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Abstract 
 

A series of famous examples casts doubt on the standard, Bayesian account of belief and 

decision in situations of considerable uncertainty. They have spawned a significant literature 

in economics, and to a lesser extent philosophy. The short article surveys some of this literature, 

with an emphasis on the normative issue of rational decision. 

 

1 INTRODUCTION 

 

Imagine that you are faced with two urns each containing only black and white balls. For one 

of the urns (the unknown urn), that is all you know; for the other (the known urn), you have counted the 

balls, and know that exactly half are black. What would you say if asked for the probability that the next 

ball drawn from the known urn was black? And what about the unknown urn? And, if you had to place 

a bet on the next ball drawn from one of the urns being black, would you bet on the known or the 

unknown urn? And what if the bets were on the next ball being white? 

 

This example crops up in several disciplines. Keynes uses it to motivate his notion of weight of 

evidence: ‘It is evident that in either case the probability of drawing a white ball is 1/2, but that the 

weight of the argument in favor of this conclusion is greater [for the known urn]’ (1921). Replacing 

direct observation of the composition of the known urn with sampling yields something close to 

Popper’s ‘paradox of ideal evidence’. In economics, the example is associated with Ellsberg (1961), and 

has spawned a significant literature on decision on uncertainty1 over the last 30 years.  

 

Its importance lies in the challenge it poses to the standard account of rational belief and 

decision, Bayesianism (see chapter 8.2 in this volume), and in particular to the: 

 

• Bayesian thesis about rational belief: it can be represented by a function assigning a single 

number (between 0 to 1) to each proposition or event, which satisfies the laws of probability; 

• Bayesian thesis about rational decision: the chosen action in any decision is that which 

maximises the expected utility or desirability on the basis of the agent's beliefs. 

Though not formulated as such, Keynes’s and Popper’s points appear to challenge the first 

thesis: representing belief by probabilities cannot, allegedly, capture the weight of evidence supporting 

a belief. As often noted, this argument is not watertight: there are several differences between one’s 

Bayesian probabilities concerning the two urns, including one’s beliefs about their composition or the 

robustness of beliefs to further observations (Joyce, 2005). 

By contrast, Ellsberg’s version involves decision. He observed a tendency (borne out in 

subsequent experiments; (Camerer & Weber, 1992)) to prefer betting on the ball drawn from the known 

urn over that drawn from the unknown urn, whatever the colour: a pattern of behaviour that has come 

 

1 We follow economists in using ‘decision to uncertainty’ to refer to cases where the probabilities of the 

various outcomes are not provided, as opposed to ‘decision under risk’, where they are given. 
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to be known as uncertainty aversion or ambiguity aversion. (The field often qualifies the unknown urn 

as involving ambiguity or Knightian uncertainty.2)  Such preferences conflict with the Bayesian theses. 

A Bayesian would choose to bet on black from the known urn (call this event 𝐵𝐾) over black in the 

unknown urn (𝐵𝑈) only if 𝑝(𝐵𝐾) > 𝑝(𝐵𝑈) where p represents her beliefs. However, she would have the 

same preference over bets on white only if  𝑝(𝑊𝐾) > 𝑝(𝑊𝑈). Clearly no probability function can satisfy 

these two inequalities. So the Bayesian must condemn these so-called Ellsberg preferences as irrational. 

Some find this drastic. This opens up the question of what more permissive account should or can replace 

it. 

Although distinct, the points concerning belief representation and decision are intimately 

related. The difference in your ignorance about the two urns – or in the ‘weight of evidence’ in the two 

cases – seems to justify a preference between them (Ellsberg, 1961; Gilboa, Postlewaite, & Schmeidler, 

2009; Levi, 1986). Indeed, Ellsberg’s point about decision adds a twist to the debate about weight of 

evidence: whatever ways there are of capturing something like weight in the framework of Bayesian 

probability, they remain irrelevant for choice. Indeed, the two criticisms are perhaps strongest when 

combined: Bayesianism, it appears, reserves no role for the weight of evidence (or similar factors) in 

choice.  

This survey will present some of the main responses to this challenge, particularly in the 

economic field of decision under uncertainty, but also in philosophy. Whilst the focus will be on 

decision, the relationship with belief representation means that this issue cannot be ignored. Indeed, it 

will structure the survey: different belief representations (replacing Bayesian probabilities) naturally 

require different, though not unrelated rules (replacing expected utility). The emphasis will be solely on 

rational decision, though the reader should bear in mind that some proposals were developed with other 

goals (e.g. tractability for economic modelling, descriptive accuracy) in mind. For ease of exposition, 

we shall largely eschew technicalities, at times abstracting liberally from precise formulations to focus 

on the gist. For details, discussions of dimensions other than the normative one or for more on the 

relevant economic literature, the reader is referred to excellent and more complete existing surveys such 

as (Gilboa & Marinacci, 2013). 
 

