
Available online at www.sciencedirect.com
ScienceDirect

Journal of Economic Theory 199 (2022) 105209
www.elsevier.com/locate/jet

Updating confidence in beliefs ✩

Brian Hill

GREGHEC, HEC Paris & CNRS, France 1

Received 12 September 2019; final version received 25 November 2020; accepted 29 January 2021
Available online 8 February 2021

Abstract

This paper develops a belief update rule under ambiguity, motivated by the maxim: in the face of new 
information, retain those conditional beliefs in which you are more confident, and relinquish only those in 
which you have less confidence. We provide a preference-based axiomatisation, drawing on the account of 
confidence in beliefs developed in Hill (2013). The proposed rule constitutes a general framework of which 
several existing rules for multiple priors (Full Bayesian, Maximum Likelihood) are special cases, but avoids 
the problems that these rules have with updating on complete ignorance. Moreover, it can handle surprising 
and null events, such as crises or reasoning in games, recovering traditional approaches, such as conditional 
probability systems, as special cases.
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1. Introduction

Reasons for going beyond the Bayesian representation of beliefs by probability measures 
abound. Whether it be decision makers’ observed non-neutrality to ambiguity (Ellsberg, 1961), 
the purported unjustifiability of the Bayesian requirement of belief precision (Gilboa et al., 
2009, 2012; Bradley, 2014) or the difficulty of forming warranted beliefs satisfying the Bayesian 
tenets in real decisions (Cox, 2012; Gilboa and Marinacci, 2013), many have argued for non-
probabilistic representations of belief. But how should such non-Bayesian beliefs be updated?

Two sorts of situations pose particular challenges for the update of non-Bayesian beliefs: com-
plete ignorance and surprising events. A venture capitalist faced with an entirely new drug, based 
on a never-tested, revolutionary technology, is in a situation of complete ignorance. In terms of 
the popular multiple prior model (Gilboa and Schmeidler, 1989), her beliefs concerning the prob-
ability of cure under the drug can be characterised by the set of all (relevant) priors, i.e. the set 
[0, 1]. Yet a central determinant of her investment decision will be how she updates on the basis 
of early tests giving cure rates on relatively small samples. For an example of surprising events, 
consider an investor wedded to a fine-tuned model of the stock market that has great difficulty 
explaining, say, the events in a financial crisis—the opening quote, given fours days after BNP 
Paribas suspended redemptions from three funds, is an example from the 2008 financial crisis. 
Such an investor typically has precise probabilistic beliefs about future asset returns and prices 
(conditional on their past values), which give extremely low probability to transpired events; the 
issue is how to update them. Going by the growing body of evidence that ambiguity increases in 
a financial crisis (e.g. Caballero and Krishnamurthy, 2008; Ilut and Schneider, 2014), a common 
reaction is to keep an open mind about potential alternative models, and accordingly revert to 
more open sets of probabilities over future asset prices.

Despite the importance of these situations for motivating non-Bayesian beliefs (e.g. Gilboa 
et al., 2009; Levi, 1974), existing accounts of update struggle to adequately capture learning in 
them. On the one hand, the main update rules for multiple priors tend to deal with complete 
ignorance in an ‘extreme’ way (Gilboa and Marinacci, 2013), for instance by retaining the com-
pletely ignorant [0, 1] priors in the previous example, or jumping directly to a perfectly precise 
posterior belief (see Section 4.1). Neither seems to reflect how a typical venture capitalist would, 
or should, react. On the other hand, multiple prior update rules typically coincide with Bayesian 
conditionalisation when priors are precise, and hence suffer from the same issues concerning up-
dating on surprising events—and a fortiori on null events—which plagues the Bayesian account 
(e.g. De Bondt and Thaler, 1985, 1987). They tell the investor in the opening quote to stick to his 
original model in the face of the conflicting evidence, rather than keeping an open mind.

The current paper takes up this double challenge, developing and behaviourally characteris-
ing a novel account of the update of non-Bayesian beliefs. It is, to our knowledge, the first to 
cope comfortably with both complete ignorance and surprising events (see Table 1). Moreover, 
it is general enough to recover ‘classic’ multiple prior update rules, such as Full Bayesian and 
Maximum Likelihood update, as well as more recent suggestions, including that used by Epstein 
and Schneider (2007), as special cases. As such, it provides a unified analysis of them. It also re-
coups existing approaches to updating on null events, such as Conditional Probability Systems, 
as a special cases, whilst preserving a strong relationship between ex ante and ex post prefer-
ences, which they lack. In so doing, our account provides new perspectives on these existing 
approaches. Finally, the account also has solid normative credentials, being built on a reasonable 
story about how beliefs should be updated in the face of contrary evidence.
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Conceptually, our account taps into an intuition as to why beliefs may be non-Bayesian: de-
cision makers may be more or less confident in different beliefs. This ‘second-order’ aspect is 
something that the Bayesian model has trouble rendering properly, whilst it can be captured, and 
related to preferences, in some non-Bayesian models (e.g. Hill, 2019). Formally, we represent 
confidence in beliefs using confidence rankings (Hill, 2013). A confidence ranking is a nested 
family of sets of probability measures, where different sets are understood as representing the 
beliefs, or probability judgements,2 held by the decision maker at different levels of confidence. 
The larger a set of probability measures, the fewer probability judgements hold for all measures 
in it; so larger sets in a confidence ranking involve fewer beliefs in this sense, and accordingly 
correspond to higher levels of confidence. Structures of this sort have long been employed in 
econometrics (e.g. Manski and Nagin, 1998; Manski, 2013).

Whilst previous work has connected confidence to preferences (Hill, 2013, 2019), the account 
developed here recognises that it also has a role to play in update. Put succinctly: in updating 
beliefs, retain those conditional beliefs in which you are more confident, and relinquish only 
those in which you have less confidence. Formally, this is reflected in the following update rule 
(see Section 2.4 for details): given prior confidence ranking �, on learning the event E, the 
posterior confidence ranking is

�E =
{
{p ∈ C : p(E) ≥ ρE(C)}E : C ∈�, {p ∈ C : p(E) ≥ ρE(C)} �= ∅

}
(1)

where ρE : � → [0, 1] is a decreasing function and, for every set of probability measures C and 
event E, CE is the well-known Full Bayesian update defined as follows:

CE = {p(•/E) : p ∈ C, p(E) > 0} (2)

The probability-threshold function ρE assigns a probability value to every set in the confi-
dence ranking, and hence implicitly to every confidence level. In so doing, it effectively specifies 
a set of probability measures for each confidence level, namely those which assign ex ante prob-
ability to E greater than the ρE-value for that level. These can be thought of as representing the 
conclusions the decision maker is warranted to deduce from the observation of E with that much 
confidence: any probability measure giving a value to E that is less than this threshold ‘gets it 
too wrong’ to be considered plausible at that confidence level. Since ρE is decreasing, this set 
is larger for higher confidence levels: the conclusions that can be drawn from the data with high 
confidence are weaker than those that can be drawn with lower confidence. For instance, the 
observation of drug trials on 100 patients, out of which 75 were cured, warrants high confidence 
that the probability of cure for a randomly selected new patient is 0.25 or higher, but more lim-
ited confidence that this probability is 0.60 or higher. Probability thresholds are reminiscent of 
significance levels in hypothesis testing, and indeed there is a sense in which the proposed update 
rule retains the spirit of classical statistical reasoning (see Section 5).

Update rule (1) is visually illustrated on Fig. 1. For every confidence level, the prior beliefs 
held at that level are represented by the appropriate set of probability measures in �, whereas 
the conclusions that can be drawn from the data with that level of confidence are summarized 
by the set of probability measures singled out as ‘reasonable’ by ρE . If these are compatible—if 
the two sets of probability measures overlap—the update rule (1) retains all of these as posterior 

2 By probability judgement, we mean a statement concerning probabilities, such as ‘the probability of event E is greater 
than p’.
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beliefs at that confidence level—it takes the intersection. This corresponds to the maxim that con-
ditional beliefs held or conclusions drawn with high confidence are, as far as possible, retained. 
By contrast, at lower confidence levels, where the (more precise) initial beliefs may contradict 
the (stronger) conclusions drawn from the data with that much confidence, neither are retained. 
In cases of conflict with observation, it is the beliefs held with low confidence, if any, that are 
withdrawn. Finally, the update rule conditions the structure obtained on the learnt event E.

The update rule can be illustrated on the ‘surprising events’ investor example above. Suppose 
that the investor was using a model specification—say, a set of dynamic stochastic equations—f

and a vector of relevant parameter values α to determine the stochastic process relating future 
vectors of asset returns and prices zt+1, . . . , zτ to previous ones z0, . . . , zt .3 Letting, for any 
model specification f ′ and parameter values α′, pf ′

α′ be the conditional probability measure over 

future values of z in solution,4 the investor’s initial beliefs are represented by pf
α . However, this 

gives no information about how confident he is in these beliefs, nor about his relative confidence 
in the model specification f as compared to the parameter values α. Suppose, for the purposes 
of illustration, that he is more confident in the parameter values α than in the model specification 
f . His confidence in beliefs can thus be modelled by a three-level confidence ranking, � ={{

p
f
α

}
,
{
p

f ′
α : f ′ ∈ G

}
,
{
p

f ′
α′ : f ′ ∈ G, α′ ∈ B

}}
, where G is a set of models containing f and 

B is a set of possible parameter settings containing α.5 According to the bottom element of this 
confidence ranking, asset returns and prices are determined by the model f with parameters 
α: this captures the stated ex ante beliefs, independently of the confidence with which they are 
held. At the next level up, all probability measures in the set correspond to the same parameter 
values α, but different model specifications. This captures a judgement that he is more confident 
in the former than the latter. Finally, neither the belief about the model nor that concerning the 
parameters are retained at the highest confidence level. This confidence ranking is drawn in black 
in Fig. 1.

On observing an economic event E (e.g. zt+1 or a set of possible values for zt+1, . . . , zt ′ , given 
the sequence z0, . . . , zt ), the investor can assign to each confidence level a probability threshold, 
determining which measures can be ruled out as ‘having got the prediction about E too wrong’ 
with that much confidence. For instance, he could apply thresholds of 0.05, 0.01 and 0.001 for the 
low, medium and high confidence levels respectively.6 The sets of probability measures giving a 
probability to the observation higher than the threshold are shown in red in Fig. 1.

The confidence ranking resulting from update rule (1) is indicated by the blue shaded sets 
in Fig. 1.7 In this example, at the top two confidence levels, the intersection of the sets is non-

3 In the interests of simplicity, we assume that α covers parameters that are relevant across different model specifica-
tions.

4 I.e. pf ′
α′ (zt+1, . . . , zτ |z0, . . . , zt ) is the probability of values zt+1, . . . , zτ given z0, . . . , zt , under model f ′ and 

parameters α′ .
5 For instance, for α ∈Rn, B could be 

{
α′ : d(α,α′) ≤ ζ

}
for some appropriate quasi-metric d and threshold ζ , and G

could be a set of model specifications by dynamic stochastic equations incorporating a variety of stochastic assumptions. 
Whilst we consider a three-level confidence ranking for simplicity, varying amounts of confidence in ranges of parameter 
values or model specification assumptions can be represented using richer confidence rankings.

6 I.e. ρE(Clow) = 0.05, ρE(Cmedium) = 0.01, ρE(Chigh) = 0.001.
7 More specifically, this is the confidence ranking 

{{
p

f ′
α : f ′ ∈ G, p

f ′
α (E|z0, . . . , zt ) ≥ ρE(Cmedium)

}{
p

f ′
α′ : f ′ ∈

G, α′ ∈B, pf ′
′ (E|z0, . . . , zt ) ≥ ρE(Chigh)

}}
.

α

4
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Fig. 1. Confidence Update. Black sets: the sets in the prior confidence ranking � = {
Clow,Cmedium,Chigh

}
; Red sets: 

the sets of probability measures meeting the probability threshold {p : p(E) ≥ ρE(Ci )} for i = {low,medium,high}. 
(To visualise the colours in the figure, the reader is referred to the web version of this article.)

empty, and these yield the posterior beliefs. It follows that all the prior conditional beliefs are 
retained—for instance, at the medium confidence level, the belief in parameter values α is re-
tained. Perhaps new beliefs are added—in the example, the posterior beliefs at the medium 
confidence level are more precise than they were ex ante, corresponding to the investor retaining 
some alternative model specifications as potentially more reasonable. The probability measure 
at the bottom confidence level in the prior confidence ranking assigns a probability to E that is 
below the corresponding threshold, so the beliefs specific to that level are dropped on learning. 
In the face of what, under his prior beliefs about the model and parameters, is a 25-standard 
deviation event of the sort in the opening citation, the investor retracts those beliefs in which he 
is least confident: in this case, those concerning the model specification. The only beliefs held at 
the low confidence level ex post are those inherited from higher confidence levels.

