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Abstract

This paper develops a belief update rule under ambiguity, motivated by the

maxim: in the face of new information, retain those conditional beliefs in which

you are more confident, and relinquish only those in which you have less con-

fidence. We provide a preference-based axiomatisation, drawing on the account

of confidence in beliefs developed in Hill (2013). The proposed rule constitutes a

general framework of which several existing rules for multiple priors (Full Bayesian,

Maximum Likelihood) are special cases, but avoids the problems that these rules

have with updating on complete ignorance. Moreover, it can handle surprising

and null events, such as crises or reasoning in games, recovering traditional ap-

proaches, such as conditional probability systems, as special cases.
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1 Introduction

1.1 Motivation and intuition

Reasons for going beyond the Bayesian representation of beliefs by probability mea-
sures abound. Whether it be decision makers’ observed non-neutrality to ambiguity
(Ellsberg, 1961), the purported injustifiability of the Bayesian requirement of belief
precision (Gilboa et al., 2009, 2011; Bradley, 2014) or the difficulty of forming war-
ranted beliefs satisfying the Bayesian tenets in real decisions (Cox, 2012; Gilboa and
Marinacci, 2013), many have argued for non-probabilistic representations of belief. But
how should such non-Bayesian beliefs be updated?

Non-Bayesian beliefs are particularly relevant in two sorts of sitations: under com-
plete ignorance—as when an investor is considering a revolutionary technology—and
after paradigm-shattering events—such as the recent financial crisis. In terms of the
popular multiple prior model (Gilboa and Schmeidler, 1989), complete ignorance is
naturally characterised by the set of all (relevant) priors, and the ‘shock’ of a crisis
seems to lead an initial ‘small’ set of priors to expand to an ex post ‘large’ set of priors.
Any normatively reasonable account of belief update for non-Bayesian beliefs should
provide reasonable guidance for learning in these two sorts of cases. However, the up-
date models proposed to date struggle. On the one hand, existing update rules for mul-
tiple priors in the literature tend to deal with complete ignorance in an ‘extreme’ way
(Gilboa and Marinacci, 2013), for instance by not learning at all on the receipt of new
information, or by immediately jumping to a perfect precise posterior belief, no matter
how scant the information (see Section 4.1). On the other hand, the literature on updat-
ing non-Bayesian beliefs has not tackled the issue of updating on surprise events—and
a fortiori on null events—which plagues the standard Bayesian account (e.g. De Bondt
and Thaler, 1985, 1987), but which is equally relevant when beliefs need not be precise,
as arguably they may not be during a financial crisis.

These two challenges are related by the issue of conditional beliefs. Bayesian con-
ditionnalisation assumes that ex ante conditional beliefs fully determine ex post con-
ditional beliefs—and indeed, that they coincide (Section 4.2.1). This identification
renders the account silent about learning null events and, as just noted, is known to
be problematic when the learnt event is surprising (i.e. assigned low probability ex
ante). Moreover, in cases of complete ignorance, conditional belief may be completely
indeterminate ex ante, but it is unreasonable to insist that it should remain so after learn-
ing. After all, if some of the ex ante interdeterminacy was related to admitting priors
that gave a very low probability to the observed event—according to them, it was a
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surprise—this might be a reason to disregard them ex post, and hence adopt more de-
terminate conditional beliefs. For a theory of rational update, the key to meeting these
challenges is thus how it relates ex ante conditional beliefs with ex post ones.

Drawing on new insights about this relationship, this paper proposes and charac-
terises a novel account of the update of non-Bayesian beliefs. Conceptually, it taps into
an intuition as to why beliefs may be non-Bayesian: decision makers may be more or
less confident in different beliefs. This ‘second-order’ aspect—confidence in beliefs—is
something that the Bayesian model has trouble rendering properly, whilst it can be cap-
tured, and related to preferences, in some non-Bayesian models (e.g. Hill, 2019). Our
account recognises that it also has a role to play in update. Put succinctly: in updating
beliefs, retain those conditional beliefs in which you are more confident, and relinquish
only those in which you have less confidence.

To see this intuition, note that acquiring new information may give one cause to
withdraw some previously held beliefs. Moreover, there are often several prior beliefs
that could be withdrawn. To take a simple example, suppose that you are to observe a
sequence of tosses of a (single) coin. Ex ante, you believe that the coin will remain un-
changed throughout (the process is IID), and that it is unbiased (so that the probability
of heads on, say, the 101th toss is 0.5). Then you observe 100 tosses, 75 of which are
heads. Such an observation is very unlikely given your previous beliefs—just like in
the financial crisis example above. This effectively leaves you with three ways of form-
ing new beliefs: (a) retaining both prior beliefs and accepting that you have observed
something extremely unlikely; (b) accepting that the observation is not that unlikely, but
revising your belief about the bias of the coin, retaining the belief that it remains con-
stant; (c) accepting that the observation is not so unlikely, retaining the belief that the
coin is now unbiased, but withdrawing the belief that it did not change during sampling.
Which should you adopt?

The answer proposed by our account looks at the ex ante confidence in the various
beliefs. If you are more confident that the coin does not change and that you have not
seen an extremely unlikely sequence of events, but less confident in your belief that the
coin is unbiased, then you should retain the former beliefs and revise the latter one (as in
(b)). If, on the other hand, you are very confident that the coin is unbiased on the 101th
toss, but not very confident that its bias is constant, then you should revise the latter
belief (c). This seems a natural, and indeed rational, account of the role of confidence
in belief change: a decision maker’s confidence in a belief reflects how sure he is of it,
so it makes sense that it determines how tenaciously he will hold onto that belief in the
light of new, perhaps conflicting information. As this example indicates, the proposed
approach will be able to deal comfortably with surprising events; indeed, it contains a
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popular approach to updating on null events as a special case (Section 4.2).
This intuition naturally has implications for the understanding of the ‘information’

purveyed by an observation. Learning that there were 100 tosses, 75 of which came up
heads, lends more weight to some hypotheses about the bias of the coin than to others.
Accordingly, it indicates something about which beliefs are more or less reasonable to
hold in the light of this observation. These relative judgements can be formulated in the
language of confidence. The observation warrants a large amount of confidence that, if
the process was IID, the probability of heads on the next toss is 0.25 or higher, though
less confidence that the probability is 0.80 or lower on the next toss. This suggests that
learning an event effectively warrants specific amounts of confidence in certain beliefs
or probability judgements: confidence which can be compared to the decision maker’s
ex ante confidence in relevant beliefs, according to the maxim mooted above. So, for
instance, deciding how to update the initial belief that the coin is unbiased in the light
of the observation of 75 heads out of 100 tosses basically involves comparing the con-
fidence that the coin is unbiased with the confidence that, given these observations, the
bias of the coin is greater than 0.5. If one has greater confidence in the latter judge-
ment, then one will relinquish (or revise) the initial belief that the coin was unbiased.
By contrast, if one has greater confidence in one’s initial belief, it is retained on update.
Of course, some observations (e.g. 75 heads out of 100 tosses) will warrant sufficient
confidence to force revision of the initial belief, whereas others (e.g. 55 heads out of
100 tosses) may not.

This insight allows the account to cope naturally with learning in situations of com-
plete ignorance. Since the observation itself warrants differing degrees of confidence in
various beliefs, even in cases where one begins with a ‘clean slate’—no confidence in
any belief—one will end up holding relevant beliefs to appropriate levels of confidence.
Indeed, it will turn out that several standard update rules for multi-prior beliefs can be
recovered as special cases of the account proposed here, corresponding to restrictions
to extreme levels of confidence. Moreover, some recently suggested rules, such as that
used by Epstein and Schneider (2007), can be recovered as other, more reasonable,
special cases; to that extent, we provide an axiomatic analysis of them.

1.2 Outline of the proposal

To develop our account, we employ a representation of beliefs specifically developped
to capture confidence, namely the notion of confidence ranking proposed by Hill (2013).
A confidence ranking is a nested family of sets of probability measures, where differ-
ent sets are understood as representing the beliefs, or probability judgements, held at
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different levels of confidence. As explained in the cited paper, larger sets in the family
involve fewer beliefs, and accordingly correspond to higher levels of confidence. Struc-
tures of this sort have long been employed in econometrics (e.g. Manski and Nagin,
1998; Manski, 2013).

The previous discussion motivates an update rule for the confidence ranking Ξ on
learning E of the following form (see Section 2.4 for details):

ΞE =
{
{p ∈ C : p(E) ≥ ρE(C)}E : C ∈Ξ, {p ∈ C : p(E) ≥ ρE(C)} 6= ∅

}
(1)

where ρE : Ξ→ [0, 1] is a decreasing function and, for every set of probability measures
C and event E, CE is the well-known Full Bayesian update defined as follows:

CE = {p(•/E) : p ∈ C, p(E) > 0} (2)

The probability-threshold function ρE assigns a probability value to every set in the
confidence ranking, and hence implicitly to every confidence level. In so doing, it effec-
tively specifies a set of probability measures, namely those which assign ex ante prob-
ability to E greater than the ρE-value for that confidence level. These can be thought
of as representing the beliefs the decision maker is warranted to deduce from the ob-
servation of E with that much confidence: any probability measure giving a value to
E that is less than this threshold ‘gets it too wrong’ to be considered plausible at the
confidence level. Since ρE is decreasing, this set is larger for larger confidence levels,
corresponding to the fact, noted above, that weaker conclusions can be drawn from the
data at higher levels of confidence. Probability thresholds are reminiscent of signifi-
cance levels in hypothesis testing, and indeed, at one level, the proposed update rule
retains the spirit of classical statistical reasoning; see Section 5 for further discussion.

So, for every confidence level, the prior beliefs held at that level are represented
by the appropriate set of probability measures in Ξ, whereas the conclusions that can
be drawn from the data with that level of confidence are summarized by the set of
probability measures singled out as ‘reasonable’ by ρE . If these are compatible—if
the two sets of probability measures overlap—the update rule (1) retains all of these as
posterior beliefs at that confidence level—it takes the intersection. This corresponds to
the maxim that conditional beliefs held or conclusions drawn with high confidence are,
as far as possible, retained. By contrast, at lower confidence levels, where the (more
precise) initial beliefs may contradict the (stronger) conclusions drawn from the data
with that much confidence, neither are retained. As discussed above, beliefs held with
low confidence may be withdrawn in cases of conflict with observation. Finally, the
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Figure 1: Confidence Update

update rule conditions the structure obtained on the learnt event E.
Let us illustrate the workings of this rule on the previous example. For each

x ∈ [0, 1], let pIIDx be the probability measure according to which the sampling
process is IID and the coin has bias x, i.e. the probability of heads is x on every
toss (see Section 4 for technical details). Let pnon−IIDx,y be a probability measure ac-
cording to which the probability of heads is x for each of the first 100 tosses, and
y thereafter. Consider a decision maker who believes that the process is IID and
the coin is unbiased, but who is more confident in the former belief than the lat-
ter. His confidence in beliefs can be modelled by a three-level confidence ranking:{{
pIID0.5

}
,
{
pIIDx : x ∈ [0, 1]

}
,
{
pnon−IIDx,y : x, y ∈ [0, 1]

}}
. According to the bottom

element, the process is IID with an unbiased coin: this captures the stated ex ante be-
liefs about the process and the bias. At the next level up, all probability meaasures in
the set agree on the character of the process, but not on the bias. This captures a judge-
ment that he is more confident that the process is IID than that the coin is unbiased.
Finally, neither the belief about the bias nor that concerning the process are retained at
the highest confidence level. This confidence ranking is drawn in black in Figure 1.

On learning that 75 tosses out of 100 came up heads, one can assign to each con-
fidence level a probability threshold, determining which measures can be ruled out as
‘having got the prediction for the 100 tosses too wrong’ with that much confidence.
For example, one could apply a threshold of 0.1 for the lowest level in the confidence
ranking, 0.05 for the next level up, and 0.01 for the final level. The sets of probability
measures giving a probability to the observation higher than the threshold are shown in
red in Figure 1. The update rule proposed here yields the confidence ranking given by
the blue sets in Figure 1.1 As is clear from the Figure, at the top two confidence levels,
the intersection of the sets is non-empty, and these yield the posterior beliefs. It follows
that all the prior (conditional) beliefs are retained—for instance, at the intermediate

1More specifically, this is the confidence ranking
{{
pIIDx : x ∈ [0, 1], pIIDx (s75) ≥ 0.05

}
,{

pnon−IIDx,y : x, y ∈ [0, 1], pIIDx,y (s75) ≥ 0.01
}}

, where s75 is the event where 75 tosses out of 100 come
up heads.
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confidence level, the belief that the process is IID is retained. Perhaps new beliefs are
added—in the example, the posterior beliefs about the bias are more precise than they
were ex ante at that confidence level. The prior beliefs specific to the bottom confidence
level—and in particular that concerning the bias of the coin—are dropped on learning:
the only beliefs held at that level are those inherited from higher confidence levels. This
is in accordance with the intuition suggested previously: since this is a decision maker
who has more confidence in the process being IID, this belief is retained—and the belief
that the coin is unbiased is dropped—on update. Whilst this example focusses on one
of the possible cases mentioned above (case (b)), by considering a different confidence
ranking (capturing a decision maker who is more confident in the judgement about the
bias than in that about the process) or different probability thresholds (which are more
permissive at lower confidence levels), one can account for the other cases.