Table 1 lists the main terminology and definitions used throughout the paper, which are standard 

in the economic branch of decision theory (though little depends on the use of this framework). For 

simplicity, we assume a fixed utility function throughout the paper, and use 1, x, 0 to refer to 

consequences yielding utility 1, x, 0 according to this function. We assume sets to be finite as far as 

possible (so as to use sums instead of integrals). Some notions are illustrated on the previous example 

in Table 2. The columns correspond to the states of the world, each specifying the resolution of all 

 

2 After the notion of uncertainty introduced by (Knight, 1921). 

Terminology Explanation 

S The set of states of the world (state space) 

X The set of consequences (consequence space) 

f, g, etc. Acts (objects of choice): functions from S to X 

E, F etc. Events: subsets of S 

𝛥 The set of probability measures over the state space S (probability space) 

𝐸𝑈𝑝(𝑓) The expected utility of act f calculated with probability measure 𝑝 ∈ Δ and 

utility function u : 𝐸𝑈𝑝(𝑓) = ∑ 𝑝(𝑠)𝑢(𝑓(𝑠))𝑠∈𝑆  

1, x, 0… Consequence yielding utility value 1, x, 0 etc. 

𝟏𝐸  𝟎 Bet yielding consequence 1 if event E occurs and consequence 0 otherwise 

A functional V 

represents a 

preference relation ≽ 

For every pair of acts f, g, 𝑓 ≽ 𝑔 if and only if 𝑉(𝑓) ≥ 𝑉(𝑔). 

Table 1: Terminology and definitions 
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relevant uncertainty (the colour of the ball drawn from each urn). The rows correspond to the acts – in 

this case, bets yielding 1 unit of utility if won and 0 otherwise. The entries in the table are the 

consequences obtained under each act and in each state (e.g. if you bet on 𝐵𝐾 and the state 𝐵𝐾& 𝐵𝑈 

realises, you obtain a consequence worth 1 utility unit). 

 

 
 𝐵𝐾

& 𝐵𝑈
 

(Black ball drawn from 

both urns) 

𝐵𝐾
 & 𝑊𝑈

 
(Black drawn from known urn, 

white from unknown urn) 

𝑊𝐾
 & 𝐵𝑈

 𝑊𝐾
 & 𝑊𝑈

 

𝟏𝐵𝐾
 𝟎 (Bet on 𝐵𝐾

) 1 1 0 0 

𝟏𝐵𝑈
 𝟎 (Bet on 𝐵𝑈

) 1 0 1 0 

𝟏𝑊𝐾
 𝟎 (Bet on 𝑊𝐾

) 0 0 1 1 

𝟏𝑊𝑈
 𝟎 (Bet on 𝑊𝑈) 0 1 0 1 

Table 2: Ellsberg choices 

2 MULTIPLE PRIORS 

A popular reaction to the opening example focusses on the precision of the Bayesian representation of 

beliefs. In the unknown urn, there is no evidence to justify a particular call on the probability of black 

on the next draw. Yet, by insisting that a precise probability value must be assigned to this event, 

Bayesianism has – the thought goes – no way of expressing this ignorance. A natural move is thus to 

allow imprecision in valuations, by using sets of probabilities measures as representations of belief. 

Bayesianism amounts to the special case where the agent’s set is a singleton. Such a representation has 

been discussed and defended under names such as credal sets in philosophy (Joyce, 2011; Levi, 1986), 

imprecise probabilities in statistics (Walley, 1991); in economics, one speaks of multiple priors or sets 

of priors.  

 

How could or should one decide on the basis of a set of priors C? One of the earliest theories 

in economics – maximin Expected Utility or maximin-EU, developed by (Gilboa & Schmeidler, 1989)3 

– looks at the worst-case expected utility across the set; that is, it considers the representation of 

preferences by  

 

( 2.1 )      𝑚𝑖𝑛
𝑝 ∈ 𝐶 

𝐸𝑈𝑝𝑓  

The rule is cautious or pessimistic, insofar as it bases preferences on the worst the act can do, 

according to the probability measures in the set. As such, it can straightforwardly account for the 

Ellsberg preferences. (The interested reader may verify this using the set 

C* = {p ∈ Δ: 0.3 ≤ p(BU) ≤ 0.7; p(Bk) = 0.5}.)  

