsq � 0 and qpsq � 0,

then for all r P intpνpXqqS , Iprq  
°
sPS ppsqrs, whence, by the constant additivity and

positive homogeneity of I , this holds for all r P νpXqS , contradicting the fact that p P C
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(and the construction of α). Hence, C is null-consistent, as required.

The only new case in the (ii) to (i) implication with respect to Theorem 2—concerning

EC-Independence—is straightforward to show, once one notes that the (multi-)utility rep-

resentation is affine on mixtures of h, h.

Proof of Proposition 2. Follows from the uniqueness clause of Theorem 2.

A.3 Proofs of Results in Section 4

Proof of Proposition 3. Theorem 2 is the final row of Table 1. The lemmas below (all

except the first of which rely on standard results) establish that adding the relevant axiom

to those in Theorem 2 imposes specific properties on υ or α. The main clause of the

Proposition follows as an immediate Corollary of this and Theorem 1, as does the second

clause (about performing several additions or removals). The uniqueness clause follows

from Theorem 2.

Lemma A.4. Let© be a preference relation satisfying the axioms in Theorem 2. © satisfies

Monotonicity if and only if it can be represented according to (5) with constant υ (i.e.

υpsq � υps1q � U for all s, s1 P S).

Proof. The necessity of the axiom is straightforward to check; we consider sufficiency.

Let ©s be defined as in the proof of Theorem 2. We first show that ©s�©s1 for all

non-null s, s1 P S. Take any such s, s1 and suppose, for x, y P X , x ¡s y. By A4,

it follows from the fact that hps1q and hps1q are ©s1-maximal and ©s1-minimal elements

in X that they are ©-maximal and ©-minimal elements of X , and hence of ©s-maximal

and ©s-minimal elements, respectively. By A3, it follows that there exist α, β P p0, 1q,

α ¡ β, such that x ¡s hps1qα hps
1q, hps1qβ hps

1q ¡s y. By A4, it follows that x ¡

hps1qα hps
1q, hps1qβ hps

1q ¡ y, and hence that x ©s1 hps1qα hps
1q, hps1qβ hps

1q ©s1 y. It

follows from the stochastic dominance property for©s established in the proof of Theorem

2 that x ©s1 hps
1qα hps

1q ¡s1 hps
1qβ hps

1q ©s1 y, as required.

By the reasoning in the proof of Theorem 2, there exists a non-constant, continuous,

concave functional V : A Ñ <, linear on thβ h | β P r0, 1su, representing ©, and contin-

uous concave functionals Vs, linear on thpsqβ hpsq | β P r0, 1su, representing ©s for each

28



Brian Hill Non-Bayesian Theory of State-Dependent Utility

non-null s P S. Take any such Vs. Since ©s�©s1 for all non-null s, s1 P S, Vs repre-

sents ©s1 . Moreover, for similar reasons, it represents the restriction of © to X . Note that

since Vs is linear on thpsqβ hpsq | β P r0, 1su, with hpsq and hpsq maximal and minimal

elements of ©s1 respectively, it is a minimal concave representation of ©s1 , in the sense of

Debreu (1976) (see also Kannai (1977)): every other concave representation V 1 of©s1 with

V 1pXq � V pXq is such that V 1pxq ¥ V pxq for all x P X . Since the same holds for Vs1 , and

since minimal representations are unique (Kannai, 1977, pp11-13), it follows that Vs � Vs1 ,

and more generally that Vs � Vt for every non-null s, t P S. In particular, it follows that,

for every non-null s, s1 P S, hpsqβ hpsq �s hps
1qβ hps

1q for all β P r0, 1s. Since υ in repre-

sentation (5) can be taken to be h, h-constant and tight, it follows that υpsq � υptq for all

non-null s, t P S. Setting υptq � U � υpsq for all t P S and any non-null s P S yields the

desired representation.

Lemma A.5. Let© be a preference relation satisfying the axioms in Theorem 2. © satisfies

State-wise Independence if and only if it can be represented according to (5) with singleton-

valued υ (i.e. υpsq is a singleton, for all s P S).

