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tises the family of @-UA (for @-Uncertainty Attitude) preferences: a simple extension
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mit a richer range of uncertainty attitudes. The parameters of the model are uniquely
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case, a new resolution of a long-standing identification problem. It also yields novel
models, including extensions of variational and multiplier preferences. Comparative
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1 Introduction

In one of Ellsberg’s classic examples (1961), decision makers regularly prefer betting on
the colour of a ball from an urn with known 50 red-50 blue composition to betting on a
ball drawn from an urn containing red and blue balls, but in an unknown proportion. This
uncertainty averse behaviour has inspired an impressive range of decision models, many of
which—such as the maxmin EU, variational and multiplier models (Gilboa and Schmei-
dler, 1989; Maccheroni et al., 2006; Hansen and Sargent, 2001)—retain the assumption of
uncertainty aversion. Indeed, applications incorporating ambiguity almost exclusively rely
on models assuming uncertainty aversion (e.g. Epstein and Wang, 1994; Hansen and Sar-
gent, 2008; Bose and Renou, 2014; Beauchéne et al., 2019) or employed in specifications
that imply it (e.g. Gollier, 2011; Maccheroni et al., 2013; Ju and Miao, 2012). However,
experimental findings (e.g. Wakker, 2010; Abdellaoui et al., 2011; Baillon and Bleichrodt,
2015; Kocher et al., 2018) and casual observation suggest that subjects are rarely univer-
sally uncertainty averse. Indeed, as Ellsberg himself noted (2001), if the urns in the exam-
ple contain ten colours, in equal proportion in the known urn and in unknown proportions
in the unknown one, many would prefer betting on a given colour from the unknown urn
over the known one—an uncertainty seeking behaviour. Some take this to question the rel-
evance and applicability of much of the theoretical literature on ambiguity. By contrast, the
aim of this paper is to provide a general and fully identifiable method of extending existing
uncertainty averse models to admit a richer range of uncertainty attitudes.

More specifically, it is known that any uncertainty averse model can be written as
V(f) = inf,ep J(u(f), p) for every act (state-contingent outcome) f, where A is the space
of probability measures, u is a von Neumann-Morgenstern utility and J an appropriate func-
tional (Cerreia-Vioglio et al., 2011b; see also Section 3.4). We characterise the following

more liberal representation, as concerns uncertainty attitudes:

V(f) = ainf J(u(f). p) + (1 — @) sup J(u(f). p) (D

pEA pEA

where J is the “uncertainty seeking” conjugate of J (in a sense to be defined below) and
a € [0, 1]. Under our axiomatisation, u, @ and J are suitably unique.

Representation (1) generalises the class of uncertainty averse preferences by the ad-
dition of a single parameter, @, which modulates the strength of the “uncertainty averse”

and “uncertainty seeking” components. It thus reflects attitude to or optimism in the face
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of uncertainty, and more specifically imprecision. We refer to preferences represented by
(1) as a-UA preferences (for a-Uncertainty Attitude). Plugging in the appropriate func-
tional forms for J yields one-parameter uncertainty-attitude-permissive generalisations of
popular ambiguity models, such as maxmin EU, variational, and multiplier preferences.
For instance, in the special case of maxmin EU (Gilboa and Schmeidler, 1989), our ap-
proach yields an axiomatic characterisation of Hurwicz a-maxmin EU preferences, which

evaluate an act f by:

V(f) = aminEu(f) + (1 — o) max B,u(f) 2)

where C is a set of priors and @ € [0, 1] can be thought of as regulating uncertainty atti-
tude (for instance, @ = 1 corresponds to the uncertainty averse maxmin EU). To date, no
comprehensive axiomatic foundations, applying in all state spaces, on a single preference
relation and independently of specific assumptions about the form of the set C, are known
for the Hurwicz e-maxmin EU model (see Section 8). A central sticking point is to identify
the @ parameter separately from the set of priors C (see Sections 4 and 8). Our characteri-
sation identifies these two elements uniquely in generic cases, hence providing the missing
foundations. The approach also yields characterisations and unique identifications for the
generalisations of the other aforementioned ambiguity models.

To confront the identification problem, our central insight is to use objective impreci-
sion, through the concept of a bi-lottery: the set of mixtures of a pair of von Neumann-
Morgenstern lotteries. These naturally model choice options for which “objective” in-
formation is provided about the outcomes in the form of probability ranges, rather than
precise probability values. For instance, a prospect yielding a (known) 50% chance of win-
ning $100, and nothing if not, is a lottery; a prospect where the chance of winning $100 is
between 25% and 75%, and nothing more is known, is a bi-lottery. For a consumer who
is told that the probability of car theft is 0.5%, her insurance choice can be modeled as a
choice among lotteries; if all that she knows is that the probability is between 0.1% and 1%,
the choice is more naturally modeled using bi-lotteries. Whilst the object of some attention
in the theoretical, experimental and applied literatures (see Section 8), the innovation in
this paper is to use objective imprecision—bi-lotteries—as a tool for eliciting “subjective
imprecision”.

A standard approach situates acts within a one-dimensional space generated by “ob-

jectively uncertain choice objects”: invariably, the space of expected utility values of
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von Neumann-Morgenstern lotteries. For instance, matching probability techniques in
behavioural economics (e.g. Abdellaoui et al., 2005) and much theoretical work in the
Anscombe and Aumann (1963) framework assign values to an act via its “lottery equivalent”—
a lottery that is indifferent to it. The challenge of representations such as (1) is to identify
two numbers: the infimum and the supremum of the appropriate functionals. To do this,
we develop a way of situating acts in the two-dimensional space generated by bi-lotteries.

To illustrate, consider an event E—say, the event that the Fed raises interest rates to
6% before the end of the year—and a bet on E yielding $50 if E and nothing otherwise.
To investigate a decision maker Ann’s evaluation of this bet, one typically looks at prefer-
ences between the bet and “objective” lotteries. For instance, suppose she strictly prefers
a lottery yielding $50 with probability 0.5 (and nothing otherwise) to the bet. This lottery
could be physically realised by a bet on red in the next draw from an urn with a known
50 red-50 blue composition. Suppose moreover that she also strictly prefers this lottery
to the $50 bet on the complementary event E°. This pair of preferences is incompatible
with Subjective Expected Utility (SEU), and is a known indication of uncertainty aversion
(Schmeidler, 1989): the uncertainty or imprecision in her evaluation concerning E disqual-
ifies it against the precise probability 0.5, whether she is betting for or against the event.
This pair of preferences thus suggests that, under Ann’s evaluation, the bet on E is strictly
more uncertain—or more imprecise—than the 50-50 lottery.

One could also consider Ann’s preferences between the bet on E and the bet on red from
an Ellsberg unknown urn, containing 100 red and blue balls in an unknown proportion. This
bet realises the “objective” bi-lottery yielding $50 with probability in the range [0, 1], and
nothing otherwise. Moreover, it could be that she has opposite preferences to those above:
she strictly prefers the bet on E over the bet on red in the Ellsberg urn, and the bet on
E°¢ over the bet on blue from the Ellsberg urn. After all, if the 50-50 lottery is deemed
more attractive because it is precise, then it is natural that the Ellsberg bi-lottery is deemed
less attractive for its complete lack of precision. Such preferences thus suggest that she
evaluates the bet on E as strictly less uncertain—or more precise—than the Ellsberg bi-
lottery.

Similar reasoning holds for intermediate cases. Consider a partially unknown urn, con-
taining 100 red or blue balls, where it is only known that at least 25 of the balls are red,
and at least 25 are blue; nothing is known about the composition of the remaining 50 balls.
This is a bi-lottery in the previously specified sense, and we can consider Ann’s preference

between the bet on E and the bet on red being drawn from this urn, and her preference
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between the bet on E¢ and the bet on blue from the urn. Suppose that, for each of these
pairs of bets, she is indifferent; in such cases, we say that this is a bi-lottery equivalent.
Applying the previous reasoning, it would seem that she considers the bet on E to be both
weakly more and weakly less precise than the bi-lottery with winning probability range
[0.25,0.75]. In other words, her evaluation of the bet on E matches that of the bi-lottery
equivalent. This matching can be used to pin down the worst- and best-case evaluations
of the bet, as required for representation (1). Whilst the current paper focusses on the
theoretical foundations, a sister paper (Abdellaoui et al., 2021) translates the insights here
into practice, developing and implementing experimental protocols for eliciting bi-lottery
equivalents.

Our main result provides necessary and sufficient axioms for the general representation
of the form (1). At its core is an axiom implying the existence of a bi-lottery equivalent
for each act. This axiom, Attitude Coherence, formalises the intuition mooted above: if
a decision maker opts for a maximally precise objective bet—a lottery—over the bet on
an event and its complement, then she cannot also strictly prefer a maximally imprecise
bi-lottery—such as a bet on the Ellsberg urn—over the bet on the event and its comple-
ment. For the former preference pattern would imply a distaste for imprecision, while the
latter suggests an appetite for imprecision, and hence taken together they indicate an incon-
sistent valence of imprecision attitude. Our result provides suitably unique identification
of the parameters of the model. Moreover, adding standard axioms (e.g. C-Independence,
Weak C-Independence) yields generalisations of the corresponding uncertainty averse pref-
erences (maxmin EU, variational preferences) of the form (1). They each incorporate the
corresponding identifications, for instance of the set of priors in the a-maxmin EU model.
We also characterise a Choquet EU special case of (1) which embeds several classes of a-
maxmin EU representations for which uniqueness has been obtained in the literature, hence
pinpointing how our identification result is more general.

Comparative statics exercises show that the role of the two elements of the model—the
a and the functional J—can be separated, with the former corresponding to comparisons
in imprecision attitude and the latter to comparisons in evaluation imprecision. Moreover,
we show how to define incomplete subrelations that correspond to the “revealed priors” in
the underlying uncertainty averse models, and that in this sense extend existing analyses
in terms of unambiguous preferences (Ghirardato et al., 2004). Finally, we consider a
standard portfolio problem under @-UA preferences. Somewhat surprisingly given their

non-convexity, we show that intuitive comparative statics results can be obtained, and in
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particular that more imprecision aversion leads to lower investment in the uncertain asset.
The paper is organised as follows. After some technical preliminaries (Section 2), we
present and axiomatise the general version of the model (Section 3). We then show how
adding (versions of) well-known axioms yields special cases extending some important un-
certainty averse preference families (Section 4), and discuss in detail the solution provided
to the identification problem for @-maxmin EU. Section 5 considers imprecision and impre-
cision attitude in the context of the model’s comparative statics, while Section 6 relates the
proposed model to incomplete preferences and its “revealed priors”. Section 7 contains a
brief study of a portfolio problem under the proposed preferences, and Section 8 discusses

remaining issues and related literature. Proofs are contained in the Appendix.

2 Preliminaries

Let Z, the set of monetary prizes, be a closed bounded set [w,b] — R, where w < b. A
(simple) lottery [ is a probability distribution with finite support over Z.! Let £ be the set
of lotteries, with the standard mixture operation, and the topology of weak convergence.
For A€ [0,1] and [,,1; € £, Al; + (1 — A)1,, generally shortened to (1) />, is the A-mixture
of [; and l,. For any pair of lotteries [,m € L, [I,m] denotes the set of mixtures of [, m
([Im] = {Al+ (1 —A)m: A€ 0,1]}), and is called the bi-lottery generated by I, m. B is
the set of bi-lotteries. For A € [0, 1] and [l,,m;], [l»,m;] € B, the mixture is defined by
AL, m] + (1 = D[, my] = [Al; + (1 — )b, Am; + (1 — A)my]; we denote this mixture
by [li,my]i[lh, my]. (It is straightforward to show that this is a mixture operation, in the
sense of Herstein and Milnor, 1953.) With slight abuse of notation, we denote the singleton
bi-lottery [/, /] by I, use L to denote the subset of such bi-lotteries in B, and refer to them
as lotteries. Similarly, we use z, w etc to denote degenerate lotteries yielding z, w € Z with
probability 1. As explained above, bi-lotteries can be thought of as “objectively imprecise”
sources of uncertainty: all the decision maker knows about the bi-lottery [/, m] is that the
final obtained outcome will depend on some lottery (distribution) in [, m].?

Consider a setup that is precisely as the standard Anscombe-Aumann one (in its Fish-

burn 1970 adaptation) except that B, rather than just £, is the set of consequences. Let S

IThe results extend directly to Z any compact subset of a connected topological space, and similar results
can be obtained taking lotteries to be Borel probability measures over Z.

>The axioms and results extend almost immediately when the set of closed convex sets of lotter-
ies is used in the place of the set of bi-lotteries B. Conversely, they also apply when the subset

{[bﬁw, byw]: 0<p<Pp< 1} C Bis used in the place of B.
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be a non-empty set of states, with a o-algebra X of subsets of S, called events. A is the
space of finitely additive probabilities on X, endowed with the weak-* topology. A (simple)
act f is a finite-valued X-measurable function from S to B; A is the set of simple acts.
Al < A is the set of those acts whose images belong to £ (i.e. are lotteries); we call the
elements of A’ lottery-acts. So A' is the set of classical Anscombe-Aumann acts. Mixtures
of acts are defined pointwise, as standard. For f, g € A and A € [0, 1], we use fyg to denote
the A-mixture of f and g. Similarly, for f,g € A and an event E € X, frg € A is such
that frg(s) = f(s) for all s € E and frg(s) = g(s) for all s ¢ E. With slight abuse of
notation, 8 will be used to denote the constant acts (i.e. those yielding the same bi-lottery
in all states), and similarly for £ (i.e. acts yielding the same lottery in all states). Note
that, under this convention, £ < B and £ < A'. We use A* to denote set consisting of
lottery-acts and bi-lotteries; i.e. A* = A' U B C A.

The set A* contains only standard Anscombe-Aumann acts and bi-lotteries—that is,
precisely the sorts of objects involved in the motivating examples given in the Introduction.
Our results will only operate on preferences over A*; in that sense, they only involve, as
claimed previously, the introduction of bi-lotteries to standard acts. However, the results
will also hold when applied to preferences over A, which could be thought of as a ‘natu-
ral’ extension of the Anscombe-Aumann framework to incorporate objective imprecision.
Some readers, moved by considerations of parsimony, may find it easier to reason on A*;
others may be more comfortable with the elegance afforded by A. To cater for both, we
shall present results both for preferences over A* and for preferences over A.

The decision maker’s preferences are denoted by >; > and ~ are the asymmetric and
symmetric part of this relation respectively. Throughout, we adopt the convention that a
bi-lottery is written as [/, m] only when [ < m (i.e. if m < I, we write [m, []). Moreover, we
shall say that a bi-lottery [, m'] is a subset of I, m] if containment holds up to indifference:
i.e. if there exist I”,m" € L with [I",m"]| < [l,m],I" ~ ' and m" ~ m'.