 

One purportedly restrictive aspect of this rule is the focus on the worst case; an apparently less 
extreme alternative is the α-maximin-EU ou Hurwicz criterion, suggested by (Hurwicz, 1951; Jaffray, 

1988):  

 

       αminp  ∈ CEUpf + (1 − α)maxp  ∈ CEUpf  
(2.2) 

where α is a number between 0 and 1. This rule contains maximin-EU as a special case (where α = 1), 

but goes beyond the arguably extreme case of total caution, by taking into consideration both the worst 

and the best case. Other generalisations in this direction allow the α to depend more or less strongly on 

the act f  being evaluated (Ghirardato, Maccheroni, & Marinacci, 2004).  
 

 

3 Similar decision rules have been defended in philosophy (Gärdenfors & Sahlin, 1982) and 

developed in robust statistics, where they are called Γ-maximin (Berger, 1985). 
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Another approach focusses on what an agent can say ‘for sure’ on the basis of her set of priors. 

Under a popular proposal, a preference for one act over another is formed only if all probability measures 

in the set ‘agree’ that the former has higher expected utility. In other words, for all acts 𝑓, 𝑔,  𝑓 ≽ 𝑔 if 
and only if  

 

EUpf ≥ EUpg         for all p ∈ C 
(2.3) 

This unanimity rule has been defended in economics (Bewley, 1986), in statistics under the 

name maximality  (Walley, 1991), as well as by several philosophers (S. Bradley & Steele, 2016).4 Note 

that it does not order certain pairs of acts: the reader is invited to check, for instance, that it does not 

order the Ellsberg bets under the set of priors C*  above. Related rules include Levi’s E-admissibility 

(1986), which picks out acts that are best according to at least one probability measure in the set. 

 

Beyond intuitive remarks about their reasonableness, how can decision rules such as these be 

evaluated on normative grounds? Two potentially relevant families of results have been developed in 

the field; we shall illustrate them on maximin-EU. 
 

2.1 EVALUATION 1: IMPLICATIONS FOR CHOICE 

 
One way of evaluating the normative credentials of a decision rule is in terms of its implications for 

choice. If it leads to unpalatable choices, such as choosing to obtain a sure loss, then this provides good 

reason for skepticism; if its consequences for choice seem sensible, then this may provide arguments in 

its favor. Any particular choice results from the combination of the decision rule (such as ( 2.1)) and the 

agent’s attitudes (the set of priors and utility function). To focus evaluation on the rule, decision theory 

considers the implications it has no matter the agent’s attitudes. For instance, the maximin-EU rule 

generates transitive preferences (see below) for any 
C

and u used. The central results in decision under 

uncertainty – representation theorems – fully characterize the implications of the decision rule for 

choice. That is, they provide necessary and sufficient conditions on preferences – called axioms – for 

there to be some specification of the agent’s attitudes representing them according to the rule. Figure 1 

presents the general schema on maximin-EU (see (Gilboa, 2009; Gilboa & Marinacci, 2013) for details). 

 

Preferences ≽ satisfy a (particular) set of 

axioms 

if and 

only if 

There exists a set of priors 
C

and utility 

function u such that ≽ is represented by ( 

2.1) calculated with 
C

and u. 

Moreover, the representing 
C

and u are suitably unique. 

Figure 1: Representation Theorem 

These results help pinpoint the properties of preferences that distinguish decision rules from one 

another. For instance, the Bayesian expected utility rule satisfies (see chapters 8.1 and 8.2 in this 

volume):5  

 

Weak Order (WO): the preference relation is transitive (for all f, g, h,  𝑓 ≽ 𝑔  and 𝑔 ≽ ℎ  imply 𝑔 ≽ ℎ) 

and complete (for all f, g, 𝑓 ≽ 𝑔  or 𝑓 ≼ 𝑔). 

 

Sure Thing Principle (STP):  the preference across any pair of acts is independent of what the acts yield 

on events where they agree. 

 

For instance, in Table 2, since 𝟏𝐵𝐾
𝟎 and 𝟏𝐵𝑈

𝟎 agree on the event that the balls drawn from the two urns 

are the same colour (i.e. the first and fourth states), STP implies that preferences over these acts should 

be independent of their consequences on this event. The same goes for 𝟏𝑊𝐾
𝟎 and 𝟏𝑊𝑈

𝟎. However, 

 

4 Different versions vary according to whether the inequalities are weak (as (2.3)) or strict. 

5 Throughout, we retain the standard names for axioms used in the literature. The reader is 

refereed to e.g. (Gilboa, 2009; Gilboa & Marinacci, 2013) for further details. 
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since on the complement event (i.e. the event consisting of the second and third states), 𝟏𝐵𝐾
𝟎 coincides 

with 𝟏𝑊𝑈
𝟎 and 𝟏𝐵𝑈

𝟎 coincides with 𝟏𝑊𝐾
𝟎, STP implies that 𝟏𝐵𝐾

𝟎 ≽𝟏𝐵𝑈
𝟎 if and only if 𝟏𝑊𝑈

𝟎 ≽𝟏𝑊𝐾
𝟎. 