In this paper, we provide an behavioural characterisation of a general version of the
rule (1), which we call confidence update. All the parameters, and in particular ρE , are
revealed from preferences.

The paper is organised as follows. Section 2 sets out the framework, the confidence
model and update rules that will be considered. Section 3 contains the main results of
the paper, characterising general and specific versions of confidence update, and con-
sidering its comparative statics. Section 4 brings out the contributions of the proposed
approach with respect to the issues of update for non-Bayesian beliefs, and update on
surprising or null events, including null events in game-theoretical reasoning. Section 5
discusses extensions and inter alia the relationship to Bayesian and classical statistical
reasoning. Proofs and other material are to be found in the Appendix.

2 Preliminaries

2.1 Setup

Let S be a non-empty set of states, with a σ-algebra Σ of subsets of S, called events.
∆(Σ) is the set of finitely-additive probability measures over (S,Σ) endowed with the
weak* topology. For every subset C ⊆∆(Σ), C denotes the closure of C. Let X , the set
of consequences, be a convex subset of a vector space; for instance it could be the set of
lotteries over a set of prizes, as in the Anscombe and Aumann (1963) setting. A is the
set of (simple) acts: finite-valued Σ-measurable functions from states to consequences.
Ac is the set of constant acts (acts taking a constant value). Mixtures of acts are defined
pointwise as standard: for any f, g ∈ A and α ∈ [0, 1], the α-mixture of f and g, which
we denote by fαg, is defined by fαg(s) = αf(s) + (1−α)g(s) for all s ∈ S. For every
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f, g ∈ A and E ∈ Σ, fEg ∈ A is defined by fEg(s) = f(s) if s ∈ E, fEg(s) = g(s)

otherwise.
We use � (perhaps with subscripts) to denote a preference relation on A. The

symmetric and asymmetric parts of �, ∼ and �, are defined as standard. We say that
� is degenerate if f ∼ g for all f, g ∈ A. A functional V : A → R is said to represent
preferences � if f � g if and only if V (f) ≥ V (g).

Henceforth, � (with no subscript) will denote the decision maker’s ex ante prefer-
ences. Ex post preferences will be denoted with subscripts, depending on the informa-
tion received; there is a class of preferences {�E}E∈Σ. For each event E, �E is the
decision maker’s preference after having learnt (only) that E obtains. Finally, an event
E ∈ Σ will be said to be null if it is null with respect to �: for any f, g, h, h′ ∈ A,
fEch � gEch

′ if and only if f � g.

2.2 Confidence model

We use the confidence framework set out and developped in (Hill, 2013, 2016, 2019).
Beliefs are represented by a confidence ranking on S: a nested family of (non-empty)
subsets of ∆(Σ).2 Different sets in the confidence ranking represent beliefs held with
different levels of confidence. Note that a single set of probability measures à la Gilboa
and Schmeidler (1989) is a degenerate special case of a confidence ranking; it can be
interpreted as the case where the same beliefs are held at all levels of confidence.

A confidence ranking Ξ is said to be closed (resp. convex) if each set in the family
is. We let min Ξ =

⋂
C′∈Ξ C ′ and max Ξ =

⋃
C′∈Ξ C ′; these can be loosely thought

of as the bottom and top elements of Ξ. For a confidence ranking Ξ, its min-closure,
Ξmin = Ξ∪{min Ξ}.3 Ξ is min-closed if Ξ = Ξmin. Throughout the axiomatic treatment
(Section 3), we shall only be concerned with confidence rankings that are closed, convex
and min-closed.

Attitudes to choosing on the basis of limited confidence are captured by a cautious-

ness coefficient for Ξ: a function D : A → Ξ. A cautiousness coefficient is said to be
rich if, for every f ∈ A \ Ac and C ∈ Ξ \ {min Ξ}, there exist d ∈ Ac and α ∈ (0, 1]

such that D(fαd) = C. Similar richness assumptions are discussed in the cited papers.
As discussed in the aforementioned papers, there are several decision rules in the

confidence family. Here we use the maximin-EU version, according to which prefer-
ences are represented by:

V (f) = min
p∈D(f)

Epu(f(s)) (3)

2Formally, a confidence ranking Ξ ⊆ 2∆(Σ)) \ ∅ such that, for all C, C′ ∈ Ξ, C ⊆ C′ or C′ ⊆ C.
3By convention, if Ξ is empty or the family consisting of the empty set, then Ξmin is taken to be {∅}.
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where u is a non-constant affine utility function, Ξ is a closed, convex, min-closed
confidence ranking Ξ and D : A → Ξ is a rich cautiousness coefficient for Ξ. When
this holds for preferences �, we say that the triple (Ξ, D, u) represents �. Whenever
� is non-degenerate, there is a unique triple (up to positive affine transformation of the
utility function) representing � (Hill, 2013), which we refer to as the representation

of �. We adopt the convention that � is degenerate if and only if it is represented by
Ξ = {∅} and D the only function from A to {∅}. For mere technical convenience, we
will assume throughout that the utility is unbounded: u(X ) = R.

We assume that all preferences, ex ante and ex post, are represented according the
confidence model (3), and focus on non-degenerate ex ante preferences.

Assumption 1. � and �E are represented according to (3) for all E ∈ Σ, and � is

non-degenerate.

Behavioural foundations for (this version of) the confidence model have been pro-
vided in Hill (2013). They can be used to provide a reformulation of this assumption in
terms of preferences.

2.3 Tastes and stakes

A central idea behind the confidence model is that the beliefs one relies on to decide
are held to a level of confidence that is appropriate given the importance of the decision
(Hill, 2013, 2019). In the light of this, when fewer beliefs are invoked—i.e. when
a larger set of priors is used, say D(f) ⊃ D(g)—then this is an indication that the
decision maker considers the choice of f to be more important than the choice of g: it
involves higher stakes. The converse is not necessarily true: a decision maker may use
the same beliefs—the same C ∈ Ξ—for decisions of differing importance. Indeed, the
standard maximin-EU decision rule with a single set of priors (Gilboa and Schmeidler,
1989) is a special case of (3) of just this sort: the same set of probability measures are
used for all acts, no matter the stakes involved.

Throughout, we assume that only beliefs—in the context of this model, the confi-
dence ranking Ξ—change on learning, and in particular that there is no change in the
utility function or in the level of stakes that a decision is considered to involve.

Assumption 2. For representations (Ξ, D, u) and {(ΞE, DE, uE)}E∈Σ of� and {�E}E∈Σ

respectively:

1. u and uE are identical up to positive affine transformation for every E ∈ Σ;

2. there exists a complete transitive relation = on A such that for all E ∈ Σ and all

f, g ∈ A, f = g implies D(f) ⊇ D(g) and DE(f) ⊇ DE(g) .
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The first part of this assumption is standard. The second clause states that there is
a single notion of stakes (captured by =) that all preferences, ex ante and ex post, can
be thought of as respecting. It reflects the assumption that the decision maker’s view of
the relative importance of decisions remains constant under learning.

Whilst stated on the models for ease, this assumption can be reformulated in be-
havioural terms. The first clause corresponds to the standard axiom that preferences
over constant acts are unaffected by learning. The latter is built into axiomatisations
of the confidence model assuming an exogenously given notion of stakes (Hill, 2013);
framework-specific axioms characterise it in setups involving endogenous notions of
stakes (Hill, 2015).

Given Assumption 2,A can be partitioned into stakes levels according to=. We use
σf to denote the stakes level of f : that is, the set of acts having the same stakes as f ,
σf = {g ∈ A : g = f & g 5 f}. We use σ, σ′ as notation for stakes levels. With this
notation, f ∈ σ if f involves stakes of level σ. The obvious order on stakes levels is
defined as standard: for stakes levels σ, σ′, σ ≥ σ′ if and only if, for all f ∈ σ, f ′ ∈ σ′,
f = f ′. Finally, given a preference relation � represented according to (3) and a stakes
level σ, we define the derived relation�σ as follows: for all f, g ∈ A, f �σ g if and only
if there exists c, d, d′ ∈ Ac and α, α′ ∈ (0, 1] such that D(fαd) = D(gα′d′) = D(h) for
all h ∈ σ, fαd � cαd and cα′d′ � gα′d′. (This is well-defined because of the richness of
D.) As discussed in Hill (2013), f �σ g essentially says that, if the acts were evaluated
‘as if’ they were both of stakes level σ, then f would be preferred. In this case, we say
that f is preferred to g at stakes level σ.

2.4 Update

We now formally present the updates rules that we will consider. We shall say that a
correspondence γ : X ⇒ Y 4 between two ordered sets (X,≥X), (Y,≥Y ) is increasing

(resp. decreasing) if, for every y, y′ ∈ Y , x, x′ ∈ X , if y ∈ γ(x), y′ ∈ γ(x′) and
x ≥X x′, then y ≥Y y′ (resp. y ≤Y y′). We use the natural order, given by containment,
on confidence rankings.

Our central update rule is as follows.

Definition 1. For confidence rankings Ξ and ΞE and an eventE ∈ Σ, ΞE is a confidence

update of Ξ by E if there exists a decreasing correspondence ρE : Ξ⇒ [0, 1] such that

ΞE =
{
{p ∈ C : p(E) ≥ r}E : C ∈Ξ, r ∈ ρE(C), {p ∈ C : p(E) ≥ r} 6= ∅

}min

(4)

4A correspondence γ : X ⇒ Y is a function from X to 2Y \ ∅.
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where, for C ⊆∆(Σ) and E ∈ Σ, CE is the Full Bayesian update defined in (2). ρE is
called the probability-threshold correspondence.

Technicalities aside, the update rule (1) discussed in the Introduction is the special
case where ρE is a function (i.e. it is single-valued). The intuition is the same: the
information that E is taken to indicate something about how reasonable (prior) prob-
ability measures are: those that give too low a probability to E ‘got it more wrong’
than others, and hence may not be retained at certain confidence levels. In particu-
lar, at every confidence level, the correspondence ρE can be interpreted as providing
a threshold that picks out the probability measures retained at that level. If the deci-
sion maker has a different set of beliefs at each confidence level, then ρE is a function.
However, to accommodate cases where he holds the same beliefs at different confidence
levels—as in the special case of a single set of priors (Section 2.2) where the beliefs at
all confidence levels are the same—we allow ρE to be a correspondence. This allows
the decision maker to have the same initial beliefs at two different confidence levels,
but to consider that observation warrants the use of different probability thresholds at
the different levels. As discussed in the Introduction, whenever the initial beliefs and
conclusions drawn from the data at a confidence level are compatible, they are both
retained; whenever they aren’t, neither is retained and the posterior beliefs are inherited
from higher confidence levels. Note that for any probability-threshold correspondence
and closed, convex, min-closed confidence ranking Ξ, ΞE defined according to (4) is a
closed, convex, min-closed confidence ranking.5

We shall also consider the following more general rule.

Definition 2. For confidence rankings Ξ and ΞE and an event E ∈ Σ, ΞE is a gener-

alised confidence update of Ξ by E if there exists a confidence ranking ΞUpdE and an
increasing correspondence cUpdE : Ξ⇒ ΞUpdE such that

ΞE =
{

(C ∩ C ′)E : C ∈Ξ, C ′ ∈ ΞUpdE s.t. C ′ ∈ cUpdE(C), C ∩ C ′ 6= ∅
}min

(5)

In this case, we define the calibration correspondence cE : Ξ ⇒ ΞE by cE(C) ={
(C ∩ C ′)E : C ′ ∈ cUpdE(C), C ∩ C ′ 6= ∅

}
if there exists C ′ ∈ cUpdE(C) with C ′ ∩ C

non-empty and cE(C) = {min ΞE} otherwise.
Generalised confidence update involves the same logic as confidence update, with

the sole difference that it is not assumed that the information purveyed by E effectively
5Note however that, since the Full Bayesian update of a closed set of priors is not necessarily closed

(see Section 4.1), the closure is required in (4) to ensure that the ex post confidence ranking is closed.
We work with closed confidence rankings for mere convenience (the confidence ranking revealed from
preferences is only unique up to closure); the results can be extended to versions of the rule that do not
impose closure.
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amounts to a probability threshold at each confidence level. Rather, a set of ‘reasonable’
probability measures in the light of the fact that E has been learnt is specified for each
confidence level, and the rule restricts to these measures at each level. The restriction
becomes less severe for higher confidence levels, so the information can be represented
as confidence ranking, ΞUpdE . Note that if Ξ and ΞUpdE are closed, convex and min-
closed confidence rankings, then ΞE defined according to (5) is as well. Of course,
confidence update is a special case of generalised confidence update.

Fact 1. For confidence rankings Ξ and ΞE and an event E ∈ Σ, ΞE is a con-

fidence update of Ξ by E if and only if ΞE is a generalised confidence update

of Ξ by E, with ΞUpdE = {{p ∈ ∆(Σ) : p(E) ≥ x} : x ∈ [0, 1]} and cUpdE(C) =

{{p ∈ ∆(Σ) : p(E) ≥ r} : r ∈ ρE(C)} for all C ∈ Ξ.

Given preference relations representable by the confidence model, � and �E for
an event E ∈ Σ, we say that �E is a generalised confidence update of � by E if,
for any representations (Ξ, D, u) and (ΞE, DE, u) of � and �E respectively, ΞE is a
generalised confidence update of Ξ and DE(f) ∈ cE(D(f)) for all f ∈ A. (Non-
generalised) confidence update for preferences is defined analogously.