Note that the posterior beliefs held at the lowest confidence level will typically not corre-
spond to a single probability measure, or a single model specification-parameter value pair, but 
will rather remain open between several competitive models. In belief representation terms, the 
posterior beliefs are not precise, though the prior ones are (at the low confidence level). So this 
update rule captures the reaction of ‘keeping an open mind’ after surprising events. Note also 
that it is the investor’s ex ante confidence (represented by the confidence ranking) and its inter-
action with his confidence in the conclusions drawn from the observation (represented by the 
probability-threshold function) that determine which beliefs are retained. Since the investor in 
this example has more confidence in the parameter values, this belief is retained—and the belief 
about the model specification dropped—on update. This is perfectly coherent with the previously 
stated maxim exhorting him to retain beliefs in which he is more confident, at the price of those 
held with less confidence.8 This example thus illustrates how the proposed approach can cope 
with surprising events.

In this paper, we provide a behavioural characterisation of a generalisation of (1) that we call 
(general) confidence update. All the parameters, and in particular that playing the role of ρE , are 
revealed from preferences. Special cases, including a version of rule (1), are also axiomatised. 

8 By contrast, under a prior confidence ranking reflecting an investor who is more confident in the model specification 
than the parameter values, the model would be retained and beliefs about the parameter values withdrawn on update. 
And under different probability thresholds, which are more permissive at lower confidence levels, both the model and the 
parameters would be retained, as under the Bayesian approach.
5



B. Hill Journal of Economic Theory 199 (2022) 105209
Table 1
Update rules and the double challenge: a summary. 
–: cannot be applied; ✗: problematic; ✓: adequate; ∼: partially adequate (see footnote). 
In brackets: Sections where the rules are discussed.

Complete ignorance Surprising events

Bayesian update – ✗ (4.2)
Full Bayesian ✗ (4.1) ✗ (4.2)
Maximum Likelihood ✗ (4.1) ✗ (4.2)
Epstein and Schneider (2007) ✓ (4.1) ✗ (4.2)
Conditional Probability Systems – ∼ 9 (4.2.3, 5)
Confidence update ✓ (4.1) ✓ (4.2)

We show that this update rule can deal not only with surprising events but also with updating on 
complete ignorance. This is summarised in Table 1,9 which also lists a range of existing update 
rules that can be recovered as special cases of confidence update.

The paper is organised as follows. Section 2 sets out the framework, the confidence model 
and update rules. Section 3 contains the main results of the paper, characterising general and 
specific versions of confidence update, and considering its comparative statics. Section 4 brings 
out the contributions of the proposed approach with respect to the issues of update from complete 
ignorance and on surprising or null events, including null events in game-theoretical reasoning. 
Section 5 discusses extensions and inter alia the relationship to Bayesian and classical statistical 
reasoning. Proofs and other material are to be found in the Appendix.

2. Preliminaries

2.1. Setup

Let S be a non-empty set of states, with a σ -algebra � of subsets of S , called events. 	(�) is 
the set of finitely-additive probability measures over (S, �) endowed with the weak* topology. 
For every subset C ⊆	(�), C denotes the closure of C. Let X , the set of consequences, be a 
convex subset of a vector space; for instance it could be the set of lotteries over a set of prizes, 
as in the Anscombe and Aumann (1963) setting. A is the set of (simple) acts: finite-valued �-
measurable functions from states to consequences. Ac is the set of constant acts (acts taking a 
constant value). Mixtures of acts are defined pointwise as standard: for any f, g ∈ A and α ∈
[0, 1], the α-mixture of f and g, which we denote by fαg, is defined by fαg(s) = αf (s) + (1 −
α)g(s) for all s ∈ S . For every f, g ∈ A and E ∈ �, fEg ∈ A is defined by fEg(s) = f (s) if 
s ∈ E, fEg(s) = g(s) otherwise.

We use � (perhaps with subscripts) to denote a preference relation on A. The symmetric and 
asymmetric parts of �, ∼ and �, are defined as standard. We say that � is degenerate if f ∼ g

for all f, g ∈ A. A functional V : A → R is said to represent preferences � if f � g if and only 
if V (f ) ≥ V (g).

Henceforth, � (with no subscript) will denote the decision maker’s ex ante preferences. Ex 
post preferences will be denoted with subscripts, depending on the information received; there is 
a class of preferences {�E}E∈�. For each event E, �E is the decision maker’s preference after 

9 Note on Conditional Probability Systems entry: Only works for null events; no continuous treatment of null and 
surprising events (Section 4.2.3). Ex ante preferences place very few restrictions on ex post ones (Section 5).
6
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having learnt (only) that E obtains. Finally, an event E ∈ � will be said to be null if it is null 
with respect to �: for any f, g, h, h′ ∈ A, fEch � gEch′ if and only if f � g.

2.2. Confidence model

We adopt the confidence framework set out and developed in Hill (2013, 2016, 2019). Beliefs 
are represented by a confidence ranking on S : a nested family of non-empty subsets of 	(�). 
(I.e. a confidence ranking � is a subset of 2	(�) \∅ such that, for all C, C′ ∈ �, C ⊆ C′ or C′ ⊆ C.) 
Different sets in the confidence ranking represent beliefs held with different levels of confidence. 
Note that a single set of probability measures à la Gilboa and Schmeidler (1989) is a degenerate 
special case of a confidence ranking; it can be interpreted as the case where the same beliefs are 
held at all levels of confidence.

A confidence ranking � is said to be closed (resp. convex) if each set in the family is. We let 
min� = ⋂

C′∈� C′ and max� = ⋃
C′∈� C′; these can be loosely thought of as the bottom and top 

elements of �. For a confidence ranking �, its min-closure, �min = � ∪ {min�}.10 � is min-
closed if � = �min. Throughout the axiomatic treatment (Section 3), we shall only be concerned 
with closed, convex and min-closed confidence rankings.11

As discussed in the aforementioned papers, there are several decision models in the confidence 
family. Here we use the maximin-EU version, according to which preferences are represented by:

V (f ) = min
p∈D(f )

Epu(f (s)) (3)

where u is a non-constant affine utility function, � is a closed, convex, min-closed confidence 
ranking � and D is a function from A to �, satisfying the following richness condition: for every 
f ∈ A \Ac and C ∈ � \ {min�}, there exist d ∈ Ac and α ∈ (0, 1] such that D(fαd) = C. This 
function, called the cautiousness coefficient for �, captures the decision maker’s ambiguity atti-
tudes, or attitudes to choosing on the basis of limited confidence. We refer to the cited papers for 
discussion, details and other models in the confidence family, to which the approach developed 
here can be extended.

When (3) holds for preferences �, we say that the triple (�, D, u) represents �. Whenever 
� is non-degenerate, there is a unique triple (up to positive affine transformation of the utility 
function) representing � (Hill, 2013), which we refer to as the representation of �. We adopt 
the convention that � is degenerate if and only if it is represented by � = {∅} and D the only 
function from A to {∅}. For mere technical convenience, we will suppose throughout that utility 
is unbounded: u(X ) =R.

We assume that all preferences, ex ante and ex post, are represented according the confidence 
model (3), and focus on non-degenerate ex ante preferences.

Assumption 1. � and �E are represented according to (3) for all E ∈ �, and � is non-
degenerate.

Behavioural foundations for this version of the confidence model have been provided in Hill 
(2013). They can be used to provide a reformulation of this assumption in terms of preferences.

10 By convention, if � is empty or the family consisting of the empty set, then �min is taken to be {∅}.
11 Since the focus is on the update rule, we work with a fairly general form of confidence ranking throughout. Some 
convenient parametrised special cases are discussed in Hill (2013, §4; 2019, §5).
7
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2.3. Tastes and stakes

A central idea behind the confidence model is that the beliefs one relies on to decide are those 
held with a level of confidence that is appropriate given the importance of the decision (Hill, 
2013, 2019). In the light of this, when fewer beliefs are invoked—i.e. when a larger set of priors 
is used, say D(f ) ⊃ D(g)—then this is an indication that the decision maker considers the choice 
of f to be more important than the choice of g: it involves higher stakes. The converse is not 
necessarily true: a decision maker may use the same beliefs—the same C ∈ �—for decisions of 
differing importance. Indeed, the standard maximin-EU decision rule with a single set of priors 
(Gilboa and Schmeidler, 1989) is a special case of (3) of just this sort: the same set of probability 
measures are used for all acts, no matter the stakes involved.

Throughout, we assume that only beliefs—in the context of this model, the confidence ranking 
�—change on learning, and in particular that there is no change in the utility function or in the 
level of stakes that a decision is considered to involve.

Assumption 2. For representations (�, D, u) and {(�E,DE,uE)}E∈� of � and {�E}E∈� re-
spectively:

1. u and uE are identical up to positive affine transformation for every E ∈ �;
2. there exists a complete transitive relation � on A such that for all E ∈ � and all f, g ∈ A, 

f � g implies D(f ) ⊇ D(g) and DE(f ) ⊇ DE(g).

The first part of this assumption is standard. The second clause states that there is a single 
notion of stakes (captured by �) that all preferences, ex ante and ex post, can be thought of as 
respecting. It reflects the assumption that the decision maker’s view of the relative importance of 
decisions remains constant under learning.

Whilst stated on the models for ease, Assumption 2 can be reformulated in behavioural terms. 
The first clause corresponds to the standard axiom that preferences over constant acts are un-
affected by learning. The latter is built into axiomatisations of the confidence model assuming 
an exogenously given notion of stakes (Hill, 2013); framework-specific axioms characterise it in 
setups where stakes are endogenous (Hill, 2015).

Given Assumption 2, A can be partitioned into stakes levels according to �. We use σf

to denote the stakes level of f : that is, the set of acts having the same stakes as f , σf ={
g ∈ A : g � f & g � f

}
. We use σ, σ ′ as notation for stakes levels. With this notation, f ∈ σ if 

f involves stakes of level σ . The obvious order on stakes levels is defined as standard: for stakes 
levels σ, σ ′, σ ≥ σ ′ if and only if, for all f ∈ σ, f ′ ∈ σ ′, f � f ′.

Finally, given a preference relation � represented according to (3) and a stakes level σ , we 
define the derived relation �σ as follows: for all f, g ∈ A, f �σ g if and only if there exists 
c, d, d ′ ∈ Ac and α, α′ ∈ (0, 1] such that D(fαd) = D(gα′d ′) = D(h) for all h ∈ σ , fαd � cαd

and cα′d ′ � gα′d ′.12 As discussed in Hill (2013), f �σ g essentially says that, if the acts were 
evaluated ‘as if’ they both involved stakes of level σ , then f would be preferred. For example, 
consider a bet f on the Democrat candidate winning the 2024 US President election, yielding $1
million if you win and a loss of $1 million if not, and a similar bet g on the 2028 election, with 
stakes (winnings and losses) 100000 times less in utility terms. An agent with beliefs that are 

12 This is well-defined because of the richness of D.
8
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more precise and slightly more favourable for the 2024 election might nevertheless prefer g to f
because of the difference in stakes: with lower stakes, he can rely on low-confidence beliefs in 
evaluating g, but not for f . However, if both options were evaluated at the same stakes level—for 
instance, if bets on the 2024 and 2028 elections with stakes of $1 million were compared—then f
would typically be preferred: i.e. f �σ g, where σ is the appropriate stakes level. When f �σ g, 
we say that f is preferred to g at stakes level σ .

2.4. Update

We now formally present the updates rules that we will consider. We shall say that a correspon-
dence γ : X ⇒ Y between two ordered sets (X, ≥X), (Y, ≥Y ) is increasing (resp. decreasing)
if, for every y, y′ ∈ Y , x, x′ ∈ X, if y ∈ γ (x), y′ ∈ γ (x′) and x ≥X x′, then y ≥Y y′ (resp. 
y ≤Y y′).13 We use the natural order, given by containment, on confidence rankings.

Our benchmark update rule is the following.

Definition 1. For confidence rankings � and �E and an event E ∈ �, �E is a (general) confi-
dence update of � by E if there exists a confidence ranking �UpdE and an increasing correspon-
dence cUpdE : � ⇒ �UpdE such that

�E =
{
(C ∩ C′)E : C ∈�, C′ ∈ �UpdE s.t. C′ ∈ cUpdE(C), C ∩ C′ �= ∅

}min
(4)

where, for C ⊆	(�) and E ∈ �, CE is the Full Bayesian update defined in (2). The calibration 

correspondence cE : � ⇒ �E is defined by cE(C) =
{
(C ∩ C′)E : C′ ∈ cUpdE(C), C ∩ C′ �= ∅

}
if there exists C′ ∈ cUpdE(C) with C′ ∩ C non-empty, and cE(C) = {min�E} otherwise.