A utility function v : Z — [—1, 1] is normalised if v(w) = —1 and v(b) = 1. Let B(X)
be the set of X-measurable functions on S taking values in [—1, 1]. The constant function
in B(X) taking value x € [—1, 1] is denoted x*. A function I : B(X) — R is normalised
if I(x*) = x, constant additive if I(a + x*) = I(a) + x, and positively homogeneous if
I(ka) = «l(a), for all x € [—1,1], k > 0 and a € B(X) such that a + x* € B(X) (resp.
ka € B(X)). I is monotonic if a = b implies that I(a) > I(b) (where > is the standard
statewise order on B(X)). I is balanced if, for all a € B(X), I(a) < —I(—a). For any
a€ B(X) and p € A, we write Ea for { adp.
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3 General case

3.1 Precision

To state the axioms, we require several preliminary definitions. The first is that of the

complement of a bi-lottery or a lottery-act.

Definition 1. For every [, € £, [ is a complement of [ if l%lA ~ b%W. For every [I,m] € B,
[, [] is a complement of [I,m] if /i is a complement of m, and [ is a complement of . For

every f € A, f is a complement of f if f(s) is a complement of f(s) for every s € S.

The complement is a sort of conjugate or “utility-mirror image”: for a lottery that is
better than the midway utility point between the best and worst prizes (b 1 w), its comple-
ment will be just as far below it in utility space. Likewise, the complement of a lottery-act
will yield, in each state, a low-utility lottery whenever the original act yields a high-utility
one, and vice versa. This notion is related to Siniscalchi’s (2009) concept of complemen-
tary pair: for any f, f and f form a complementary pair in his sense. We introduce some

examples for illustration.

Example 1. For any event E, the complement of the bet on E, byw, is the bet on the

complementary event E¢, i.e. wgb.

Bets on complementary events play an important role in several analyses of ambiguity

attitude (e.g. Baillon et al., 2018); Definition 1 generalises this notion to all lottery-acts.

Example 2. For any bi-lottery [b;w,b.w|, with 0 < § < € < 1, that is physically realised
by a bet on red from an urn where all that is known is that at least proportion ¢ of balls are
red and at most proportion € of balls are red, its complement is realised by the bet that the

next ball drawn from the same urn is noft red.

So the complement of a bi-lottery can be thought of as involving the same imprecision, but
with the ‘winning’ and ‘losing” outcomes reversed. It is straightforward to show (under the
basic axioms below) that complements exist for all bi-lotteries and lottery-acts, and that
they are unique up to indifference (statewise, for acts). Henceforth, for any lottery-act f,
we use f to denote any complement of f (all statements will be independent of which one)
and similarly for lotteries and bi-lotteries.

We introduce the following order on lottery-acts and bi-lotteries (i.e. elements for which

complements are defined).
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Definition 2. For every f,g € A*, f X gifand only if f > g and f > 3.

When f £ g, then both f is preferred to g, and the complement of f is preferred to
the complement of g. These are the sorts of preferences discussed in the Introduction: the
standard Ellsberg (two-colour) preference for a bet on the known urn over the unknown urn,
no matter the colour one is betting on, indicates that these bets are ordered under . This is
also the case for reverse Ellsberg preferences—where the unknown urn is preferred to the
known urn, no matter the colour one is betting on—with the Z-order in the other direction.
As noted in the Introduction, standard Ellsberg preferences involve, on the one hand, the
fact that the bet on the known urn is considered more precise than the unknown one, and,
on the other hand, an aversion to imprecision. Reverse Ellsberg preferences involve the
same difference in precision, but with the opposite taste—an appetite for imprecision. So
f X g indicates that f and g are ordered according to perceived precision. The direction
of the ordering will depend on the decision maker’s imprecision attitude: f Z g indicates
that f is more precise if she is imprecision averse; it indicates that f is more imprecise if
she is imprecision seeking. Accordingly, we call L the precision relation. We denote its
asymmetric part by > (i.e. f > gif f X gand g £ f), and its symmetric part by ~ (i.e.
f~gif f X gand g T f).> It follows from the previous remarks that f ~ g when f
and g are considered as imprecise as each other in the decision maker’s eyes. In particular,
if f ~ [I,m] for a lottery-act f and bi-lottery [/, m], this indicates that [/, m] matches the
imprecision of f, under the decision maker’s subjective evaluation. In this case, we say
that [/, m] is a bi-lottery equivalent of f. As illustrated in the Introduction, the bi-lottery
equivalent of an act f can be found from preferences between the act and its complement
on the one hand, and bets on the colour of the next ball drawn from partially known urns
(Example 2) on the other. Indeed, experimental protocols for eliciting bi-lottery equivalents
have been developed and implemented in Abdellaoui et al. (2021).

Finally, we introduce the following derived relation.

Definition 3. For every f, g € A*, fXg if and only if, for every [/, m], [I', m'] € B such that
f~|[,mlandg ~ [l',m'], 1 = I'.

Consider acts f, g with bi-lottery equivalents [/, m] and [/, m'] respectively. These acts

will be ranked by the precision relation £ only when one of the bi-lottery equivalents is

3Note that, under the basic axioms below, % is transitive and reflexive, but not complete. A full charac-
terisation of this relation, as well as that defined below, in the context of our model is provided in Corollary
A.1, Appendix A.1.
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more precise than the other—that is, when one is a subset of other (in the sense defined
in Section 2). This means that both the “worst-case lotteries” [ and I’ and the “best-case
lotteries” are ordered appropriately (e.g. [ > I’ and m < m’). By contrast, the lower
precision relation Z orders acts only according to the worst-case evaluation: fZg when f’s
worst possible evailation, as indicated by the worst-case lottery in a bi—lottery_ equivalent,
[, is weakly higher than g’s worst possible evaluation, as indicated by /. Note that eliciting
the bi-lottery equivalents of the two acts allows one to determine whether this relation
holds between the acts, and, as noted above, such elicitation has been implemented in

experiments. We use & to denote the symmetric part of <.

3.2 Axioms

Basic Axioms. As mentioned in Section 2, we provide results both for preferences over
A and for preferences over the set A* consisting of standard Anscombe-Aumann acts and
bi-lotteries. In the exposition, we state the axioms on preferences over A*; the axioms for
preferences over A are identical except that all occurrences of A* are replaced by A. First

consider the following axioms.
Axiom (Weak Order). > is a weak order.

Axiom (Continuity). For every f,g,h € A*, if fzg € A* for all B € (0,1),* then the sets
{B€0,1]: fzg = h} and {B € [0,1] : frg < h} are closed in [0, 1].

Axiom (Monetary Monotonicity). For every z,w € Z, z > w if and only if 7 > w.
Axiom (Monotonicity). For every f,g € A*, if f(s) = g(s) forall s € S, then f > g.

Axiom (Objective Independence). For every [I,m], [I*,m*],[I',m'] € B and A € (0,1),
[l,m] > [I*,m*] if and only if [l m],[I',m'] > [I*,m*],[I', m'].

Axiom (Bi-Monotonicity). For every [I,m],[I',m'| € B, if | < I' and m < m, then [l,m] <
[, m'].

4Whilst this condition is required for preferences defined over A*, because mixtures of lottery-acts and
bi-lotteries do not typically belong to A*, the corresponding condition is trivially satisfied for preferences
over A.

10
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Weak Order, Continuity and Monotonicity are standard in decision under uncertainty,
and Monetary Monotonicity is standard whenever the domain of prizes is monetary. Ob-
jective Independence and Bi-Monotonicity are new axioms for bi-lotteries. The latter is
a natural monotonicity property saying that whenever the best and worst lotteries in one
bi-lottery are preferred to those of another, the former bi-lottery is preferred. The former
is the standard independence axiom for precise, objective lotteries, applied to bi-lotteries.
Given our focus on the most conservative extension possible of classic uncertainty averse
models, which typically assume independence over lotteries, we retain this version of the
standard axiom here.

These axioms can be thought of as the equivalent of the weak axioms for “rational
preferences” in the Anscombe-Aumann domain that are adopted in much of the theoretical
literature on ambiguity, and studied by Cerreia-Vioglio et al. (2011a). Adapting their ter-
minology, we call preferences satisfying these axioms MBBA preferences (for Monotone,

Bi-Bernoulli, Archimedean).

Main Axiom. For g € A’ with g ~ [bs,w, b, W], consider the sets:

PR, = {[bsW,b W] € B:6 > 6,} U {[bsW,bsWw] € B: 6 > €}
IMP, = {[b;,w,b.w] € B: €= €} U {[bsWw,b] € B:6 = 5,}

For concreteness, these sets are defined in terms of the bi-lotteries corresponding to bets
on urns discussed in Example 2; using corresponding definitions with general bi-lotteries
would not change our results. The bi-lotteries in PR, are either standard (precise) lotteries
or subsets (in the sense defined in Section 2) of the bi-lottery equivalent of g, [b(;gw, begw],
with the same maximal lottery (ie. of the form [bsw, b, w] for § > 6,). Hence, beyond
being weakly preferred to g (under Bi-Monotonicity), they are also, in a sense, as precise
as can be with this property; hence the notation. The opposite holds for the bi-lotteries
in IMP,: they are either supersets of the bi-lottery equivalent [bs,w, b, w] with the same
minimal lottery (i.e. of the form [b(;gw, b.w]| for € > €,), OT as imprecise as can be, insofar
as the maximal lottery is as high as possible. So, beyond being weakly preferred to g
(under Bi-Monotonicity), they are as imprecise as can be with this property. These sets are
illustrated in Figure 1, which also provides a useful graphical representation of 5.

The following is the central novel axiom of our approach.

11
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IMP,

[w, b] (b, b]

PR,

[b{;gw7 b, w]

[w, w] 5

Figure 1: PR, and IMP,, for g ~ [bs,w,b, w]|.

The (black) triangle represents the set of bi-lotteries of the form [bsw, bew]| for 0 < § < € < 1, with
the point (6, €) representing the bi-lottery [bsw, b.w]. Under the MBBA preference axioms, each
bi-lottery is associated to a unique bi-lottery of the form [bsw, bew], and hence to a unique point
in the triangle (Appendix A.1). The point [b(;gw, be,w] is indicated. The sets PR, and IMP; are
indicated in blue and red respectively. PR, contains only bi-lotteries which are maximally precise
whilst having as maximal element a lottery weakly preferred to be, w; IM P, is the set of maximally
imprecise bi-lotteries among those whose minimal element is weakly preferred to bs, w.

Axiom (Attitude Coherence). For every f,g € A’ with f(s) = g(s) for all s € S and
g ~ [bs,w,b. W] for some 0 < 6, < € < 1, and for all p € PR, and I € IMP,,

p>»>f=1%f
and fy»>p=f¥1

As noted in the Introduction, comparisons of acts and their complements with bi-
lotteries give an indication of decision makers’ perceived imprecision and their attitude
towards it. Let f = bgw be the bet on an event E of interest, say that the Fed will raise
interest rates to 6% before the end of the year. An SEU decision maker will evaluate such
bets consistently with a subjective probability for E. For instance, if she prefers the lottery
by 45w to f, then she prefers the complementary bet f = wgb—the bet against E (Example
1)—to the complementary lottery, wo4sb. However, imprecision-sensitive decision mak-
ers may violate this pattern, for some lotteries. Consider a decision maker who exhibits
strict preferences for the lottery and its complement over the bet f and its complement: i.e.
bo4sw > f and m > f , and hence by 4sw > f in the notation introduced above. Such

preferences indicate a difference in and a sensitivity to precision. As for the difference, the
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(evaluations of) lotteries must be more precise or less ambiguous than (the evaluations of)
the bets concerning E—since lotteries are maximally precise, they cannot be less precise.
As for the sensitivity, the preference for the lotteries indicate a negative attitude towards
the imprecision in the bets—that is, imprecision aversion.

This reasoning depends on the fact that lotteries are less ambiguous or more precise
than acts, and hence ceteris paribus more (respectively less) attractive to imprecision averse
(resp. seeking) decision makers. The same logic holds, but in reverse, for maximally im-
precise bi-lotteries. Compare the bet f on E with a bet on red from the Ellsberg unknown
urn with 100 balls, each of which is red or blue, but where nothing is known about the pro-
portion. This bet realises the bi-lottery [w, b]. SEU decision makers remain consistent: if
they prefer f to [w, b], then they prefer the complementary bi-lottery m to the comple-
mentary bet f = wzb (against E). Any deviations from this SEU behaviour are related to a
difference in perceived precision, but in this case, it is the bi-lotteries which are less precise
or more ambiguous than the bets concerning E—since they are maximally imprecise, they
cannot be more precise. So a strict preference for the bi-lottery and its complement over the
bet on E and its complement—|w, b] > f—indicates that the decision maker values the in-
creased imprecision in the bi-lottery positively: it signals imprecision seeking. This clashes
with the indication from by 45w > f of imprecision aversion. Attitude Coherence rules out
such clashes. That is, it implies that if by4sw > f, then either there is no »-relation be-
tween [w, b] and f, or f > [w, b]—i.e. there is a preference for the bets concerning E over
the maximally imprecise bi-lotteries. Note that f > [w,b] signals imprecision aversion,
since f, if anything, is less imprecise than [w, b]; hence it is compatible with the indication
from by 4sw > f.

The reasoning in this example generalises to preferences going in the other direction
(e.g. f » bgssw indicates an imprecision seeking attitude) and to »--orderings between
f and bi-lotteries in PR, and IMP,, when f dominates g statewise. In all cases, Attitude
Coherence merely says that, for each act f, the valences of the imprecision attitude with
respect to f, as indicated by the comparison with maximally precise and maximally im-
precise bi-lotteries, agree: if one implies imprecision aversion (in terms of the precision
orderings), then the other does not imply imprecision seeking, and vice versa. As such, it is
a basic consistency axiom guaranteeing a coherent notion of imprecision attitude for each
act. It makes no assumptions on how attitudes vary across acts or whether the attitude is
one of aversion or appetite for imprecision.

Note finally that this axiom is easy to test in a laboratory. To pick up a violation of

13
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it, it suffices to elicit four preferences. For instance, consider a subject presented with an
event E and two urns: urn A with 50 red balls and 50 blue ones, and urn B with 100
red or blue balls, in an unknown proportion. A subject who strictly prefers a bet that the
next ball drawn from urn A is red over the bet on E and the bet on getting a blue ball
from urn A over the bet against £ has b 1W - bgw. If the subject also strictly prefers
the bet on getting a red ball from urn B to the bet on E, and the bet on getting a blue
ball from urn B over the bet against E, then she has by W 3> brw (see Example 2). A
subject exhibiting all four preferences thus violates Attitude Coherence. Tasks eliciting
preferences between bets for and against events and (precise) lotteries are commonplace
in the experimental literature (e.g. Baillon et al., 2018). In a sister paper, Abdellaoui et al.
(2021) elicit preferences between the relevant bets on events and bets on partially known
urns, hence showing the possibility of testing this axiom in the lab. Although the study in
that paper was not designed to look for violations, it is perhaps noteworthy that none were

in fact found.