3 Characterising Confidence Update

In our analysis of confidence update, we first present the central axioms, which char-
acterise the heart of the approach. We then turn to the specific conditions required to
ensure that the new information is evaluated using the probability thresholds involved
in (4).

3.1 Base case

A special role will be played in the axioms below by a specific comparison of acts with
constant acts. Recall that the preference of an act f over a constant act c betrays that
the decision maker values f at least as high as c. Whilst the value assigned to f may
change on learning, the assumption of constant tastes (Assumption 2) ensures that the
value of c will not: to that extent, it provides a constant ‘benchmark’. A preference
for fEc over c indicates that, when this constant benchmark obtains whenever E is not
the case, f is still valued better than it. In other words, it says that conditional on E,
f is evaluated as better than c. Indeed, this is a specific case of the standard definition
of conditional preferences under expected utility, which compares fEh and cEh. (For
expected utility, unlike for ambiguity models, this comparison is independent of the
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choice of h.) The specific case used here—where h = c—is the only one where one
of the acts is guaranteed to be constant, and hence have a value that is independent of
beliefs. To the extent that it ties in with the use of constant acts as a benchmark for
evaluating others, preference comparisons of fEc and c thus provide a natural concep-
tion of conditional preferences. As noted in the Introduction, conditional preferences
are important, because the central issue in update concerns what happens to conditional
beliefs.

We introduce the following terminology. For an event E ∈ Σ and a stakes level σ,
we say that σ is E-resilient if, for all f ∈ A, c ∈ Ac, if fEc �σ c, then fEc �σE c.
E-resilient stakes levels are those for which all relevant ex ante conditional preferences
are retained on learning E: if f is evaluated as better than c conditional on E prior to
learning, then it continues to enjoy this evaluation afterwards.

These concepts are familiar in the literature on non-Bayesian updating. For in-
stance, Pires’s (2002) axiomatisation of Full Bayesian update involves this notion of
conditional preferences, and his main axiom is equivalent (in the presence of his other
axioms) to saying that all stakes levels are E-resilient, for every non-null E.

3.1.1 Main Axiom

The following is the central behavioural axiom behind confidence update.

Axiom A1 (Confidence Consistency). For all stakes levels σ, σ′ with σ′ > σ and every

non-null E ∈ Σ, if σ is E-resilient, then so is σ′.

Confidence Consistency translates the maxim mooted in the Introduction: retain
those conditional beliefs in which you are more confident, and relinquish those in which
you have less confidence. If σ is E-resilient, then all ex ante conditional evaluations of
acts relative to ‘benchmark’ constant acts are retained ex post. This indicates that the
beliefs underlying these preferences are retained on update. Confidence consistency
implies that if all such conditional preferences are retained at some stakes level, then
the conditional preferences at any higher stakes level are also retained. If the decision
maker is confident enough in the beliefs underlying the former preferences to hold onto
them in the face of the information E, then he will also hold onto the beliefs underlying
the latter preferences. This is precisely as the maxim demands: if he retains beliefs
held at a given level of confidence, then he certainly cannot relinquish beliefs held with
higher confidence, for he should have relinquished the former beliefs first!

13
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3.1.2 Other Axioms

Now consider the following axioms.

Axiom A2 (Consequentialism). For every non-nullE ∈ Σ, if f(s) = g(s) for all s ∈ E,

then f ∼E g.

Axiom A3 (Non-degeneracy). For every non-null E ∈ Σ, �E is non-degenerate.

Axiom A4 (Information-based Learning). For every f ∈ A, c ∈ Ac and E ∈ Σ, if

f �σ
E c for every E-resilient stakes level σ, then f �σ′

E c for every σ′.

Consequentialism is a well-known and relatively standard axiom in the dynamic
context; see e.g. Epstein and Le Breton (1993); Ghirardato (2002) for further discussion
of it. Non-degeneracy is the standard property that update by non-null events yields
non-degenerate preferences.

If Confidence Consistency concerns what happens when learning E does not shake
beliefs held with a certain level of confidence, Information-based Learning constrains
what happens when learning E does shake beliefs at a particular confidence level—that
is, at stakes levels which are not E-resilient, and hence where some ex ante conditional
preferences are not retained on learning. The condition basically implies that prefer-
ences at these stakes levels are determined by preferences at higher, E-resilient stakes
levels, where the information can be incorporated without relinquishing ex ante beliefs.
Hence it demands that learning is entirely driven by the new information E. If learning
E undermines beliefs held only to a low level of confidence, they will not be replaced
with anything specific. The information is only understood as saying that such low-
confidence beliefs are inappropriate, but not as specifying other beliefs to replace them,
except those beliefs inherited from higher confidence levels.

We shall call these four axioms—Confidence Consistency, Consequentialism, Non-
degeneracy, Information-based Learning—the Basic Axioms.

3.1.3 Basic Result

The Basic Axioms yield our most general update rule.

Proposition 1. Let� and {�E}E∈Σ satisfy Assumptions 1 and 2. They satisfy the Basic

Axioms if and only if, for every non-null E ∈ Σ, �E is a generalised confidence update

of �.

So the Basic Axioms characterise the heart of the proposed approach, namely the
generalised confidence update rule. In fact, the central behavioural properties of the
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approach essentially boil down to Confidence Consistency, Consequentialism and Non-
degeneracy. Information-based Learning merely controls what happens at the bottom
of the confidence ranking, where there is incompatibility with prior beliefs. It can be
shown that in its absence, the essence of generalised confidence update is retained,
except at confidence levels at the bottom of the ranking.

3.2 Confidence Update

3.2.1 Axioms

To obtain the specification of generalised confidence update involving probability thresh-
olds, consider the following axioms.

Axiom A5 (Probability Consistency). Consider any non-null E ∈ Σ and E-resilient

stakes levels σ ≤ σ′. For every λ ∈ (0, 1] and f, g ∈ A, if, for every c, c ∈ Ac with

c � c, fEc ∼σ
′
cλc implies (f 1

2
c)E(c 1

2
c) �σ′

E c 1
2
c, then, for every d, d ∈ Ac with d � d,

gEd ∼σ dλd implies (g 1
2
d)E(d 1

2
d) �σE d 1

2
d.

Axiom A6 (Null consistency). For every non-null E ∈ Σ, E-resilient stakes level σ,

f ∈ A and c ∈ Ac, if fEe �σ c for all e ∈ Ac, then fEc �σE c.

To interpret Probability Consistency, note that (f 1
2
c)E(c 1

2
c) is a 50-50 mixture of

fEc with a bet on the event E—the act cEc—whereas c 1
2
c is a 50-50 mixture of cλc with

a bet yielding the winning option c with probability λ—that is, cλc. So if a decision
maker weakly prefers the first bets (fEc; the bet on E) over the second (cλc; the bet
with probability λ of winning) in each case, then she would weakly prefer the first
mixture ((f 1

2
c)E(c 1

2
c)) over the second (c 1

2
c).6 This can be thought of as an ‘implication’

of the previous two preferences. But a weak preference for the bet on E over that
with probability λ betrays a judgement that the probability of E is λ or greater. So a
weak preference for (f 1

2
c)E(c 1

2
c) over c 1

2
c would be an ‘implication’ of a prior weak

preference for fEc over cλc and a judgement that the probability of E is λ or greater.
In the light of this, the axiom says that if the decision maker’s ex post preferences at
some stakes level are consistent with all such ‘implications’ of the judgement that the
probability of E is λ or greater (i.e. she weakly prefers each relevant (f 1

2
c)E(c 1

2
c) ex

post), then they remain consistent with all such ‘implications’ of the judgement at any
lower stakes level. In other words, if the decision maker’s preferences are consistent
with her incorporating the opinion that E is more probable than λ at some stakes level,

6Note that the second bets are both constant acts, so this is a consequence of the uncertainty aversion
of the maxmin-EU model.
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then they are consistent with her incorporating that opinion at any lower stakes level.
This is the sort of pattern one would expect given the intuitions about the information
purveyed on learning E: if at some confidence level, the decision maker considers the
observation that E to warrant a judgement that its probability was greater than λ, then
she still considers it to warrant that judgement at any lower confidence level.

Null consistency concerns the case where the ex ante evaluation of an act fEe re-
mains bounded by a constant act c, no matter how attractive e is. This indicates that
Ec involves a certain form of nullness—certainly, if its probability were bounded away
from 0 across the relevant set of priors, then such preferences would not occur. The
axiom says that, in such cases of ex ante nullness, the ex post evaluation concerning f
remains bounded by c. This is reasonable: if the event E was already treated as if had
probability 1 in that region ex ante, then on learning E, the decision maker’s evaluation
of f cannot rise very much.

3.2.2 Representation

Theorem 1. Let �, {�E}E∈Σ satisfy Assumptions 1 and 2. Then they satisfy the Basic

Axioms, Probability Consistency and Null consistency if and only if, for every non-null

E ∈ Σ, �E is a confidence update of �.

In the presence of Null consistency, Probability Consistency thus characterises the
confidence update rule discussed in the Introduction and Section 2.4 within the class
of generalised confidence updates. In other words, it guarantees the existence of a
probability-threshold correspondence that characterises update according to (4). The
following result characterises the uniqueness of this correspondence.

Proposition 2. Let �, {�E}E∈Σ satisfy the conditions in Theorem 1, with the former

represented by (Ξ, D, u). There exists a unique maximal correspondence ρE : Ξ ⇒

[0, 1] representing the update of Ξ by E, in the following sense: for every other ρ′E
representing the update by E and for every C ∈ Ξ, if y ∈ ρ′E(C), then there exists

x ∈ ρE(C) with x ≥ y. Moreover, if for every stakes level σ, there exists f ∈ A
and c ∈ Ac such that fEc �σE c but fEc �σ c, then there exists C ∈ Ξ such that the

correspondence ρE representing the update by E is unique on all C ′ ∈ Ξ with C ′ ⊃ C.

There is a unique maximal probability-threshold correspondence, in the sense that
it yields values higher than those given by any other correspondence representing the
update. Moreover, whenever something is learnt (i.e. preferences change) at every
stakes level, then on all sufficiently large confidence levels, the probability-threshold
correspondence is uniquely revealed from preferences.
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3.3 Special cases

Confidence update (4) involves a probability-threshold correspondence ρE for each
event E, without assuming any relationship between them. However, the approach
can easily accommodate richer structures, involving closer relationships between the
probability-threshold correspondences for different events. These may be useful for
applications, or in connecting the approach to existing work in statistics (Section 5).
By way of illustration, we provide an axiomatisation of the simplest such special case:
where a single probability-threshold correspondence represents update for all (non-null)
events.7 To this end, consider the following strengthening of Probability Consistency.

Axiom A7 (Strong Probability Consistency). Consider any non-null E,F ∈ Σ and

E- and F -resilient stakes levels σ ≤ σ′. For every λ ∈ (0, 1] and f, g ∈ A, if, for

every c, c ∈ Ac with c � c, fEc ∼σ
′
cλc implies (f 1

2
c)E(c 1

2
c) �σ′

E c 1
2
c, then, for every

d, d ∈ Ac with d � d, gFd ∼σ dλd implies (g 1
2
d)F (d 1

2
d) �σF d 1

2
d.

The central difference in this axiom with respect to Probability Consistency is that it
compares across different events; apart from that, the interpretation in terms of the lower
stakes levels retaining the judgements whose ‘implications’ are respected at higher
stakes levels remains the same. This strengthening yields the desired special case.

Proposition 3. Let �, {�E}E∈Σ satisfy Assumptions 1 and 2. Then they satisfy the

Basic Axioms, Null consistency and Strong Probability Consistency if and only if there

exists a probability-threshold correspondence ρ : Ξ ⇒ [0, 1] such that, for every non-

null E ∈ Σ, �E is a confidence update of � by E represented by ρ. The uniqueness of

ρ is as in Proposition 2.

3.4 Comparative statics

In this section, we take a brief look at the comparative statics of the model, as concerns
ex post ambiguity aversion. We adopt a standard definition of comparative ambigu-
ity aversion (Ghirardato and Marinacci, 2002), according to which agent �′ is more
ambiguity averse than � if and only if, for all f ∈ A and c ∈ Ac, if f �′ c, then f � c.

7The aim of this exercise is to illustrate the strength of the approach; we by no means wish to sug-
gest that equality of probability-threshold correspondences is reasonable or desirable. For instance, it
seems more reasonable to look at equal likelihood ratio-thresholds across events; however, note that in
our extremely general framework (where the space of probability measures is the whole of ∆(Σ)), the
likelihood ratio coincides with the likelihood. Restricting the space of measures considered and using
an adapted version of the techniques presented here can provide a likelihood ratio-version of the result
below; details go beyond the scope of the current paper.
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Proposition 4. Let �, {�E}E∈Σ and �′, {�′E}E∈Σ be two families satisfying Assump-

tions 1 and 2, and the conditions in Theorem 1, and suppose that �=�′. Let (Ξ, D, u)

be the representation of �, and let {ρE} and {ρ′E} be the families of maximal corre-

spondences as specified in Proposition 2 representing updates yielding {�E}E∈Σ and

{�′E}E∈Σ respectively. Then the following are equivalent, for each non-null event E:

(i) for every E-resilient stakes level σ according to�,� ′σ
E is more ambiguity averse

than �σE;

(ii) for every C ∈ Ξ and y ∈ ρ′E(C), there exists x ∈ ρE(C) with x ≥ y.