This rule generalises the update logic discussed in the Introduction. The information that E
is taken to indicate something about how reasonable (prior) probability measures are; however, 
unlike (1), it is not assumed to amount to a probability threshold at each confidence level. Rather, 
a set of ‘reasonable’ probability measures in the light of the fact that E has been learnt is speci-
fied for each confidence level, representing the conclusions that can be drawn with various levels 
of confidence. The conclusions are weaker (and the sets are larger) for higher confidence lev-
els, so the information can be represented as confidence ranking, �UpdE . The correspondence 
cUpdE picks out the appropriate sets in �UpdE for the various confidence levels. Beyond this dif-
ference, the rule operates as discussed previously. Whenever the initial beliefs and conclusions 
drawn from the data at a confidence level are compatible, they are both retained—by taking 
the intersection of the sets. Whenever they aren’t, neither is retained and the posterior beliefs 
are inherited from higher confidence levels. Note that if � and �UpdE are closed, convex and 
min-closed confidence rankings, then �E defined according to (4) is as well.14

General confidence update is permissive in how conclusions are drawn from the learnt event 
E; we also consider more restrictive special cases.

13 A correspondence γ : X ⇒ Y is a function from X to 2Y \ ∅. If Y is a lattice, γ is increasing in the defined sense if 
and only if it is increasing in the Strong Set Order.
14 Since the Full Bayesian update of a closed set of priors is not necessarily closed (see Section 4.1), the closure is 
required in (4) to ensure that the ex post confidence ranking is closed. We work with closed confidence rankings for mere 
convenience (the confidence ranking revealed from preferences is only unique up to closure); the results can be extended 
to versions of the rule that do not impose closure.
9
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Definition 2. For confidence rankings � and �E and an event E ∈ �, �E is a probability-
threshold confidence update of � by E if there exists a decreasing correspondence ρE : � ⇒
[0, 1] such that

�E =
{
{p ∈ C : p(E) ≥ r}E : C ∈�, r ∈ ρE(C), {p ∈ C : p(E) ≥ r} �= ∅

}min
(5)

ρE is called the probability-threshold correspondence.

Probability-threshold confidence update—or PT-confidence update, for short—is the special 
case where the updating confidence ranking �UpdE consists of sets of probability measures satis-
fying probability thresholds.15 It is built on the same intuition that learning E indicates something 
about how reasonable probability measures are: here, those that give too low a probability to E ex 
ante ‘got it more wrong’ than others, and hence may not be retained at certain confidence levels. 
At every confidence level, the correspondence ρE can be interpreted as providing a threshold that 
picks out the probability measures retained at that level. If the decision maker has a different set 
of beliefs at each confidence level, then ρE is a function; indeed, modulo some technicalities, the 
update rule (1) in the Introduction corresponds precisely to this case. However, to accommodate 
cases where the decision maker holds the same beliefs at different confidence levels—as in the 
special case of a single set of priors (Section 2.2)—we allow ρE to be a correspondence. This 
allows him to have the same initial beliefs at two different confidence levels, but to consider that 
observation warrants the use of different probability thresholds.

Given preference relations representable by the confidence model, � and �E for an event 
E ∈ �, we say that �E is a general confidence update of � by E if, for any representations 
(�, D, u) and (�E, DE, u) of � and �E respectively, �E is a general confidence update of � and 
DE(f ) ∈ cE(D(f )) for all f ∈ A. PT-confidence update of preferences is defined analogously.

3. Characterising confidence update

We now provide behavioural characterisations of the general and special cases of confidence 
update.

3.1. General confidence update

A specific comparison of acts with constant acts will play a special role in the axioms below. 
The preference of an act f over a constant act c betrays that the decision maker values f at 
least as highly as c. Whilst the value assigned to f may change on learning, the assumption of 
constant tastes (Assumption 2) ensures that the value of c will not: to that extent, it provides a 
constant ‘benchmark’. The acts fEc and c coincide whenever E is not the case, in which case 
the constant benchmark c obtains. A preference for fEc over c thus indicates that, conditional 
on E, f is evaluated as better than the constant benchmark c. This is a special case of the 
standard definition of conditional preferences under expected utility, which compares fEh and 
cEh. (For expected utility, unlike for ambiguity models, this comparison is independent of h.) 
The specific case used here—where h = c—is the only one where one of the acts is guaranteed 

15 More formally, �E is a probability-threshold confidence update of � by E if and only if �E is a 
general confidence update of � by E, with �UpdE = {{p ∈ 	(�) : p(E) ≥ x} : x ∈ [0,1]} and cUpdE(C) =
{{p ∈ 	(�) : p(E) ≥ r} : r ∈ ρE(C)} for all C ∈ �.
10
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to be constant, and hence has a value that is independent of beliefs. To the extent that it ties in 
with the use of constant acts as a benchmark for evaluating others, preference comparisons of fEc

and c thus provide a natural conception of conditional preferences. As discussed in Section 4.2.1, 
conditional preferences are important, because the central issue in update concerns what happens 
to conditional beliefs.

We introduce the following terminology. For an event E ∈ � and a stakes level σ , we say that 
σ is E-resilient if, for all f ∈ A, c ∈ Ac, if fEc �σ c, then fEc �σ

E c. E-resilient stakes levels 
are those for which all relevant ex ante conditional preferences are retained on learning E: if f
is evaluated as better than c conditional on E prior to learning, then it continues to enjoy this 
evaluation afterwards.

These concepts are familiar in the literature on (Bayesian and non-Bayesian) updating. For 
instance, Pires’s (2002) axiomatisation of Full Bayesian update under the maximin-EU model 
involves a related notion of conditional preferences, and his main axiom is a strengthening of 
the condition that all stakes levels are E-resilient, for every non-null E. As discussed in Sec-
tion 4.2.1, Dynamic Consistency also imposes a stronger conditional-preference preservation 
property than E-resilience, for all stakes levels.

3.1.1. Main axiom
The following is the central behavioural axiom behind confidence update.

Axiom (Confidence Consistency). For all stakes levels σ, σ ′ with σ ′ > σ and every non-null 
E ∈ �, if σ is E-resilient, then so is σ ′.

Confidence Consistency translates the maxim mooted in the Introduction: retain those condi-
tional beliefs in which you are more confident, and relinquish those in which you have less confi-
dence. If σ is E-resilient, then all ex ante conditional evaluations of acts relative to ‘benchmark’ 
constant acts are retained ex post. This indicates that the beliefs underlying these preferences are 
retained on update. Confidence consistency implies that if all such conditional preferences are 
retained at some stakes level, then the conditional preferences at any higher stakes level are also 
retained. If the decision maker is confident enough in the beliefs underlying the former prefer-
ences to hold onto them in the face of the information E, then he will also hold onto the beliefs 
underlying the latter preferences. This is precisely as the maxim demands: if he retains beliefs 
held at a given level of confidence, then he certainly cannot relinquish beliefs held with higher 
confidence, for he should have relinquished the former beliefs first!

3.1.2. Other axioms
Now consider the following axioms.

Axiom (Consequentialism). For every non-null E ∈ �, if f (s) = g(s) for all s ∈ E, then f ∼E g.

Axiom (Non-degeneracy). For every non-null E ∈ �, �E is non-degenerate.

Axiom (Information-based Learning). For every f ∈ A, c ∈ Ac and E ∈ �, if f �σ
E c for every 

E-resilient stakes level σ , then f �σ ′
c for every σ ′.
E

11
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Consequentialism is a well-known and relatively standard axiom in the dynamic context; see 
e.g. Epstein and Le Breton (1993); Ghirardato (2002) for further discussion of it. Non-degeneracy 
is the standard property that update by non-null events yields non-degenerate preferences.

Confidence Consistency concerns what happens when learning E does not shake beliefs held 
with a certain level of confidence. By contrast, Information-based Learning constrains what hap-
pens when learning E does shake beliefs at a particular confidence level—that is, at stakes levels 
which are not E-resilient, and hence where some ex ante conditional preferences are not re-
tained on learning. The condition basically implies that preferences at these stakes levels are 
fully determined by preferences at higher, E-resilient stakes levels, where the information can 
be incorporated without relinquishing ex ante beliefs. Hence it demands that learning is entirely 
driven by the new information E. If learning E undermines beliefs held only to a low level of 
confidence, they will not be replaced with anything specific. The information is only understood 
as saying that such low-confidence beliefs are inappropriate, but not as specifying other beliefs 
to replace them, except those beliefs inherited from higher confidence levels.

We call these three axioms the Basic Axioms.

3.1.3. Representation
Confidence Consistency and the Basic Axioms yield our most general update rule.

Theorem 1. Let � and {�E}E∈� satisfy Assumptions 1 and 2. They satisfy Confidence Consis-
tency and the Basic Axioms if and only if, for every non-null E ∈ �, �E is a general confidence 
update of �.

So, in the presence of the Basic Axioms, Confidence Consistency characterises the heart of the 
proposed approach, namely the general confidence update rule. In fact, the central behavioural 
properties of the approach essentially boil down to Confidence Consistency, Consequentialism 
and Non-degeneracy. Information-based Learning merely controls what happens at the bottom 
of the confidence ranking, where there is incompatibility with prior beliefs. It can be shown that 
in its absence, the essence of confidence update is retained, except at confidence levels at the 
bottom of the ranking.

3.2. Probability-threshold confidence update

3.2.1. Axioms
To obtain the specification of general confidence update involving probability thresholds in 

Definition 2, consider the following axioms.

Axiom (Probability Consistency). Consider any non-null E ∈ � and E-resilient stakes levels 
σ ≤ σ ′. For every λ ∈ (0, 1] and f, g ∈ A, if, for every c, c ∈ Ac with c � c, fEc ∼σ ′

cλc

implies (fEc) 1
2
(cEc) �σ ′

E c 1
2
c, then, for every d, d ∈ Ac with d � d , gEd ∼σ dλd implies 

(gEd) 1
2
(dEd) �σ

E d 1
2
d .

Axiom (Null consistency). For every non-null E ∈ �, E-resilient stakes level σ , f ∈ A and 
c ∈Ac , if fEe �σ c for all e ∈ Ac, then fEc �σ

E c.

To interpret Probability Consistency, note that (fEc) 1
2
(cEc) is a 50-50 mixture of fEc with a 

bet on the event E—the act cEc—whereas c 1 c is a 50-50 mixture of c c with a bet yielding the 

2 λ

12



B. Hill Journal of Economic Theory 199 (2022) 105209
winning option c with probability λ—that is, cλc. So if a decision maker weakly prefers the first 
bet (fEc; the bet on E) over the second (cλc; the bet with probability λ of winning) in each case, 
then she would weakly prefer the first mixture ((fEc) 1

2
(cEc)) over the second (c 1

2
c).16 This can 

be thought of as an ‘implication’ of the previous two preferences. But a weak preference for the 
bet on E over that with probability λ (i.e. cEc � cλc) betrays a judgement that the probability 
of E is λ or greater. So a weak preference for (fEc) 1

2
(cEc) over c 1

2
c would be an ‘implication’ 

of a prior weak preference for fEc over cλc and a judgement that the probability of E is λ or 
greater. In the light of this, the axiom says that if the decision maker’s ex post preferences at some 
stakes level are consistent with all such ‘implications’ of the judgement that the probability of 
E is λ or greater (i.e. she weakly prefers each relevant (fEc) 1

2
(cEc) ex post), then they remain 

consistent with all such ‘implications’ of that judgement at any lower E-resilient stakes level. 
In other words, if the decision maker’s preferences are consistent with her incorporating the 
opinion that E is more probable than λ at some stakes level, then they are consistent with her 
incorporating that opinion at any lower stakes level. This is the sort of pattern one would expect 
given the intuitions about the information purveyed on learning E: if at some confidence level, 
the decision maker considers the observation that E to warrant a judgement that its probability 
was greater than λ, then she still considers it to warrant that judgement at any lower confidence 
level.

Null consistency concerns the case where the ex ante evaluation of an act fEe remains 
bounded by a constant act c, no matter how attractive e is. This indicates that Ec involves a 
certain form of nullness—certainly, if its probability were bounded away from 0 across the rele-
vant set of priors, then such preferences would not occur. The axiom says that, in such cases of 
ex ante nullness, the ex post evaluation concerning f remains bounded by c. This is reasonable: 
if the event E was already treated as if it had probability 1 in that region ex ante, then on learning 
E, the decision maker’s evaluation of f cannot rise much.

3.2.2. Representation

Theorem 2. Let �, {�E}E∈� satisfy Assumptions 1 and 2. Then they satisfy Confidence Consis-
tency, the Basic Axioms, Probability Consistency and Null consistency if and only if, for every 
non-null E ∈ �, �E is a probability-threshold confidence update of �.

In the presence of Null consistency, Probability Consistency thus characterises the probability-
threshold specification of general confidence update discussed in the Introduction and Sec-
tion 2.4. In other words, it guarantees the existence of a probability-threshold correspondence 
that characterises update according to (5). The following result characterises the uniqueness of 
this correspondence.