Weak Uncertainty Aversion For the final axiom, recall the standard Uncertainty Aver-

sion axiom due to Schmeidler (1989):
Axiom (Uncertainty Aversion). For all f,g € A and B € (0,1), if f ~ g, then fzg > f.

As discussed, this axiom will not be imposed here; instead, we adopt the following weak-

ening.
Axiom (Weak Uncertainty Aversion). Forall f,g € A', and B € (0,1), if f~g, then fgX f.

Weak Uncertainty Aversion is just Uncertainty Aversion, but formulated with the lower
precision relation (Definition 3) in the place of the preference relation. A similar intuition
justifies it, but considering the worst possible evaluation of acts (as revealed by Z; see Sec-
tion 3.1), rather that their all-things-considered assessment (according to >). I?ncertainty
Aversion is often motivated by a preference for hedging the uncertainty in f and g: this
translates into a preference for the mixture of the two acts over each of them. This hedging
preference is justified only when the decision maker’s evaluations of f and g are the same:
hence the indifference condition in the axiom. However, a decision maker could be indif-
ferent between the acts although her evaluation of one act does not coincide with that of the
other: for instance, the indifference could result “fortuitously” from the weighting of the

acts’ best- and worst-case evaluations. In such cases, Uncertainty Aversion risks applying
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the hedging rationale spuriously. Weak Uncertainty Aversion avoids such spurious cases by
only recognising a positive effect of hedging on the worst possible evaluation of the acts:
the mixture fzg cannot do any worse than one could have done from f and g. As such, it
retains the hedging motivation of the original axiom, whilst correcting for situations where
that axiom, arguably, may apply it incorrectly. As we shall see below, like Uncertainty
Aversion, Weak Uncertainty Aversion is an axiom imposing quasiconcavity in the repre-
sentation; unlike Uncertainty Aversion, it will not impose it for the functional representing

preferences.

3.3 Base Result

The following is the central technical result of the paper, and underlies the characterisations

of the main models in the sequel.
Proposition 1. Let > be a preference relation on A*. The following are equivalent:
i. > is a MBBA preference satisfying Attitude Coherence;

ii. There exists a normalised, strictly increasing utility functionv : Z — [—1,1], @ €
[0, 1] and a normalised, continuous, monotonic, balanced functional I : B(X) — R

such that > is represented by:

V(f) =al(uo f) + (1 —a)(=I(-uo [)) 3)

where u : B — R is given by:
[ = in By 1 - Ey 4
u([l,m]) ozl,rerbl,g] v =+ ( (Z)[ll‘éli.r):] v 4)

Moreover, if a # 0.5, then > satisfies Weak Uncertainty Aversion if and only if I is quasi-
concave.
Furthermore, v and « are unique, and whenever a # 0.5, I is unique.

Finally, the same holds for any preference relation > on ‘A.

Representation (3) has a general @-mixture form, where the mixture is taken over a
functional I over acts, and the “conjugate” of this functional (which coincides with the
negation of the value of the complement act, when defined). The properties of [ are standard
in the literature, with the exception of balancedness, which guarantees that I always takes

lower values than the conjugate —I(—e)—so the former can coherently be thought of as
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the worst-case evaluation, and the latter as the best case. As we shall see, these functionals
are the key to obtaining generalisations of known uncertainty averse representations.

Preferences over bi-lotteries (represented by u) follow a Hurwicz-style representation
(4), mixing the lowest and highest expected utilities among the lotteries in the bi-lotteries.’
This representation is common in the literature on preferences over sets of lotteries (see
Section 8), where it has been argued inter alia to capture Ellsberg preferences (Olszewski,
2007; Vierg, 2009). As noted in the Introduction and Example 2, the Ellsberg two-colour
urn of unknown composition corresponds to a bi-lottery: so the Ellsberg preference for bets
on the known urn can be captured by (4) with @ > 0.5, and different willingnesses to bet
on the unknown urn across subjects can be accommodated by (4) with different .

The mixing coefficient @ is the same for general acts and bi-lotteries: that is, in (3)
and (4). The axioms thus imply that the decision maker’s preferences can be represented
with the same attitude to imprecision—which will turn out to be captured by the mixture
coeflicient @ (Section 5.1)—for “objective” imprecision (bi-lotteries) and “subjective” im-
precision (general acts). This can be thought of as the analogue, for the case of imprecision,
of the representations established by many axiomatisations of both SEU and non-expected
utility models, where the same utility function is involved in the evaluation of both “ob-
jective” uncertainty (i.e. VNM lotteries) and “subjective” uncertainty (i.e. general acts).
These are standardly understood as translating an identity of risk attitudes across these
different types of uncertainty; the representation here involves something similar for im-
precision attitudes. As such, it is in line with sections of the literature on ambiguity, where
the parameters representing ambiguity attitudes are taken to be “portable” across decision
situations.® Moreover, economic practice traditionally privileges analyses which don’t rely
on assumptions of varying tastes or attitudes across decision situations: the invariant im-
precision attitudes here, as encapsulated in «, just like the use of “portable” ambiguity
parameters and identical utility functions, is consistent with this practice. At the very least,
representations with invariant attitudes, such as (3) and (4), constitute a natural and parsi-

monious benchmark. Of course, just as for risk attitudes, the descriptive accuracy of the

SUnder the convention that the notation [/, m] implies that [ < m; (4) can be simplified to u([l,m]) =
aBy + (1 — @)E,,v. We present the more general form (4) to emphasise that this convention plays no role in
the result.

®For instance, Marinacci (2015, p 1051), discussing the “ambiguity-attitude” transformation function ¢
in the smooth ambiguity model, says: ‘[The] representation is “portable” across decision problems because
it parameterizes personality traits: risk attitudes given by the function u# and ambiguity attitudes given by
the function ¢. Such traits can be assumed to be constant across decision problems (with monetary conse-
quences)’.
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invariance of « is an empirical question, which we take to be an interesting topic for fu-
ture research and for which the previous results, as well as the experimental techniques
developed in Abdellaoui et al. (2021), may prove useful. We shall just note that it is more
subtle to test than might seem at first glance. For instance, one might be tempted to con-
clude from the literature on source preferences (Abdellaoui et al., 2011) that the @ must
be source-dependent. However, Gul and Pesendorfer (2015) have shown that source pref-
erences can be accommodated by a special case of representation (3) with a single « (see
Section 4): so establishing source-dependence in preferences does not suffice on its own to
establish source-dependence of a.

A central characteristic of Proposition 1 is that the mixture coefficient « is determined
uniquely, and, whenever it differs from 0.5, so is I.” Existing work on the Hurwicz a-
maxmin EU representation has recognised the difficulty in separating out the mixture co-
efficient from other parameters in that model (Sections 4 and 8). This result suggests that
bi-lotteries provide a solution to this problem. In fact, the case of @ = 0.5 corresponds to
imprecision neutrality (Section 5.2), where bi-lotteries have no extra bite above standard
lotteries, and so the insight employed here cannot be used. For that reason, we shall con-
centrate on decision makers who are not imprecision neutral in the sequel, i.e. for which
a # 0.5. We do this by imposing the following axiom, which guarantees that @ # 0.5. (See
Section 5.2, Proposition 4 for a full discussion of the axiom and justification of the name.)

Axiom (Imprecision Non-neutrality). For every [l,m] € B withm > I, [l,m] » [ L.

3.4 «-UA Preferences

The main connection to the literature on uncertainty averse preferences is provided by
the following result, which is a corollary of Proposition 1. We say that a functional G :
[-1,1] x A — (—o0,0] is increasing if it is increasing in the first coordinate for all
p € A; calibrated if inf ,cp G(t, p) = t for all t € [—1, 1]; linearly continuous if the map
Y — infep GO o ¥(s)p(s), p) from [—1,1]% to [—o0, 0] is extended-valued continuous,
in the sense of Cerreia-Vioglio et al. (2011b, Section 2.2); balanced if inf ,ep G (Epa, p) <
sup,cp —G (—E,a, p), for all a € B(Z).

Theorem 1. Let > be a preference relation on A*. The following are equivalent:

i. > is an MBBA preference satisfying Attitude Coherence, Weak Uncertainty Aversion

and Imprecision Non-neutrality;

"The uniqueness of v is standard, given that it is normalised (Section 2).
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ii. There exists a normalised, strictly increasing utility function v : Z — [—1,1],
a € [0, 1]\ {0.5} and a linearly continuous, quasiconvex, increasing, calibrated, bal-
anced G : [—1,1] x A — (=0, 0] such that > is represented by:
V(f) = @inf G (By(uo f).p) + (1 = a) sup—G (~Ey(u f). p) 5)
PE
where u satisfies (4).
Moreover, a and v are unique, and there is a unique minimal G satisfying (5).

Finally, the same holds for any preference relation > on A.

The case of @ = 1 corresponds to the uncertainty averse preference representation
of Cerreia-Vioglio et al. (2011b). Representation (5) is the natural generalisation beyond
uncertainty aversion, involving a Hurwicz-style a-mixture of the infimum in the Cerreia-
Vioglio et al. (2011b) representation, and the supremum of the “conjugate” function. For
this reason, we call MBBA preferences satisfying Attitude Coherence, Weak Uncertainty
Aversion and Imprecision Non-neutrality a-UA preferences (for a-Uncertainty Attitude).
It is straightforward to check that this family can comfortably accommodate uncertainty-
seeking behavior (and violations of the Uncertainty Aversion axiom), such as the 10-colour

Ellsberg example mentioned in the Introduction (see also Section 5.2).

4 a-maxmin EU, variational, multiplier preferences and

beyond

We now show how the proposed approach naturally yields unique identification for the
a-maxmin EU model, as well as extensions of several other ambiguity models beyond
the assumption of uncertainty aversion. The characterisations of these special cases of
representation (5) are summarized in Table 1, with the relevant axioms listed in Figure 2.

The table is to be read in the context of the following result.

Theorem 2. Let > be a preference relation on A*. For each row in Table 1, the following

are equivalent:

i. > are a-UA preferences satisfying the axiom(s) in the left column of Table 1;

ii. There exists a normalised, strictly increasing utility functionv : Z — [—1,1], @ €
[0, 1]\ {0.5} and the elements specified in the middle column of Table 1, such that >

is represented as stated in that column, where u satisfies (4).
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Axiom (Comonotonic Independence). For all pairwise comonotonic® f,g,h € A and
1€ (0,1), f > gifandonly if fih > g\h.

Axiom (C-Independence). For all f,g € A, c € Band A € (0,1), f > g if and only if
fac = gac.

Axiom (Weak C-Independence). For all f,g € A, c,d € Band 1 € (0,1), fic = gic if
and only if fyd > g.d .

Axiom (Weak Monotone Continuity). If f,g € A, | € L and {E,},., € X with E; 2
E,>...and ()5, E, = &, then f > g implies that there exists ny with lg, f > &

Axiom (Weak P2). Forall f,g,h,h' € A' and E € %, fchZgrh if and only if feh' Zgeh .

A pair of acts f, g € A are comonotonic if, forno s,7 € S, f(s) > f(¢) and g(s) < g(¢).

Figure 2: Axioms for Theorem 2

Moreover, a and v are unique, and the uniqueness of the other parameters are as stated in
the right column of Table 1.

Finally, the same hold for any preference relation > on A.

‘We now discuss these cases in turn.

a-Maxmin EU and Choquet EU Aside from Uncertainty Aversion, the other main ax-
iom in the Gilboa and Schmeidler (1989) axiomatisation of maxmin EU is C-Independence
(Figure 2). The result in the first row of Table 1 shows that this is all that is required to
axiomatise the maxmin EU special case of our @-UA preference family. Hence the C-
independence axiom yields the well-known Hurwicz @-maxmin EU representation. The
chief contribution of this result with respect to the existing literature is the full identifi-
cation of the set of priors C and the mixture coefficient «, in the absence of any specific

constraints on the form of C. This can be illustrated on the following example.

Example 3. Consider a two-colour urn, and a subject who may or may not have received
information about its composition. Consider acts whose outcomes depend on the colour of
the next ball drawn from the urn, so there are two states of the world, S = {b,r} (b for a

blue ball being drawn next, r for a red ball). Each probability measure in A is characterised

8{ is the Choquet integral.
% : A — [0, 0] is grounded if its infimum value is 0.
10R is the relative entropy.
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Supplementary . .
Axiom(s) Representation Uniqueness
C- V(f) =aminE,(uo f)+ (1 —a)maxE,(uo f) o
Independence peC " pec T 6 C is unique
C < A : closed convex set of priors
Vi) = [ude ™
Comonotonic 4 unique
Independence  ;;: convex capacity
u®: capacity defined by
K (E) = au(E) + (1 — a)(1 — u(E°)) for every
Ec S8
V() = amin(Byuo f) +e(p))
Weak C pe There is a
ca ) + (1 - a’) max (E[J(M © f) - C(p)XS) unique
Independence P minimal ¢
¢: A — [0,00] : grounded, convex, lower
semicontinuous function’
Weak C-
Independence .
>V = E 6R
Weak (f) amin (E,(uo f) + 6R(p|q)) 6 and g are
Monotone + (1 —a)max (E,(uo f) — 6R(p|4Y) unique.
Continuity, peh

Weak P2 6 e (0, oo], ge AL0

Table 1: Special cases

by the probability given to b, so A can be indexed by these p € [0,1]. Let Z = [—1, 1] and
suppose that v is the identity function. Suppose that the subject’s preferences > over A’
(the set of lottery-acts) are represented according to (6) with C = [0, 1] and @ = 0.7. It is
straightforward to check that these preferences are also represented by C = [0.3,0.7] and

@ = 1." Hence there is a lack of a unique (@, C) pair representing > over A’

"For any f € A, if f(b) < f(r), then 0.7 minepo,1) Ep(u(f)) + 0.3 maxpepo, 1) Ep(u(f)) = 0.7u(f (b)) +
0.3(u(f(r))) = minyepo3,0.7 Epu(f), and similarly if f(b) > f(r).
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In the extended domain A* (and a fortiori in the full space (A), this lack of uniqueness is
resolved using bi-lotteries. In particular, whenever preferences > over A* are represented
according to (6) and (4), then it is easy to check that C = [0, 1] if and only if 1,(—1) ~
[—1, 1] (the bi-lottery generated by the degenerate lottery yielding —1 and that yielding 1
is a bi-lottery equivalent for the bet on b). Similarly, C = [0.3,0.7] if and only if 1,(—1) ~
[—0.4,0.4]. Since, under such non-degenerate preferences, one cannot have both 1,(—1) ~
[—1,1] and 1,(—1) ~ [—0.4,0.4], the representing set C can be at most one of [0, 1] and
[0.3, 0.7]. Similarly, @« = 1 if and only if [—1,1] ~ —1, whereas @ = 0.7 if and only
if [-1,1] ~ —0.4. Since at most one of these preferences is possible, the a representing
preferences can be at most one of these values. Expanding the domain to include bi-lotteries
thus resolves the uniqueness issue with the @-maxmin EU model, pinning down the @ and

C.