This result sheds light on the role of the probability-threshold correspondence. For
decision makers with identical ex ante preferences, differences in ex post ambiguity atti-
tude at stakes levels where the relevant conditional preferences are retained on learning
(E-resilient stakes levels) correspond to differences in the probability-threshold corre-
spondence. The latter essentially reflects how strong a conclusion a decision maker is
willing to draw from a given observation for each confidence level: as discussed in the
Introduction, it reflects how ‘wrong’ a probability measure has to be ex ante about the
new information for it to be ruled out as plausible. The higher the probability-threshold
at a given confidence level, the stricter this constraint, and hence the stronger the im-
plicit conclusion the decision maker is drawing from the data. So, if one decision maker
always uses a higher probability threshold than another, the former can be thought of as
more daring, or less cautious, in the conclusions he is prepared to draw from the same
data. This translates to him being less ambiguity averse ex post.

As discussed below (Section 5), the probability-threshold correspondence plays a
similar role to significance levels in statistics, with the difference that it assigns a signifi-
cance level to each level of confidence. Decision makers which differ in the probability-
threshold correspondence (or, equivalently, ceteris paribus, ex post ambiguity aversion)
can thus be thought of, roughly, as differing in the significance level they deem appro-
priate for a given level of confidence.

4 Situating Confidence Update

As noted in the Introduction, update of ambiguous beliefs presents a certain number of
challenges, concerning in particular complete ignorance and surprising events. We shall
now consider how the approach fairs with respect to these challenges, and compares to
existing update rules in the literature.
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4.1 Complete ignorance, and other updating rules for ambiguous
beliefs

The most notable generally-applicable consequentialist update rules that have been pro-
posed and axiomatised for multi-prior models, and in particular the maximin-EU model
(Gilboa and Schmeidler, 1989) are Full Bayesian (Pires, 2002; Walley, 1991) and Max-
imum Likelihood update (Gilboa and Schmeidler, 1993; Dempster, 1967).8 As Gilboa
and Marinacci (2013) point out, both are extreme, which of course sheds doubt on their
descriptive adequacy as well as their normative validity. Some other, apparenty milder,
rules have been proposed, for instance in Epstein and Schneider (2007), but have not,
to our knowledge, yet been characterised behaviourally. As we shall now show, all of
these rules come out as special instances of confidence update.

Let us assume that the initial confidence ranking is a singleton containing the closed
convex set of probability measures P ⊆ ∆(Σ), so initial preferences are maximin-EU
(Gilboa and Schmeidler, 1989). For update by an event E, applying the confidence
update rule to these preferences yields preferences represented according to (3), with
confidence ranking

ΞE =
{
{p ∈ P : p(E) ≥ r}E : r ∈ RE s.t. {p ∈ P : p(E) ≥ r} 6= ∅

}min
(6)

where ρE(P) = RE ⊆ [0, 1]. As discussed previously, the confidence rule allows one
to distinguish on update according to how reasonable probability meaures are in the
light of the information. Hence it can yield, even for a degenerate initial confidence
ranking (i.e. a single set of probability measures) a richer posterior confidence ranking;
indeed, this will typically be the case whenever RE is not a singleton. We shall say that
an update by E is maximally refined whenever RE = [0, 1], in which case (6) simply
becomes:

Ξmr
E =

{
{p ∈ P : p(E) ≥ r}E : r ∈ [0, 1] s.t. {p ∈ P : p(E) ≥ r} 6= ∅

}
(7)

The previously mentioned update rules from the literature correspond to particular

8Other approaches to update in the literature drop consequentialism (Hanany and Klibanoff, 2007),
restrict to ex ante beliefs satisfying a particular property with respect to a given filtration of events rep-
resenting the potential new information (Epstein and Schneider, 2003), or define update in a multi-stage
context with a given information structure, with update depending on the first-stage partition (Gul and
Pesendorfer, 2018). Note that in the sort of challenging cases mentioned above—complete ignorance,
learning on surprise or null events—one would not expect the decision maker to have a full and correct
conception of the information structure (filtration) he is facing.
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confidence levels in the confidence ranking resulting from the maximally refined ap-
plication of the confidence update rule. Consider, for instance, the largest set in Ξmr

E ,
capturing the beliefs held with the highest level of confidence. This is (the closure
of) PE—the Full Bayesian update of the initial set of priors P (see (2)). On the other
hand, the smallest set in Ξmr

E —capturing all beliefs held, no matter how little confidence
there is in them—is clearly (the closure of) {p ∈ P : p(E) = maxq∈P q(E)}E: the
Maximum-Likelihood update of P . Moreover, for every ‘significance level’ α ∈ [0, 1],
the ‘classical’ update which retains all probability measures giving a probability greater
than α to E—ie. {p ∈ P : p(E) ≥ α}E—coincides (up to closure) with some non-
extremal set in Ξmr

E , corresponding to some intermediate confidence level. Whilst the
two previous rules have been axiomatised in the economics literature, the previous re-
sults provide what, to our knowledge, the first behavioural characterisation of this last
rule.

These observations offer a new perspective on existing update rules for ambiguous
beliefs. Full Bayesian update is what you get if you use the maximally refined version
of the confidence update rule, but then only restrict to beliefs in which you have most
confidence. It thus basically retains only information that can be gleaned from obser-
vation with maximal confidence, ignoring the rest. As such, it comes to appear as a
particularly cautious update rule. Maximum-likelihood update, on the other hand, is
what get if you apply confidence update and then allow yourself to rely on all beliefs,
even those held with little confidence. It thus admits any information that can be gleaned
from observation, no matter the confidence with which it can be deduced: it makes the
boldest use possible of observations. The third sort of rule described above corresponds
to taking beliefs held to an intermediate level of confidence, and hence embodies an
intermediate level of caution. Note that this latter rule is perhaps the closest to much
practice: taking the set corresponding to a probability threshold of 0.01, for instance,
would be consistent with the classical practice in statistics of taking a 1% significance
value (see also Section 5).

Moreover, the framework gives a simple reply to the question of which of these
‘standard’ rules to use. Since the difference between them basically boils down to which
confidence level to embrace in posterior beliefs, the question reduces to that of the ap-
propriate confidence level. However, under the confidence model, this is determined
by the importance of the decision at hand, according to the cautiousness coefficient
(Section 2.2; see Hill, 2013, 2019 for extended discussion). So the recommendation is
to update by the confidence rule, and then determine the appropriate confidence level
according to the decision at hand and the level of confidence deemed appropriate. If
the decision merits a particularly high level of confidence, you will act as if you are
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using the Full Bayesian update; if it merits only low confidence, your behaviour will be
coherent with Maximum-Likelihood update; and for intermediate levels of confidence,
one of the interim rules will characterise choice. In particular, from the perspective of
the confidence model, it would be extreme to settle on one of the standard update rules
for all updates and decisions: for this boils down to adopting a degenerate cautiousness
coefficient, that singles out the same set for all decisions irrespective of the stakes in-
volved. For instance, the Full Bayesian rule is particularly cautious because it implicitly
recommends, even for the most trivial decision, demanding maximal confidence in the
beliefs used. So a rational decision maker will generally look like he is using different
‘standard’ rules for different decisions, according to their importance and the appropri-
ate level of confidence. Confidence update thus provides a generalisation of standard
approaches that can situate and resolve the tension between them.

We illustrate the relationship, and the consequences for the ‘complete ignorance’
cases that have been argued to be problematic for existing rules, on an example.

Example 1 (Complete Ignorance). Consider a coin with a bias about which you know
absolutely nothing, except that it is fixed. This can be cast in a statistical decision-style
framework as follows. The period state space St = S = {h, t} (h for heads, t for tails),
and the full state space S = S∞, with the product σ-algebra Σ. The standard statistical
decision framework assumes in addition a parameter space Θ. Under the assumption
that the process is IID, we can take Θ = [0, 1], with each θ ∈ Θ associated to the
probability distribution over the period state space (ie. an element of ∆(S))9 `(•/θ),
where `(h/θ) = θ. Each θ ∈ Θ thus generates the distribution `∞(•/θ) over S. Just
as a distribution µ ∈ ∆(Θ) generates a predictive distribution µ =

∫
Θ
`∞(•/θ)dµ(θ) ∈

∆(S), a set of probability measuresM⊆ ∆(Θ) generates a set of probability measures
M⊆ ∆(S), defined as follows:

M =

{∫
Θ

`∞(•/θ)dµ(θ) : µ ∈M
}

(8)

We adopt a multiple prior representation,M, of ex ante beliefs; following the standard
way of representing a complete lack of prior knowledge about the bias of the coin in
this context, we setM = ∆(Θ). In particular, M contains every Dirac measure; we
denote by µθ the Dirac measure putting all weight on θ.

Suppose that you observe 100 tosses, 75 of which were heads—call this event
s100—and consider your posterior belief concerning h101—getting a head on the next
toss. Applying the maximally refined confidence update, as in (7), toM yields:

9We use ∆(S) in the context of this example to denote the set of probability distributions over S, and
similary for ∆(S) and ∆(Θ).
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Ξs100 =

{{∫
Θ

`∞(•/θ)dµs100(θ) : µ ∈ ∆(Θ),

∫
Θ

`∞(s100/θ)dµ(θ) ≥ r,

∫
Θ

`∞(s100/θ)dµ(θ) > 0

}
(9)

: r ∈ [0, max
µ∈∆(Θ)

∫
Θ

`∞(s100/θ)dµ(θ)]

}
where, as standard

µs100(A) =

∫
A
`∞(s100/θ)dµ(θ)∫

Θ
`∞(s100/θ)dµ(θ)

(10)

for any (measurable) A ⊆ Θ.
The Full Bayesian update of M on s100 is{∫

Θ
`∞(•/θ)dµs100(θ) : µ ∈ ∆(Θ),

∫
Θ
`∞(s100/θ)dµ(θ) > 0

}
. Up to closure,

this coincides with the set of probability measures corresponding to the highest
confidence level in Ξs100 , max Ξs100 . In particular, since the only µ ∈ ∆(Θ) with∫

Θ
`∞(s100/θ)dµ(θ) = 0 are the Dirac measures µ0 and µ1, this set isM itself. Since,

under the maximin-EU rule, a set of priors is behaviourally indistinguishable from its
closure, this means that, under Full Bayesian update, the decision maker’s preferences
do not change on learning. In particular, his posterior probability interval for h101 is
behaviourally indistinguishable from the prior interval [0, 1]. Full Bayesianism allows
for no learning in such cases of complete prior ignorance; this problem is known in the
literature as the issue of ‘vacuous priors’ (Walley 1991, §6.6.1, 9.3; see also Vallinder
2017).

On the other hand, Maximum Likelihood update yields
{∫

Θ
`∞(•/θ)dµs100(θ) :∫

Θ
`∞(s100/θ)dµ(θ) = maxµ∈∆(Θ)

∫
Θ
`∞(s100/θ)dµ(θ)

}
, which coincides up to clo-

sure with the set of probability measures corresponding to the lowest confidence level
in Ξs100 , namely min Ξs100 . Since `∞(s100/0.75) > `∞(s100/θ) for every θ 6= 0.75, this
set is the singleton containing `∞(•/0.75), giving all weight to the bias being 0.75 in
favour of heads. After learning s100, the decision maker using this rule assigns a precise
probability of 0.75 to h101. So the Maximum Likelihood update rule goes to the oppo-
site extreme: the decision maker settles on a precise opinion about the bias after a finite
number of observations.

More reasonable than these extremes are the update rules one gets when restricting
to intermediate confidence levels. Up to closure, these yield posterior sets of proba-
bility measures such as Cα =

{∫
Θ
`∞(•/θ)dµs100(θ) :

∫
Θ
`∞(s100/θ)dµ(θ) ≥ α

}
, for

α ∈ [0,maxµ∈∆(Θ)

∫
Θ
`∞(s100/θ)dµ(θ)]. For non-extreme α, these sets are neither as
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imprecise as M, nor as specific as a singleton. As a simple illustration, suppose the
initial set of priors is the set of Dirac measures,MD = {µθ : θ ∈ Θ}. In this case, the
maximally refined confidence update ofMD yields:10

Ξs100 =
{
{`∞(•/θ) : θ ∈ Θ, `∞(s100/θ) ≥ r, `∞(s100/θ) > 0} : r ∈ [0, 1]

}
(11)

which, at intermediate confidence levels, involves sets of the form
{`∞(•/θ) : θ ∈ Θ, `∞(s100/θ) ≥ α}, up to closure. (Full Bayesian and Maxi-
mum Likelihood update on this set yields analogous results to those above.) It is clear
that these sets are smaller for larger values of α, which correspond in turn to lower
confidence levels. Furthermore, they will typically be non-extremal.

Moreover, setting β = α
maxµ∈∆(Θ)

∫
Θ `∞(s100/θ)dµ(θ)

, we can rewrite Cα ={∫
Θ
`∞(•/θ)dµs100(θ) :

∫
Θ
`∞(s100/θ)dµ(θ) ≥ βmaxµ∈M

∫
Θ
`∞(s100/θ)dµ(θ)

}
for β ∈ [0, 1]. This is the essence of the update rule proposed by Epstein and Schneider
(2007, Eqn (6)), albeit in a recursive setup involving incomplete learning.11 As noted
previously, it falls out as a consequence of confidence update applied to initial beliefs
of this form; to our knowledge, this is the first framework in which such an update has
been analysed axiomatically.