Hence, the Ellsberg preferences (for 𝟏𝐵𝐾
𝟎  over 𝟏𝐵𝑈

𝟎 and for 𝟏𝑊𝐾
𝟎 over 𝟏𝑊𝑈

𝟎) violate STP.  
 

In terms of choice, the maximin-EU and unanimity rules take complementary approaches: the 

former weakens STP, whilst retaining WO; the latter drops the completeness clause of WO, whilst 

holding onto STP. Various arguments have been proposed, in both the philosophical and economic 

literatures, that violating one or other of these axioms leads to unsavoury consequences, in particular in 

dynamic contexts. They have been used by some to argue for, say, dropping WO rather than STP (S. 

Bradley & Steele, 2016; Seidenfeld, 1988). They have also been used to criticise any divergence from 

Bayesianism – and hence all of the approaches discussed in this survey – as irrational (Al Najjar & 

Weinstein, 2009; Elga, 2010; Hammond, 1988).6 This is currently the main battleground between 

Bayesianism and critics, and deserves a survey in itself. Note that, even if these arguments are correct 

about the weaknesses of non-Bayesian approaches in dynamic contexts, these need to be traded off 
against their strengths in dealing with evidence in choice; some have claimed that the latter outweigh 

the former (Gilboa et al., 2009). 
 

Apart from dropping STP, maximin-EU retains two axioms satisfied by expected utility: 

 

P4: the preference for a bet on E over a bet on F with the same stakes is independent of the stakes. 

 

Uncertainty Aversion (UA): for any pair of disjoint events E, F with 1E0 ~ 1F0, 𝟏

𝟐
E

∪
F0≽1E0. 

 

Preferences over bets on events – for a bet on 𝐵𝐾
 over a bet on 𝐵𝑈

 (Table 2) – reflect agents’ 

‘willingness to bet’, and are typically considered to be related to their beliefs (Savage, 1954). P4 states 

that the relative willingness to bet on different events is independent of the stakes involved – that is, of 

the consequences of winning or losing the bet, assuming that these are the same for both bets.7  

Uncertainty Aversion translates the caution of maximin-EU. 𝟏
𝟐

E
∪

F0 ‘hedges’ the uncertainty involved in 

the bets on E and F: the uncertainty is ‘halved’, insofar as the payoff depends on whether E or F realizes, 

not which one does; but the winnings are halved as well. For an agent who dislikes uncertainty, such 

hedging can only be attractive, and hence the hedge is (weakly) preferred to the initial bets. This axiom 

is often taken as the property characterizing uncertainty (or ambiguity) aversion. However, it seems that 

people are not universally ambiguity averse (Wakker, 2010); for instance, if there were ten possible 

colors in the running example rather than two, then there is a tendency to bet on the unknown urn. Were 

such preferences to be deemed reasonable, this would be a blow for the rational credentials of maximin-

EU. The α-maximin-EU rule retains P4 but drops UA, and hence can accommodate these preferences. 

 

2.2 EVALUATION 2: BELIEFS, TASTES, AND UNCERTAINTY ATTITUDES 
 

Another evaluation criterion concerns the capacity of an approach to neatly separate beliefs from tastes 

or values. Consider the following oft-cited criticism of maximin-EU. In our running example, you know 

nothing about the composition of the unknown urn, so any probability measure is possible; the set 𝒞0 =
 {p ∈  Δ;  0 ≤  p(BU) ≤  1, BK = 0.5} captures this. However, according to maximin-EU with this set, 

a bet on the unknown urn is considered worse than a bet on black from an urn known to contain 1 black 

ball and 99 white ones. Such caution seems extreme.  

 

This objection relies on two assumptions: firstly, that the set of priors involved in the decision 

rule represents beliefs; and secondly, that the beliefs should perfectly match available information. 

 

6 Whilst these arguments focus on decision, they are related to ‘dilation’ arguments that focus 
specifically on learning under imprecise probabilities (Joyce, 2011; Seidenfeld & Wasserman, 1993). 
7 This axiom, which was introduced by (Savage, 1954), whose nomenclature we adopt, is related to 

Gilboa-Schmeidler’s C-Independence (1989). 
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Concerning the latter assumption, the set 𝒞0 may reflect the objectively available information, but it 

does not capture a Bayesian agent’s beliefs, for these must be precise; so why should things be different 

for non-Bayesians?  Indeed, the set of priors is often understood to represent the agent’s state of belief, 

which incorporates but may go beyond the ‘objective’ information (see also (R. Bradley, 2017)). Indeed, 

many economists subscribe to the revealed preference paradigm (see chapter 8.1 in this volume), and 

take the set of priors to be the uniquely determined set specified in the appropriate representation 

theorem (Figure 1).   