Proof. The necessity of the axiom is straightforward. As concerns sufficiency, by State-

wise Independence, ©s satisfies the standard Independence axiom for each state s P S. It

follows by standard arguments that the Vs defined in the proof of Theorem 2 is affine for

every s P S, so υpsq, being tight, is a singleton for all non-null s P S. υpsq can thus be

taken as a singleton for all s P S (for instance, by setting υ on null states as in the proof of

Theorem 2).

Lemma A.6. Let © be a preference relation satisfying the axioms in Theorem 2. © satis-

fies Restricted Independence with respect to ©-best-and-worst h, h if and only if it can be

represented according to (5) with singleton C.

Proof. The necessity of the axiom is straightforward. Their sufficiency is a direct extension

of the proof of Theorem 1, noting that Restricted Independence implies that I is affine, and

hence, by standard arguments, is generated by a (single) probability measure p.
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Proposition 7. In the presence of the Basic Axioms and Strong Uncertainty Aversion with

respect to ©-best-and-worst h, h, Monotonicity and State Consistency are equivalent to

State Independence.

Proof of Proposition 7. State Independence clearly implies State Consistency (taking t �

s). Moreover, in the presence of Weak Order, State Independence implies that, if x © y,

then xsf © ysf for every non-null s P S and f P A: if this were not the case, then

xsf   ysf for some and hence every non-null s P S (by State Independence), whence

x   xs1y   xts1,s2uy   � � �   y (with indifferences for null states), contradicting the

fact that x © y. So, for f, g P A satisfying the conditions in the Monotonicity axiom,

f © gs1f © gts1,s2uf © � � � © g, where each step is an application of the previous fact;

hence State Independence implies Monotonicity in the presence of Weak Order.

The other direction was established by the reasoning at the beginning of the proof of

Lemma A.4.

A.4 Proofs of Results in Section 5

Proposition 4 follows directly from Proposition 8 (and the proof of Theorem 1).

Proposition 8. Let ©1 and ©2 be represented according to (5) by pairs of tight h
1
, h1- (re-

spectively h
2
, h2-)state-dependent multi-utilities and ambiguity indices pυ1, α1q and pυ2, α2q,

and suppose that they are normalised so that υ1pXq � υ2pXq. Suppose that h
2

is a maxi-

mal element of ©1. Then the following are equivalent.

(i) ©1 is more imprecision averse than ©2

(ii) pυ1 Y υ2, α1 Y α2q represents ©1 according to (5)

(iii) α1 ¤ α2 and υ1psq ¤ υ2psq for all ©1-non-null states s P S.

where, α1 ¤ α2 if and only if, for every c P pυ1pXqqS and pa, bq P α2ppq for p P ∆, there

exists pa1, b1q P α1pp1q for p1 P ∆ such that a1
°
sPS p

1psq.cs � b1 ¤ a
°
sPS ppsq.cs � b.

Furthermore, pυ1, α1q is the unique tight subset of pυ1 Y υ2, α1 Y α2q representing ©1.

Proof of Proposition 8. It is clear that (iii) implies (ii), once one notes that the values of

υ1 Y υ2 are immaterial on ©1-null states. We now show that (ii) implies (i). Define the

representing functionals V 1 and V 2 from pυ1, α1q and pυ2, α2q according to (5); since,
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as shown in the proof of Theorem 2, υ1pXq � V 1pAq, it follows from the normalisation

assumption that V 1pAq � V 2pAq. We now show, by a relatively standard argument, that©1

is more imprecision averse than©2 iff V 1pfq ¤ V 2pfq for all f P A. By the representation

and the h i, h i-precision of the pυi, αiq (for i � 1, 2), for every f P A, f �1 h 1
V 1pfq h

1

and f �2 h 2
V 2pfq h

2. If ©1 is more imprecision averse, then f �1 h 1
V 1pfq h

1 implies that

f ©2 h 2
V 1pfq h

2, from which it follows, by the stochastic dominance property for h 2, h 2

(see proof of Theorem 2), that V 2pfq ¥ V 1pfq. Conversely, if V 2pfq ¥ V 1pfq, then by

the same stochastic dominance property, f ©1 h 1
α h

1 iff V 1pfq ¥ α, and this implies that

V 2pfq ¥ α and hence f ©2 h 2
α h

2, establishing the claim. It follows that (i) holds iff

V 1pfq ¤ V 2pfq for all f P A, which is the case iff mintV 1pfq, V 2pfqu � V 1pfq for all

f P A. Since (ii) implies that mintV 1pfq, V 2pfqu � V 1pfq for all f P A, it implies (i).