Proposition 1. Let �, {�E}E∈� satisfy the conditions in Theorem 2, with the former represented 
by (�, D, u). There exists a unique maximal probability-threshold correspondence ρE : � ⇒
[0, 1] representing the update of � by E, in the following sense: for every other ρ′

E representing 
the update by E and for every C ∈ �, if y ∈ ρ′

E(C), then there exists x ∈ ρE(C) with x ≥ y. 
Moreover, if for every stakes level σ , there exists f ∈ A and c ∈ Ac such that fEc �σ

E c but 

16 Since the second bets are both constant acts, this is a consequence of the uncertainty aversion of the maximin-EU 
model.
13
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fEc �σ c, then there exists C ∈ � such that the correspondence ρE representing the update by 
E is unique on all C′ ∈ � with C′ ⊃ C.

There is a unique maximal probability-threshold correspondence, in the sense that it yields 
values higher than those given by any other correspondence representing the update. Moreover, 
whenever something is learnt (i.e. preferences change) at every stakes level, then on all suffi-
ciently large confidence levels, the probability-threshold correspondence is uniquely revealed 
from preferences.

3.3. Further special cases

PT-confidence update (5) involves a probability-threshold correspondence ρE for each event 
E, without assuming any relationship between them. However, the approach can easily ac-
commodate richer structures, involving closer relationships between the probability-threshold 
correspondences for different events. These may be useful for applications, or in connecting the 
approach to existing work in statistics (Section 5). By way of illustration, we provide an axioma-
tisation of the simplest such special case: where a single probability-threshold correspondence 
represents update for all (non-null) events.17 To this end, consider the following strengthening of 
Probability Consistency.

Axiom (Strong Probability Consistency). Consider any non-null E, F ∈ � and E- and F -
resilient stakes levels σ ≤ σ ′. For every λ ∈ (0, 1] and f, g ∈ A, if, for every c, c ∈Ac with c � c, 
fEc ∼σ ′

cλc implies (fEc) 1
2
(cEc) �σ ′

E c 1
2
c, then, for every d, d ∈ Ac with d � d , gF d ∼σ dλd

implies (gF d) 1
2
(dF d) �σ

F d 1
2
d .

The central difference in this axiom with respect to Probability Consistency is that it compares 
across different events; apart from that, the interpretation in terms of the lower stakes levels 
retaining the judgements whose ‘implications’ are respected at higher stakes levels remains the 
same. This strengthening yields the desired special case.

Proposition 2. Let �, {�E}E∈� satisfy Assumptions 1 and 2. Then they satisfy Confidence Con-
sistency, the Basic Axioms, Null consistency and Strong Probability Consistency if and only if 
there exists a probability-threshold correspondence ρ : � ⇒ [0, 1] such that, for every non-null 
E ∈ �, �E is a confidence update of � by E represented by ρ. The uniqueness of ρ is as in 
Proposition 1.

3.4. Comparative statics

In this section, we take a brief look at the comparative statics of the PT-confidence update 
rule, as concerns ex post ambiguity aversion. We adopt a standard definition of comparative 

17 The aim of this exercise is to illustrate the strength of the approach; we by no means wish to suggest that equality 
of probability-threshold correspondences is reasonable or desirable. For instance, it seems more reasonable to look at 
equal likelihood ratio-thresholds across events; however, note that in our extremely general framework (where the space 
of probability measures is the whole of 	(�)), the likelihood ratio coincides with the likelihood. Restricting the space of 
measures considered and using an adapted version of the techniques presented here can provide a likelihood ratio-version 
of the result below; details go beyond the scope of the current paper.
14



B. Hill Journal of Economic Theory 199 (2022) 105209
ambiguity aversion (Ghirardato and Marinacci, 2002), according to which decision maker �′ is 
more ambiguity averse than � if and only if, for all f ∈ A and c ∈Ac , if f �′ c, then f � c.

Proposition 3. Let �, {�E}E∈� and �′, 
{�′

E

}
E∈�

be two families satisfying Assumptions 1 and 
2, and the conditions in Theorem 2, and suppose that �=�′. Let (�, D, u) be the representation 
of �, and let {ρE} and 

{
ρ′

E

}
be the families of maximal correspondences as specified in Propo-

sition 1 representing updates yielding {�E}E∈� and 
{�′

E

}
E∈�

respectively. Then the following 
are equivalent, for each non-null event E:

(i) for every E-resilient stakes level σ according to �, � ′σ
E is more ambiguity averse than 

�σ
E;

(ii) for every C ∈ � and y ∈ ρ′
E(C), there exists x ∈ ρE(C) with x ≥ y.

This result sheds light on the role of the probability-threshold correspondence. For decision 
makers with identical ex ante preferences, differences in ex post ambiguity attitude at stakes lev-
els where the relevant conditional preferences are retained on learning correspond to differences 
in the probability-threshold correspondence. The latter essentially reflects the strength of the con-
clusions a decision maker is willing to draw from a given observation for each confidence level: 
as discussed in the Introduction, it reflects how ‘wrong’ a probability measure has to be ex ante 
about the new information for it to be ruled out as plausible. The higher the probability-threshold 
at a given confidence level, the stricter this constraint, and hence the stronger the implicit con-
clusions the decision maker is drawing from the data. So, if one decision maker always uses a 
higher probability threshold than another, the former can be thought of as more daring, or less 
cautious, in the conclusions he is prepared to draw from the same data. This translates to him 
being less ambiguity averse ex post.

As discussed below (Section 5), the probability-threshold correspondence plays a similar role 
to significance levels in statistics, with the difference that it assigns a significance level to each 
level of confidence. Decision makers which differ in the probability-threshold correspondence 
(or, equivalently, ceteris paribus, ex post ambiguity aversion) can thus be thought of, roughly, as 
differing in the significance level they deem appropriate for a given level of confidence.

4. Situating confidence update

As noted in the Introduction, update of ambiguous beliefs presents a certain number of chal-
lenges, concerning in particular complete ignorance and surprising events. We shall now consider 
how the proposed approach fairs with respect to these challenges, and compares to existing up-
date rules in the literature.

4.1. Complete ignorance, and other updating rules for ambiguous beliefs

The most notable generally-applicable consequentialist update rules that have been proposed 
and axiomatised for multiple prior models, and in particular the maximin-EU model (Gilboa 
and Schmeidler, 1989), are Full Bayesian (Pires, 2002; Walley, 1991) and Maximum Likelihood 
update (Gilboa and Schmeidler, 1993; Dempster, 1967).18 As Gilboa and Marinacci (2013) point 

18 Other approaches to update in the literature drop consequentialism (Hanany and Klibanoff, 2007), restrict to ex 
ante beliefs satisfying a particular property with respect to a given filtration of events representing the potential new 
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out, both are extreme, which of course sheds doubt on their descriptive adequacy as well as 
their normative validity. Some other, apparently milder, rules have been proposed, for instance 
in Epstein and Schneider (2007). As we shall now show, all of these rules come out as special 
instances of confidence update.

Let us assume that the initial confidence ranking is a singleton containing the closed con-
vex set of probability measures P ⊆ 	(�), so initial preferences are maximin-EU (Gilboa and 
Schmeidler, 1989). For update by an event E, applying the PT-confidence update rule to these 
preferences yields preferences represented according to (3), with confidence ranking

�E =
{
{p ∈P : p(E) ≥ r}E : r ∈ RE s.t. {p ∈ P : p(E) ≥ r} �= ∅

}min

(6)

where ρE(P) = RE ⊆ [0, 1]. As discussed previously, the confidence rule allows one to dis-
tinguish on update according to how reasonable probability measures are in the light of the 
information. Hence it can yield, even for a degenerate initial confidence ranking (i.e. a single set 
of probability measures) a richer posterior confidence ranking; indeed, this will typically be the 
case whenever RE is not a singleton. We shall say that a PT-confidence update by E is maximally 
refined whenever RE = [0, 1], in which case (6) simply becomes:

�mr
E =

{
{p ∈ P : p(E) ≥ r}E : r ∈ [0,1] s.t. {p ∈ P : p(E) ≥ r} �= ∅

}
(7)

The aforementioned update rules from the literature correspond to particular confidence 
levels in the confidence ranking resulting from the maximally refined application of the PT-
confidence update rule. Consider, for instance, the largest set in �mr

E , capturing the beliefs held 
with the highest level of confidence. This is (the closure of) PE: the Full Bayesian update of 
the initial set of priors P (see (2)). On the other hand, the smallest set in �mr

E —capturing 
all beliefs held, no matter how little confidence there is in them—is clearly (the closure of) {
p ∈P : p(E) = maxq∈P q(E)

}
E

: the Maximum-Likelihood update of P . Moreover, for every 
‘significance level’ α ∈ [0, 1], the ‘classical-style’ update which retains all probability measures 
giving a probability greater than α to E—i.e. {p ∈P : p(E) ≥ α}E—coincides (up to closure) 
with some non-extremal set in �mr

E , corresponding to some intermediate confidence level. Whilst 
axiomatisations of the two previous rules are well known in the economics literature (Gilboa and 
Schmeidler, 1993; Pires, 2002), the results in Section 3 also yield a behavioural characterisation 
of this last rule.19 Moreover, they provide what to our knowledge is the first unified behavioural 
characterisation of this whole family of rules.

We illustrate these points, and the consequences for ‘complete ignorance’ cases, on a simple 
version of the venture capitalist example from the Introduction.

Example 1 (Complete Ignorance). Recall that the venture capitalist is considering an entirely 
new drug about which she knows absolutely nothing. This can be cast in a statistical decision-
style framework as follows. For patient n having the illness and treated with the drug, the state 
space Sn = S = {s, f } (s for success in treating the illness, f for failure); we can take the full 

information (Epstein and Schneider, 2003), or define update in a multi-stage context with a given information structure, 
with update depending on the first-stage partition (Gul and Pesendorfer, 2021). Note that in the sort of challenging cases 
mentioned above—complete ignorance, learning on surprising or null events—a decision maker would not typically have 
a full and correct conception of the information structure (filtration) she is facing.
19 After completing the paper, our attention was drawn to Kovach (2015), which develops a different, specific axioma-
tisation of the last rule.
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state space S = S∞, with the product σ -algebra �. The standard statistical decision framework 
assumes in addition a parameter space �. Under the assumption that patient trials are IID, we 
can take � = [0, 1], with each θ ∈ � associated to the probability distribution �(•/θ) over the 
S (i.e. an element of 	(S)),20 where the probability of success �(s/θ) = θ . Each θ ∈ � thus 
generates the distribution �∞(•/θ) over S . Just as a distribution over the parameter space μ ∈
	(�) generates a predictive distribution over the full state space μ = ∫

�
�∞(•/θ)dμ(θ) ∈ 	(S), 

a set of probability measures M ⊆ 	(�) generates a set of probability measures M ⊆ 	(S), 
defined as follows:

M =
⎧⎨
⎩

∫

�

�∞(•/θ)dμ(θ) : μ ∈ M

⎫⎬
⎭ (8)

We adopt a multiple prior representation, M, of ex ante beliefs. Following the standard way of 
representing a complete lack of prior knowledge about the success of the drug in this context, 
we set M = 	(�). In particular, M contains every Dirac measure; we denote by μθ the Dirac 
measure putting all weight on θ .

Suppose that the venture capitalist observes 100 patient trials, 75 of which were successes 
for the drug—call this event t100. We consider her posterior belief concerning s101—success of 
the drug on the next patient. Applying the maximally refined confidence update, as in (7), to M
yields:

�t100 =

⎧⎪⎨
⎪⎩

⎧⎨
⎩

∫

�

�∞(•/θ)dμt100 (θ) : μ ∈ 	(�),

∫

�

�∞(t100/θ)dμ(θ) ≥ r,

∫

�

�∞(t100/θ)dμ(θ) > 0

⎫⎬
⎭

: r ∈
⎡
⎣0, max

μ∈	(�)

∫

�

�∞(t100/θ)dμ(θ)

⎤
⎦

⎫⎬
⎭

(9)

where, as standard,

μt100(A) =
∫
A

�∞(t100/θ)dμ(θ)∫
�

�∞(t100/θ)dμ(θ)
(10)

for any (measurable) A ⊆ �.
The Full Bayesian update of M on t100 is 

{∫
�

�∞(•/θ)dμt100(θ) : μ ∈ 	(�), 
∫
�

�∞(t100/

θ)dμ(θ) > 0
}
. Up to closure, this coincides with the set of probability measures corresponding 

to the highest confidence level in �t100 , max�t100 . In particular, since the only μ ∈ 	(�) with ∫
�

�∞(t100/θ)dμ(θ) = 0 are the Dirac measures μ0 and μ1, this set is M itself. Since, under 
the maximin-EU rule, a set of priors is behaviourally indistinguishable from its closure—both 
yield the same preferences—this means that, under Full Bayesian update, the decision maker’s 
preferences do not change on learning. Full Bayesian update thus allows for no learning in such 
cases of ex ante complete ignorance. This property, known as the issue of ‘complete ignorance’ 
or ‘vacuous priors’ (Walley, 1991, §§6.6.1, 9.3), has been the topic of intense debate in some 

20 We use 	(S) in the context of this example to denote the set of probability distributions over S, and similarly for 
	(S) and 	(�).
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circles, where it is considered a major challenge for non-Bayesian accounts (e.g. Joyce, 2010; 
Bradley, 2017; Vallinder, 2017).