 

Turning to the first assumption, suppose that 𝒞1 =  {p ∈  Δ;  0.4 ≤  p(BU) ≤  0.6} represents 

your preferences (according to ( 2.1)), so you do not hold the preference claimed in the objection.8 Since 

this set goes beyond the ‘objective’ information, one can ask why you are using it. Is it because you 

have further information, or an inclination to ‘believe’ in the principle of insufficient reason? Or is it 

because you are not so cautious as to use 𝒞0, but rather have a higher tolerance of uncertainty? These 

two possibilities are radically different: the former concerns beliefs (and their formation), the latter 

values or tastes for bearing uncertainty. Decision theory has developed formal tools that can shed light 

on such questions. 
 

The central concept is comparative uncertain aversion: between two agents, which (if any) is 

more uncertainty averse. The following is a widely-accepted behavioral definition of the concept: 

 

Comparative Uncertainty Aversion. Agent 1 is more uncertainty averse as 2 if whenever 1 weakly 

prefers an act f over a sure c, then so does 2. 
 

If Ann prefers an uncertain act f to a sure (utility) amount c then she is not so averse to 

uncertainty to consider bearing the uncertainty involved in f to be worse that getting the ‘non-uncertain’ 

c. If Bob exhibits the same preference in all such cases, then he is not that averse to uncertainty either; 

so, he is (weakly) less uncertainty averse than Ann.  
 

Influenced by the analogy with risk attitude, economists have generally considered uncertainty 

attitude as a taste (for bearing uncertainty) and been interested in its consequences for, say, investment 

decisions. In particular, they have characterized comparative uncertainty aversion in terms of the 

parameters of decision models, with results such as that in Figure 2 for maximin-EU (Ghirardato & 

Marinacci, 2002). It tells us that differences in uncertainty attitude correspond to differences in the set 

of priors. The fact that a comparison of tastes or values – as uncertainty attitudes are understood to be – 

translates to a difference in the set of priors casts doubt on the claim that this set reflects only beliefs. 

Indeed, the conclusion often drawn is that there is no clean interpretation of the set of priors: it reflects 

aspects of both belief and uncertainty attitude (Klibanoff, Marinacci, & Mukerji, 2005). The maximin-

EU account, it seems, does not have the resources to determine whether and to what extent the set 𝐶1
 

reflects enhanced beliefs or uncertainty tolerance. 

 

For agents with the same utility function, 1 is 

more uncertainty averse than 2 

if and 

only if 

2’s set of priors is a subset of 1’s set of 

priors. 
Figure 2: Comparative Uncertainty Aversion  

These interpretational subtleties signal a perhaps more severe departure from the Bayesian 

benchmark than first imagined. Bayesianism vaunts a clear separation of beliefs (captured by the 

probability measure) and tastes (reflected in the utility function); maximin-EU apparently does not. To 

the extent that such a separation is desirable, this could bode ill for its normative credentials. For 

instance, in public decisions (e.g. concerning climate policy), it is standard for one group to supply the 

factual judgements (e.g. climate experts) and another to provide the values (e.g. society or its 

representatives); without the separation of beliefs and tastes, this division of labor is compromised. 

 

8 Applying the maxmin-EU rule with this set of priors evaluates a bet on black from the unknown urn 

using the worst-case probability for black – 0.4 – and this is better than the probability of getting black 

from an urn with one black ball out of 100.   
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Whilst current arguments against value-free science tend to focus on difficulties faced in practice (see 

(Douglas, 2009) and chapter 14.2 in this volume), using sets of priors to report uncertainty risks ruling 

out such a possibility in principle. Moreover, the separation allows questions of theoretical rationality 

(e.g. learning) to be treated independently of those of practical rationality (e.g. decision; see chapter 2.2 

in this volume). But if an agent’s set of priors reflects not only the evidence acquired but also her 

uncertainty attitude, then both will play a role in the formation of such sets; any theory of belief update 

will thus also have to incorporate value considerations related to uncertainty tolerance. To date, work 

on belief updating for sets of priors does not seem to have grappled with this issue. 

 

2.3 ACROSS MULTIPLE PRIOR RULES 

 

In comparing the various rules for choosing on the basis of sets of priors, the belief-taste separation issue 

seems not to favor any particular one, but rather concerns the multiple prior representation in general: 

results à la Figure 2 for the unanimity rule suggests that it suffers from similar problems.9 As concerns 
implications for choice, whilst some dispute the normative credentials of the preferences promoted by 

rules retaining WO (such as maximin-EU), few dispute the preference orderings yielded by the 

unanimity rule: if it recommends against an act as being worse than another for all probability measures, 
then it would seem like a bad idea to choose it. However, as noted previously, the rule may remain silent 

on some comparisons between acts; the issue is what to do in these cases. 