We now show that (i) implies (iii); henceforth, assume (i) to hold. Let V 1 and V 2 be

the representing functionals from pυ1, α1q and pυ2, α2q defined above, and let V 1
s pxq �

minuPυ1psq upxq for all x P X and s P S, and similarly for V 2
s . We first show that h

1

α h
1 �1

h
2

α h
2 for all α P r0, 1s. Recall firstly that h

2
©1 f for all f P A (it is a maximal element of

©1), and note that h2 is a minimal element of ©1: for if not, there would exist α ¡ 0 such

that h2 ©1 h
1

α h
1, whence h2 ©2 h

2

α h
2 by the fact that ©1 is more imprecision averse than

©2, contradicting the stochastic dominance property of ©2 with respect to h
2

α h
2 (see proof

of Theorem 2). By the stochastic dominance property of©1 with respect to h
1

α h
1 (see proof

of Theorem 2), for every α P r0, 1s, there exists a unique βα P r0, 1s with h
2

α h
2 �1 h

1

βα h
1;

let µpαq � βα for all α P r0, 1s. Since V1 is concave and continuous, and V1ph
1

β h
1q � β for

all β P r0, 1s, µ is a concave continuous function. Since h
2

and h2 are maximal and minimal

elements of ©1 respectively, µp0q � 0 and µp1q � 1. Finally, if µpαq ¡ α, then, by the

stochastic dominance property of ©2 with respect to h
2

α h
2, h

2

µpαq h
2 ¡2 h

2

α h
2, whence it

follows, by the fact that ©1 is more imprecision averse than ©2, that h
1

µpαq h
1 ¡1 h

2

α h
2,

contradicting the definition of µ. So µpαq ¤ α for all α P r0, 1s. Since µ is concave, it

follows that is the identity function, as required.

It follows that ©1 satisfies Strong Uncertainty Aversion with respect to h
2
, h2.

Observe furthermore that for every s P S, if s is ©1-non-null, then it is ©2-non-null.

For if s is ©1-non-null, then by A6, h
2

s h
2 ¡1 h1, so h

2

s h
2 ©1 h

1

α h
1 for some α ¡ 0. Since

©1 is more imprecision averse, h
2

s h
2 ©2 h

2

α h
2 ¡ h2, and hence s is ©2-non-null. Now we

have the following claim.
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Claim 1. For every ©1-non-null s P S, h
1

α h
1 �1

s h
2

α h
2.

Proof. Fix a ©1-non-null s P S, and let ©1
s be as defined in Proposition 6. Since υ1 is

h
1
, h1-constant and©1

s is represented by V 1
s ,©1

s satisfies the stochastic dominance property

with respect to h
1

α h
1: for every α, β P r0, 1s, α ¥ β iff h

1

α h
1 ©1

s h
1

β h
1. Since h

2
is a

maximal element of ©1, it follows that h
2
psq is a maximal element of ©1

s; similarly h2psq

is a minimal element of ©1
s. We now show that the stochastic dominance property holds

for ©1
s with respect to th

2

α h
2u. Let α ¡ β; by the stochastic dominance property for ©2

s

(see proof of Theorem 2), h
2

α h
2 ¡2

s h
2

β h
2, and so h

2

α h
2 ¡2 ph

2

β h
2qsph

2

α h
2q, by A6. It

follows from the fact that ©1 is more imprecision averse and the observation above that

h
2

α h
2 �1 h

1

α h
1 ¡1 ph

2

β h
2qsph

2

α h
2q. Hence h

2

α h
2 ¡1

s h
2

β h
2. For the other direction,

suppose that h
2

β h
2 ©1

s h
2

α h
2. So ph

2

β h
2qsph

2

α h
2q ©1 h

2

α h
2 �1 h

1

α h
1, whence, by the fact

that ©1 is more imprecision averse, ph
2

β h
2qsph

2

α h
2q ©2 h

2

α h
2 and hence h

2

β h
2 ©2

s h
2

α h
2.

It follows from the stochastic dominance property for ©2
s that β ¥ α. So α ¡ β iff

h
2

α h
2 ¡1

s h
2

β h
2 as required.