The scope of this contribution can be brought out via the comparison with the result
on the second line of the table. It shows that, when the main axiom for Choquet EU—
Comonotonic Independence (Schmeidler, 1989)—is added, one obtains a Choquet special
case of the @-UA preference family, where the capacity in the representation is generated
from a convex capacity by an a@-mixture with its (concave) conjugate. Since the Choquet
integral of a convex capacity coincides with the maxmin-EU functional applied to the core
of that capacity (Schmeidler, 1989), preferences represented by (7) correspond to the spe-
cial case of the a-maxmin EU representation (6) where the set of priors C is equal to the
core of a (convex) capacity. Some of the main results in the literature that have obtained an
a-maxmin EU representation with unique @ and C—notably Chateauneuf et al., 2007, Thm
5.1; Gul and Pesendorfer, 2014, Thms 1 & 5, 2015, Prop 1—are special cases of (7) where
the convex capacity is generated by a probability measure (on the state space in the case
of Chateauneuf et al. 2007; on a sub-co-algebra of an infinite state space in the case of Gul
and Pesendorfer 2014, 2015). The contribution of the first row of Table 1 is to obtain the
identification without imposing any structure on the capacity, and indeed without assum-
ing that the set of priors corresponds to a capacity at all. The following stylized example

emphasises the difference.

Example 4. Consider an economist represented by (6) with @« = 0.9 and v the identity
function. She knows that the state of the economy in 2023 may depend on the duration
of the protection provided by Covid vaccine booster shots. For simplicity, suppose that

protection duration can be long (/) or short (sk), and the economy can be either in state s
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or ¢. In forming beliefs about the duration of protection provided by boosters, she adopts
the judgement emitted by an official Covid scientific committee, according to which the
probability of long-duration protection, p(I) € [0.2,0.8]. Concerning the future state of
the economy, she combines this with her judgements on the economic question on which
she is a specialist, which can be summarised in the probability of specific future states of
the economy given booster protection duration. Suppose that she considers these to be
p(s/l) € [0.7,0.9] and p(s/sh) = [0.3,0.6]. This clearly defines a set of priors, namely
C={peA:p(l)e0.2,0.8],p(s/l) € [0.7,0.9], p(s/sh) = [0.3,0.6]};'* it is straightfor-
ward to check that this is not equal to the core of any capacity. So, whilst one can identify
a capacity u representing the agent’s preferences over two-outcome bets according to (7),
it will not represent her preferences over all acts. In particular, it will not properly repre-
sent her preferences concerning bets conditional on protection duration. For instance, the
preference 1,,(—1),~,0 > 0 indicates that she prefers the bet on state s, given that boosters
provide long-run protection, to a constant 0. Such preferences are central to understand-
ing planning behavior. Moreover, in examples such as these, where the agent’s expertise
pertains to the issue of the future state of the economy given booster protection duration,
it is her conditional beliefs that are most relevant for identification. However, whilst under
(6) with C, we have the preference 1,-,(—1),;,,0 > 0, when (7) is used with the capac-
ity deduced from preferences over two-outcome bets, we have 1,~,(—1),~,0 < 0. The
aforementioned approaches cannot identify the agent’s set of priors under the preferences
involved here, because these preferences do not belong to the special cases of the -maxmin
EU model which they use. By contrast, Theorem 2 (first line of Table 1) applies to these
preferences and provides unique identification.

Variational Preferences Aside from standard Uncertainty Aversion, the other main ax-
iom in the Maccheroni et al. (2006) axiomatisation of variational preferences is Weak C-
Independence (Figure 2). The result in the third row of Table 1 shows that this is all that is
required to axiomatise the variational special case of the a-UA preference family.

Indeed, the @ = 1 case of the representation in Table 1 corresponds to variational pref-

12For concreteness, we can take the state space to be {/, sh} x {s,1}.

3More specifically, C generates the capacity u, with u(s) = 0.38, u(t) = 0.16, u(s n 1) = 0.14, u((s N
D) = 028, u(shv (s 1)) =0.76, u((sh v (s N 1))°) = 0.02 which represents preferences over two-
outcome bets according to (7). By calculation, the evaluation of 1;~;(—1);~,0 according to (6) with a,v, C as
specified is @ minyec (p(s N 1) — p(t N 1))+ (1—a) max,ec (p(s N 1) — p(t n 1)) = 0.9%0.0840.1x0.64 =
0.136 > 0. By contrast, its evaluation according to (7) with a,v, u as specified is a(u(s N 1) — (1 — u(sh U
(snD)+ (T —a)(l—p((snD))—(1—(1—pu((shu (snli))) =-0.02<0.
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erences (Maccheroni et al., 2006). So this result provides an extension beyond uncertainty
aversion, using the a-mixture of variational preferences and the corresponding uncertainty
seeking version (with a maximum in place of a minimum, and the c still counting as a
cost in the maximum, so bearing a negation sign). Note that this extension preserves the
uniqueness of ¢, which is as in the Maccheroni et al. (2006) result. If you will, these are

fully identifed a-variational preferences.

Multiplier Preferences A well-known special case of variational preferences are multi-
plier preferences, proposed by Hansen and Sargent (2001). Adapting Strzalecki’s (2011)
axiomatisation of this family, the third row of Table 1 extends them beyond the limits of
uncertainty aversion. Beyond the axioms for variational preferences (see above), the Strza-
lecki (2011) axiomatisation invokes Weak Monotone Continuity (Figure 2) and Savage’s
P2. The extension characterised in Table 1 invokes the same axioms, with P2 replaced
by Weak P2. Analogously to the weakening of Uncertainty Aversion (Section 3.2), Weak
P2 weakens P2 by applying it on the lower precision relation, rather than the preference
relation. Moreover, the parameters are fully identified, just as in the axiomatisation of
uncertainty averse case (corresponding to our (9) with @ = 1).

The characterised representation (9)—a-multiplier preferences, if you will—are thus a
natural generalisation of multiplier preferences to accommodate violations of uncertainty
aversion. Multiplier preferences are related to maxmin EU preferences where the set of
priors is defined by a relative-entropy-based constraint, with the former obtained via the
Lagrangian of the latter (Hansen and Sargent, 2008). Clearly, a similar relationship holds

between a-multiplier preferences and a-maxmin EU preferences with such priors.

Other models Similar generalisations beyond uncertainty aversion can be obtained
for other families of uncertainty averse preferences, such as confidence (Chateauneuf
and Faro, 2009) and confidence-based preferences (Hill, 2013). Indeed, since uncer-
tainty averse smooth ambiguity preferences—that is, preferences represented by V(f) =
¢~ (§¢ (B, (u(f))) du) with i a countably additive Borel probability measure over A and
¢ a concave transformation function (Klibanoft et al., 2005)—are a special case of the un-
certainty averse preferences featuring in representation (5) (Cerreia-Vioglio et al., 2011b),
the general method for generating non-uncertainty averse extensions can also be applied to

them. Plugging them in for 7 in (3) yields:
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~ a0 ([oEnan) + 1 -a) | -6 ([orBatrman) | a0

Whenever the base smooth ambiguity representation (notably, the ¢) is smooth, the
same is true for (10), justifying the moniker a-smooth for this representation. The smooth
ambiguity model can accomodate non-uncertainty averse behavior by using transformation
functions ¢ which are neither convex nor concave. Representation (10) provides an alter-
native way of generating non-uncertainty averse behaviour from an (uncertainty averse)
smooth ambiguity model base, which retains the use of familiar concave transformation
functions (such as exponential or power functions), but generalises the representation. As
shall be discussed in Section 7, it may yield interesting comparative statics in some portfo-

lio choice applications.

S Imprecision and uncertainty attitudes

We now consider attitudes to uncertainty and imprecision under a-UA preferences. Recall
that one of the contributions is to separate out the role of whatever underlies the I (e.g. set
of priors in (6), “ambiguity indices” in (8)), which is sometimes related to something of
the nature of “ambiguity”, or “belief”, from the parameter @, which seems to regulate the
degree of pessimism or caution in the face of the ambiguity. So, rather than a single notion
of ambiguity or uncertainty attitude, the model will support two notions—of imprecision

and of attitude to imprecision.

5.1 Comparative attitudes

The following is a popular notion of ambiguity aversion (Ghirardato and Marinacci, 2002).

Definition 4. >' is more ambiguity averse than > if, for all f € A' and [ € L:
f=ll=f>%1 (11)

In our enriched framework, one can home in on the attitude to the “objective imprecision”—

in the bi-lotteries—in isolation from considerations specific to acts (which also involve be-
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liefs and ambiguity concerning the state of the world). Following the previous definition,

this yields:

Definition 5. >! is more imprecision averse than >=* if, for all [I',m'] € Band [ € L:

[ =" 1= [lI,m] =*1 (12)

This follows closely the intuition behind the previous notion of ambiguity aversion (and
indeed, Yaari’s (1969) notion of risk aversion on which it is based): the more imprecision
averse decision maker evaluates every bi-lottery more pessimistically—i.e. it is preferred
to fewer precise lotteries.

On the other hand, one can home in on the rest: that is, on preferences between acts and
bi-lotteries, which as noted (Introduction and Section 3), reveal the “subjective impreci-
sion” perceived by the decision maker. Consider the following two notions of comparative

imprecision.

Definition 6. >' is more imprecise than > if, for all f € A' and [ € L:

2= 137 (13)

Definition 7. >! is strongly more imprecise than > if, for all f € A' and [I, m] € B:

[~ Lml= fz*[lm] (14)

Imprecision follows the standard notion of ambiguity aversion in comparing acts to
lotteries, but according to their lower precision (Definition 3) rather than the preference
between them. Under a-UA preferences, Anne’s evaluation of acts may be more imprecise
than Bob’s, but nevertheless she may not be more ambiguity averse in the sense of Defini-
tion 4, because she may be less averse to imprecision. However, one would expect that, if a
decision maker rules out any lottery worse than / as a possible evaluation for f—as implied
by f X'l (Section 3.1)—then a decision maker whose evaluations are more precise would
do the same. Definition 6 states precisely this as the notion of comparative imprecision.

Strong imprecision involves the precision relation (Definition 2). It says that the less
imprecise decision maker considers f to be more precise than any bi-lottery equivalent of
f according to the more imprecise decision maker. As we shall see, this notion brings in
decision makers’ attitudes to imprecision in a way that the previous one does not.

The following result maps these notions into the primitives of the model.

25



Brian Hill Beyond Uncertainty Aversion

Proposition 2. Let >', >2 be a-UA preferences, represented by (v',a',I') and (v*,a?, I?)

respectively according to (3) and (4). Then:

i. >'is more imprecision averse than >* if and only if v! = v* and o' > o* ;

ii. >'is more imprecise than >?* if and only if v! = v* and, for all a € B(X), I'(a) <
I*(a);

iii. >"is strongly more imprecise than > if and only if v! = v* and, for all a € B(X),
?I'(a) + (1 = @®)(=1'(=a)) < &’P(a) + (1 — &?)(~P*(~a)).

Comparisons of imprecision aversion thus correspond to differences in @, with the more
imprecision averse decision maker having a higher « (recall that the uncertainty averse
extreme of the family is when @ = 1). This suggests « as an index of imprecision aversion.
On the other hand, imprecision comparisons correspond to the most intuitive notion: more
imprecise decision makers have lower “worst-case evaluation” 1.'* Note that this implies
that the intervals of possible evaluations generated by the functional / are larger for more
imprecise decision makers: [I°(a), —I*(—a)|<[I'(a), —I'(—a)]. Indeed, clause ii. of this

proposition gives immediate and natural corollaries for the models considered in Section 4.
Corollary 1. Let >', >2 be a-UA preferences. Then:

i. If =',>? are a-maxmin EU, then =" is more imprecise than >* if and only if v! = v

and C, < Cy, where these are as in (6).

ii. If =',>? are a-variational, then =" is more imprecise than > if and only if v = v

and ¢y < ¢, where these are the unique minimal functions in (8).

iii. If ="', =2 are a-multiplier; then =" is more imprecise than > if and only if v = v?,

q1 = q» and 6, < 6,, where these are as in (9).

iv. >!is more imprecise than >=? if and only if v! = v* and G, < G,, where these are

the unique minimal functionals in (5).

In all cases, imprecision comparisons correspond to what one would expect: more im-

precise decision makers have larger sets of priors, lower ambiguity indices, and so on. We

14The notion of comparative ambiguity aversion in Definition 4 only orders decision makers if they share
the same utility function, and the notions defined here retain this property. Versions avoiding this implication
can be proposed, employing the technique, developed in Hill, 2019; Wang, 2019, of using acts yielding
lotteries over best and worst prizes as consequences in the place of general acts.
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shall sometimes refer to I or the relevant elements in the special cases (C, ¢, and so on) as
reflecting imprecision.

An improvement in precision need not be attractive, even for an imprecision averse
decision maker. Under the a-maxmin EU representation, for instance, the set of priors
[0.05,0.1] is more precise than [0, 1], insofar as it is a subset; however, it is not necessarily
preferable. This is analogous to the situation in decision under risk: a sure $5 payment is
less risky than a 50-50 lottery between $50 and $0, but that doesn’t mean that it is preferred.
There, notions such as mean-preserving spread “control” which risk comparisons are made.
Strong imprecision can be thought of as exerting a similar control, using the imprecision
attitude of the strongly less imprecise decision maker (a?). The final clause in Proposition 2
says that the strongly less imprecise decision maker always has a higher “effective” worst-
case evaluation—where the [ values are weighted by her imprecision aversion parameter.

This difference is relevant for the relationship between these notions and the standard
notion of ambiguity aversion (Definition 4), as clear in the following Proposition, where >!
is as imprecise (imprecision averse) as >2 if each is more imprecise (resp. more imprecision

averse) than the other.
Proposition 3. Let >, >? be a-UA preferences. Then:

i. if ="' is more imprecision averse and strongly more imprecise than > then it is more

ambiguity averse;

ii. if =" is as imprecision averse as =2, it is strongly more imprecise if and only if it is

more ambiguity averse;

iii. if =" is as imprecise as >?, it is more imprecision averse if and only if it is more

ambiguity averse.

The a-UA representation involves a separation of the role of imprecision from attitudes
to imprecision. It is thus to be expected that revealed ambiguity attitude in the sense of
Definition 4 is impacted both by the imprecision on the side of the decision maker’s eval-
uations and by her attitude to that imprecision—and this is what Proposition 3 says. On
the one hand, holding imprecision fixed, the ranking of ambiguity aversion follows that of
imprecision aversion. This is similar to existing results showing that ambiguity aversion
follows the “attitude” parameter in various models (Ghirardato et al., 2004; Klibanoff et al.,

2005) under an assumption about fixed beliefs or ambiguity. In the other direction, holding
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imprecision aversion fixed, ambiguity attitude co-varies with the strong imprecision rank-
ing; results of this sort are rarer in the literature. Strong imprecision rather than imprecision
is relevant here, because, as noted, a decision maker can be more precise but extreme (e.g.
concentrated at the bottom of the interval), and hence unranked by ambiguity aversion.