4.2 Conditional beliefs and surprising or null events

It was claimed in the Introduction that a specificity of the confidence update rule was the
way it deals with conditional belief. We now elaborate this point, first via a comparison
with Bayesian conditionalisation, and then with a consideration of consequences for
updating on surprising or null events.

4.2.1 Bayesian Conditionalisation

It is well-known that Bayesian conditionnalisation relies on the assumption that con-
ditional probabilities on an event E are unchanged after learning E.12 Translated into
confidence terms, the assumption that the conditional probability of an event F given E

10Recall (Section 2.2) that we are not restricting to convex confidence rankings in this section. See
also Section 5.

11Although we have illustrated the relationship with their update rule in a standard IID context, it is
possible to write their incomplete learning model in our general framework and to recover their version
of the rule.

12Some express this as a principle (e.g. Bradley, 2005; Dietrich et al., 2016); alternatively, its be-
havioural formulation is equivalent to Dynamic Consistency (Epstein and Le Breton, 1993; Ghirardato,
2002) in the presence of Consequentialism.
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is unaffected by learning E essentially boils down to the assumption the decision maker
has sufficient confidence in his judgement about the conditional probability of F given
E to retain it in the face of the new information. However, his confidence is a fact about
his ex ante beliefs, as encapsulated in his confidence ranking. Indeed, it is a straightfor-
ward consequence of confidence update that whenever he is maximally confident in his
judgement about the conditional probability of F given E, he will satisfy the assump-
tion of invariant conditional beliefs with respect to these events. We summarize this in
the following fact.

Fact 2. Let Ξ be a confidence ranking with min Ξ = {p} andE,F ∈ Σ withE non-null.

If q(F/E) = p(F/E) for all q ∈ max Ξ, then for any ΞE resulting from a confidence

update of Ξ by E, q′(F/E) = p(F/E) for all q′ ∈ max ΞE . In particular, if min ΞE is

a singleton containing pE , then pE(F/E) = p(F/E).

Confidence rankings containing a singleton set are discussed and characterised in
Hill (2013), where they were called centred confidence rankings. Decision makers
represented by such confidence rankings are Bayesians with confidence: they can assign
a precise probability value to any event, but may have limited confidence in some of
these assignments. They are thus a natural context for exploring the relationship with
standard Bayesian techniques.

The previous observation suggests that the essence of Bayesian update boils down
to a property of the decision maker’s ex ante beliefs: namely, a large amount of con-
fidence in conditional probabilities. Indeed, it is straightforward to check that if the
decision maker is maximally confident in all conditional probabilities, then we return
to the Bayesian special case: the confidence ranking contains only one set, which is a
singleton. So the proposal here diverges from Bayesianism insofar as it acknowledges
that decision makers might, not unreasonably, have limited confidence in some of their
conditional probability judgements. In the face of some information, they may thus
relinquish these conditional probabilities to retain other beliefs—and hence violate the
central tenet behind Bayesian conditionalisation.

This feature of confidence update allows it to handle a challenging family of cases,
namely updates on surprising or null events.

4.2.2 Scientific Discovery, Crises and Surprises

Consider the following example.

Example 2. Prior to a sequence of successive coin tosses, a decision maker is pretty
sure that the coin will be unchanged throughout the sequence—so the process is
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IID—though he is unsure of the bias of the coin. Suppose (to avoid issues with
improper priors) that he uses the standard statistical setup for IID processes (Exam-
ple 1), with as parameter space Θ = {0, 0.1, 0.2, . . . , 0.9, 1} where `(h/θ) = θ for
each θ ∈ Θ. He is Bayesian, and takes a uniform prior µ on Θ, which generates
the predictive µ ∈ ∆(Σ). He then observes 10 000 tosses, which turn out as fol-
lows: (h, t, h, t, . . . , h, t, h, t). Let us call this history of observed tosses s10000. By
Bayesian conditionalisation, his posterior probability for the next coin being a head,
ps10000(h10001) = ps10000(h10001/s

10000) = µ(h10001/s
10000) = 0.5. However, given that

this sequence is very improbable under the assumption that the process is IID, a decison
maker may reasonably come to question this assumption. If so, he would tend to think
that a head on the next toss is more likely, given the alternating nature of the sequence:
ps10000(h10001) = ps10000(h10001/s

10000) > 0.5 = µ(h10001/s
10000). His conditional prob-

abilities would thus change on learning.
This example can be comfortably accommodated by the update rule and framework

developed here. Consider the confidence ranking on S

Ξ =
{
{µ} ,

{
πMarkov
λ : λ ∈ [0, 1]

}
∪ {µ}

}
where πMarkov

λ is (the Markov hypothesis) defined by πMarkov
λ (ht+1/ht) =

πMarkov
λ (tt+1/tt) = λ for all t. This confidence ranking reflects the fact that the pa-

rameter space Θ and prior µ over it captures what the decision maker thinks about the
sequence of tosses he is about to observe: they (or rather the generated predictive) nat-
urally characterise the centre of his confidence ranking. He may be fairly confident in
this judgement, and hence use this prior at medium stakes levels (or loss values, for a
statistician). However, according to Ξ he is not maximally confident that the process is
IID, so there will be confidence levels at which he does not hold this belief. At such
levels, the corresponding set of probability measures contains measures that do not cor-
respond to IID processes but, for instance, to Markov processes. For an appropriate
ρs10000 , setting reasonable probability thresholds,13 the confidence update of Ξ by s10000

is such that πMarkov
0 ∈ min Ξs10000; hence the decision maker will not have a posterior

precise probability of 0.5 for heads on the next toss. Indeed, the minimum probability
of heads among probability measures in min Ξs10000 will be greater than 0.5, and will
generally depend on the probability threshold set by ρs10000 . On this analysis, the con-
fidence approach seems to agree with pre-theoretical intuition. On the one hand, the
decision maker sticks with his best-estimate (Bayesian) belief as long as the observa-

13For instance, when ρs10000({µ}) = 0.05, ρs10000(
{
πMarkov
λ : λ ∈ [0, 1]

}
∪ {µ}) = 0.01, µ /∈

min Ξs10000 =
{
πMarkov
λ : λ ∈ [0, 9999

√
0.01]

}
.
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tions are not very surprising: in the absence of this peculiar pattern, confidence update
recommends applying Bayesian conditionalisation on µ. On the other hand, in the pres-
ence of a surprising event (or pattern)—one that it is particularly unlikely according
his best-estimate belief—he retains only those beliefs held with higher confidence, and
moves to the most reasonable conjecture according to those beliefs: in this case, that
the process is not IID.

This example can be thought of as a parable of (some) scientific discovery. Promi-
nent discoveries—Fleming’s discovery of penicillin, for instance14—involve noting sur-
prising patterns where one was not expecting them. One certainly would not like to
qualify such cases as irrational, and it can be taken as an advantage of our approach
that it can capture them comfortably, as the example illustrates. Indeed, it can account
for such updates whilst retaining ex ante preferences that are consistent with the initial
assumption of an IID process at medium stakes levels; preferences only diverge at high
stakes, where lots of confidence is required. By contrast, any Bayesian approach capa-
ble of accounting for these sorts of belief change would require the decision maker to
place a small probability ex ante on the process not being IID, so as to guarantee that the
conditional beliefs remain invariant on learning (Section 4.2.1). This would complicate
calculations, and lead to prior preferences which contravene the basic assumption of an
IID process. Indeed, a long tradition of experimental and empirical evidence suggests
that people do not employ Bayesian updating, especially in the face of ex ante surprising
(low probability) events.15

Similar points hold for economic crises. Consider how people should update on
events such as the collapse of Lehman Brothers, or the a priori surprising economic cir-
cumstances since. These are cases where the appropriateness of the Bayesian approach
has been questioned (Gilboa et al., 2017; Giacomini et al., 2019). By contrast, assimi-
lating the IID assumption in Example 2 with ‘previously accepted’ economic thinking,
it is clear that the confidence approach once again provides guidance. In such situations,
it recommends relinquishing those beliefs or hypotheses conflicting with the observed
events in which confidence is most limited; only beliefs and hypotheses in which one
has relatively high confidence are retained. So, to continue the analogy, if one is sure
that there are only two viable relevant economic theories (that the process is IID or

14Fleming noticed a petri dish containing Staphylococci bacteria that had been mistakenly left open
was contaminated by blue-green mould from an open window, and that, surprisingly, there was a halo of
inhibited bacterial growth around the mould.

15See for example Kahneman et al. (1982); Grether (1980, 1992); Griffin and Tversky (1992); Camerer
et al. (2011) and De Bondt and Thaler (1985, 1987); Gallagher (2014) for experimental and empirical
evidence respectively. Note that the points made here hold for both first- and second-order Bayesian
approaches.
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Figure 2: A Game. (The first number in each pair is Ann’s payoff, the second is Bob’s.)

Markov), and one is initially fairly sure that one is right (IID, in the example), then in
the face of observations which are very unlikely on the basis of that theory, one relin-
quishes one’s adherence to that theory, falling back on one’s (more solid) belief that at
least one of the theories is right.

4.2.3 Reasoning in games

Another situation where conditional beliefs may change on update involves surprising
or null events in games.

Example 3. Consider the game in Figure 2 and suppose that Bob thinks that Ann will
adopt the Backwards Induction strategy, though admits a small probability ε of her
making a ‘trembling hand’ mistake at each node. He acts as a Bayesian, and thus places
probability 1 − ε on her going Out at every node.16 Suppose now that Ann plays In at
the first node, then Bob plays In, and then Ann plays In again. By standard Bayesian
conditionnalisation on the (unexpected, but non-null) event of Ann going in twice, Bob
continues to believe that Ann will play the Backwards Induction strategy, and hence
go Out at node Ann3. However, given the very small probability of her making two
successive mistakes, he might come to reconsider his assumption that she is trying to
play the Backwards Induction strategy. He might wonder whether the deviations from
Backwards Induction play are intentional: Ann could be aiming for the gain she would
get if Bob went In at every node. In other words, he might switch to Forward Induction-
style reasoning (Pearce, 1984; Reny, 1992; Stalnaker, 1998; Battigalli and Siniscalchi,
2002). Under this assumption, he would expect Ann to move In at node Ann3. That
is, his belief about what Ann would do at node Ann3 after having observed her play In
twice differs from his prior conditional belief about what Ann will do if she gets to node
Ann3. This is another case where conditional beliefs change on learning.

Given the obvious analogy to Example 2—the assumption that Ann is playing the
Backwards Induction strategy plays the role of the IID assumption; the strategy in which

16It is simple to check that Ann’s Backward Induction strategy is to play Out at each node.
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she is aiming for both playing In at all nodes plays the role of the alternative Markov
hypotheses—it shoud be no surprise that the confidence approach can comfortably cap-
ture the reasoning in this example. Bob’s initial beliefs can be characterised by the
centred confidence ranking

Ξ = {{µBI,ε} , {µBI,ε, µFI,ε}}

where µBI,ε is the probability measure over Ann’s play corresponding to the Backwards
Induction assumption with ‘trembling hand’ errors—µBI,ε(Out) = 1− ε > 0.5 at every
node—and µFI,ε is the probability measure corresponding to the thesis that Ann is aim-
ing for Bob going In at every node, with ‘trembling hand’ errors—µFI,ε(In) = 1− ε >
0.5 at every node. This represents Bob as a Bayesian with confidence: at the centre of
the confidence ranking is the Bayesian belief µBI,ε, capturing the fact that at intermedi-
ate confidence levels, he acts and reasons as a Bayesian accepting that Ann will play the
Backward Induction strategy with errors. However, at high levels of confidence, he is
not sure of this prediction, entertaining alternative conjectures, and in particular the pos-
sibility that Ann is ‘aiming’ for everyone playing In at every node. For appropriate ρE ,
corresponding to appropriate probability thresholds about (the reasoning behind) Ann’s
play, the confidence update will shift to µFI,ε if she makes ‘too many’ mistakes. For
instance, if ρIn({µBI,ε}), ρIn,In({µBI,ε}), ρIn({µBI,ε, µFI,ε}), ρIn,In({µBI,ε, µFI,ε}) ∈
( ε

2
, ε),17 then min ΞIn = {µBI,ε}18, whereas min ΞIn,In = {µFI,ε}. If Ann goes In

once, this can be seen as a mistake, so Bob reasons as a Bayesian and, updating by
conditionnalisation, sticks with his Backwards Induction assumption. However, if she
goes In again, then this is too surprising, and Bob looks to the most reasonable alter-
native conjecture that he admits as possible, which interprets Ann’s play as intentional.
As in the previous example, confidence update can comfortably capture such learning
patterns.

Under this analysis, Bob’s update (and reasoning) varies as one would expect with ε.
For fixed probability thresholds ρE , as ε increases, there may be a value such that, after
Ann plays In twice, Bob retains his Backwards Induction assumption: min ΞIn,In =

{µBI,ε}.19 This is as to be expected: if the probability of error is high enough, he
need not consider two successives plays of In to be sufficiently surprising, and hence
has no reason to doubt his initial beliefs about her strategy. On the other hand, as ε
decreases with ρE fixed, there will be a value below which Bob will interpret Ann’s

17In is the event that Ann plays In at the first node; In, In is the event that she plays In at the first two
nodes, and so on.