It follows from this property, and the fact that ©1 satisfies Strong Uncertainty Aversion

with respect to h
2

α h
2 (as well as State Consistency) that, by the reasoning in the proof of

Theorem 2, there is a continuous concave functional V̄s : X Ñ r0, 1s representing©1
s which

is linear on th
2

α h
2 : α P r0, 1su. Since this function is linear on a set on which it takes values

ranging over its whole co-domain, it is minimal in the sense of Debreu (1976); Kannai

(1977). However, the same holds for V 1
s , which is (by the proof of Theorem 2) a continuous

concave functional repxresenting©1
s which is linear on th

1

α h
1 : α P r0, 1su. Since minimal

concave representations are unique up to positive affine transformation (Kannai, 1977), and

V̄spXq � V 1
s pXq, we have that V̄s � V 1

s . It follows in particular that V 1
s is linear on both

th
1

α h
1 : α P r0, 1su and th

2

α h
2 : α P r0, 1su, taking the value 1 and α � 1 and 0 at α � 0 in

both cases, so V 1
s ph

1

α h
1q � V 1

s ph
2

α h
2q for all α P r0, 1s. Since V 1

s represents©1
s, it follows

that h
1

α h
1 �1

s h
2

α h
2 for all α P r0, 1s, as required.

We now show that ©1 is more imprecision averse on consequences than ©2, in the

sense of Definition 3. For every x P X and α P r0, 1s, by Claim 1 (and Weak Order

applied repeatedly), xsph
2

α h
2q �1 xsph

1

α h
1q. So the fact that©1 is more imprecision averse

implies that, for any ©1-non-null s P S, whenever xsh ©1 ph
1

α h
1qsh, then xsph

2

α h
2q �1

xsph
1

α h
1q ©1 h

1

α h
1 (by A6), and hence xsph

2

α h
2q ©2 h

2

α h
2 (by Imprecision Aversion),
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and so xsh ©2 ph
2

α h
2qsh. So ©1 is more imprecision averse on consequences than ©2; by

Proposition 5, υ1psq ¤ υ2psq for all ©1-non-null states, as required.

Finally, we show that ©1 is more imprecision averse for states than ©2. Consider any

f P Ah
1
,h1

. By Claim 1, f �1 f̂ , with the latter act defined as in Definition 3. So the

fact that ©1 is more imprecision averse implies that, whenever f̂ �1 f ©1 h
1

α h
1, then

f̂ ©2 h
2

α h
2. Hence ©1 is more imprecision averse for states than ©2. By Proposition 5,

α1 ¤ α2 as required.

The uniqueness clause follows from Theorem 2 and the fact that the representations by

pυ1, α1q and pυ1 Y υ2, α1 Y α2q give the same range of values.

Proposition 5 follows from the following proposition.

Proposition 9. Let ©1 and ©2 be represented according to (5) by pairs of h
1
, h1- (respec-

tively h
2
, h2-)state-dependent multi-utilities and ambiguity indices pυ1, α1q and pυ2, α2q,

and suppose that they are normalised so that υ1pXq � υ2pXq. Then:

(i) ©1 is more imprecision averse on consequences than©2 if and only if υ1psq ¤ υ2psq

for all ©1-non-null s P S.

(ii) ©1 is more imprecision averse on states than ©2 if and only if α1 ¤ α2.

Proof of Proposition 9. Part (i) For each s P S, define the functionals V 1
s : X Ñ < and

V 2
s : X Ñ < by V 1

s pxq � minuPυ1psq upxq and similarly for V 2
s and υ2. By the assumption

and Proposition 2, we can assume without loss of generality that V 1
s ph1q � V 2

s ph2q � 1

and V 1
s ph1q � V 2

s ph2q � 0 for all s P S. We first show that ©1 is more imprecision averse

on consequences than ©2 iff V 1
s pxq ¤ V 2

s pxq for all x P X and ©1-non-null s P S. By

the representation, the previous normalisation and the h i, h i-precision and -constancy of

the υi, for every x P A, x �1
s h 1

V 1
s pxq

h 1 and x �2
s h 2

V 2
s pxq

h 2. If ©1 is more imprecision

averse on consequences, then x �1
s h

1
α h

1 implies that x ©2
s h

2
α h

2, from which it follows,

by the stochastic dominance property for ©2
s with respect to h 2, h 2 (see proof of Theorem