In sum, the Ghirardato and Marinacci (2002) notion of ambiguity aversion can be
thought of as “factorising” into imprecision aversion and strong imprecision: ambiguity

aversion requires at least one of them, though may “trade them off™.

5.2 Absolute attitudes

The most well-known notion of (absolute) ambiguity aversion is doubtless the Uncertainty
Aversion axiom introduced by Schmeidler (1989) (Section 3.2). As noted at the outset,
a-UA preferences do not satisfy this axiom in general. The Ellserg 10-colour example in
the Introduction illustrates this: a preference for betting on a colour (out of ten) for the next
ball drawn from an unknown urn over betting on an urn with an equal proportion of each
colour can be accommodated by the a-maxmin EU model (6) with @ = 0.8 and the full set
of admissible probability distributions, but not by a model satisfying Uncertainty Aversion.
Moreover, part of the identification problem for @-maxmin EU (Example 3, Section 4) is
that Uncertainty Aversion can support representations of the form (6) with @ # 1; so adding
it to those above does not impose a = 1.

According to another absolute notion of ambiguity attitude in the literature (due to Ghi-
rardato and Marinacci, 2002), a decision maker is ambiguity averse if she is more ambiguity
averse than a Subjective Expected Utility (SEU) decision maker, in the sense of Definition
4. As for Schmeidler’s notion, @-UA preferences are not ambiguity averse in this sense in
general. But again, the two comparative notions from Section 5.1 permit a decomposition
into two corresponding absolute notions.

On the one hand, a decision maker can be said to be imprecision averse if she is more
imprecision averse than some SEU decision maker, in the sense of Definition 5. SEU
has not been specifically defined on bi-lotteries, but under the reasonable assumption that,
in evaluating a bi-lottery [/,m|, a Bayesian decision maker would assume a uniform dis-
tribution over the I’ € [I,m], we obtain the condition that a decision maker is (strictly)
imprecision averse if [I,m] < lym for every [I,m] € B with m > [. That is, she prefers the
precise “average” lottery to the bi-lottery in all cases. As the following proposition shows,

imprecision aversion is completely determined by whether @ > 0.5, corresponding to the
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widespread intuition that such values of « reflect “ambiguity aversion” or “pessimism’.

Proposition 4. Let > be a MBBA preference satisfying Attitude Coherence, with a as in
(3) and (4). Then a > 0.5 if and only if [I,m]| < lym for every [l,m] € Bwithm > L

Notions of imprecision seeking, imprecision neutrality and imprecision non-neutrality
naturally correspond to a preference for the bi-lottery over the precise average lottery, an
indifference between them, and a non-indifference between them. They are characterised
by @ < 0.5, = 0.5 and a # 0.5 respectively.

On the other hand, a notion of absolute imprecision can be defined, as being more
imprecise than some SEU decision maker, in the sense of Definition 6. All the special

cases considered in Section 4 are imprecise in this sense.'’

Proposition 5. a-maxmin EU, a-variational, a-multiplier and a-smooth preferences are

imprecise.

Again, this is as one would expect. SEU is the special case of (3) where I is linear and

beliefs are fully “precise”; so it is natural that the other models are more imprecise.

6 Incomplete preferences

A natural question often investigated in the ambiguity literature is the relationship between
a given (complete) preference and its largest Bewley subrelation, sometimes called the

unambiguous preference relation. This is standardly defined as follows.
Definition 8. Let > be an a-UA preference relation. Its unambiguous preference relation
>* on A is defined by: for all f, g € A’

f=*g= fih=gh Yhe A, 1€ (0,1]

By Cerreia-Vioglio et al. (2011a, Prop 2), >* is a (generally incomplete) Bewley pref-
erence: there exists a utility function u and a closed convex set of priors C* < A such that
f >=* g if and only if

Eyuof>Eyuog VpeC (15)

5This is not the case for general a-UA preferences (5) because uncertainty averse preferences are not
necessarily dominated by a probability distribution (Cerreia-Vioglio et al., 2011a, Example 2), as would be
required (see proof of Proposition 5, Appendix A.3).
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Moreover, it is the largest subrelation of > that is represented according to (15). In order to
elucidate the relationship between incomplete Bewley subrelations and a-UA preferences,

we introduce the following relation.

Definition 9. Let > be an a-UA preference relation. Its imprecision-attitude-free prefer-

ence relation > ° on A’ is defined by: for all f, g € A’

f=°ge fihggh Yhe A, 1€ (0,1]

This relation mimics the standard definition of unambiguous preferences, but uses the
lower precision relation in the place of the full preference relation. Unambiguous pref-
erences are designed to pick out comparisons between acts which are unaffected by any
hedging motive, or ambiguity: f >* g is supposed to indicate that ambiguity or hedging
motives have no hand in the preference for f over g. However, under Hurwicz-style rep-
resentations, such as (5), it is possible that ambiguity or hedging does drive the preference
between f and g, but they are nevertheless ordered by the unambiguous preference relation
(f =" g) due to a fortuitous interplay with the imprecision aversion parameter a. The
imprecision-attitude-free preference avoids sanctioning such spurious cases of “unambigu-
ous” comparison by focussing on robustness to hedging with respect to the lower precision
relation. As noted previously, this relation is only sensitive to the worst possible evalua-
tion of acts, and so is not open to interference from interplay with the imprecision attitude.
f =° g thus indicates that the comparison between the worst possible evaluations of f and
g is unaffected by hedging or ambiguity considerations. As such, imprecision-attitude-free
preference provides a purer, more restrictive notion of ambiguity-robust comparison.

Imprecision-attitude-free preferences also admit a Bewley multi-prior representation.
Proposition 6. Let > be an a-UA preference relation. Then its imprecision-attitude-free
preference relation > ° is represented by: for all f,g € A, f > °g if and only if

Euof>Euog VpecC’ (16)
where C° € A is closed and convex and u is as in Proposition 1. Moreover, C° is unique.

As suggested by the previous discussion, the imprecise-attitude-free preference relation
is a subrelation of unambiguous preferences (Proposition A.5 in Appendix A.4), and hence,
by known results (Ghirardato et al., 2004), C° = C*. This is as to be expected from

Example 3 in Section 4: the set of priors representing imprecise-attitude-free preferences
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could be larger than those picked out by the unambiguous preference relation, because it
may be possible to represent the restriction of the preferences to lottery-acts with a larger
« and a smaller set of priors.'¢

Moreover, there is a natural relationship between the imprecision-attitude-free set of

priors C° and the parameters in the representation of a-UA preferences.

Proposition 7. Let > be an a-UA preference relation, and let C° be as in Proposition 6.
Then:

i. C° = cl(dompG), where G is as in (5).
ii. If = is a-maxmin EU, C° = C, where C is as in (6).

iii. If > is a-variational, then C° = cl(supp c), where c is the unique minimal function
in (8).

For each of these models, this is the standard relationship between the set of priors
representing the unambiguous preference under the uncertainty averse version of the model
on the one hand, and the model parameters on the other. For instance, the former set of
priors is the representing set of priors under maxmin-EU, the closure of the support of the
ambiguity index under variational preferences, and so on. These are the elements of the
models that many consider should remain when attitude (to ambiguity, or imprecision) is
removed—indeed, one often finds talk of “revealed ambiguity” (Ghirardato et al., 2004) or
“revealed priors or measures” (Cerreia-Vioglio et al., 2011a; Klibanoff et al., 2014), and
sometimes a suggestion that they capture something akin to beliefs.

This brings into perspective a central difference between the current approach and ap-
proaches to non-uncertainty averse preferences which begin with the Bewley subrelation
>* (Ghirardato et al., 2004; Cerreia-Vioglio et al., 2011a). Those approaches stipulate
that the “relevant priors” or “revelant ambiguity” are given by >*, and then use those to
construct a representation of > (in the cited papers, generalized Hurwicz representations,
where « in (6) may depend on the act being evaluated). The set of priors “involved” in the
representation is automatically the one representing >*, by construction; on the other hand,
a general form of uniqueness (independently of >*) is not guaranteed. The approach taken

here starts by eliciting the @ and the minimum functional in the representation, and so the

16Relatedly, Example 3 also shows that >* and > ° need not be identical: using the notation introduced
there, whenever preferences are represented according to (6) and (4) with C = [0,1] and @ = 0.7, then
I,—1>*—-04butly—1%°—04.
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relevant priors come out as a consequence of the representation, rather than as an input. In
this way, > © and C° seem to pick up more carefully the priors that are relevant—in partic-
ular, by the lights of the uncertainty averse models of which ours provides extensions. If
this reading is correct, it might suggest that C°, rather than C*, is more aptly interpreted as

the “relevant ambiguity” or “relevant priors” for a-UA preferences.

7 « and Portfolio choice

The results in Section 5 suggest that a decision maker’s imprecision aversion is captured
by the mixture coefficient @ in (3). It is natural to ask what effect changes in this attitude
have on portfolio choice. This issue is rendered particularly subtle under the proposed
representation, because the aim was to go beyond uncertainty aversion, and that means
losing the concavity (or quasiconcavity) that is so useful in solving optimisation problems.
In this section, we present a preliminary analysis of a standard portfolio problem.
Consider a static problem, involving a safe asset with return r and an uncertain asset
with uncertain return x taking values in a closed bounded interval R — R, where r €
R. An investor is initially endowed with wealth w, which she is to allocate between the
two assets. The investor’s final wealth after investing a € [0, w]| in the uncertain asset is
wr + a(x — r) under return x. The investor has @-UA preferences, represented according
to (3) with functional /, imprecision aversion index « and utility function v, defined on

Z S w.R with v(wr) = 0. The portfolio problem can thus be written as:

arel%&)mi] al(viwr+a(x—r))+ (1 —a) [—I(—v(wr + a(x —r))] (17)

Suppose moreover that v is concave and continuously differentiable—so investors are
risk averse—and [ is differentiably concavifiable—that is, there exists a differentiable func-
tion ¢ : [—1,1] — [—1, 1] with everywhere positive derivative such that o I is concave.
All the special cases of interest considered in Section 4 involve differentiably concavifiable

1."7 Then we have:

Proposition 8. Let v be concave and continuously differentiable, and I be differentiably

concavifiable, and consider investors with preferences represented by (v, I, @) and (v,1,a’)

7Precisely: all the models considered in that section involve concave I, except for the smooth ambiguity
model under uncertainty aversion; whenever the ¢ in that model is smooth with positive derivative throughout
the relevant range—as is typically the case for popular specifications—¢ o I(e) = {@(E,e)du is concave,
since ¢ is, so [ is differentiably concavifiable.

32



Brian Hill Beyond Uncertainty Aversion

respectively according to (3). Then, for every optimal portfolio allocation a* € [0,w] for
investor (v, I, @), if @ > a (respectively, @ < a), then there exists an optimal portfolio

allocation a*' for investor (v, I, ') with a*’ < a* (resp. a*' > a*).

Going beyond uncertainty aversion—as has been the aim in this paper—implies going
beyond concave (or quasiconcave) preference functionals, which complicates the study
of optima. In this context, this result yields perhaps the most reassuring message one
could hope for about the effect of imprecision aversion. Whenever there are unique global
optima, more imprecision aversion—higher a—Ileads to lower investment in the uncertain
asset. If there are several global optima, more imprecision aversion will lead to a lower
investment in the uncertain asset in some optimum, and less imprecision aversion will
lead to a higher investment in the uncertain asset in some optimum. The result is also
extremely general, applying to the @-UA version of every uncertainty averse model used in
the practice (including the a-smooth model, when it is indeed smooth). It is all the more
striking that, despite its intuitiveness, results of this sort do not hold in general under every
ambiguity model and notion of ambiguity aversion. For instance, Gollier (2011) has shown
that, even in the uncertainty averse case, an increase in the ambiguity aversion parameter in

the smooth ambiguity model may lead to strictly higher investment in the uncertain asset.'8

8 Discussion and remaining related literature

This paper proposes and provides foundations for Hurwicz-style extensions of several ma-
jor uncertainty averse decision models beyond the assumption of uncertainty aversion. A
central challenge—which is well-known for the a-maxmin EU special case—is identifi-
cation, and in particular the separation of the mixture coefficient @ from the “ambiguity-
or belief-side” functional (/ in representation (3)). Our basic insight for resolving this is-
sue is to use objective imprecision, in the form of bi-lotteries—sets of mixtures of pairs
of lotteries. To obtain identification, it suffices to add bi-lotteries to the standard set of
Anscombe-Aumann acts as objects of choice; however, our characterisation results also
hold if one enriches the Anscombe-Aumann consequence space to include bi-lotteries. En-

richening the domain of choice objects has a long tradition in decision theory, following

8Maccheroni et al. (2013) show that “robust mean-variance” preferences, which approximate smooth pref-
erences for “small uncertainties”, exhibit a negative correlation between ambiguity aversion and investment.
Dziewulski and Quah (2016) study the comparative statics under changes in the set of priors C with constant
a under the a-maxmin EU model (6).
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von Neumann and Morgenstern’s introduction of the concept of lottery, and our approach
can be thought of as belonging to that tradition.

The notion of bi-lottery is a natural generalisation of that of lottery, with arguably grow-
ing relevance in economic modelling. In domains as varied as climate reporting (Mastran-
drea et al., 2010), earning forecasts (Du and Budescu, 2005) and central bank projections
(Carney et al., 2019), there is an increasing use of ranges rather than point estimates to
report values, including probability values. Some have defended range over point reporting
for probabilities in econometric and statistical analyses, especially in situations of partial
identification (Manski, 2003, 2013). Bi-lotteries, which can roughly be thought of as ranges
of lotteries, can represent the provided information in many such cases.

More importantly for the foundational ambitions of this paper, bi-lotteries can be fea-
sibly implemented in laboratory contexts, via analogous treatments to those currently used
for von Neumann-Morgenstern lotteries. Just as a lottery corresponds to and can be phys-
ically realised by a draw from an urn with known composition, a bi-lottery corresponds to
a draw from an urn where the composition is only partially known (e.g. all that is known is
that there are at least 10 and at most 60 red balls out of 100).!° Indeed, several papers in psy-
chology and behavioral economics have studied preferences over what we call bi-lotteries
(e.g. Budescu et al., 2002; Du and Budescu, 2005; Abdellaoui et al., 2019; Burghart et al.,
2020), for instance via elicitation of their certainty equivalents.?’ Whilst these studies at-
test to the interest of the notion of objective imprecision and the feasibility of the concept,
insofar as they realise it in the lab, none use it to probe or provide foundations for richer
non-uncertainty averse representations of preferences under subjective uncertainty. A sister
experimental paper (Abdellaoui et al., 2021) uses bi-lotteries to elicit multiple priors.