18Note that µBI,ε = µBI,ε(•/In) and similarly for µFI,ε as defined.
19This occurs whenever ε2 ≥ ρIn({µBI,ε}), ρIn,In({µBI,ε}).
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play as intentional after she plays In just once: min ΞIn = {µFI,ε}.20 If he considers
a ‘trembling hand’ mistake to be sufficiently unlikely, then seeing just one deviation
from the expected Backwards Induction play will be sufficiently to trigger alternative
reasoning. This is how Bob would update under this specification in the limit case of
no ‘trembling hand’ errors (ε = 0). There is thus a ‘continuity’ in reasoning between
very small and zero ex ante probabilities of ‘trembling hand’ errors—that is, between
update on surprising and null events.

By contrast, standard approaches retain Bayesian conditionnalisation whenever the
observed event is non-null: so in the example, whenever ε > 0, Bob will hold onto
his Backwards Induction assumption no matter how many times Ann plays In. Bayes
rule need only be supplemented for cases of update on null events—when ε = 0—and
generalisations of probabilities (and Bayesian update) such as conditional probability
systems (CPS) or lexicographic conditional probability systems (LCPS) have been pro-
posed for such cases (Rényi, 1955; Myerson, 1986; Blume et al., 1991a,b; Dekel and
Siniscalchi, 2015). Since they coincide with Bayesian conditionalisation on non-null
events, there is a discontinuity at ε = 0: although under the smallest positive probabil-
ity of error, Bob continues to hold onto the assumption of future Backwards Induction
play after deviations, as soon as the probability hits zero he can change his assumption
on update. The continuity supported by the confidence-based approach may seem a
more desirable property of reasoning in games.21 Whether or not this is so, the example
indicates that the confidence framework can cope with update by null events: indeed,
the aforementioned generalisations of Bayesian conditionnalisation to null events can
be recovered as special cases of confidence update, as we now illustrate on CPS’s.22

For simplicity, let us assume that the state space S is finite (and retain all other termi-
nology). A conditional probability system on S is a map pCPS : Σ×(Σ/∅)→ [0, 1] such
that pCPS(•/E) ∈ ∆(Σ), pCPS(E/E) = 1, and pCPS(E/G) = pCPS(E/F ).pCPS(F/G)

for all E,F,G ∈ Σ with E ⊆ F ⊆ G and F 6= ∅. pCPS(E/S) can be thought of as rep-
resenting prior beliefs. If pCPS(E/S) > 0, then pCPS(•/E) is the standard Bayesian
conditionalisation of pCPS; however, pCPS(•/E) is well-defined and non-trivial even
when pCPS(E/S) = 0. Recall (Section 4.2.1) that a confidence ranking Ξ is centred if
it contains a singleton set; in this case, we use pΞ to denote the member of the singleton
set, and call it the centre of Ξ.

Proposition 5. Let pCPS be a conditional probability system on a finite space S. Then
20This occurs whenever ε < ρIn({µBI,ε}).
21We hasten to add that this discussion concerns the reasoning (and update) of one player in a game;

evaluating potential consequences for equilibria would require further concepts (e.g. Dekel and Sinis-
calchi, 2015), and goes beyond the scope of this paper.

22See for instance Hammond (1994) on the relation with LCPS.
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there exists a centred confidence ranking Ξ and a family of functions (ρE)E∈Σ, ρE :

Ξ → [0, 1] such that: i. the centre of Ξ, pΞ=pCPS(•/S); and ii. for each non-empty

event E, ΞE , the confidence update of Ξ by E according to ρE is a centred confidence

ranking whose centre, pΞE satisfies pΞE(F ) = p(F/E) for all F ∈ Σ.

So any decision maker that can be modelled using a CPS can alternatively be mod-
elled using confidence update. Focussing on decisions where the stakes are limited, the
decision maker’s ex ante and ex post preferences would be precisely as according to the
CPS model: in particular confidence update picks out his ex post beliefs properly, even
for update on events that are null according to the centre of his confidence ranking. By
contrast, his lack of full confidence about his best-guess probability measure (and his
relative degree of confidence in the alternatives) does come out in his ex ante prefer-
ences under the confidence approach, though not under the CPS approach, but only for
decisions with high or extremely high stakes. On such decisions, his preferences may
be non-Bayesian.

This suggests that confidence update, in addition to dealing with update under ambi-
guity, can comfortably and fruitfully deal with issues arising from update on surprising
or null events. Indeed, unlike standard approaches, it offers a uniform treatment of both
sorts of update, which respects their apparently common structure.

5 Discussion

We now briefly consider the relationships with other learning paradigms, as well as
potential extensions.

Bayesian and Classical Statistical Reasoning Confidence update subsumes elements
of both Classical and Bayesian statistical reasoning. The way it deals with confidence,
and in particular the use of a probability threshold over the ex ante probability (or likeli-
hood) of the learnt event under different probability measures, is classical in spirit. The
recognition that on learning an event, one ultimately has to use (some) probabilities
conditional on that event is Bayesian. This can be illustrated on Example 1 (Section
4.1).

On the one hand, the penultimate case in the example (involving Dirac measures) re-
veals a strong analogy to the reasoning in classical statistics: there is a set of parameters
(the ex ante set of Dirac measures), and on observation, one can rule out those according
to which the observation was too unlikely. The probability threshold in the confidence
approach plays a role analogous to the significance level in classical hypothesis testing.
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However, the confidence approach does not demand a fixed significance level. Rather,
the update encompasses all relevant significance levels; the level to be used in an en-
suing decision is determined on the basis of its importance according to the decision
maker’s cautiousness coefficient, which reflects his attitude to choosing on the basis of
limited confidence. In other words, the approach sheds light on how the appropriate
significance level should be fixed, revealing the value judgement or taste it corresponds
to.

On the other hand, since initial beliefs representable by a Bayesian probability gen-
erate a special type of confidence ranking, the confidence update rule can be applied,
yielding as posterior beliefs the conditional probability measure (or, more precisely, the
confidence ranking whose only element is the singleton containing it). So confidence
update coincides with standard Bayesian statistical practice whenever a single prior is
assumed with maximal confidence.

Belief Revision Confidence update is also reminiscent of a substantial literature in
Artificial Intelligence, logic and philosophy on ‘belief revision’ (e.g. Gardenfors, 1988),
which focuses on belief change in cases where incoming information contradicts initial
beliefs. In such cases, there is usually a choice of which of several ex ante beliefs to
give up. A popular approach employs the notion of the ‘entrenchment’ of a belief, and
is guided by a maxim similar to ours: hold on to the beliefs that are more ‘entrenched’,
relinquishing those that are less ‘entrenched’. This affinity is doubtless related to some
of the points made in the preceding sections; indeed, the relevance of belief revision for
scientific theory change (Alchourron et al., 1985) and reasoning in games (Stalnaker,
1998) has long been recognised.

However, given the focus on categorical rather than probabilistic beliefs in that lit-
erature, it contains, to the best of our knowledge, no rule corresponding to the one pro-
posed here. Moreover, and crucially, they typically do not consider decision. As such,
one could consider this paper as developing a decision-theoretic approach to learning
that was lacking from the belief revision literature.

Choice and learning An important characteristic of the Bayesian paradigm is the
connection between ex ante preferences and update: under it, ex ante and ex post con-
ditional preferences coincide (Section 4.2.1). The current proposal involves a strong,
albeit different connection, modulated by the double role of confidence in choice (ac-
cording to (3)) and learning (via (4)): a decision maker’s confidence in a belief regulates
both how willing he is is to choose on the basis of it and how tenaciously he is ready to
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hold onto it in the face of conflicting information.23 This guarantees that ex post pref-
erences are partially determined by ex ante ones (in particular those held at sufficiently
high stakes levels).

This connection is a central plank of our approach. It draws normative support
from the aforementioned intuitions. The relationships it implies between ex ante and
ex post preferences enhance testability, hence lending descriptive clout. And it sets our
approach apart from others dealing with null or surprising events. For instance, under
the CPS model (Section 4.2.3), ex ante preferences impose very few constraints on ex
post preferences after updating on a null event.

Ortoleva (2012) proposes a ‘Hypothesis Testing’ update rule of Bayesian beliefs
which is similar in spirit to the CPS and LCPS models, except that it ‘moves to’ another
Bayesian probability when the learnt event is surprising enough (i.e. its ex ante prob-
ability falls below a threshold), rather than when it is null.24 The rule is motivated by
classical hypothesis-testing reasoning, of the sort mentioned above. However, unlike
the confidence-based approach, ex ante preferences in Ortoleva’s model impose virtu-
ally no constraints on the ex post preferences an agent will adopt on learning surprising
information. In fact, given some underlying technical similarilities,25 it may be possible
to retrieve the ’Hypothesis Testing’ rule as a special case of confidence update, via a
result similar to Proposition 5 for the CPS model. This may be a way of linking the
update to ex ante behaviour.

Gilboa et al. (2017) propose a model of choice which combines case-based and
expected-utility reasoning, claiming that the former is more appropriate and widespread
in the aftermath of surprising events. Since the model is static, it does not draw any link
between preferences prior to a (surprising) event and posterior preferences, whereas, as
noted, confidence will play a role in relating the two under the approach proposed here.

Extensions and future research Most of the technical assumptions on confidence
rankings adopted in Section 3—notably closure and convexity—are inessential to the
workings of the update rule. Similar results can be obtained in their absence, albeit with
added technicalities to deal, for instance, with the fact that non-convexities do not show
up in preferences. Moreover, whilst we have focussed on the standard case of update
on events, the general logic of the update rule—and in particular the intersection of the

23Note that in the Bayesian paradigm, no single concept plays such a double role: the strength of a
Bayesian probability in particular is quite distinct from how tenaciously it is retained on update (e.g.
Leitgeb, 2017).

24Ortoleva (2014) extends the approach to multiple prior beliefs.
25Specifically: the proof of our Proposition 5 relies on the fact that CPS’s are equivalent to certain

orders on the space of probability measures, as are confidence rankings, and Ortoleva’s update is also
determined by an order on the probability space (Ortoleva, 2012, Prop 2).
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sets of probability measures reflecting the information with the ex ante confidence rank-
ing—applies for other ‘input formats’, such as information representable by a subset of
the probability space (as in Gajdos et al., 2008) or a probability assignment for certain
events (as in Dietrich et al., 2016). Future work could set out the consequences of confi-
dence update in such cases. A final important extension would be to sequential learning
situations, as commonly found in statistical decision theory. This would be essential
for understanding the long-run implications of the approach, and its consequences in a
range of economic applications.

6 Conclusion

This paper proposes a novel update rule under ambiguity. Starting from the intuition
that one’s confidence in beliefs has a central role to play in learning, we formulate a
model of update of confidence in beliefs, drawing on an existing model of confidence
and decision (Hill, 2013). It is based on a simple, but reasonable intuition: when updat-
ing in the face of information that conflicts with prior beliefs, retain as far as possible
those conditional beliefs in which you are more confident, and relinquish only those
in which you have less confidence. A simple and intuitive axiom—Confidence Con-
sistency—characterises a rudimentary and general update rule that conforms to this
maxim.

We then characterise a more refined version, called confidence update. In a way
reminiscient of classical statistical reasoning, it uses a confidence level-dependent thresh-
old to eliminate probability measures that were too ‘wrong’ about the learnt event ex
ante.

Confidence update can comfortably handle update on complete ignorance, on which
standard update rules for multiple priors give counterintuitive results. It provides a gen-
eral framework that can recover prominent existing update rules as special cases, evalu-
ate their credentials and relationship, and identify new possibilities. It can also fruitfully
deal with update on surprising events, such as crises, and on null events, encompassing
the standard game-theoretical tools for the latter as special cases.
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A Proofs

A.1 Proofs of Results in Section 3

Proof of Theorem 1 and Proposition 1 . We prove Theorem 1. The proof of Proposition
1 is similar. We first show sufficiency of the axioms.

Fix non-nullE ∈ Σ; since� is non-degenerate by Assumption 1, such events exist..
By Assumption 1, there exists a triple (Ξ, D, u) representing � according to (3). For
every stakes level σ, let Cσ = D(f) for some f ∈ σ. It follows from the confidence rep-
resentation (Hill, 2013) that Cσ represents �σ (in tandem with u) according to standard
maximin EU representation; ie. �σ is represented by:

V (f) = min
p∈Cσ

Epu(f(s)) (12)

As a point of notation, for any x ∈ [0, 1], we use [E, x] to denote {p ∈ ∆(Σ) : p(E) ≥ x}.
By Non-degeneracy, �E is non-degenerate. Moreover, there exists an E-resilient

stakes-level σ: if not, by Information-Based Learning, f �σ′
E c for every f ∈ A, c ∈ Ac

and stakes level σ′, contradicting the monotonicity of the confidence representation (3).