2), that V 2
s pxq ¥ V 1

s pxq. Conversely, if V 2
s pxq ¥ V 1

s pxq for all x P X , then by the

same stochastic dominance property, x ©1
s h 1

α h
1 iff V 1

s pxq ¥ α, and this implies that

V 2
s pxq ¥ α and hence x ©2

s h 2
α h

2; since this holds for every ©1-non-null s P S, it

establishes the claim. We have thus established that ©1 is more imprecision averse on
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consequences iff V 1
s pxq ¤ V 2

s pxq for all x P X and ©1-non-null s P S. This is the case

iff mintV 1
s pxq, V

2
s pxqu � V 1

s pxq for all x P X and ©1-non-null s P S. By the definition

of V i
s , we have that mintV 1

s pxq, V
2
s pxqu � minuPυ1psqYυ2psq upxq for all x P X , so ©1 is

more imprecision averse on consequences iff minuPυ1psq upxq � minuPυ1psqYυ2psq upxq for

all x P X and ©1-non-null s P S, and this is the case if and only if υ1psq ¤ υ2psq for all

©1-non-null s P S, as required.

Part (ii) By Proposition 2 and the normalisation of the υi, we can assume without loss

of generality that υipXq � r0, 1s for i P t1, 2u. Define V̂ i : A Ñ r0, 1sS by V̂ ipfqpsq �

minuPυipsq upfpsqq for all f P A and i P t1, 2u. Note that, by the h
i
, h i-precision and the

fact that the υi are h
i
, h i-constant, V̂ 1pfqpsq � α whenever fpsq � h

1

α h
1, and similarly for

V̂ 2. Now define I1 : r0, 1sS Ñ < by I1pcq � minpP∆, pa,bqPα1ppq pap � c� bq, and similarly

for I2. By definition, I i � V̂ i represents ©i.

We now show that ©1 is more imprecision averse on states than ©2 iff I1pcq ¤ I2pcq

for all c P r0, 1sS . Take any f P Ah
1
,h1

with f̂ as in Definition 3. For each s P S,

fpsq � h
1

β h
1 and f̂ � h

2

β h
2 for some β P r0, 1s, so by the previously observed property of

V̂ i, V̂ 1pfqpsq � β � V̂ 2pfqpsq. So V̂ 1pfq � V̂ 2pf̂q. Moreover, by the representation and

the h i, h i-precision of the pυi, αiq, for each g P A, g �1 h
1

I1pV̂ 1pgqq h
1, and similarly for©2.

It follows that, for every f P Ah
1
,h1

, f �1 hI1pV̂ 1pfqq h and f̂ �2 hI2pV̂ 1pfqq h. Condition

(9) for a given f P Ah
1
,h1

implies, given the stochastic dominance property for ©2 with

respect to h
2
, h2, that I1pV̂ 1pfqq ¤ I2pV̂ 1pfqq. Conversely, if I1pV̂ 1pfqq ¤ I2pV̂ 1pfqq,

then, by the same stochastic dominance property, f ©1 h
1

β h
1 iff I1pV̂ 1pfqq ¥ β, and

this implies that I2pV̂ 1pfqq ¥ β and hence f̂ ©2 h
1

β h
2; so Condition (9) holds for this

f . So ©1 is more imprecision averse on states than ©2 iff I1pV̂ 1pfqq ¤ I2pV̂ 1pfqq for

all f P Ah
1
,h1

. Since, for each c P r0, 1sS , there exists f P Ah
1
,h1

with V̂ 1pfq � c—

namely fpsq � h
1

cpsq h
1 for all s P S—this holds if and only if I1pcq ¤ I2pcq for all

c P r0, 1sS . This is the case iff mintI1pcq, I2pcqu � I1pcq for all c P r0, 1sS . By the defini-

tion of I i, we have that mintI1pcq, I2pcqu � minpP∆, pa,bqPα1ppqYα2ppq pa
°
sPS ppsqcpsq � bq.

So ©1 is more imprecision averse on states iff minpP∆, pa,bqPα1ppq pa
°
sPS ppsqcpsq � bq �

minpP∆, pa,bqPα1ppqYα2ppq pa
°
sPS ppsqcpsq � bq, and this is the case if and only if α1 ¤ α2,

as required.
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