 

Some suggest that there is nothing more to be said about rational decision: the unanimity rule 

provides all the guidance there is, and in cases where it is silent, there is no more guidance to be had (S. 

Bradley & Steele, 2016). Others invoke ‘mechanisms’ which are specific to such cases of ‘indecision’: 

for instance, choosing a (contextually provided) status quo option, taking a deferral option, or choosing 

at random. Some have suggested ‘picking’ a precise probability in the set of priors or ‘sharpening’ for 

the purposes of decision (Joyce, 2011). Such a procedure needs to be carried out in a coherent way 

across decisions, to avoid agents making chains of decisions that yield sure losses. Rules such as 

maximin-EU can be thought of as providing principles for ‘picking’ a probability: it always chooses a 

probability measure that evaluates the act as badly as possible among those in the set. Though the 

relevant probability measure differs according to the act evaluated (the measure used to evaluate a bet 

on white may not be relevant for a bet on black), the representation theorem tells us that the rule is 

invulnerable to the aforementioned problems. Indeed, any of the aforementioned rules satisfying WO 

can be thought of as ways of ‘complementing’ the unanimity approach in situations where it remains 

silent. The possibility of complementing approaches violating WO – seen as a strong rational base – by 

invoking considerations such as ‘security’ – which may not enjoy the same interpersonally valid rational 

credentials – has been discussed by (Levi, 1986). (Gilboa, Maccheroni, Marinacci, & Schmeidler, 2010) 

invoke a similar intuition, distinguishing ‘objectively’ from ‘subjectively rational’ preferences, 

represented according to the unanimity and maximin-EU rules respectively. They provide axioms 

characterizing the maximin-EU ‘completion’ of given unanimity preferences.  

 

3 NON-ADDITIVE PROBABILITIES 

Another reaction to Bayesianism’s apparent difficulties in accounting for evidence focusses on 

the additivity of probability functions. A range of proposals, including Dempster-Shafer belief 

functions, possibility functions or Shackle’s degrees of surprise (see chapter 4.7 in this volume), employ 

real-valued functions assigning a number in [0,1] to each event, and satisfying a mild monotonicity 

condition: bigger events do not get a lower value. Such (monotonic real-valued set) functions are called 

capacities (other terms used, in various literatures, include fuzzy, confidence or plausibility measures).  

 

9 For α-maximin-EU, despite some indications of belief-taste separation (Ghirardato, 

Maccheroni, & Marinacci, 2004), there are reasons for skepticism (Klibanoff, Marinacci, & Mukerji, 

2005). It is complicated by the interdependence between the representing set of priors and the α (the 

uniqueness is weaker than in Figure 1), which, without controversial assumptions, is unconducive to a 

clean separation. 
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A first-pass decision rule involving capacities would keep the expected utility formula (Table 

1), but with capacities in the place of probabilities. It has long been known that such a rule has very 

unattractive behavioral properties: any decision maker using it will strictly prefer some dominated act 

(i.e. one that does worse in all states than another available act; see (Quiggin, 1982; Wakker, 2010)). 

Basically, the main decision rule under uncertainty using capacities that avoids such problems is the 

Choquet Expected Utility or CEU rule proposed by (Schmeidler 1989), which evaluates an act f 
according to:   

 

(3.1)    ∑  𝜈({𝑠: 𝑢(𝑓(𝑠))   ≥   𝑥𝑖})[𝑥𝑖   −   𝑥𝑖+1]𝑥𝑖
 

 

where ν is the capacity, u is the utility function, and x i are the utility values of consequences of 

f, in decreasing order. Beyond being the main rule suitable for the sorts of belief representation 
mentioned above, it has proved popular descriptively (see §5 below), partly because of its implications 

for choice: the rule does not assume UA (though it does satisfy P4), which, as noted, is sometimes 

violated.  
 

However, UA is satisfied whenever the capacity is convex: that is, whenever 

ν(E∪F) + ν(E∩F) ≥ ν(E) + ν(F) for all events E, F. In this case, the Choquet integral coincides with 

the maximin-EU evaluation using the set of probability measures dominating the capacity (called the 

core), i.e. {p ∈ Δ: for all E ⊆ S, p(E) ≥ ν(E)}. Since several non-additive probability representations – 

such as Dempster-Shafer belief functions – are convex capacities, this means that the decision rule for 

them is (equivalent to) maximin-EU. So the previous remarks also hold for them. More generally, results 

à la Figure 2 indicate that the capacity in the CEU rule reflects attitude to uncertainty (as well as, 

potentially, beliefs), so the separation issue remains problematic.  