Lemma 1. For any E-resilient stakes level σ, there exists xσE ∈ [0, 1] such that �σE is

represented by:

V σ
E (f) = min

p∈(Cσ∩[E,xσE ])
E

Epu(f) (13)

where (Cσ∩[E, xσE])E is as defined in (2). Moreover:

1. if there exists f ∈ A and c ∈ Ac such that fEc ∼σE c but fEc �σ c, then there is

a unique xσE ∈ [0, 1] having this property;

2. if for allf ∈ A and c ∈ Ac, whenever fEc ∼σE c, then fEc ∼σ c, and there exists
no e, d ∈ Ac with e � d � c and fEe �σ d, then every xσE ∈ [0, 1] has this

property;

3. if for all f ∈ A and c ∈ Ac, whenever fEc ∼σE c, then fEc ∼σ c, and for some

such f ∈ A and c ∈ Ac, there exists e, d ∈ Ac with e � d � c and fEe �σ d,
then there exists xσE ∈ [0, 1] such that every xσE ∈ [0, xσE] has this property.

Proof. Fix an E-resilient stakes level σ. For every f ∈ A, by the representa-
tion (Assumption 1), there exists a unique c ∈ Ac, up to indifference, such that
fEc ∼σE c; consider any such f and c. For any e, d ∈ Ac with e � d � c

and fEe �σ d, let λe,d;f be the (unique) λ ∈ [0, 1] such that fEe ∼σ e1−λd.
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(By the E-resilience of σ, fEc �σ c, whence, by the representation, fEe �σ

e, so such a λ exists; by the representation, it is unique.) Note that, by def-
inition, for any p ∈ ∆ such that Epu(fEe) ≥ Epu(e1−λd) and Epu(eEd) ≥
Epu(eλd), we have that Epu((fEe) 1

2
(eEd)) = Epu(e 1

2
(fEd)) ≥ Epu((e1−λd) 1

2
(eλd)) =

Epu(e 1
2
d). Let Λσ

f = {λe,d;f : e, d ∈ Ac, β ∈ (0, 1], fEe �σ d, e � d � c}, and Λσ
f =

{λe,d;f : e, d ∈ Ac, β ∈ (0, 1], fEe �σ d, e � d � c}.

Claim 1.

Λσ
f =

{
λ̂ ∈ [0, 1] : ∃ê, d̂ ∈ Ac s.t. ê � d̂, fE ê ∼σ d̂λ̂ê, λ̂ > λê,c;f

}
=
{
λ̂ ∈ [0, 1] : ∃ê, d̂ ∈ Ac s.t. ê � d̂, fE ê ∼σ d̂λ̂ê, (fE ê) 1

2
(̂eE d̂) ≺σE ê 1

2
d̂
}

and

Λσ
f =

{
λ̂ ∈ [0, 1] : ∃ê, d̂ ∈ Ac s.t. ê � d̂, fE ê ∼σ d̂λ̂ê, λ̂ ≥ λê,c;f

}
=
{
λ̂ ∈ [0, 1] : ∃ê, d̂ ∈ Ac s.t. ê � d̂, fE ê ∼σ d̂λ̂ê, (fE ê) 1

2
(̂eE d̂) �σE ê 1

2
d̂
}
.

Proof. Note firstly that, by the representation, for any e � d, d′, λe,d;f > λe,d′;f

if and only if d � d′. For any λ̂ ∈ [0, 1] and ê, d̂ ∈A
c

with ê � d̂ and
fE ê ∼σ d̂λ̂ê, if λ̂ > λê,c;f , then d̂ � c by the previous observation. So
Λσ
f ⊇

{
λ̂ ∈ [0, 1] : ∃ê, d̂ ∈ Ac s.t. fE ê ∼σ d̂λ̂ê �σ c, λ̂ > λê,c;f

}
, and similarly for Λσ

f .

Moreover, for such λ̂, ê, d̂, it follows from the representation that (fE ê) 1
2
(̂eE d̂) ≺σE ê 1

2
d̂

if and only if fE d̂ ≺σE d̂, and since fEc ∼σE c, this can only be the case if ˆd � c.
So Λσ

f ⊇
{
λ̂ ∈ [0, 1] : ∃ê, d̂ ∈ Ac s.t. ê � d̂, fE ê ∼σ d̂λ̂ê, (fE ê) 1

2
(̂eE d̂) ≺σE ê 1

2
d̂
}

, and

similarly for Λσ
f . As for the other direction, for any ê, d̂ ∈A

c
with ê � d̂ � c and fE ê �

d̂, if fE ê ∼ ê1−λ̂d̂, then by the previous remark about the ordering of λe,d;f , λe,d′;f , λ̂ >

λe,c;f ; it follows that Λσ
f ⊆

{
λ̂ ∈ [0, 1] : ∃ê, d̂ ∈ Ac s.t. fE ê ∼σ d̂λ̂ê �σ c, λ̂ > λê,c;f

}
,

and similarly for Λσ
f . Finally, for any such ê, d̂ ∈A

c
, by the representation (and

in particular C-Independence at a given stakes level) and the fact that fEc ∼E c,
it follows from the d̂ � c that fE d̂ ≺E d̂, so (fE ê) 1

2
(̂eE d̂) ≺σE ê 1

2
d̂, and hence

λê,d̂;f ∈
{
λ̂ ∈ [0, 1] : ∃ê, d̂ ∈ Ac s.t. ê � d̂, fE ê ∼σ d̂λ̂ê, (fE ê) 1

2
(̂eE d̂) ≺σE ê 1

2
d̂
}

, and

similarly for the case of d̂ � c. This establishes the claim.

If, for all f ∈ A and c ∈ Ac such that fEc ∼σE c, fEc ∼σ c, then the result
immediately holds with xσE = 0, so assume henceforth that this is not the case. For
clarity, we divide the remainder of the proof into cases.
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Case 1. We first consider the case in which there exists f ∈ A and c ∈ Ac with
fEc ∼σE c but fEc �σ c such that there exists e, d ∈ Ac with e � d � c

and fEe �σ d. So Λσ
f and Λσ

f are non-empty. Since fEc �σ c, and σ is
E-resilient, it follows that fEc ≺σ c; this, in combination with the fact that
fEc ∼σE c implies that f /∈ Ac. Since, for any e ∈ Ac with fEe ∼σ e,
fEe �σE e by the representation, 0 /∈ Λσ

f . Let λf = inf Λσ
f . Since, for any

d � c, λê,d;f > λê,c;f for all ê ∈ Ac, λf /∈ Λσ
f , and hence, for every c, c ∈ Ac

with c � c and fEc ∼σ cλf c, it holds that (f 1
2
c)E(c 1

2
c) �σE c 1

2
c. Since λe,d;f

is continuous in d for every e � c, for every such e, λe,c;f ≥ λf .
We now show that, for every p ∈ Cσ ∩ [E, λf ], Epu(fEc) ≥ Epu(c). First
consider any q ∈ Cσ ∩ {p ∈ ∆(Σ) : p(E) > λf}; by the definition of λf ,
there exist e, d ∈ Ac, with e � d � c, fEc �σ d and q(E) ≥ λe,d;f . By
the previous remark, since Equ(fEe) ≥ Equ(e1−λe,d;fd) and Equ(eEd) ≥
Equ(eλe,d;fd), it follows that Equ((fEe) 1

2
(eEd)) ≥ Equ(e 1

2
d), and hence, by

the linearity of the EU functional, Equ(fEd) ≥ Equ(d). It follows from the
properties of the EU functional that Equ(fEc) ≥ Equ(c). Since this holds
for all q ∈ Cσ ∩{p ∈ ∆(Σ) : p(E) > λf}, by the continuity of the EU func-
tional, it holds for the closure Cσ ∩ [E, λf ], as required.
Now we show that, for each d � c, there exists p ∈ Cσ ∩ [E, λf ]
with Epu(fEd) < u(d). For reductio, suppose that there exists d �
c such that Epu(fEd) ≥ Epu(d) for all p ∈ Cσ ∩ [E, λf ]. It fol-
lows that Epu(fEc) > Epu(c) for all p ∈ Cσ ∩ [E, λf ]. For each
e � c, consider Ie,λf =

{
p ∈ ∆(Σ) : Epu(fEe) = Epu(e1−λe,c;f c)

}
∩

{p ∈ ∆(Σ) : p(E) = λf}; since Epu(fEc) = Epu(c) for all p in this set (by
the previous observation), it follows that Ie,λf ∩ (Cσ ∩ [E, λf ]) = ∅ for all
such e. Let λ′ = inf {x ∈ [0, 1] : Epu(fEc) ≥ Epu(c), ∀p ∈ Cσ ∩ [E, x]}.
By the previous observations λ′ < λf . Moreover, by continuity of the
EU fiunctional, there exists p ∈ Cσ ∩ [E, λ′] such that Epu(fEc) =

Epu(c). It follows that Ie,λ′ ∩ (Cσ ∩ [E, λ′]) 6= ∅ for at least one
e � c, where Ie,λ′ =

{
p ∈ ∆(Σ) : Epu(fEe) = Epu(e1−λe,c;f c)

}
∩

{p ∈ ∆(Σ) : p(E) = λ′}. Since, for any p ∈ Ie,λ′ , Epu((fEe) 1
2
(eEc)) =

Epu((e1−λe,c;f c) 1
2
(eλ′c) = u(c 1

2
(e1−(λe,c;f−λ′)c)), and since, for any p ∈

Ie,λ′ ∩ (Cσ ∩ [E, λ′]), Epu(fEc) � Epu(c), it follows that λe,c;f = λ′ < λf

for any such e, contradicting the definition of λf . So for each d � c, there
exists p ∈ Cσ ∩ [E, λf ] with Epu(fEd) < u(d), as required.
Now consider any f ′ ∈ A with f ′Ec

′ ∼σE c′. We consider two cases sepa-
rately.
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Case i. First consider the case where f ′Ec
′ �σ c′. We first treat the case

in which there exists e ∈ Ac with e � c and f ′Ee �σ c′, so, as
above, Λσ

f ′ and Λσ
f ′ are non-empty. By Probability Consistency,

Claim 1 and the previous observations, λf /∈ Λσ
f ′ . Applying the

same axiom again yields that inf Λσ
f ′ /∈ Λσ

f , so λf = inf Λσ
f ′ .

By the arguments used above, Epu(f ′Ec
′) ≥ Epu(c′) for all p ∈

Cσ ∩ [E, λf ], and, for each d′ � c′, there exists p ∈ Cσ ∩ [E, λf ]
with Epu(fEd

′) < u(d′). Now consider the case where, for all
e ∈ Ac, f ′Ee �σ c′. So Λσ

f ′ = ∅, which by Claim 1, contradicts
A5 and the fact that Λσ

f 6= ∅, so this case cannot occur.

Case ii. Now consider the case where f ′Ec
′ ∼σ c′. So Epu(f ′Ec

′) ≥
Epu(c′) for all p ∈ Cσ ∩ [E, λf ]. If there exists e, d ∈ Ac

with e � d � c′ and f ′Ee �σ d, then Λσ
f ′ 6= ∅. By Probabil-

ity Consistency and the last characterisation of Λσ
f in Claim 1,

λf < λ for all λ ∈ Λσ
f ′ . By an argument similar to that used

above that, for each d′ � c′, there exists p ∈ Cσ ∩ [E, λf ] with
Epu(f ′Ed

′) < u(d′). If there exists no e, d ∈ Ac with e � d � c′

and f ′Ee �σ d, then f ′Ee ∼ f ′Ec
′ ∼σ c′ for all e ∈ Ac with e � c′

. It follows from the representation that there exists p ∈ Cσ with
Epu(fEd

′) = u(c′) < u(d′) for all d′�c′ and p(E) = 1; since
p ∈ Cσ ∩ [E, λf ], for every d′ � c′, there exists p ∈ Cσ ∩ [E, λf ]
with Epu(fEd

′) < u(d′).

Case 2. Now we consider the case in which there exists f ∈ A and c ∈ Ac such that
fEc ∼σE c but fEc �σ c, and for all such f, c, fEe �σ c for all e ∈ Ac.
By Null consistency, for each such f, c, there exists e ∈ Ac with fEe ∼σ c.
Since fEe′ ∼σ fEe for any e′ � e and any such f, c, it follows from the
representation that there exists p ∈ Cσ with Epu(fEe) = u(c) and p(E) = 1

and that, for any other q ∈ Cσ with q(E) = 1, Equ(fEe) ≥ u(c). It thus
follows that for all p ∈ Cσ ∩ [E, 1], Epu(fEc) ≥ Epu(c). Moreover, for
every d � c, if Epu(fEd) ≥ Epu(d) for all p ∈ Cσ ∩ [E, 1], then fEd �σ

c, contradicting the definition of the case; so for each d � c, there exists
p ∈ Cσ ∩ [E, 1] with Epu(fEd) < u(d). Now consider any f ′ ∈ A with
f ′Ec

′ ∼σE c′ and f ′Ec
′ ∼σ c′. If there exists e, d ∈ Ac with e � d � c′

and f ′Ee �σ d, then Λσ
f ′ ∩ [0, 1) 6= ∅. By Probability Consistency and the

last characterisation of Λf in Claim 1, it follows that, for every f ∈ A and
c ∈ Ac such that fEc ∼σE c but fEc �σ c, and fEe �σ c for all e ∈ Ac,
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there exists e′ � d′ � c with fEe′ �σ d′ � c, which is a contradiction. So
for every f ′ ∈ A with f ′Ec

′ ∼σE c′ and f ′Ec
′ ∼σ c′, f ′Ee ∼σ c′ for all e ∈ Ac

with e � c′. It follows from the representation that there exists p ∈ Cσ with
Epu(fEd

′) = u(c′) < u(d′) for all d′�c′ and p(E) = 1; since p ∈ Cσ∩[E, 1],
for every d′ � c′, there exists p ∈ Cσ ∩ [E, 1] with Epu(fEd

′) < u(d′).