Related theoretical literature includes Olszewski (2007) and Ahn (2008), which study
preferences over general sets of lotteries. The latter axiomatises a “second-order uncer-
tainty” style representation, whilst the former obtains a representation similar to (4) and a
comparative static result similar to Proposition 2.i. However, the interpretation of sets of

lotteries, especially in the former paper, differs from that of bi-lotteries. Whereas Olszewski

9Likewise, just as lotteries can be alternatively modelled as acts in a larger "randomisation’ state space
with exogenous probabilistic information about the states (Sarin and Wakker, 1997)—e.g. as bets on the
colour of the next ball drawn from an urn where the composition is known—bi-lotteries can be modelled
similarly, with exogenous imprecise probabilistic information about the states—e.g. as bets on the colour of
the next ball drawn from a partially known urn. Such re-modelling has no effect on our results.

20Chew et al. (2017) elicit certainty equivalents of bi-lotteries in the context of a wider study involving
other types of objectively-given partial information about the probability distribution, as well as compound
lotteries.
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(2007) assumes that a lottery is first selected from the set of lotteries, then consumed by
the decision maker, bi-lotteries are a device for representing objective imprecision, where
the uncertainty about the outcome obtained is resolved without there necessarily being a
fact of the matter about “which” lottery in the bi-lottery generates it. Vierg (2009) works
in an enriched Anscombe-Aumann framework similar to ours, and Ghirardato (2001) uses
something similar for the Savage framework. Both obtain representations which, at the
level of states, coincide with Subjective Expected Utility (unlike our (3)), and at the level
of consequences involve a Hurwicz evaluation of the form (4), with potential state- or
set-dependence of a. Gajdos et al. (2008) provide an ambiguity model in which sets of
probability measures (over the state space), interpreted as capturing objective imprecise
information, feature among the primitives. Here, probability intervals feature among the
objects of choice (bi-lotteries), but no objectively-given information about probabilities
over the state space appears in the model.

As mentioned, one contribution of the present paper is to provide a treatment of the
identification problem for a-maxmin EU preferences. One existing approach to this prob-
lem is simply to dictate that C is determined by the unambiguous preference relation (Def-
inition &; Ghirardato et al., 2004), though this approach has only been successfully demon-
strated for infinite state spaces (Eichberger et al., 2011). Frick et al. (2022) implements
an analogous approach in Gilboa et al.’s (2010) “objective rationality” setup: it involves
taking two preference relations as primitives, an incomplete one playing the role of the
unambiguous preference relation and determining C, and a complete extension represented
according to a-maxmin EU. Another proposed approach involves enrichening the state
space to exhibit an infinite product structure, and imposing symmetry axioms. This allows
identification of a set of “relevant priors” (Klibanoft et al., 2014), and has recently been
used to develop an axiomatisation of a version of the a-maxmin EU model adapted to such
state spaces and symmetry assumptions (Klibanoff et al., 2022). Hartmann (2021) develops
an approach relying on axioms with exogenously fixed @. A final approach, discussed in
Section 4, obtains identification for special cases of the @-maxmin EU representation (6)
where the set of priors is generated by a probability measure over the whole state space
(Chateauneuf et al., 2007) or over a sub-algebra (Gul and Pesendorfer, 2015). The ap-
proach developed here is complementary, employing a mild extension of the domain of
choice objects, without requiring any particular properties of the state space, and relying
on no specific assumptions about the shape of the set of priors. It has the added advan-

tage of yielding not only an axiomatisation of @-maxmin EU, but also of providing and
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characterising a-UA versions of other existing uncertainty averse preferences.

Finally, we assume a linear representation of preferences over bi-lotteries (4) to keep
as close as possible to the traditional ambiguity literature, which assumes expected utility
over Anscombe-Aumann consequeunces (Section 3.2). Whilst there is some evidence in
favour of this representation—Burghart et al. (2020), for instance, find that around 60%
of subjects have preferences over bi-lotteries represented by (4)—a potential direction for
future work would be to explore weakenings. Similarly, Grant et al. (2019) characterise
an “ordinal Hurwicz EU” representation of preferences over acts, which retains the set of
priors obtained in the Gul-Pesendorfer representation, but generalises beyond the linear
form in @-maxmin EU. An analogous generalisation of the results obtained in this paper

would be an interesting avenue for future research.

9 Conclusion

Casual observation and experimental evidence suggest that uncertainty aversion is not
as universal as might be expected from the focus on it in the decision theory literature.
In this paper, we have provided and axiomatised extensions of many known ambiguity
models—including maxmin EU, variational preferences, multiplier preferences and uncer-
tainty averse preferences—beyond the assumption of uncertainty aversion. They all involve
the addition of a single Hurwicz-style mixture coefficient, which, as we demonstrate, cap-
tures imprecision aversion. Moreover, our representation results pin down this parameter
and the rest of the functional uniquely, resolving an open identification problem for the
a-maxmin EU model.

The proposed a-UA family supports comparative statics analysis, separating
imprecision—which captures the relevant parameters of the base uncertainty averse model
(e.g. the set of priors under maxmin EU, or the “ambiguity index” for variational
preferences)—and imprecision aversion, as captured by the mixture coefficient. A derived
incomplete preference subrelation—imprecision-attitude-free preferences—can be defined
in a way similar to well-known unambiguous preferences, and picks up more closely the
“relevant priors” of the base uncertainty averse model.

Finally, we show, in a simple portfolio problem with a sure and an uncertain asset, that
in a general case of our model there is an intuitive relationship between imprecision attitude

and investment: more imprecision aversion leads to less investment in the uncertain asset.
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A Proofs

A.1 Proof of results in Section 3

This section presents the proof of Proposition 1. The only other result in Section 3—
Theorem 1—is a direct corollary of Proposition 1, Proposition 4 and Cerreia-Vioglio et al.
(2011b, proof of Thm 3).

Proof of Proposition 1. As a point of notation, we sometimes use b below to denote generic
bi-lotteries (members of B), and max b, resp. min b, to denote the maximal (resp. minimal)
element of b; so b = [min b, max b]. Unless otherwise specified, all arguments apply both
to preferences defined on A* and preferences defined on ‘A.

Weak Order, Continuity, Objective Independence, Monetary Monotonicity imply that
the restriction of > to L satisfies the von Neumann-Morgenstern axioms, and hence that
there exists a utility function v : Z — R representing this restriction according to expected
utility. Without loss of generality, we suppose that v(w) = —1 and v(b) = 1. Moreover,
for each [I,m| € B, it follows from Bi-Monotonicity that m > [l,m] > I, whence, by

Continuity, there exists I' € £ with [l,m] ~ I'.

Lemma A.1. There exists a unique a € [0, 1] such that the restriction of > to B is repre-

sented by:

u(b) = aminEy + (1 — o) maxEy (18)
leb leb

Proof. By Monetary Monotonicity and Bi-Monotonicity, b > [w,b] > w, whence by
Continuity and Objective Independence, there exists a unique y € [0, 1] with (b), w ~
[w, b]. For any [bsw, b.w] € 8 (with é < €), note that [bsw,b.w| = (1—(6—6))b17(i76)w+
(e — &)[w,b], so, by Objective Independence, [bsw,bw] ~ (1 — (e —d))b_s W+ (e —

1—(e—9)
6)byw = bycr(1—)sW. Since, by the standard argument, for each [ € £, [ ~ b.w for

some € € [0, 1], it follows that, for every b € B, b ~ byes(1—y)sW where minb ~ bsw
and maxb ~ bw. By the EU representation of > on £, min,, Ev = Epjnpv = 20 — 1,
maxe By = Bpaxpv = 26 — Land u(b) =By, wv = (1 =¥)(20 = 1) + y(2e — 1) =
(1 — ) ming, Ejv + y max, E/v represents > on B. Setting @ = 1 — y yields the desired

representation. Since vy is unique, so is . O

Lemma A.2. For each f € A, there exists a bi-lottery [I',m'| € B with f ~ [I/,m/].
Moreover, if & # 0.5 for « as in (18), then for any bi-lottery b’ such that f ~ b’, max b’ ~
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MMIf IP

[b, b]

[L,m]: f=[l,m]

150;¢
({lt,m] = [t,m] ~ f})

(W, w]

Figure 3: Illustration of 8 and the construction in the proof of Lemma A.2
The triangle represents the set of bi-lotteries of the form [bsw,b.w] for 0 < § < € < 1, with the
point (6, €) representing the bi-lottery [bsw, b.w].

m! and minb’' ~ V. Finally, if @« = 0.5 for a as in (18), then there exists [I/,m'] € B with
f[V,mandl/ ~m.

Proof. Consider any f € A’ Since, by Monetary Monotonicity and Monotonicity,
b > f > w, it follows from Continuity and Objective Independence that there exists a
unique y € [0, 1] such that f ~ w,b. Call this element MP/. Now consider the set
IP = {[wsb,wb] € B:5,e€[0,1],6 = 1 or e = 0}. By Objective Independence, for ev-
ery 6,68’ € [0,1], if [wsb,b] < b, then [wsb,b] < [wsb,b] if and only if 6 > ¢ (con-
sider the mixture of [wsb,b]| with b, when § > ¢’). Similarly, for every €,€ € [0, 1], if
[w,w.b]| > w, then [w, w.b| < [w, w.b] if and only if € < €’. By Continuity, and the fact
that b > f > w, there exists [wsb, w.b] € IP such that [wsb, w.b] ~ f. Moreover, by the
previous observations, this element is unique whenever f * b and f * w. Set MM’ to be
this element whenever it is unique; otherwise, set MMI/ = bif f ~ b and MMI' = w if
f ~ w. These points are indicated on Figure 3, which illustrates the constructions involved
in this proof.

Let ISO; = {[bsw,b.w] € B: [bsw,b.w| ~ f}. By Objective Independence, this
set are closed under mixture; moreover, ISO; = {(MP/) N (MMI7) : 2€[0,1]}. Let
o= {aeo]: (P, (MM1) < fhand £~ = {ae [0,1]: (MP), (MMD) = f};
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by Continuity, these sets are closed. We now show that they are both non-empty. If
MP7 ~ f or MMIF ~ f, then this is the case, so suppose not. Consider the case where
MP7 > £, s0 £~ is non-empty. Suppose for reductio that MM > £, so that (by Objective
Independence and Weak Order) f* is empty. By Continuity, there exists bsw € £ with
f ~ MP/ < bsw and byw > f. Similarly, there exists I € IP with f ~ MMI/ < I and
I > f . Since | € PRy and I € IMP,, (where these sets are as defined in Section 3.2),
the existence of such [ and I contradicts Attitude Coherence. So MMI/ < f and f* is
non-empty. A similar argument establishes the claim for the case of MPF < f.

Since f* and f~ are both non-empty and closed, there exists [l,m| =
(MPT) (MMI’) € f* ~ f~. By construction [/,m] ~ f and [l/,\m] ~ f.so f ~ [l,m],
establishing the first part of the result. Moreover, if there exist [[,m],[l',m'] with f ~
[Lm], f ~ [I',m'],] # I' or m # m', then by Objective Independence, we have that

[ mm'] ~ f and [Ll',mum'] ~ f for all A € [0,1]. So the indifference curves in B,
{[l,m]e B:[l,m] ~ f} and {[l, m| e B: [l,/r;] ~ f} are parallel. By Lemma A.l, this
can only be the case if @ = 0.5 in (18). So when « # 0.5 in (18), there is a unique [/, m]
such that f ~ [/, m], up to indifference in the minimum and maximum elements: for any
[I',m'] suchthat f ~ [I',m'], | ~ ' and m ~ m'. Moreover, for any b’ € B such that f ~ b/,
since, as noted above, b’ ~ [min ', max b'] and &’ ~ [@/ , El?n\b’] f ~ [mind’, max b'];
whence max b’ ~ m/ and minb’ ~ I/ as required. Finally, if @ = 0.5 in (18), then the in-
difference curves in B, {[l,m] € B: [I,m] ~ f} and {[l, m]e B: m ~ f} are parallel.
Since the intersection of these curves is non-empty, and each contain [/, m’]| with I' ~ m/,

there exist [I',m'] € B with f ~ [I',m'] and I' ~ m’, as required. o

Note that, for any [,I' € L, if | ~ I, then I 1 I~ 1 1 I~ T 1 [ by Objective Independence
and Definition 1, whence [ ~ I'. It follows from this and Monotonicity that, for all f, /' €
AL Af f(s) ~ f'(s) forall s € S, then f ~ f'.

Define the pair of functionals V=, V™ : A" — R as follows. If @ # 0.5, for every
feA, V- (f) =Eyvand VT (f) = E,,v where f ~ [I/,m/]; if @ = 0.5, for every f € A,
V=(f) = Eyv =V*(f) = E,yv where f ~ [I/,m/] with I/ ~ m/. By the previous remarks,
these functions are well-defined (in particular, they are independent of the choice of [I, m/|
satisfying the previously stated conditions). By definition V= (f) < VT (f) for all f € A"
Since f ~ [I/,m’], f ~ [/, m'] for every f € A, so by Lemma A.1, the functional

V(f) =aV (f) + (1 =)V (f) (19)
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represents > on A'.

If preferences > are defined on A, then by standard arguments (stated before Lemma
A.1), for each f € A, there exists f' € A’ such that f(s) ~ f!(s) forall s € S. We
henceforth use f’ to denote such a lottery-act, for f € A. Define the extension of V=, V*
to AV, VT AR by V(f) =V (f)and V¥ (f) = V¥ (f)if fe A and V= (f) =
V=(f") and V*(f) = V*(f') otherwise. By the previous remarks, these functions are well-
defined (in particular, they are independent of the choice of f! satisfying the previously
stated condition). By definition, V=(f) < V*(f) for all f € A. It follows from the

definition and Monotonicity that the functional

A

V(f)=aV (/) + (1 —a)V*(f) (20)

represents > on A.

—_

Moreover, for any f € A, since f ~ [I, m'] implies f ~ [n:zf , 17] (because f/(;) ~ f(s)

forall s € §), and since E;yv = —E;v (by Definition 1 and the normalisation of v) it follows
that V= (f) = —=V*(f) and V*(f) = =V~ ().
Lemma A.3. V- = [ou where I : B(X) — R is a balanced, normalised, monotone,

continuous functional and u is as in Lemma A. 1.