On the other hand, Maximum Likelihood update yields 
{∫

�
�∞(•/θ)dμt100(θ) : ∫

�
�∞(t100/

θ)dμ(θ) = maxμ∈	(�)

∫
�

�∞(t100/θ)dμ(θ)
}
, which coincides up to closure with the set of prob-

ability measures corresponding to the lowest confidence level in �t100 , namely min�t100 . Since 
�∞(t100/0.75) > �∞(t100/θ) for every θ �= 0.75, this set is the singleton containing �∞(•/0.75). 
After learning t100, the decision maker using this rule thus assigns a precise probability of 0.75 to 
s101. So the Maximum Likelihood update rule goes to the opposite extreme: the decision maker 
settles on a precise opinion after a finite number of observations, and indeed, does so even if the 
number of observations is very small.

More reasonable than these extremes are the update rules one gets when restricting to inter-
mediate confidence levels. Up to closure, these yield posterior sets of probability measures such 
as Cα = {∫

�
�∞(•/θ)dμt100(θ) : ∫

�
�∞(t100/θ)dμ(θ) ≥ α

}
, for α ∈ [0, maxμ∈	(�)

∫
�

�∞(t100/

θ)dμ(θ)]. For non-extreme α, these sets are neither as imprecise as M, nor as specific as a 
singleton. As a simple illustration, suppose the initial set of priors is the set of Dirac measures, 
MD = {μθ : θ ∈ �}. In this case, the maximally refined confidence update of MD yields21:

�D
t100

=
{
{�∞(•/θ) : θ ∈ �, �∞(t100/θ) ≥ r, �∞(t100/θ) > 0} : r ∈ [0,1]

}
(11)

which, at intermediate confidence levels, involves sets of the form {�∞(•/θ) : θ ∈ �, �∞(t100/

θ) ≥ α}, up to closure. (Full Bayesian and Maximum Likelihood update on this set yields anal-
ogous results to those above.) It is clear that these sets are smaller for larger values of α, which 
correspond in turn to lower confidence levels. Furthermore, they will typically be non-extremal.

Moreover, setting β = α
maxμ∈M

∫
� �∞(t100/θ)dμ(θ)

, we can rewrite Cα ={∫
�

�∞(•/θ)dμt100(θ) :∫
�

�∞(t100/θ)dμ(θ) ≥ β maxμ∈M
∫
�

�∞(t100/θ)dμ(θ)
}

for β ∈ [0, 1]. This is the essence of 
the update rule proposed by Epstein and Schneider (2007, Eqn (6)), albeit in a recursive setup 
involving incomplete learning.22 As noted previously, it falls out as a consequence of confidence 
update.

On the experimental front, there is relatively little research to date on the update of multiple 
priors in situations of complete ignorance. Cohen et al. (2000) use a Ellsberg-style binary choice 
task to compare Full Bayesian against Multiple Likelihood, finding more evidence for the former. 
Baillon et al. (2018) elicit indices they connect with multiple priors in an experiment involving 
differing amounts of information on past stock values when predicting future ones, finding that 
the ‘size of the set of priors’ decreases on learning, without reaching a singleton. This finding 
is inconsistent with the Maximum Likelihood rule. Bland and Rosokha (2019), using a mix-
ture model approach on a bag-and-balls experiment, find evidence for the moderate Epstein and 
Schneider (2007) update among non-Bayesian subjects, but little for the more extreme rules. 
Since these studies elicit preferences using small-to-medium-stakes bets, for which intermedi-
ate confidence levels are most relevant, the confidence approach is consistent with all of their 
findings. We know of no experimental evidence at present pertaining to its further predictions, 
discussed below, about the relationship between update and stakes in the ex post decision, and 
suggest this as an area for future experimental research.

21 Recall (Section 2.2) that we do not restrict to convex confidence rankings in this section. See also Section 5.
22 Although we have illustrated the relationship with their update rule in a standard IID context, it is possible to write 
their incomplete learning model in our general framework and recover their version of the rule.
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Confidence update thus offers a new perspective on existing update rules for ambiguous be-
liefs, and with it a new resolution of the ‘complete ignorance’ problem. Full Bayesian update is 
what you get if you use the maximally refined version of the confidence update rule, but then 
only restrict to beliefs in which you have most confidence. It thus basically retains only conclu-
sions that can be gleaned from observation with maximal confidence, ignoring the rest. As such, 
it comes to appear as a particularly cautious update rule. Maximum-likelihood update, on the 
other hand, is what you get if you apply confidence update and then allow yourself to rely on all 
beliefs, even those held with little confidence. It thus admits any conclusion that can be gleaned 
from observation, no matter the confidence with which it can be deduced: it makes the boldest 
use possible of observations. The third sort of rule described above corresponds to taking beliefs 
held to an intermediate level of confidence, and hence embodies an intermediate level of caution. 
Note that this latter rule is perhaps the closest to much practice: taking the set corresponding to 
a probability threshold of 0.01, for instance, would be consistent with the classical practice in 
statistics of taking a 1% significance value (see also Section 5).

These ‘standard’ rules thus turn out to differ not in the underlying update mechanism: they 
are all retrievable from a single PT-confidence update. Rather, they differ in the confidence level 
that they embrace in posterior beliefs. However, under the confidence approach, the appropriate 
confidence level for an ex post decision depends on the importance of the decision and the cau-
tiousness coefficient—which, recall, reflects ambiguity attitude (Section 2.2; see Hill, 2013, 2019
for extended discussion). This new perspective thus suggests that the aforementioned rules are 
in fact confounding update with ex post ambiguity attitude. Full Bayesian update, for instance, 
is so cautious because it implicitly recommends, even for the most trivial decision, demanding 
maximal confidence in the beliefs used—and this is at the heart of its problems with complete 
ignorance cases. By contrast, the confidence approach does not require one to settle on a single
confidence level for all updates and decisions. Different ex post decisions and different ambi-
guity attitudes will call for different confidence levels. Whilst in very high stakes decisions, a 
decision maker may behave as if he is using Full Bayesian update, when the stakes are lower, 
his ex post choices will be characterised by less extreme interim rules. So whilst, in the trouble-
some ‘complete ignorance’ cases, the confidence approach recognises that decision makers may 
behave as if there was no learning when the stakes are extremely high or as if they learn very 
fast when the stakes are very low, in medium-stakes decisions, behaviour will be consistent with 
non-trivial yet moderate learning.23 Confidence update thus provides a generalisation of stan-
dard approaches that can situate and resolve the tension between them, and solve the ‘complete 
ignorance’ problem mentioned in the Introduction.

4.2. Conditional beliefs and surprising or null events

We now turn to the consequences of the confidence approach for updating on surprising or 
null events. On this front, standard Bayesian update serves as the natural benchmark, since all 
the multiple prior update rules discussed in the previous section coincide with it when prior 
beliefs are precise probabilities. We thus start by comparing confidence update with Bayesian 
conditionalisation, notably on how they deal with conditional beliefs.

23 Moreover, such a decision maker will behave as if the ex ante ‘complete ignorance’ set of priors contracts more 
for less important ex post decisions, which require less confidence and hence admit drawing bolder conclusions from 
observation.
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4.2.1. Bayesian conditionalisation and Dynamic Consistency
It is well-known that Bayesian conditionalisation relies on the assumption that conditional 

probabilities on a non-null event E are unchanged after learning E (e.g. Jeffrey, 1992; Bradley, 
2005; Dietrich et al., 2016). Translated into confidence terms, the assumption that the condi-
tional probability of an event F given E is unaffected by learning E essentially boils down 
to the assumption that the decision maker has sufficient confidence in his judgement about the 
conditional probability of F given E to retain it in the face of the new information. However, 
his confidence is a fact about his ex ante beliefs, as encapsulated in his confidence ranking. 
Indeed, it is a straightforward consequence of confidence update that whenever he is maxi-
mally confident in his judgement about the conditional probability of F given E, his condi-
tional beliefs with respect to these events will be invariant. We summarize this in the following 
fact.

Fact 1. Let � be a confidence ranking with min� = {p} and E, F ∈ � with E non-null. If 
q(F/E) = p(F/E) for all q ∈ max�, then for any �E resulting from a (general) confidence up-
date of � by E, q ′(F/E) = p(F/E) for all q ′ ∈ max�E . In particular, if min�E is a singleton 
containing pE , then pE(F/E) = p(F/E).

Confidence rankings containing a singleton set are discussed and characterised in Hill 
(2013), where they were called centred confidence rankings. Decision makers represented by 
such confidence rankings are Bayesians with confidence: they can assign a precise proba-
bility value to any event, but may have limited confidence in some of these assignments. 
They are thus a natural context for exploring the relationship with standard Bayesian tech-
niques.

The previous observation suggests that the essence of Bayesian update boils down to a prop-
erty of the decision maker’s ex ante beliefs: namely, a large amount of confidence in conditional 
probabilities. Indeed, it is straightforward to check that if the decision maker is maximally 
confident in all conditional probabilities, then we return to the Bayesian special case: the confi-
dence ranking contains only one set, which is a singleton. So the proposal here diverges from 
Bayesianism insofar as it acknowledges that decision makers might, not unreasonably, have 
limited confidence in some of their conditional probability judgements. In the face of certain 
information, they may thus relinquish some conditional probability judgements in order to retain 
others—and hence violate the central tenet behind Bayesian conditionalisation.

Dynamic Consistency represents the behavioural counterpart of the aforementioned invari-
ance property: in the presence of other basic axioms, it is equivalent to the statement that 
preferences conditional on E are invariant on learning E (Ghirardato, 2002, Lemma 1). On the 
behavioural front, confidence update leads to an analogous weakening of Dynamic Consistency: 
the Confidence Consistency axiom allows relinquishing some conditional preferences, whereas 
Dynamic Consistency preserves them all.24

Whilst this is not the place for an extended discussion of Dynamic Consistency’s normative 
credentials, note that its defense is strongest in cases where decision makers have full and correct 
ex ante knowledge of the information structure they are faced with (Hill, 2020). In such cases, de-
cision makers will typically be very confident in their conditional beliefs, and hence confidence 

24 More precisely, using the terminology introduced in Section 2: Dynamic Consistency implies that fEc �σ c if and 
only if fEc �σ

E
c for all f, c and stakes levels σ (and is equivalent to this condition in our setup whenever ex ante 

preferences are expected utility), whereas Confidence Consistency clearly weakens this condition.
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update will coincide with Bayesian conditionalisation, and satisfy Dynamic Consistency (Fact 1). 
By contrast, learning surprising or null events often give decision makers reason to question their 
prior conceptions; the assumption of full and correct ex ante awareness underpinning Dynamic 
Consistency is ill-adapted to such cases. Indeed, as noted in the Introduction, updates on surpris-
ing or null events are particularly challenging for Bayesian update. By eschewing Bayesianism’s 
insistence on the invariance of conditional beliefs and preferences, confidence update provides a 
more constructive treatment of such cases.

4.2.2. Scientific discovery, crises and surprises
Consider the following example, again concerning a new drug.

Example 2. Prior to a sequence of successive trials of a drug, a decision maker is fairly sure that 
the process is IID, though she is unsure of the probability of success. Suppose (to avoid issues 
with improper priors) that she uses the standard statistical setup for IID processes (see Example 1, 
from which we borrow notation), with as parameter space � = {0,0.1,0.2, . . . ,0.9,1} where 
�(s/θ) = θ for each θ ∈ �. She is Bayesian, and takes a uniform prior μ on �, which generates 
the predictive μ ∈ 	(S). She then observes 10 000 patient trials, which turn out as follows: 
(s, f, s, f, . . . , s, f, s, f ). Let us call this history of observed trials t10000.

Under Bayesian conditionalisation, her posterior probability for the next trial being a suc-
cess would coincide with her prior conditional probability, taking the value 0.5 (pt10000(s10001) =
pt10000(s10001/t10000) = μ(s10001/t10000) = 0.5). Similarly, Dynamic Consistency insists that her 
ex post evaluation of bets on the 10 001st trial should coincide with her ex ante conditional 
evaluation: so she is indifferent between betting on success or failure in both cases. However, 
whilst under the IID assumption the sequence t10000 is as probable as every other sequence in-
volving 5 000 successes out of 10 000 trials, the particular pattern in fact seems rather surprising, 
and may give the decision maker reasonable grounds to question the IID nature of the process. 
If so, she would tend to think that a success on the next trial is more likely, given the alter-
nating nature of the sequence: pt10000(s10001) = pt10000(s10001/t10000) > 0.5 = μ(s10001/t10000). 
Accordingly, she would have a strict preference for betting on success in the next trial ex post. 
Her conditional probabilities would thus change on learning, and she would violate Dynamic 
Consistency.