4 CONFIDENCE & OTHER SECOND-ORDER REPRESENTATIONS 

A third approach focusses on a purported multi-dimensional character of beliefs: to use 

Keynesian vocabulary, beyond the balance of evidence supporting a probabilistic judgement, there is 

also its weight. The thought that both of these ‘dimensions’ are involved in the representation of beliefs 

dates back at least as far as (Peirce, 1878) : ‘to express the proper state of our belief, not one number 

but two are requisite, the first depending on the inferred probability, the second on the amount of 

knowledge on which that probability is based’. Similar distinctions have more recently played a 

prominent role in cognitive psychology (Griffin & Tversky, 1992). To capture this idea, representations 

generally employ some structure over the probability space 𝛥.  
 

A simple example is a (weak) order over the probability space, or equivalently, a nested family 

of sets of probability measures, denoted Ξ (Figure 3). (R. Bradley, 2017; Hill, 2013, 2019) argue that 

such a structure can capture an agent’s confidence in her beliefs. Each set in the family represents the 

beliefs or probability judgements held at a given level of confidence: the probability judgements that 

hold for all measures in the set are those that the agent holds with (at least) the corresponding amount 

of confidence. For instance, an agent represented according to Figure 3 has high confidence in the 

probability judgement of 0.5 for 𝐵𝐾, but only low confidence in the probability judgement of 0.5 for 

𝐵𝑈. Larger sets in the family (for which fewer judgements hold) correspond to higher levels of 

confidence. Conceptually, confidence in a probability judgement is related to the evidence underpinning 

it (R. Bradley, 2017), so this approach relates to the aforementioned tradition. Technically, the 

representation is simply the ‘system of spheres’ representation from belief revision and conditional logic 

(see chapters 5.2 and 6.1 in this volume), applied over the probability space rather than the state space. 

Belief representations in this spirit have been proposed by (Gärdenfors & Sahlin, 1982; Nau, 1992), 

though they assume that the second-order structure is cardinal: a number is assigned to each probability 
measure. Naturally, every cardinal structure over the probability space induces the ordinal structure 

described above (by ordering probability measures according to the value assigned). Similar uncertainty 

representations have been promoted in econometrics (Manski, 2013). 
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Figure 3: Confidence in beliefs 

 

Like multiple priors (§2), several decision rules operate with this representation of beliefs. A 

notable family encapsulates the arguably reasonable maxim: the higher the stakes involved in the 

decision, the more confidence is required in a belief for it to play a role. They involve a function D 

assigning to each decision a confidence level – formally, a set in the nested family Ξ representing the 

agent’s beliefs – and evaluate acts on the basis of the set picked out as appropriate for the decision by 

D. For each multiple prior decision rule (§2), there is a ‘confidence version’, involving the same rule 

but allowing the set of priors involved to vary according to the decision. For instance, the maximin-EU 

member of this family represents preferences according to:  

 

min
𝑝 ∈ 𝐷(𝑓)

𝐸𝑈𝑝𝑓 

(4.1) 

The main difference for choice with respect to maximin-EU lies in P4, which directly clashes 

with the intuition that for different stakes, different levels of confidence may be appropriate and hence 

different beliefs may inform the decision, leading to potentially different willingness to bet. (4.1) 

weakens this requirement, allowing the willingness to bet to change with the stakes in line with the 

aforementioned maxim. Unlike maximin-EU, results à la Figure 2 suggest a clean separation between 

beliefs and values (Hill, 2013): the family of sets Ξ represents the beliefs while the function D represents 

the agent’s uncertainty aversion, or taste for choosing on the basis of limited confidence. Drawing on 

similar results for the confidence version of the unanimity rule, (Hill, 2019) argues that these two points 

– the mild yet motivated divergence from multiple prior models in terms of choice implications, and the 

clean separation of beliefs and tastes – are general properties of the approach.  

 

As noted previously, any cardinal representation of confidence in beliefs can be used with this 

sort of decision procedure, by ‘forgetting’ the numbers and using only the order. However, other 

decision rules have been developed that make specific use of the cardinal structure. Prominent ones are 

the variational preferences rule (Maccheroni, Marinacci, & Rustichini, 2006), which represents 

preferences by: 

 

min
𝑝 ∈𝛥

(𝐸𝑈𝑝 𝑓 + 𝑐(𝑝))  

(4.2) 

where c is a real-valued function on 𝛥, and the confidence preferences rule (Chateauneuf & 

Faro, 2009):  

 

min
𝑝 ∈𝛥

1

𝜑(𝑝)
𝐸𝑈𝑝 𝑓 

(4.3) 
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where φ is a function from Δ to [0,1]. The former rule is motivated by an important literature on 

robustness in macroeconomics: a central model developed there (Hansen & Sargent, 2008) is a special 

case. The latter was motivated by and technically related to the literature on fuzzy sets: φ is a fuzzy set 

of probability measures. Both approaches diverge from maximin-EU by weakening P4, without 

motivating the divergence with a maxim similar to that behind (4.1). However, these models do not 

cleanly separate beliefs and tastes: results à la Figure 2 suggest that 𝑐 and 𝜑 capture uncertainty attitudes 

and hence cannot be thought of as pure representations of belief.  