Proof. For each a € B(X), there exists f € A such that a = u o f (it suffices to take the
act f with f(s) = Wb for all s € §). Define I : B(X) — Rby I(a) = V~(f) for any
such f € A. By Monotonicity, I is well-defined (it is independent of the choice of f). By
construction, V= = I o u. Since V= (f) < V*(f) = =V~ (f) and u(f(s)) = —u(f(s)) for
all s € S, I is balanced. Now we consider the remaining properties for the case of @ # 0.5.
The case of @ = 0.5 is immediate for monotonicity, and similar for the other properties.
Monotonicity. Consider a,b € B(X) with a > b. By the previous remarks, there
exist f,g € A witha = uo fandb = uog. So f(s) > g(s) for every s € S. By
Lemma A.2, there exist [/, m/],[I8,m¢] € B with f ~ [I/,m/] and g ~ [I5,m®]. By
Monotonicity, f > g, so, by the arguments in the proof of Lemma A .2, there exist p/ € PR,
and I’ € IMP, with p/ ~ I/ ~ f. By the argument in the proof of Lemma A.2 applied to
ISO; = {[bsw,b.w| € B:bsw > I8, b.w > m*, [bsw,b.w| ~ f}, there exists [,m]| € B
with [ > 5, m > m® and f ~ [I,m]. By the uniqueness properties of [I/, m/] such that
f ~ [V/,m’] (Lemma A.2), it follows that // > ¢ and m/ > m® and so I(a) = I(b), as

required.
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Normalisation. Follows immediately from the fact that, for every constant lottery act
le £, V() = u(l) (by definition and (18)).

Continuity. An immediate consequence of Continuity, the monotonicity of /, and
Cerreia-Vioglio et al. (2011b, Prop 43). O

This lemma, combined with the previous observations and Lemma A.1, establishes the
sufficiency of the axioms for the representation of preferences over A*. The representation
for preferences over A follows immediately from the definition of ¥, V*. The proof of
necessity is straightforward. In the case @ = 0.5, Attitude Coherence is trivially satisfied
because, for all f € A, there exist no b € B with b 3> f or f > b. In the case & # 0.5,
Attitude Coherence follows immediately from two observations: first, that (3) and (4) imply
(by basic algebra) that, for every f € A'and b € B, f ~ b if and only if I(uo f) = min;, b
and —I(—u o f) = max, b; and second, that (3) implies that, for every [I,m], [I',m'] € B,
[l,m] > [I',m'] if and only if [@Ew + (1 — @)E,v,aE,v + (1 — @)Ey] < [@Epv + (1 —
@)E,yv, @B,y v+ (1—a)E;v] when @ > 0.5, whereas this holds for the opposite containment
when @ < 0.5. The first observation, combined with the transitivity of < and the fact that,
for all b,b' € B, b ~ b’ if and only if minb ~ min b’ and max b ~ max b’, guarantees the
uniqueness of /; the uniqueness of « is established by Lemma A.1 and that of v by standard
arguments.

Now we turn to the remaining clauses of the Proposition.

Lemma A4. If @ # 0.5, where « is as in the representations (3) and (4), then for every
feA, le L fxlifand only ifl' > I for any I',m' € L with f ~ [I',n’].

Proof. Immediate from Definition 3, Lemma A.2, and the fact that [ ~ [1,]. |

Lemma A.5. If a # 0.5, X is a mixture continuous, monotonic weak order (i.e. it satisifies
Weak Order, Continuity and Monotonicity).

Proof. Weak order is an immediate corollary of Lemma A.4 and Weak Order; (mixture)

continuity is an immediate corollary of Lemmas A.3 and A.4, as is monotonicity. m|

Lemma A.6. If a # 0.5, where « is as in the representations (3) and (4), and > satisfies

Weak Uncertainty Aversion, then I is quasiconcave.

Proof. By the definition of u and , it suffices to show that, forevery € L, {f € A : I(uo f) > u(l)}
is convex. By the construction of 7 and Lemma A.3, I(uo f) = u(l') for any I',m’ € L with
£~ [I'.n']. By Lemma A4, it follows that {f € A’ : I(uo f) > u(l)} = { fedA fgl}.
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By Lemma A.5, it suffices to show that fXg implies fzg<g for all 8 € (0,1). Suppose
for reductio that this is not the case, and that fZg but fs¢<g and not fsgZg for some

6 € (0,1). Since X is continuous (Lemma A.5), {y € [0,1] :fygég} is compact; let

B = max {y € [0,1] :fygég}. We now show that fzg~g. If = 1, this is immedi-
ate (from the fact that f gE), so suppose not. If it were not the case that fzg~g, then
Be {y € [0, 1] : not(f,g% g)} which is open (by the continuity of %), so there exists 8 > 8
such that it is not the cas_e that fyg<g, and hence, by Lemma A.gsuch that fzg<g, con-
tradicting the maximality of 8. So fﬁ_gg g. It follows from Weak Uncertainty Avegion, for
every y € (0,1), fﬁyggg. Taking vy = g it follows that f(;gég, contradicting the assump-
tion that this is not the case. So fXg implies fzgXg for all 8 € (0, 1) as required, and
{feA  I(u(f) =u(l)}is convex. B

O

O

The following corollary of Proposition 1 characterises the precision and lower precision
relations. As a point of notation, for V, I, u, @ as in the representation in Proposition 1, let
VA — Rbe defined by V(f) = a(—I(—uo f)) + (1 —a)l(uo f),and &t : B — R be
defined by i([l,m]) = amaxyepm Erv + (1 — @) minyep,,) Eyv. Define V:A* — R by:
for every f € A*, if f € A, then V(f) = V(f), and if f € B, then V(f) = a(f).

Corollary A.1. Let > be a MBBA preference satisfying Attitude Coherence, and let V, I, u, @
be as in the representation in Proposition 1. If « > 0.5 then, for any f,g € A*, f L g if
and only if:

A A

V), VNl < [V(g) V(e 1)

and if @ < 0.5 then, for any f,g € A*, f X g if and only if the opposite containment holds.
Moreover, fZg if and only if:

I(uof)=1(uog) (22)

A

This characterisation involves, for a lottery-act or bi-lottery f, the interval [V (f), V(f)]
of “effective” possible evaluations of f, incorporating the imprecise aversion «. For in-
stance, when a > 0.5, it is the interval from the “effective” worst-case evaluation, with the
I values weighted by the imprecision aversion parameter (V(f)) to the “effective” best-case

evaluation (V(f)), with the weighting the other way round (e.g. 1 — « in the place of ).
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(In the case of @ < 0.5, the order of best and worst is reversed.) The Corollary shows that
f and g are related by precision g exactly when these intervals are contained in each other.
Note that relation by precision £ implies the corresponding containments of the intervals
generated by the functional I: for instance, when @ > 0.5, if f X g for f,g € A, then
[[(uof),—I(—uo f)] < [I(uog),—I(—uog)]. This is a central property in the proof
of Proposition 1 and the discussion in Section 3. As anticipated in Section 3.1, L orders

elements of A* by their worst-case evaluation, as given by I(u o e).

A.2 Proofs of results in Section 4

Proof of Theorem 2. Note firstly that the functionals I involved in representations (6), (7),
(8) and (9) are concave, and concavity of I implies balancedness. (Concavity implies, for
all a € B(X), that 11(a) + 31(—a) < I(3a + 3(—a)) = 1(0) = 0, whence I(a) < —I(—a).)
Theorem 2, first row of Table 1, follows from this fact and Proposition A.2 below, by the
proof of Gilboa and Schmeidler (1989, Theorem 1). Theorem 2, second row of Table
1, follows from it, Proposition A.2, the fact that Comonotonic Independence implies C-
Independence, Proposition A.4 and Schmeidler (1986, Corollary). Theorem 2, third row
of Table 1, follows from it and Proposition A.1, by the proof of Maccheroni et al. (2006,
Theorem 1). As for the fourth row of Table 1, note that, by Lemmas A.4 and A.3 above,
Weak P2 is satisfied if and only if that / satisfies P2. Propositions A.1 and A.3 show that /
is constant additive and satisfies Weak Monotone Continuity; the result is a direct corollary
of the proof of Strzalecki (2011, Theorem 1). O

Proposition A.1. An a-UA preference > satisfies Weak C-Independence iff I in (3) is con-

stant additive.

Proof. We show sufficiency of the axiom for constant additivity; necessity is straightfor-
ward. We first show the result for every a € int(B(X)).?! For each such a, there exists
ana € B(X)and A € (0,1) witha = Ad’. Let f' € A be such that u o f' = d' (by
the proof of Proposition 1, such an f’ exists); by construction, u o (f(w 1 b)) = a and
uo (f;(w%b)) = —a. By Monotonicity, (b),(wib) > fi(wib), so by Continuity, there
exists d € B with fy(wib) ~ dy(wib); let y € [—1,1] be such that u o (dy(wib)) = y*.
Similarly, there exists y € [—1,1] with u o d}(wib) = y™ where &’ € B is such that
fﬂ(w%b) ~ d)(w.b). Now consider any x € [—1, 1] and let ¢ € 8 be such that u o ¢ = x*.

2For a set X, int(X) is the interior of X.
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Note that u o (fic) = a + (1 — A)x*, and u o (&) = —a — (1 — A)x*. By Weak C-
Independence, fic ~ dyc and fié ~ d\¢. By (3) and (4) and the fact that 7 is normalised,
we have that

It follows from the first two equations that:

1 —a

Ia+(1—-2)x*)—1I(a)—(1—2)x = - (I(—a— (1 —=2)x*) —I(a) + (1 — 2)x) (24)
and from the latter two that:
Ia+(1=20)x*)—1I(a)—(1—-2A)x = T (I(—a— (1 —)x™) —I(a) + (1 — 2)x) (25)

Whenever @ # 0.5, (24) and (25) can only hold simultaneously if both sides are zero. So
I(a+ (1 — )x*) = I(a) + (1 — A)x. Since this holds for all 2 € (0, 1), we have that
I(a + x*) = I(a) + x for all x € [—1,1] and a € int(B(X)) with a + x* € B(X). By the
continuity of 7, this holds for all a € B(X), as required. o

Proposition A.2. An a-UA preference > satisfies C-Independence iff I is constant additive

and positively homogeneous.

Proof. Sufficiency of the axiom for constant additivity follows from Proposition A.1 and
the fact that C-Independence implies Weak C-Independence. Sufficiency of the axiom for
positive homogeneity is established applying a similar argument to that in the proof of
Proposition A.1 to f,(w1b) and ﬁ(w%b) (where u o f = a). Necessity is straightforward.

m]

Proposition A.3. An a-UA preference > satisfies Weak Monotone Continuity iff, for all
a,b € BX), x € [-1,1] and {E,},~, € Twith E, 2 E, 2 ... and (5, E, = &,
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I(a) > I(D) implies that there exists no with I(x}. a) > I(b) (where x}. a is defined in an
)10 nO

analogous way to frg).

Proof. We first assume Weak Monotone Continuity. Suppose I(a) > I(b), and take f, g €
A withuo f = aand uog = b. By the proof of Proposition 1, fZg and gX f. Letg ~ [I,m]
(such [1, m] exists by the proof of Proposition 1); so I(b) = u(ﬁ and f > [1,m'] for some
m' € L. Since @ > 0.5, this can only be the case if f > [[,m] and f > [m] for some
m' € L. By Weak Monotone Continuity, there exists n; such that lgn f > [I,m'], where
I* € £ and u(l*) = x. Similarly, by Weak Monotone Continuity, theré exists n, such that
lA"Enzf > [fn?] Hence, for ny = max {n;,n,}, lgnof > [I,m'] and go\f = lA"E"Of > [m],
whence [, f - [I,m']. So L fXg and b, %, and hence / (xznoa) > [(b), as required.

The converse implication is established using a similar argument. O

Proposition A.4. If an a-UA preference > satisfies Comonotonic Independence, then I
satisfies: for all pairwise comonotonic a,b,c € B(X) and A € (0,1), if [(a) > 1(b), then
I(da+ (1 —A)c) > I(Ab+ (1 — A)c).

Proof. We show sufficiency; necessity is straightforward. First, since (4) implies (4), it
follows from Proposition (A.2) that / is constant additive and positively homogeneous. Fix
A€ (0,1), let a,b,c € B(X) be pairwise comonotonic, and let f,g,h € A’ be such that
uof =a,uog = b, uoh = c (by the proof of Proposition 1, such acts exist). By
construction, u o f = —a,uog = —b,uo h = —c. By Monotonicity, b > f, g, h, so by
Continuity, there exist ¢y, cg, ¢, € BWith f ~ ¢f, 8 ~ ¢oo h ~ ¢35 let x,y,z € [—1,1] be
such that u o ¢y = x*, uocy, = y*, uoc, = z*. Similarly, there exist c}, C/g’C;L € B and
X, y,7 e [-1,1] with f ~ c}, g~ ¢ h~ c anduoc} =x",uoc, =y*, uoc, =7"
Note Ehit——l/f (fah) = da+ (1 = e, uo (fih) = —da— (1 = Ac, uo (fai(byw)) = Aa,
uo (fa(b 1 W)) = —Aa, and similarly for g, x*,y* in the place of f. By Comonotonic
Independence, and the fact that f, g, 4 and all constant acts are pairwise comonotonic, as
are f,%,h and all constant acts, Ja(byw) ~ (cp)a(biw), ﬁl@\w) ~ (c})ﬂ@\w), fah ~
(cp)ah ~ (c)alen), ik ~ (})ah ~ ())a(c}), and similarly for g. By (3) and (4) and the

fact that / is normalised, we have that
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al(da) + (1 —a) — I(—Aa)
al(da+ (1 —2)c) + (1 —a)(—I(—2a — (1 — A)c))
al(Ab) + (1 — a) — I(—Ab)
al(Ab+ (1 —)c) + (1 —a)(—1(—Ab — (1 — A)c))
al(—2a) + (1 —a) — I(Aa)
A)c))
1(ab)
A)c))

(/1x + (I =)+ (1 —a)(—I(—Ax" — (1 — A)c)

l

I
AJQ

(ﬂy + (1= )c) + (1 —a) (=1 (=" = (1 = A)c))

al(—da— (1 —A)c)+ (1 —a)(—I(Aa+ (1 —
al(—Ab) + (1 —a) —
al(—Ab— (1 = 2)c) + (1 —a)(—1(Ab + (1 —

(/lx’* (1= )e) + (1 — @)(—I(—x* + (1 — A)e)

)
Ab
) (/ly’* — (1 =2¢) + (1 = a) (=1 (=" + (1 = )c)

It follows from the first four equations that:

[I(da + (1 — A)c) — I(Ab + (1 — A)c)] [I(—da — (1 —A)c) — I(—Ab — (1 — A)c)]
o | ~l(Aa) —1(ab)] _ (1-a) —[I(=Aa) = I(—ab)]

—[I(Ax* + (1 — A)c) — I(Ay* + (1 — A)c)] —[I(—=Ax* — (1 = A)c) — I(—y* — (1 — A)c

+[Ax — Ay] —[Ax — Ay]

from which it follows, by the constant additivity of /:

N ( [[(da+ (1 — A)c) — I(Ab + (1 — A)c)] > -~ (—a) ( [[(—a — (1 — A)¢c) — I(—Ab — (1 — )c)] )
—[I(a) — I(Ab)] —[I(—Aa) — I(—Ab)] o6