Such a decision maker can be straightforwardly modelled by the update rule and framework 
developed here. Consider the confidence ranking on S

� =
{
{μ} ,

{
πMarkov

λ : λ ∈ [0,1]
}

∪ {μ}
}

where πMarkov
λ is (the Markov hypothesis) defined by πMarkov

λ (sn+1/sn) = πMarkov
λ (fn+1/fn) =

λ for all n. This confidence ranking reflects the fact that the parameter space � and prior μ over 
it captures what the decision maker thinks about the sequence of trials she is about to observe: 
they (or rather the generated predictive) naturally characterise the centre of her confidence rank-
ing. She may be fairly confident in this judgement, and hence use this prior at medium stakes 
levels (or loss values, for a statistician). However, according to � she is not maximally confi-
dent that the process is IID, so there will be confidence levels at which she does not hold this 
belief. At such levels, the corresponding set of priors contains probability measures that do not 
correspond to IID processes but, for instance, to Markov processes. For an appropriate ρt10000 , 
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setting reasonable probability thresholds,25 the PT-confidence update of � by t10000 is such that 
πMarkov

0 (•/t10000) ∈ min�t10000 : the decision maker will not have a posterior precise probability 
of 0.5 for success on the next trial. Indeed, the minimum probability of success over min�t10000

will be greater than 0.5, and will generally depend on the probability threshold set by ρt10000. 
On this analysis, the confidence approach seems to agree with pre-theoretical intuition. On the 
one hand, the decision maker sticks with her best-estimate (Bayesian) belief as long as the ob-
servations are not very surprising: in the absence of this peculiar pattern, PT-confidence update 
typically recommends applying Bayesian conditionalisation on μ. On the other hand, in the pres-
ence of a surprising event (or pattern), she retains only those beliefs held with higher confidence, 
and moves to the most reasonable conjecture according to those beliefs: in this case, that the 
process is not IID.

This example can be thought of as a parable of (some) scientific discovery. Prominent dis-
coveries—Fleming’s discovery of penicillin, for instance26—involve noting surprising patterns 
where one was not expecting them. One certainly would not like to qualify such cases as irra-
tional, and it can be taken as an advantage of our approach that it can capture them comfortably, 
as the example illustrates. Indeed, it can account for such updates whilst retaining ex ante pref-
erences that are consistent with the initial assumption of an IID process at medium stakes levels; 
preferences only diverge at high stakes, where lots of confidence is required. By contrast, any 
Bayesian approach capable of accounting for these sorts of belief change would require the de-
cision maker to place a small probability ex ante on the process not being IID, so as to guarantee 
that the conditional beliefs remain invariant on learning (Section 4.2.1). This would complicate 
calculations; behaviourally, it would lead to ex ante preferences which contravene the basic as-
sumption of an IID process. Thus the Bayesian framework cannot accommodate both ex ante 
preferences at medium stakes that are fully compatible with the IID assumption and updates that 
deviate from this assumption in surprising cases. Indeed, a long tradition of experimental and 
empirical evidence suggests that people do not employ Bayesian updating, especially in the face 
of ex ante surprising (i.e. low probability) events.27

Similar points hold for crises, such as the financial crisis involved in the opening citation. Ev-
idence suggests that, whilst financial professionals follow Bayesian update in non-crisis periods, 
they deviate from it in times of crisis (Giacomini et al., 2020). As the example in the Introduc-
tion illustrates, confidence update can comfortably capture the opening up to alternative models 
in the wake of paradigm-shattering events. Moreover, it can also accommodate Bayesian update 
and decision making in normal times. On the one hand, when the learnt events are not surpris-
ing, the investor in the opening example hangs on to his low confidence beliefs, updating them 
in a Bayesian fashion.28 On the other hand, for medium stakes decisions, his preferences are 

25 For instance, take ρ
t10000 with ρ

t10000 ({μ}) = 0.05, ρ
t10000 (

{
πMarkov

λ : λ ∈ [0,1]
}

∪ {μ}) = 0.01. In this case the 
conditionalisation of the IID prior μ̄ is no longer held at the bottom of the updated confidence ranking: μ(•/t10000) /∈
min�

t10000 =
{
πMarkov

λ (•/t10000) : λ ∈ [0,
9999√0.01]

}
.

26 Fleming noticed a petri dish containing Staphylococci bacteria that had been mistakenly left open was contaminated 
by blue-green mould from an open window, and that, surprisingly, there was a halo of inhibited bacterial growth around 
the mould.
27 See for example Kahneman et al. (1982); Grether (1980, 1992); Griffin and Tversky (1992); Camerer et al. (2011)
and De Bondt and Thaler (1985, 1987); Gallagher (2014) for experimental and empirical evidence respectively. Note that 
the points made here hold for both first- and second-order Bayesian approaches.
28 Visually, for non-surprising events, the black and red sets at the ‘Low Confidence’ level in Fig. 1 intersect.
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Fig. 2. A Game. (The first number in each pair is Ann’s payoff, the second is Bob’s.)

fully determined by these beliefs—and notably his adopted financial model—although he might 
entertain a wider range of possibilities at higher confidence levels.

4.2.3. Reasoning in games
Another situation where conditional beliefs may change on update involves surprising or null 

events in games.

Example 3. Consider the game in Fig. 2 and suppose that Bob thinks that Ann will adopt the 
Backwards Induction strategy, though admits a small probability ε of her making a ‘trembling 
hand’ mistake at each node. He acts as a Bayesian, and thus places probability 1 − ε on her going 
Out at every node.29 Suppose now that Ann plays In at the first node, then Bob plays In, and then 
Ann plays In again. By standard Bayesian conditionalisation on the (unexpected, but non-null) 
event of Ann going in twice, Bob continues to believe that Ann will play the Backwards Induction 
strategy, and hence go Out at node Ann3. However, given the very small probability of her making 
two successive mistakes, he might come to reconsider his assumption that she is trying to play 
the Backwards Induction strategy. He might wonder whether the deviations from Backwards 
Induction play are intentional: Ann could be aiming for the gain she would get if Bob went In 
at every node. In other words, he might switch to Forward Induction-style reasoning (Pearce, 
1984; Reny, 1992; Stalnaker, 1998; Battigalli and Siniscalchi, 2002). Under this assumption, he 
would expect Ann to move In at node Ann3. That is, his belief about what Ann would do at node 
Ann3 after having observed her play In twice differs from his prior conditional belief about what 
Ann will do if she gets to node Ann3. This is another case where conditional beliefs change on 
learning (and hence, where Dynamic Consistency is violated).

Given the obvious analogy to Example 2—the assumption that Ann is playing the Backwards 
Induction strategy plays the role of the IID assumption; the strategy in which she is aiming for 
both playing In at all nodes plays the role of the alternative Markov hypotheses—it should be 
no surprise that the confidence approach can comfortably capture the reasoning in this example. 
Bob’s initial beliefs can be characterised by the centred confidence ranking

� = {{
μBI,ε

}
,
{
μBI,ε,μFI,ε

}}
where μBI,ε is the probability measure over Ann’s play corresponding to the Backwards Induc-
tion assumption with ‘trembling hand’ errors—μBI,ε(Out) = 1 − ε > 0.5 at every node—and 
μFI,ε is the probability measure corresponding to the thesis that Ann is aiming for Bob going In 
at every node, with ‘trembling hand’ errors—μFI,ε(In) = 1 − ε > 0.5 at every node. This repre-

29 It is simple to check that Ann’s Backward Induction strategy is to play Out at each node.
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sents Bob as a Bayesian with confidence: at the centre of the confidence ranking is the Bayesian 
belief μBI,ε , capturing the fact that at intermediate confidence levels, he acts and reasons as a 
Bayesian accepting that Ann will play the Backward Induction strategy with errors. However, at 
high levels of confidence, he is not sure of this prediction, entertaining alternative conjectures, 
and in particular the possibility that Ann is ‘aiming’ for everyone playing In at every node. For 
appropriate ρE , corresponding to appropriate probability thresholds about (the reasoning behind) 
Ann’s play, confidence update will shift to μFI,ε if she makes ‘too many’ mistakes. For instance, 
if ρIn(

{
μBI,ε

}
), ρIn,In(

{
μBI,ε

}
), ρIn(

{
μBI,ε,μFI,ε

}
), ρIn,In(

{
μBI,ε,μFI,ε

}
) ∈ ( ε

2 , ε),30 then 
min�In = {

μBI,ε

}
,31 whereas min�In,In = {

μFI,ε

}
. If Ann goes In once, this can be seen 

as a mistake, so Bob reasons as a Bayesian and, updating by conditionalisation, sticks with his 
Backwards Induction assumption. However, if she goes In again, then this is too surprising, and 
Bob looks to the most reasonable alternative conjecture that he admits as possible, which inter-
prets Ann’s play as intentional. As in the previous example, confidence update can comfortably 
capture such learning patterns.

Under the confidence analysis, Bob’s update (and reasoning) varies as one would expect with 
ε. For a fixed probability-threshold correspondence ρE , as ε increases, there may be a value such 
that, after Ann plays In twice, Bob retains his Backwards Induction assumption: min�In,In ={
μBI,ε

}
.32 This is as to be expected: if the probability of error is high enough, he need not 

consider two successive plays of In to be sufficiently surprising, and hence has less reason to 
doubt his initial beliefs about her strategy. On the other hand, as ε decreases with ρE fixed, 
there will be a value below which Bob will interpret Ann’s play as intentional after she plays 
In just once: min�In = {

μFI,ε

}
.33 If he considers a ‘trembling hand’ mistake to be sufficiently 

unlikely, then seeing just one deviation from the expected Backwards Induction play will be 
enough to trigger alternative reasoning. This is how Bob would update under this specification 
in the limit case of no ‘trembling hand’ errors (ε = 0). There is thus a continuity in reasoning 
between very small and zero ex ante probabilities of ‘trembling hand’ errors—that is, between 
update on surprising and null events.

By contrast, standard approaches retain Bayesian conditionalisation whenever the observed 
event is non-null: so in the example, whenever ε > 0, Bob will hold onto his Backwards Induction 
assumption no matter how many times Ann plays In. Bayes rule need only be supplemented for 
cases of update on null events—when ε = 0—and generalisations of probabilities (and Bayesian 
update) such as conditional probability systems (CPS) or lexicographic conditional probability 
systems (LCPS) have been proposed for such cases (Rényi, 1955; Myerson, 1986; Blume et al., 
1991a,b; Dekel and Siniscalchi, 2015). Since they coincide with Bayesian conditionalisation on 
non-null events, there is a discontinuity at ε = 0: although under the smallest positive probability 
of error, Bob continues to hold onto the assumption of future Backwards Induction play after 
several deviations, as soon as the probability hits zero he can change his assumption on update 
after a single deviation. The continuity supported by the confidence-based approach may seem a 

30 In is the event that Ann plays In at the first node; In, In is the event that she plays In at the first two nodes, and so 
on.
31 Note that μBI,ε = μBI,ε(•/In) and similarly for μFI,ε as defined.
32 This occurs whenever ε2 ≥ ρIn(

{
μBI,ε

}
), ρIn,In(

{
μBI,ε

}
).

33 This occurs whenever ε < ρIn(
{
μBI,ε

}
).
24



B. Hill Journal of Economic Theory 199 (2022) 105209
more desirable property of reasoning in games.34 Whether or not this is so, the example indicates 
that the confidence framework can cope with update on null events: indeed, the aforementioned 
generalisations of Bayesian conditionalisation to null events can be recovered as special cases of 
confidence update, as we now illustrate on CPS’s.35

For simplicity, let us assume that the state space S is finite (and retain all other terminol-
ogy). A conditional probability system on S is a map pCPS : � × (�/∅) → [0, 1] such that 
pCPS(•/E) ∈ 	(�), pCPS(E/E) = 1, and pCPS(E/G) = pCPS(E/F).pCPS(F/G) for all 
E, F, G ∈ � with E ⊆ F ⊆ G and F �= ∅. pCPS(E/S) can be thought of as representing prior 
beliefs. If pCPS(E/S) > 0, then pCPS(•/E) is the standard Bayesian conditionalisation of 
pCPS ; however, pCPS(•/E) is well-defined and non-trivial even when pCPS(E/S) = 0. Re-
call (Section 4.2.1) that a confidence ranking � is centred if it contains a singleton set; in this 
case, we use p� to denote the member of the singleton set, and call it the centre of �.

Proposition 4. Let pCPS be a conditional probability system on a finite space S . Then there 
exists a centred confidence ranking � and a family of functions (ρE)E∈�, ρE : � → [0, 1] such 
that: i. the centre of �, p�=pCPS(•/S); and ii. for each non-empty event E, �E , the confidence 
update of � by E represented by ρE is a centred confidence ranking whose centre, p�E

satisfies 
p�E

(F ) = pCPS(F/E) for all F ∈ �.