Let xσE = λf in Case 1 and xσE = 1 in Case 2. By the previous observations, for
every f ∈ A, minp∈Cσ∩[E,xσE ] Epu(fEc) ≥ u(c), where fEc ∼σE c, and for any d�c,
minp∈Cσ∩[E,xσE ] Epu(fEd) < u(d). It follows from the continuity of the maximin-EU
functional that minp∈Cσ∩[E,xσE ] Epu(fEc) = u(c) for all f ∈ A with fEc ∼σE c. By
Consequentialism, for every f ∈ A, f ∼σE c for c ∈ Ac such that fEc ∼σE c, so the
preferences �σE are represented by V (f) = u(c) such that fEc ∼σE c. Since:

min
p∈Cσ∩[E,xσE ]

Epu(fEc) = u(c)⇔ min
p∈Cσ∩[E,xσE ]

(
p(E)(Ep(•/E)u(f)) + (1− p(E))u(c)

)
= u(c)

⇔ min
p∈Cσ∩[E,xσE ]

Ep(•/E)u(f) = u(c)

⇔ min
p∈(Cσ∩[E,xσE ])

E

Epu(f) = u(c)

This establishes the representation.
As concerns the uniqueness of xσE , it is clear from the proof that, if there exist f ∈ A

with c ∈ Ac such that fEc ∼σE c but fEc �σ c, then xσE = inf Λσ
f for any such f ∈ A

and c ∈ Ac in Case 1, and xσE = 1 if Case 2 holds. Since Λσ
f is uniquely defined on the

basis of preferences, this implies that xσE is unique. If fEc ∼σE c whenever fEc ∼σ c,
and for no such f, c there exists e, d ∈ Ac with e � d � c and fEe �σ d, then by the
analysis of this case 1.ii., minp∈Cσ∩[E,x] Epu(fEc) = u(c) iff fEc ∼σE c, for all x ∈ [0, 1],
as required. Finally, if fEc ∼σE c whenever fEc ∼σ c but for some f ∈ A and c ∈ Ac,
there exists e, d ∈ Ac with e � d � c and fEe �σ d, then by the observations about
Λσ
f (case 1.ii.), minp∈Cσ∩[E,x] Epu(gEd) = u(d) iff gEd ∼σE d, whenever x < λ for all

λ ∈ Λσ
f , as required.

Define the function φE relatingE-resilient stakes levels to values in [0, 1] as follows:

1. If σ satisfies the conditions of clause 1. of Lemma 1, then φE(σ) =xσE such that
(13) holds.

2. If σ satisfies the conditions of clause 2. of Lemma 1, then
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φE(σ) =sup{φE(σ′) : σ′ > σ} .26

3. If σ satisfies the conditions of clause 3. of Lemma 1, then φE(σ) =

max
{

sup {φE(σ′) : σ′ > σ}, xσE
}

, where xσE is as in Lemma 1.

By definition and Lemma 1, (13) holds for φE(σ) for every E-resilient stakes level σ.

Claim 2. For every E-resilient σ′, σ′′ with σ′′ > σ′, φE(σ′′) ≤ φE(σ′).

Proof. Let Λσ′

f ′ and Λσ′′

f ′′ be defined as in the proof of Lemma 1, for appropriate f ′, f ′′.
By the proof of that Lemma, if the stakes levels σ′, σ′′ satisfy the conditions of clause 1.
(ie. there exists f ∈ A and c ∈ Ac with fEc ∼σ

′
E c but fEc �σ′

c and similarly for σ”),
then xσ′

E = inf Λσ′

f ′ (under case 1 in the proof of the Lemma) or xσ′
E = 1 (in case 2), and

similarly for xσ′′
E . By Probability Consistency and Claim 1, for any λ /∈ Λσ′′

f ′′ , λ /∈ Λσ′

f ′ ,
so if xσ′′

E = 1, then xσ′
E = 1 (both stakes levels are in case 2), and if xσ′′

E = inf Λσ′′

f ′ < 1,
xσ

′
E = min

{
inf Λσ′

f ′ , 1
}
≥ inf Λσ′′

f ′ = xσ
′′
E . If σ′ satisfies the conditions of clause 1 and

is in case 1 of Lemma 1 (so xσ′
E = inf Λσ′

f ′ < 1) and σ′′ satisfies the conditions of clause
3. (in particular, for some f ∈ A and c ∈ Ac, there exists e, d ∈ Ac with e � d � c

and fEe �σ
′′
d), xσ′′

E = inf Λσ′′

f ′′ for appropriate f ′′, and xσ′
E = inf Λσ′

f ′ ≥ inf Λσ′′

f ′′ = xσ
′′
E

by Probability Consistency and Claim 1, which implies, in the light of the previous
analysis of case of clause 1, that φE(σ′′) ≤ φE(σ′). If σ′ satisfies the conditions of
clause 1 and is in case 2 of Lemma 1 (so xσ′

E = 1), then by Probability Consistency
and Claim 1 and the argument in case 2 of Lemma 1, σ′′ does not satisfy the conditions
of clause 3. Given the previous two cases, if σ′ satisfies the conditions of clause 1.
and σ′′ satisfies the conditions of clause 2., then it follows from clause 2. and the fact
that φE(σ1) ≤ φE(σ2) for all σ1 > σ2 satisfying the conditions of clause 1 or 3, that
φE(σ′′) ≤ φE(σ′). If σ′′ satisfies the conditions of clauses 2 or 3, then the result is
immediate.

For every E-resilient σ, let xσE = φE(σ). Let D =
⋂
σ′ E−resilient

(
Cσ′ ∩ [E, xσ

′
E ]
)
E

and yE = supσ E−resilient φE(σ). As noted above, there exists an E-resilient stakes
level, so D 6= ∅. By Confidence Consistency, for any stakes level σ′′ that is not E-
resilient, σ′ > σ′′ for every E-resilient stakes level σ′. It follows from the confidence
representation (3) that C ′′ ⊆ D for every C ′′ representing �σ′′

E according to (12).

Claim 3. Under Information-based Learning, for any stakes level σ′′, if σ′′ is not E-
resilient, then �σ′′

E is represented by D.

Proof. Let σ′′ be a stakes level that is not E-resilient, and let C ′′ be a closed convex set
representing �σ′′

E according to (12). (Such a set exists by the representation (3).) As

26We adopt the convention that the infimum over the empty set is 1.
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noted above, C ′′ ⊆ D). Suppose that the inverse containment does not hold, so there
exists p ∈ convcl(D) \ C ′′. By a separating hyperplane argument, there exists f ∈ A,
c ∈ Ac such that Equ(f) ≥ u(c) for all q ∈ C ′′ whereas Epu(f) < u(c). It follows that
f �σ′

E c for all E-resilient σ′ but f �σ′′
E c, contradicting Information-based Learning.

So C ′′ = D and D represents �σ′′
E , as required.

Claim 4. For any stakes level σ′′ that is not E-resilient and any C ′′ representing �σ′′

according to (12), C ′′ ∩ {p ∈ ∆(Σ) : p(E) ≥ yE} = ∅.

Proof. Consider a non-E-resilient σ′′, and let C ′′ represent �σ′′ . By Claim 3,
D =

⋂
σ′ E−resilient

(
Cσ′ ∩ [E, xσ

′
E ]
)
E

=
(⋂

σ′ E−resilient
(
Cσ′ ∩ [E, xσ

′
E ]
))
E

repre-
sents �σ′′

E ; however, by Confidence Consistency and the confidence representation,
C ′′ ⊆

⋂
σ′ E−resilient Cσ

′ . So if C ′′ ∩ {p ∈ ∆(Σ) : p(E) ≥ yE} 6= ∅, then C ′′ ∩⋂
σ′ E−resilient

(
Cσ′ ∩ [E, xσ

′
E ]
)

= C ′′ ∩
⋂
σ′ E−resilient Cσ

′ ∩
⋂
σ′ E−resilient[E, x

σ′
E ] =

C ′′∩
⋂
σ′ E−resilient Cσ

′∩ [E, yE] 6= ∅, and hence, for every f ∈ A, c ∈ Ac, if fEc �σ
′′
c,

then fEc �σ
′′
E c by the reasoning in the proof of Lemma 1, contradicting the assumption

that σ′′ is not E-resilient. Hence C ′′ ∩ {p ∈ ∆(Σ) : p(E) ≥ yE} = ∅ as required.

Define ρE : Ξ⇒ [0, 1] as follows:27

ρE(C) =

{
{xσE : D−1(C) ∩ σ 6= ∅, σ E − resilient} if ∃E − resilient σ s.t. D−1(C) ∩ σ 6= ∅

yσE otherwise
(14)

Since xσ′
E ≥ xσ

′′
E whenever σ′ ≤ σ′′ with σ′, σ′′ E-resilient, and since D respects

=, ρE is a decreasing correspondence. By the fact that, for every E-resilient σ, �σE is
represented by

(
Cσ′ ∩ [E, xσ

′
E ]
)
E

and by Claims 3 and 4, ΞE , defined with respect to ρE
as in (4), represents �E . Hence �E is a confidence update of �, as required.

Necessity of the axioms is straightforward, given, in the cases of Probability Con-
sistency and Null consistency, the insights involved in Lemma 1 and its proof.

Proof of Proposition 2. Lemma 1 implies that xσE is uniquely defined under clause 1,
which immediately implies the second part of the uniqueness clause, taking C to be the
D in the proof of the Theorem. As for the first part, it follows from the fact that φE in
the proof of Theorem 1was defined to take the highest admissible value for each stakes
level, and the fact that there a unique highest admissible value for each stakes level, by
Lemma 1.

27Recall from Section 2.3 that stakes levels are defined as sets (equivalence classes) of acts.
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Proof of Proposition 3. Use the same reasoning as the proof of Theorem 1 and Propo-
sition 2, relying on the following strengthening of Lemma 1.

Lemma 2. Under the conditions in Theorem 1 and Strong Probability Consistency, for

all non-null E,F ∈ Σ and for every stakes level σ that is both E- and F -resilient, there

exists xσ ∈ [0, 1] such that �σE and �σF are represented according to (13) with xσ. (I.e.

V σ
E (f) = minp∈(Cσ∩[E,xσ ])E

Epu(f) represents�σE and V σ
F (f) = minp∈(Cσ∩[F,xσ ])F

Epu(f)

represents �σF .) Moreover, the uniqueness of xσ is as in Lemma 1.

Proof. The proof employs the same reasoning as the proof of Lemma 1, with the def-
inition of cases by (for instance) “there exists f ∈ A and c ∈ Ac with fEc ∼σE c but
fEc �σ c such that there exists e ∈ Ac with e � c and fEe �σ c” replaced by “there
exists f ∈ A and c ∈ Ac with fEc ∼σE c, fEc �σ c and fEe �σ c for some e ∈ Ac with
e � c, or with fF c ∼σF c, fF c �σ c and fF e �σ c for some e ∈ Ac with e � c” (and
similarly for the other cases).

Proof of Proposition 4. Fix a non-null event E, and let ΞE , respectively Ξ′E be the con-
fidence rankings and DE and D′E the cautiousness coefficients representing �E and
�′E and obtained by confidence update according to Theorem 1. Let φE and φ′E be as
defined prior to Claim 2 in the proof of Theorem 1 for decision makers � and �′ re-
spectively. By (Hill, 2013, Thm 2 and the arguments used in its proof), (i) iff for every
stakes level σ that isE-resilient according to�,D′E(f) ⊇ DE(f) for every f ∈ σ. Note
that it follows that any such stakes level is also E-resilient according to �′. Since, by
Theorem 1 and its proof, DE(f) = (D(f) ∩ [E, φE(σf )])E , and similarly for D′E(f),
the previous containement holds iff φE(σ) ≥ φ′E(σ) for every such stakes level σ. By
the definition of the maximal correspondences ρE and ρ′E representing the updates, this
holds iff (ii), as required.

A.2 Proofs of other results

Proof of Proposition 5 . As is well-known (Hammond, 1994), when the state space is
finite, pCPS is equivalent to a sequence (p1, . . . , pn) of (ordinary) probability measures,
with disjoint supports, in the following sense: for every E1, E2 ∈ Σ with E2 6= ∅,
pCPS(E1/E2) = pj(E1/E2) where pj(E2) 6= 0 and pk(E2) = 0 for all k < j. Define
the confidence ranking Ξ(pCPS) = {{pi : i ≤ k} : k = 1, . . . n}. This is a well-defined
min-closed confidence ranking. Taking, for each E ∈ Σ, ρE with ρE(C) = 0 for all
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C ∈ Ξ(pCPS), it is clear that, for every E ∈ Σ, the confidence update Ξ(pCPS)E =

{{pi(•/E)} : pi(E) > 0}, whose centre pΞ(pCPS)E = pj(•/E) where pk(E) = 0 for all
k < j. Hence pΞ(pCPS)E = pCPS(•/E), and the confidence update exhibits the same
conditional probabilities are the conditional probability system pCPS , as required.
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