5 PROBABILITIES AFTER ALL 

Finally, some strive to retain the probabilistic representation of beliefs. Inspired by work on 

decision under risk, one approach assumes that agents assign a precise probability p(E) to each event E, 

but that in choice these probability values are ‘deformed’ by a ‘weighting function’ w, so that the 

decision weight attached to the event is w(p(E)). Since the composition of w and p is a capacity, this 

approach, popular in Prospect Theory ((Wakker, 2010) ; see chapter 8.3 in this volume), uses the CEU 

rule (§3). A different approach reverts to a second-order probability 𝜇 over the space of first-order 
probabilities Δ. To the extent that this is a second-order structure, it can be thought of as related to the 

confidence approaches in §4 (Marinacci, 2015). 

  

The main challenge for these approaches lies in the incompatibility between the Ellsberg 

preferences and probabilistic sophistication: roughly, the principle that all the decision-relevant 

information about an event is summarized in the probability assigned to it (Machina & Schmeidler, 

1992). For instance, in the Ellsberg example, if the agent assigns probability 0.5 to both 𝐵𝐾 and 𝐵𝑈, as 

is often deemed reasonable, then the deformed weight w(0.5) assigned to the two events is the same, 

and the CEU rule predicts indifference between the bets. Likewise, a second-order probability μ 

generates a ‘reduced’ probability ∑pμ(p), which can be used in the context of the expected utility rule; 

doing so is equivalent to following evaluation, which applies expected utility at both levels:  

 

∫ 𝐸𝑈𝑝𝑓 𝑑𝜇(𝑝)
𝛥

 

(5.1) 

However, as noted at the outset, expected utility cannot accommodate the Ellsberg preferences.  

 

Faced with this situation, a common reply is to treat (the probabilities of) different events 

differently in decision according to the type of event, and in particular the source of uncertainty to which 

it belongs. The Ellsberg known and unknown urns are different sources of uncertainty and so, the idea 

goes, the same probability assignment with respect to events from the different sources can be treated 

differently in decision.  

 

Source dependence was introduced in the behavioral literature (Tversky & Fox, 1995), and 

continues to play a central role in one of most important descriptive theories of decision, Prospect 

Theory ((Abdellaoui, Baillon, Placido, & Wakker, 2011; Wakker, 2010); see chapter 8.3 in this volume). 
Recent versions incorporate source preference by using the CEU rule with weighting functions that 

depend on the source of uncertainty, so probabilities about events about the known urn are weighted 

differently from those concerning the unknown urn. 

 

For second-order probabilities, the following smooth ambiguity decision rule has been proposed 

(Klibanoff et al., 2005):10 

 

10 For related approaches, see (Ergin & Gul, 2009; Nau, 2006; Seo, 2009). 
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∫ 𝜑(𝐸𝑈𝑝𝑓) 𝑑𝜇(𝑝)
Δ

 

(5.2) 

with φ a real-valued function on utility values. The transformation function φ translates the 

difference in attitude to first-order and second-order uncertainty; interpreting the former as ‘physical 

uncertainty’ and the latter as ‘model uncertainty’, it thus reflects different attitudes to these two sources 

of uncertainty (Marinacci, 2015). In particular, whenever φ is non-linear, the attitudes differ, and the 

rule can accommodate Ellsberg preferences. This is one of the prominent models in the literature 

admitting a clean separation of beliefs from uncertainty attitudes: the second-order probability μ can be 

understood as a representation of the agent’s state of belief, whereas φ reflects her uncertainty attitude 

(Klibanoff et al., 2005). This separation, combined with the tractability and familiarity of the largely 

Bayesian framework, have contributed to its increasing popularity in economic modelling.  

 

Whilst some approaches invoking source dependence, particularly in the behavioral literature, 

have plainly descriptive aims, others seem to harbor normative ambitions (Marinacci, 2015), and hence 

call for an appraisal of their rational credentials. Criticisms have focused on their resolution of the 

challenge of reserving a role for weight of evidence in decision (§1). They insist that the Bayesian 

representation captures all relevant aspects of belief, but introduce another element (e.g. the φ in (5.2)) 

to account for the role apparently played by weight of evidence. Some have suggested that this tension 

– in particular the use of a parameter representing uncertainty attitude (φ) to capture evidence, which is 

a factor pertaining to belief – is damaging for the rational credentials of approaches invoking source 

dependence (Hill, 2019).  
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