So any decision maker that can be modelled using a CPS can alternatively be modelled using 
confidence update. Focusing on decisions where the stakes are limited, the decision maker’s ex 
ante and ex post preferences would be precisely as according to the CPS model: in particular 
confidence update picks out his ex post beliefs properly, even for update on events that are null 
according to the centre of his confidence ranking. By contrast, his lack of full confidence about 
his best-guess probability measure (and his relative degree of confidence in the alternatives) 
comes out in his ex ante preferences under the confidence approach—though not under the CPS 
approach—in decisions with high or extremely high stakes. On such decisions, his preferences 
may be non-Bayesian.

This suggests that confidence update, in addition to dealing with update under ambiguity, 
can comfortably and fruitfully deal with issues arising from update on surprising or null events. 
Indeed, unlike standard approaches, it offers a uniform treatment of both sorts of update.

5. Discussion

We now briefly consider relationships with other learning paradigms, as well as potential 
extensions.

Classical and Bayesian statistical reasoning Confidence update subsumes elements of both 
Classical and Bayesian statistical reasoning. The way it deals with confidence, and in particular 
the use of probability thresholds over the ex ante probability (or likelihood) of the learnt event 
under different probability measures, is classical in spirit. The recognition that on learning an 

34 We hasten to add that this discussion concerns the reasoning (and update) of one player in a game; evaluating potential 
consequences for equilibria would require further concepts (e.g. Dekel and Siniscalchi, 2015), and goes beyond the scope 
of this paper.
35 See for instance Hammond (1994) on the relation with LCPS.
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event, one ultimately has to use (some) probabilities conditional on that event is Bayesian. This 
can be illustrated on Example 1 (Section 4.1).

On the one hand, the penultimate case in the example (involving Dirac measures) reveals a 
strong analogy to the reasoning in classical statistics: there is a set of parameters (the ex ante set 
of Dirac measures), and on observation, one can rule out those according to which the observa-
tion was too unlikely. The probability threshold in the confidence approach plays a role analogous 
to the significance level in classical hypothesis testing. However, the confidence approach does 
not demand a single, fixed significance level. Rather, the update encompasses all relevant signifi-
cance levels. The level to be used in an ensuing decision is determined by its importance and the 
decision maker’s attitude to choosing on the basis of limited confidence, as represented by his 
cautiousness coefficient (Section 2.2). In other words, the approach sheds light on how the ap-
propriate significance level should be fixed, revealing the value judgement or taste it corresponds 
to.

On the other hand, since initial beliefs representable by a Bayesian probability generate a 
special type of confidence ranking, the confidence update rule can be applied, yielding as pos-
terior beliefs the conditional probability measure (or, more precisely, the confidence ranking 
whose only element is the singleton containing it). So confidence update coincides with stan-
dard Bayesian statistical practice whenever the decision maker holds single-prior beliefs with 
maximal confidence.

Belief revision Confidence update is also reminiscent of a substantial literature in Artificial 
Intelligence, logic and philosophy on ‘belief revision’ (e.g. Gardenfors, 1988), which focuses 
on belief change in cases where incoming information contradicts initial beliefs. In such cases, 
there is usually a choice of which among several ex ante beliefs to give up. A popular approach 
employs the notion of the ‘entrenchment’ of a belief, and is guided by a maxim similar to ours: 
hold on to the beliefs that are more ‘entrenched’, relinquishing those that are less ‘entrenched’. 
This affinity is doubtless related to some of the points made in the preceding sections; indeed, the 
relevance of belief revision for scientific theory change (Alchourron et al., 1985) and reasoning 
in games (Stalnaker, 1998) has long been recognised.

However, given the focus on categorical rather than probabilistic beliefs in that literature, it 
contains, to the best of our knowledge, no rule corresponding to the one proposed here. Moreover, 
and crucially, they typically do not consider decision. As such, one could consider this paper as 
developing a decision-theoretic approach to learning that was lacking from the belief revision 
literature.

Choice and learning An important characteristic of the Bayesian paradigm is the connection 
between ex ante preferences and update: under it, ex ante and ex post conditional preferences 
coincide (Section 4.2.1). The current proposal involves a strong, albeit different connection, 
modulated by the double role of confidence in choice (according to (3)) and learning (via (4)): a 
decision maker’s confidence in a belief regulates both how willing he is to choose on the basis 
of it and how tenaciously he holds onto it in the face of conflicting information.36 This guaran-
tees that ex post preferences are partially determined by ex ante ones (in particular those held at 
sufficiently high stakes levels).

36 Note that in the Bayesian paradigm, no single concept plays such a double role: the strength of a Bayesian probability 
in particular is quite distinct from how tenaciously it is retained on update (e.g. Leitgeb, 2017).
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This connection is a central plank of our approach. It draws normative support from the 
aforementioned intuitions. The relationships it implies between ex ante and ex post preferences 
enhance testability, hence lending descriptive clout. And it sets our approach apart from others 
dealing with null or surprising events. For instance, under the CPS model (Section 4.2.3), ex ante 
preferences impose very few constraints on ex post preferences after updating on a null event.

Ortoleva (2012) proposes a ‘Hypothesis Testing’ update rule of Bayesian beliefs which is sim-
ilar in spirit to the CPS and LCPS models, except that it ‘moves to’ another Bayesian probability 
when the learnt event is surprising enough (i.e. its ex ante probability falls below a threshold), 
rather than when it is null.37 The rule is motivated by classical hypothesis-testing reasoning, of 
the sort mentioned above. However, unlike the confidence-based approach, ex ante preferences in 
Ortoleva’s model impose virtually no constraints on the ex post preferences an agent will adopt 
on learning surprising information. In fact, given some underlying technical similarities,38 it may 
be possible to retrieve the ‘Hypothesis Testing’ rule as a special case of confidence update, via a 
result similar to Proposition 4 for the CPS model. This may be a way of linking the update to ex 
ante behaviour.

Gilboa et al. (2020) propose a model of choice which combines case-based and expected-
utility reasoning, claiming that the former is more appropriate and widespread in the aftermath 
of surprising events. Since the model is static, it does not draw any link between preferences 
prior to a (surprising) event and posterior preferences, whereas, as noted, confidence will play a 
role in relating the two under the approach proposed here.

Extensions and future research Most of the technical assumptions on confidence rankings 
adopted in Section 3—notably closure and convexity—are inessential to the workings of the 
update rule. Similar results can be obtained in their absence, albeit with added technicalities to 
deal, for instance, with the fact that non-convexities do not show up in preferences. Moreover, 
whilst we have focused on the standard case of update on events, the general logic of the update 
rule—and in particular the intersection of the sets of probability measures reflecting the informa-
tion with the ex ante confidence ranking—applies for other ‘input formats’, such as information 
representable by a subset of the probability space (as in Gajdos et al., 2008), a probability as-
signment for certain events (as in Jeffrey, 1972; Dietrich et al., 2016), or an ambiguous signal 
(Epstein and Halevy, 2020). Future work could set out the consequences of confidence update in 
such cases. A final important extension would be to sequential learning situations, as commonly 
found in statistical decision theory. This would be essential for understanding the long-run im-
plications of the approach, and its consequences in a range of economic applications.

6. Conclusion

This paper proposes a novel update rule under ambiguity. Starting from the intuition that one’s 
confidence in beliefs has a central role to play in learning, we formulate a model of update of 
confidence in beliefs, drawing on an existing model of confidence and decision (Hill, 2013). It 
is based on a simple, but reasonable intuition: when updating in the face of information that 
conflicts with prior beliefs, retain as far as possible those conditional beliefs in which you are 

37 Ortoleva (2014) extends the approach to multiple prior beliefs.
38 Specifically: the proof of our Proposition 4 relies on the fact that CPS’s are equivalent to certain orders on the space of 
probability measures, as are confidence rankings, and Ortoleva’s update is also determined by an order on the probability 
space (Ortoleva, 2012, Prop 2).
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more confident, and relinquish only those in which you have less confidence. A simple and 
intuitive axiom—Confidence Consistency—characterises a general confidence update rule that 
conforms to this maxim.

We also characterise a more refined version: probability-threshold confidence update. In a 
way reminiscent of classical statistical reasoning, it uses a confidence level-dependent threshold 
to eliminate probability measures that were too ‘wrong’ about the learnt event ex ante.

Confidence update can comfortably handle update on complete ignorance, on which standard 
multiple prior update rules struggle. It provides a general framework that can recover prominent 
existing update rules as special cases, providing a new perspective on their credentials and rela-
tionship. It can also fruitfully deal with update on surprising events, such as crises, and on null 
events, encompassing the standard game-theoretical tools for the latter as special cases.

Appendix A. Proofs

A.1. Proofs of results in Section 3

Proof of Theorems 1 and 2. We prove Theorem 2. The proof of Theorem 1 is similar. We first 
show sufficiency of the axioms.

Fix non-null E ∈ �; since � is non-degenerate by Assumption 1, such events exist. By As-
sumption 1, there exists a triple (�, D, u) representing � according to (3). For every stakes level 
σ , let Cσ = D(f ) for some f ∈ σ . It follows from the confidence representation (Hill, 2013) that 
Cσ represents �σ (in tandem with u) according to standard maximin EU representation; i.e. �σ

is represented by:

V (f ) = min
p∈Cσ

Epu(f (s)) (12)

As a point of notation, for any x ∈ [0, 1], we use [E, x] to denote {p ∈ 	(�) : p(E) ≥ x}.
By Non-degeneracy, �E is non-degenerate. Moreover, there exists an E-resilient stakes-level 

σ : if not, by Information-Based Learning, f �σ ′
E c for every f ∈ A, c ∈ Ac and stakes level σ ′, 

contradicting the monotonicity of the confidence representation (3).

Lemma 1. For any E-resilient stakes level σ , there exists xσ
E ∈ [0, 1] such that �σ

E is represented 
by:

V σ
E (f ) = min

p∈(
Cσ ∩[E,xσ

E ])
E

Epu(f ) (13)

where 
(
Cσ ∩[E,xσ

E])
E

is as defined in (2). Moreover:

1. if there exists f ∈ A and c ∈ Ac such that fEc ∼σ
E c but fEc �σ c, then there is a unique 

xσ
E ∈ [0, 1] having this property;

2. if for all f ∈ A and c ∈ Ac, whenever fEc ∼σ
E c, then fEc ∼σ c, and there exists no e, d ∈ Ac

with e � d � c and fEe �σ d , then every xσ
E ∈ [0, 1] has this property;

3. if for all f ∈ A and c ∈ Ac, whenever fEc ∼σ
E c, then fEc ∼σ c, and for some such f ∈ A

and c ∈ Ac, there exists e, d ∈ Ac with e � d � c and fEe �σ d , then there exists xσ
E ∈ [0, 1]

such that every xσ
E ∈ [0, xσ

E] has this property.

Proof. Fix an E-resilient stakes level σ . For every f ∈ A, by the representation (Assump-
tion 1), there exists a unique c ∈ Ac, up to indifference, such that fEc ∼σ c; consider any 
E
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such f and c. For any e, d ∈ Ac with e � d � c and fEe �σ d , let λe,d;f be the (unique) 
λ ∈ [0, 1] such that fEe ∼σ e1−λd . (By the E-resilience of σ , fEc �σ c, whence, by the 
representation, fEe �σ e, so such a λ exists; by the representation, it is unique.) Note that, 
by definition, for any p ∈ 	 such that Epu(fEe) ≥ Epu(e1−λd) and Epu(eEd) ≥ Epu(eλd), 
we have that Epu((fEe) 1

2
(eEd)) = Epu(e 1

2
(fEd)) ≥ Epu((e1−λd) 1

2
(eλd)) = Epu(e 1

2
d). Let 

�σ
f = {

λe,d;f : e, d ∈Ac, β ∈ (0,1], f Ee �σ d, e � d � c
}
, and �σ

f = {
λe,d;f : e, d ∈ Ac, β ∈

(0, 1], f Ee �σ d, e � d � c
}
.

Claim 1.

�σ
f =

{
λ̂ ∈ [0,1] : ∃ê, d̂ ∈Ac s.t. ê � d̂, fEê ∼σ d̂

λ̂
ê, λ̂ > λê,c;f

}

=
{
λ̂ ∈ [0,1] : ∃ê, d̂ ∈Ac s.t. ê � d̂, fEê ∼σ d̂

λ̂
ê, (fEê) 1

2
(̂eEd̂) ≺σ

E ê 1
2
d̂
}

and

�σ
f =

{
λ̂ ∈ [0,1] : ∃ê, d̂ ∈Ac s.t. ê � d̂, fEê ∼σ d̂

λ̂
ê, λ̂ ≥ λê,c;f

}

=
{
λ̂ ∈ [0,1] : ∃ê, d̂ ∈Ac s.t. ê � d̂, fEê ∼σ d̂

λ̂
ê, (fEê) 1

2
(̂eEd̂) �σ

E ê 1
2
d̂
}

.