From the last four equations, by a similar reasoning, it follows that:

. ( [I(—a — (1 — A)c) — I(—Ab — (1 — A)c)] )

(1—a) ( [I(da + (1 — A)¢) — I(Ab + (1 — A)ec)] )
—[1(—1a) — I(-ab)]

—[1(a) — 1(ab)]

(27)
Whenever a # 0.5, (26) and (27) can only hold simultaneously if both sides are zero. So
I(Aa+(1—=2)c)—I(Ab+(1—2A)c) = I(Aa)—1(Ab) = A(I(a)—1(b)), where the last equality

holds due to the positive homogeneity of /. The conclusion follows immediately. O
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A.3 Proofs of results in Section 5

Proof of Proposition 2. Clause i. follows from representation (4) by basic algebra. The
necessity direction of clause ii. follows from representation (3) and Lemma A.4. As for
sufficiency, first note that, for [, m € £, [Zm if and only if [ > m, so if >! is more imprecise
than >2, then [ >! m implies [ >2 m for all I,m € L, whence, by standard arguments (e.g.
Ghirardato et al., 2004, Section B.4), the normalised utility functions are the same. The
rest of this direction follows from Lemma A.4 and the construction of I in the proof of
Proposition 1. The necessity direction of clause iii. is immediate from the representation.
As for the sufficiency part, suppose that >! is strongly more imprecise than >2. Note firstly
that, for all /,m € £, 1 £ mif and only if [ ~ m if and only if [ ~ m; so [ ~2 wgb whenever
I ~' wgb and hence the normalised utility functions are the same. For every a € B(X),
by previous arguments, f € A’ defined by f(s) = Wi_ayb is such that u' o f = a and
there exists [wzb, w,b] € B with f ~' [wzb, w,b]. By the representation (see also proof of
Proposition 1), I'(a) = E(w),sv and —I'(—a) = Ew) »v. It follows from strong imprecision
aversion that f X [wzb, w,b]; so, by the representation @*I*(a) + (1 — @?) — I*(—a) >

@’Ewpv + (1 — a?)Ey, v, which implies the desired inequality. o

Proof of Proposition 3. Since, under representation (3), >' is more ambiguity averse than
>%iff vi = vy and @'I'(a) + (1 — a') — I'(—a) < a?I*(a) + (1 — @*) — I*(—a) for all
a € B(X), the clauses follow immediately from Proposition 2. o

Proof of Proposition 4. Immediate from representation (4). O

Proof of Proposition 5. By Proposition 2, an a-UA preference is imprecise if and only if
the representing functional / in (3) is dominated by the expectation of a probability distri-
bution over S (i.e. there exists p € A with E,a > I(a) for all a € B(X)). The result follows
from known results (Ghirardato and Marinacci, 2002; Maccheroni et al., 2006; Klibanoff
et al., 2005). O

A.4 Proofs of results in Section 6

Proof of Proposition 6. By standard arguments (Ghirardato et al., 2004, proof of Prop 4),
>° 1s reflexive, transitive, non-degenerate and satisfies Independence and C-Completeness
(i.e. it is complete on £). Since, whenever f(s) > g(s) for all s € S, Af(s) + (1 —
Dh(s) > Ag(s) + (1 — A)h(s) for all 2 € (0,1) and h € A, it follows from Lem-
mas A.3 and A4 that f > °g, so > ° also satisfies Monotonicity. Moreover, by the
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same Lemmas, for all f, g € A, {/3 e [0,1]: (faf')ahZgah Vhe A, A (0, 1)} _
{B€[0,1]: I((fsf")ah) = I(gah) YVhe A, 1€ (0,1)}, Whi(;l, by the continuity of I, is
closed; and similarly for {,8 € [0,1]: (fzf)1h$gah Vhe A, A€ (0, 1)} So > ° is mix-
ture continuous (it satisfies Continuity). The ?epresentation follows from known results
(e.g. Ghirardato et al., 2004; Gilboa et al., 2010). O

Proof of Proposition 7. Let > be represented according to (3) by (v, I, @), and consider the
preference >! represented by (v, I, 1): this is an uncertainty averse preference, in the sense
of Cerreia-Vioglio et al. (2011b) (see Section 3.4). By Lemma A 4, for every f,g € A,
f > °gif and only if, for every A € (0, 1) and h € A, whenever fih ~ [I,m] and g,h ~
[I/,m'], then [ > I'. By representations (3) and (4) (see also the construction of / in the
proof of Proposition 1), this holds if and only if I(f,h) > I(g,h) for every A € (0,1) and
h € A, where I is as in representation (3). Since >' is represented by this / and a = 1,
this is the case if and only if f >'* g. So >!'*=> °. The proposition follows from known
results for the unambiguous preference of uncertainty averse versions of the various models
(Cerreia-Vioglio et al., 2011b; Ghirardato et al., 2004; Maccheroni et al., 2006). O

Proposition A.5. > ° =>*,

Proof of Proposition A.5. By Proposition 6 and the fact that E,u(f) > E,u(g) if and only
if E,u(g) = E,u(f), f > °g if and only if § > °f. It follows, by the reasoning in the proof
of Proposition 7, that, if f > g, then al(fih) > al(g,h) forall 1 € (0,1) and h € A, and
similarly for —I(fih), so aI(fih) + (1 — @)(—I(fih)) > al(gh) + (1 — a)(—1(g.h)) for
all 1€ (0,1)and h e Al whence, by representation (3), f >* g, as required. m|

A.5 Proofs of results in Section 7

Proof of Proposition 8. Consider investors (v, I, @) and (v, I, @) with preferences as speci-
fied, and suppose that @’ > «. It suffices to show that, for every optimal portfolio allocation
for a* € [0, w] for investor (v, I, @), there exists an optimal portfolio allocation a*' for in-
vestor (v,1,a’) with a*’ < a*, and for every optimal portfolio allocation a*’ € [0, w] for
investor (v, 1, '), there exists an optimal portfolio allocation a* for investor (v, I, @) with
a*’ < a*.

To formally connect with the framework used previously, take the state space S = R

with the Borel o-algebra, with each state x yielding return x for the uncertain asset. Since v
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is concave, the function & : [0, w] — B(X) defined by ii(a), = v(w.r + a(x — r)) is concave

in each coordinate. So the optimisation problem for (v, I, @) can be written as

max a(lou)(a) + (1 —a)(—Io(—iu))(a) (28)

ae[0,w]
and similarly for (v, I, a’).
Since [ is differentiably concavifiable, there exists a differentiable ¢ with everywhere
positive derivative and a concave I with I = ' o I. Since I is monotonic and concave,

I o @i is concave: for every x,y € [0,w] and A € [0, 1]

where the first inequality holds by the concavity of # in each coordinate and the mono-
tonicity of I, and the second by the concavity of I. Similarly, —/ = ¢ o —I, where
¢(x) = —y~!(—x) for all x € [—1,1], with ¢ differentiable with everywhere positive
derivative and —/ convex; by similar reasoning, —I o —ii is convex.

Since I and i are concave, they are both locally Lipschitz; since i is differentiable with
everywhere positive derivative, ! is differentiable and hence locally Lipschitz. So I o i
is locally Lipschitz, and likewise for —I o (—iz). So the Clarke-Rockafellar differentials
O(I o i) and 0(—1I o (—ut)) exist at all points in (0, w), and are well-defined (Clarke, 1990,
Ch 2).

Since I o it = ' oI oir with ! differentiable, it follows from (Clarke, 1990, Thm
2.3.9) that

oI oi)(x) = (W (Tou)(x).0(Ic)(x) (29)

Since [oii is concave, d(—(Ioit)) is monotone (in the sense of Rockafellar 1970, Ch 24):
forevery a,b € [0,w],a" € d(Iou)(a), b* € d(Iou)(b), we have that (b* —a*).(b—a) < 0.
Define i : [—w,w] — RS, by:

i(x) = (30)

Ny

Note that (I o it)(x) = (I o ut)(x) and (—1 o (—it))(x) = (=1 o it)(—x) for all x € [0, w].
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Since v and hence # is continuously differentiable, it follows straightforwardly from
the definition that & is. From this and the fact that 7 is continuous and concave, and
hence regular in the sense of Clarke (1990, Defn 2.3.4), it follows from (Clarke, 2013,
Thm10.19) (see also Clason 2017, Thm 8.14) that d(1 o u)(x) =< ol(u(x)),u'(x) >
for all x € (—w,w). It follows in particular that, for every x € (0,w), o(I o it)(x) =<
ol(i(x)),i'(x) > and (=1 o (—i))(x) = — < JI(—u(x)),—i'(x) >, and that O(I o
i)(0) =< aI(u(0)), #'(0) >=< 01(0), ' (0) >, where ii(0) = 0, the zero element in B(X).
By the continuity of i’ and of the superdifferential ¢I for continuous concave I (Rockafel-
lar, 1970, Thm 24.4), lim, ., < dl(u(x)), @' (x) >=< dI(i(0)), &' (0) >, and similarly for
— < ol(—u(x)), —id'(x) >.

We now consider cases, according to the properties of < 21(0), &' (0) >:

Case 1. < 01(0),i'(0) > n(—o0,0] = . It follows by the aforementioned convergence
of superdifferentials that as x — 0 that o( o @t)(x) n (—o0,0] = ¢ for all
x € (0,€) for some € > 0. By the concavity of I o i and the corresponding
monotonicity property of 0(I o i) cited above, x* > 0 for x* € 0(I o it)(x) for
x > 0 sufficiently small, but there may exist x € [0, w] with x* < 0 for some
x* € d(I o it)(x). If there exists such x, let y be the infimum such element; by
concavity, x* > 0 for all x* € 0(Ioit)(x) and every x < y. Since ¢! has positive
derivative everywhere (because ¢ does), it follows from (29) that x* > 0 for all
x* € 0(I o n)(x) and every x < y. On the other hand, by a similar convergence
argument and the convexity of —I o —it, x* > 0 for every x* € d(—1I o (—it))(x)
and every x € (0,w). Again, since ¢ has positive derivative, —I o —i is strictly

increasing throughout [0, w].

Case?2. (I o u)(0) n[0,00) = . By similar reasoning to case 1, I o @ is strictly
decreasing throughout [0, w], and —I o —i is initially strictly decreasing, with

perhaps a minimum after which it is increasing (or constant).

Case 3. 0¢€ 0(Iou)(0). By similar reasoning to case 1, o it is decreasing (or constant)

and —I o —i is increasing (or constant) throughout [0, w].

In all cases, there exists y € [0, w] such that: i. [ o # and —I o —i are both either strictly

increasing or strictly decreasing on [0, y) and ii. /o is decreasing and —/ o —ii is increasing

on (y,w].
Now consider any (globally) optimal allocation a* for the optimisation problem (28)

for investor (v, I, ). If a* = w, then any optimal allocation for the problem for (v, I, a’) is
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weakly lower, as required. Now suppose that a* < w. If a* < y, then it is in the region
where I o it and —I o —u are both strictly increasing or strictly decreasing. If they are both
strictly increasing (case 1), then for any a* < a <y, a(lou)(a) + (1 —a@)(—1 o —i)(a) >
a(lou)(a*) + (1 —a)(—I o —it)(a"), contradicting the optimality of a*; so a* > y in this
case. By similar reasoning, if / o # and —I o —iz are both strictly decreasing at O (case 2),
thena" = Oora” > y.

We first consider the case where a° > vy, so I o @i is decreasing and —I o —i
is increasing above a*. Hence, for every a > a', [(Ioit)(a*) — (Ioit)(a)] = 0 >
[(=Io(—m))(a*)— (—1o(—n))(a)]. Moreover, since a* is an optimum for (v,I,a),
a[(Iou)(a*)— (Iou)(a)] + (1 — a)[(—1o(=i))(a*) — (=Io(—i))(a)] = O for all
a > a. Since o > a, it follows that, for every a > a*, o [(Ioit)(a*) — (I o@t)(a)] +
(1 —a)[(~1o(-a))(a*)— (=Io(—@))(a)] = 0. For every a > a’, if either of the
inequalities [({o&)(a*) — (Io@)(a)] = 0 = [(—1o(—u))(a*)— (—1o(—u))(a)] are
strict (as will be the case in cases 1 and 2), then o' [({ o &)(a*) — (Io@)(a)] + (1 —
&) |[(=Io(—=n))(a*)— (—=Io(—n))(a)] > 0, so a is not an optimum for (v,1,@’). So
o [(Tom)(a*) = (ITou)(a)] + (1 —a')[(—1 o (=i))(a*) = (1o (=i))(a)] = O for some
a > a'onlyif (Iout)(a*) = (Ioi)(a)and (=1 o (—it))(a*) = (=1 o (—it))(a), whence a is
(also) a global optimum for (v, I, @). (Since they are decreasing and increasing respectively,
this only occurs is the functions are both constant at a”, and hence only in case 3.) Hence
either all global optima for (v, I, ') are less than a*, or a > a* and a* are both global
optima for both (v,1,@’) and (v,1,a); in both cases, the optima for (v,I,a’) are weakly
lower than some optima for (v, I, @). In all cases, a”* < a* for some global optimum a’*
for (v, 1,a’), and for every global optimum &' for (v, I, '), either a’* < a* or @’* is also a
global optimum for (v, I, @), as required.

The remaining case to be considered is where a* = 0 and / o # and —I o —i are both
strictly decreasing from O to a point y € (0,w]| (case 2). If they are strictly decreasing
up to w, then clearly O is the optimum for (v, 1,@’) and the desired result holds. If not,
then there exists y € (0, w) above which I o @ is decreasing and —I o —i is increasing. If
(=1 o —it)(a) < O foralla € [y,w], then &'(I o &t)(a) + (1 — &)(—1 o —it)(a) < 0 =
@ (Iou)(0)+ (1 —a')(—Io—u)(0) and O is the optimum for (v, I, ). Suppose not, and let
y =inf{a € [y,w]: (=1 o —it)(a) > 0}. Take a € arg maxefy . ¢(loit)(a)+ (1 —a)(—1o
—it)(a) and @ € argmax,e[y @' (1 o @t)(a) + (1 — a')(—I o —it)(a). Since 0 is a global
optimum for (v, I,@),0 = a¢(Iou)(0) + (1 —a)(—Io—u)(0) = a(lon)(a) + (1 —a)(—1o
—i)(a) = a(lon)(@ )+ (1—a)(—To—u)(a'). Since @ > a, (Ioit)(a') < (Iou)(0) = 0 and
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(—Io—m)(@) = 0,a(lon)(@)+(1—a)(—Io—nu)(@) > o (Ion)(@' )+ (1—a)(—Io—n) (@),
whence @’ is not a global optimum for (v,1,@’), so 0 is the only global optimum. Since

0 < a"for every global optimum for (v, 1, @), this yields the required result.
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