Proof. Note firstly that, by the representation, for any e � d, d ′, λe,d;f > λe,d ′;f if and only if 
d � d ′. For any λ̂ ∈ [0, 1] and ê, d̂ ∈Ac

with ê � d̂ and fEê ∼σ d̂
λ̂
ê, if λ̂ > λê,c;f , then d̂ � c by 

the previous observation. So �σ
f ⊇

{
λ̂ ∈ [0,1] : ∃ê, d̂ ∈Ac s.t. fEê ∼σ d̂

λ̂
ê �σ c, λ̂ > λê,c;f

}
, 

and similarly for �σ
f . Moreover, for such λ̂, ê, d̂ , it follows from the representation that 

(fEê) 1
2
(̂eEd̂) ≺σ

E ê 1
2
d̂ if and only if fEd̂ ≺σ

E d̂ , and since fEc ∼σ
E c, this can only be the case 

if ˆd � c. So �σ
f ⊇

{
λ̂ ∈ [0,1] : ∃ê, d̂ ∈ Ac s.t. ê � d̂, fEê ∼σ d̂

λ̂
ê, (fEê) 1

2
(̂eEd̂) ≺σ

E ê 1
2
d̂
}

, and 

similarly for �σ
f . As for the other direction, for any ê, d̂ ∈Ac

with ê � d̂ � c and fEê � d̂ , if 

fEê ∼ ê1−λ̂
d̂ , then by the previous remark about the ordering of λe,d;f , λe,d ′;f , λ̂ > λe,c;f ; it 

follows that �σ
f ⊆

{
λ̂ ∈ [0,1] : ∃ê, d̂ ∈Ac s.t. fEê ∼σ d̂

λ̂
ê �σ c, λ̂ > λê,c;f

}
, and similarly for 

�σ
f . Finally, for any such ê, d̂ ∈Ac

, by the representation (and in particular C-Independence 

at a given stakes level) and the fact that fEc ∼E c, it follows from the d̂ � c that fEd̂ ≺E d̂ , 

so (fEê) 1
2
(̂eEd̂) ≺σ

E ê 1
2
d̂ , and hence λ

ê,d̂;f ∈
{
λ̂ ∈ [0, 1] : ∃ê, d̂ ∈ Ac s.t. ê � d̂, fEê ∼σ

d̂
λ̂
ê, (fEê) 1

2
(̂eEd̂) ≺σ

E ê 1
2
d̂
}

, and similarly for the case of d̂ � c. This establishes the claim. �
If, for all f ∈A and c ∈ Ac such that fEc ∼σ

E c, fEc ∼σ c, then the result immediately holds 
with xσ

E = 0, so assume henceforth that this is not the case. For clarity, we divide the remainder 
of the proof into cases.

Case 1. We first consider the case in which there exists f ∈ A and c ∈ Ac with fEc ∼σ
E c but 

fEc �σ c such that there exists e, d ∈ Ac with e � d � c and fEe �σ d . So �σ
f and 

�σ
f are non-empty. Since fEc �σ c, and σ is E-resilient, it follows that fEc ≺σ c; this, 

in combination with the fact that fEc ∼σ c implies that f /∈ Ac. Since, for any e ∈ Ac

E
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with fEe ∼σ e, fEe �σ
E e by the representation, 0 /∈ �σ

f . Let λf = inf�σ
f . Since, for 

any d � c, λê,d;f > λê,c;f for all ê ∈ Ac, λf /∈ �σ
f , and hence, for every c, c ∈ Ac with 

c � c and fEc ∼σ cλf
c, it holds that (f 1

2
c)E(c 1

2
c) �σ

E c 1
2
c. Since λe,d;f is continuous 

in d for every e � c, for every such e, λe,c;f ≥ λf .
We now show that, for every p ∈ Cσ ∩ [E, λf ], Epu(fEc) ≥ Epu(c). First consider any 
q ∈ Cσ ∩ {

p ∈ 	(�) : p(E) > λf

}
; by the definition of λf , there exist e, d ∈ Ac, with 

e � d � c, fEc �σ d and q(E) ≥ λe,d;f . By the previous remark, since Equ(fEe) ≥
Equ(e1−λe,d;f d) and Equ(eEd) ≥ Equ(eλe,d;f d), it follows that Equ((fEe) 1

2
(eEd)) ≥

Equ(e 1
2
d), and hence, by the linearity of the EU functional, Equ(fEd) ≥ Equ(d). It 

follows from the properties of the EU functional that Equ(fEc) ≥ Equ(c). Since this 
holds for all q ∈ Cσ ∩ {

p ∈ 	(�) : p(E) > λf

}
, by the continuity of the EU functional, 

it holds for the closure Cσ ∩ [E, λf ], as required.
Now we show that, for each d � c, there exists p ∈ Cσ ∩ [E, λf ] with Epu(fEd) <
u(d). For reductio, suppose that there exists d � c such that Epu(fEd) ≥ Epu(d)

for all p ∈ Cσ ∩ [E, λf ]. It follows that Epu(fEc) > Epu(c) for all p ∈ Cσ ∩
[E, λf ]. For each e � c, consider Ie,λf

= {
p ∈ 	(�) : Epu(fEe) = Epu(e1−λe,c;f c)

} ∩{
p ∈ 	(�) : p(E) = λf

}
; since Epu(fEc) = Epu(c) for all p in this set (by the pre-

vious observation), it follows that Ie,λf
∩ (Cσ ∩ [E, λf ]) = ∅ for all such e. Let 

λ′ = inf
{
x ∈ [0,1] :Epu(fEc) ≥ Epu(c), ∀p ∈ Cσ ∩ [E,x]

}
. By the previous observa-

tions λ′ < λf . Moreover, by continuity of the EU functional, there exists p ∈ Cσ ∩[E, λ′]
such that Epu(fEc) = Epu(c). It follows that Ie,λ′ ∩ (Cσ ∩ [E, λ′]) �= ∅ for at least 
one e � c, where Ie,λ′ = {

p ∈ 	(�) : Epu(fEe) = Epu(e1−λe,c;f c)
} ∩ {

p ∈ 	(�) :
p(E) = λ′}. Since, for any p ∈ Ie,λ′ , Epu((fEe) 1

2
(eEc)) = Epu((e1−λe,c;f c) 1

2
(eλ′c) =

u(c 1
2
(e1−(λe,c;f −λ′)c)), and since, for any p ∈ Ie,λ′ ∩ (Cσ ∩ [E, λ′]), Epu(fEc) �

Epu(c), it follows that λe,c;f = λ′ < λf for any such e, contradicting the definition 
of λf . So for each d � c, there exists p ∈ Cσ ∩ [E, λf ] with Epu(fEd) < u(d), as re-
quired.
Now consider any f ′ ∈ A with f ′

Ec′ ∼σ
E c′. We consider two cases separately.

Case i. First consider the case where f ′
Ec′ �σ c′. We first treat the case in which 

there exists e ∈ Ac with e � c and f ′
Ee �σ c′, so, as above, �σ

f ′ and �σ
f ′

are non-empty. By Probability Consistency, Claim 1 and the previous obser-
vations, λf /∈ �σ

f ′ . Applying the same axiom again yields that inf�σ
f ′ /∈ �σ

f , 
so λf = inf�σ

f ′ . By the arguments used above, Epu(f ′
Ec′) ≥ Epu(c′) for all 

p ∈ Cσ ∩ [E, λf ], and, for each d ′ � c′, there exists p ∈ Cσ ∩ [E, λf ] with 
Epu(fEd ′) < u(d ′). Now consider the case where, for all e ∈ Ac, f ′

Ee �σ c′. 
So �σ

f ′ = ∅, which by Claim 1, contradicts 3.2.1 and the fact that �σ
f �= ∅, so 

this case cannot occur.
Case ii. Now consider the case where f ′

Ec′ ∼σ c′. So Epu(f ′
Ec′) ≥ Epu(c′) for all 

p ∈ Cσ ∩ [E, λf ]. If there exists e, d ∈ Ac with e � d � c′ and f ′
Ee �σ d , 

then �σ
f ′ �= ∅. By Probability Consistency and the last characterisation of �σ

f

in Claim 1, λf < λ for all λ ∈ �σ
f ′ . By an argument similar to that used above 

that, for each d ′ � c′, there exists p ∈ Cσ ∩[E, λf ] with Epu(f ′
Ed ′) < u(d ′). If 

there exists no e, d ∈ Ac with e � d � c′ and f ′
Ee �σ d , then f ′

Ee ∼ f ′
Ec′ ∼σ c′

for all e ∈ Ac with e � c′. It follows from the representation that there ex-
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ists p ∈ Cσ with Epu(fEd ′) = u(c′) < u(d ′) for all d ′�c′ and p(E) = 1; 
since p ∈ Cσ ∩ [E, λf ], for every d ′ � c′, there exists p ∈ Cσ ∩ [E, λf ] with 
Epu(fEd ′) < u(d ′).

Case 2. Now we consider the case in which there exists f ∈ A and c ∈ Ac such that fEc ∼σ
E c

but fEc �σ c, and for all such f, c, fEe �σ c for all e ∈ Ac . By Null consistency, 
for each such f, c, there exists e ∈ Ac with fEe ∼σ c. Since fEe′ ∼σ fEe for any 
e′ � e and any such f, c, it follows from the representation that there exists p ∈ Cσ

with Epu(fEe) = u(c) and p(E) = 1 and that, for any other q ∈ Cσ with q(E) = 1, 
Equ(fEe) ≥ u(c). It thus follows that for all p ∈ Cσ ∩ [E, 1], Epu(fEc) ≥ Epu(c). 
Moreover, for every d � c, if Epu(fEd) ≥ Epu(d) for all p ∈ Cσ ∩[E, 1], then fEd �σ

c, contradicting the definition of the case; so for each d � c, there exists p ∈ Cσ ∩ [E, 1]
with Epu(fEd) < u(d). Now consider any f ′ ∈ A with f ′

Ec′ ∼σ
E c′ and f ′

Ec′ ∼σ c′. If 
there exists e, d ∈ Ac with e � d � c′ and f ′

Ee �σ d , then �σ
f ′ ∩ [0, 1) �= ∅. By Probabil-

ity Consistency and the last characterisation of �f in Claim 1, it follows that, for every 
f ∈A and c ∈Ac such that fEc ∼σ

E c but fEc �σ c, and fEe �σ c for all e ∈Ac, there 
exists e′ � d ′ � c with fEe′ �σ d ′ � c, which is a contradiction. So for every f ′ ∈ A
with f ′

Ec′ ∼σ
E c′ and f ′

Ec′ ∼σ c′, f ′
Ee ∼σ c′ for all e ∈ Ac with e � c′. It follows from 

the representation that there exists p ∈ Cσ with Epu(fEd ′) = u(c′) < u(d ′) for all d ′�c′
and p(E) = 1; since p ∈ Cσ ∩[E, 1], for every d ′ � c′, there exists p ∈ Cσ ∩[E, 1] with 
Epu(fEd ′) < u(d ′).

Let xσ
E = λf in Case 1 and xσ

E = 1 in Case 2. By the previous observations, for every
f ∈ A, minp∈Cσ ∩[E,xσ

E ] Epu(fEc) ≥ u(c), where fEc ∼σ
E c, and for any d�c,

minp∈Cσ ∩[E,xσ
E ] Epu(fEd) < u(d). It follows from the continuity of the maximin-EU functional 

that minp∈Cσ ∩[E,xσ
E ] Epu(fEc) = u(c) for all f ∈ A with fEc ∼σ

E c. By Consequentialism, for 
every f ∈ A, f ∼σ

E c for c ∈ Ac such that fEc ∼σ
E c, so the preferences �σ

E are represented by 
V (f ) = u(c) such that fEc ∼σ

E c. Since:

min
p∈Cσ ∩[E,xσ

E ]
Epu(fEc) = u(c) ⇔ min

p∈Cσ ∩[E,xσ
E ]

(
p(E)(Ep(•/E)u(f )) + (1 − p(E))u(c)

)

= u(c)

⇔ min
p∈Cσ ∩[E,xσ

E ]
Ep(•/E)u(f ) = u(c)

⇔ min
p∈(

Cσ ∩[E,xσ
E ]

)
E

Epu(f ) = u(c)

This establishes the representation.
As concerns the uniqueness of xσ

E , it is clear from the proof that, if there exist f ∈A with c ∈
Ac such that fEc ∼σ

E c but fEc �σ c, then xσ
E = inf�σ

f for any such f ∈A and c ∈ Ac in Case 1, 
and xσ

E = 1 if Case 2 holds. Since �σ
f is uniquely defined on the basis of preferences, this implies 

that xσ
E is unique. If fEc ∼σ

E c whenever fEc ∼σ c, and for no such f, c there exists e, d ∈ Ac

with e � d � c and fEe �σ d , then by the analysis of this case 1.ii., minp∈Cσ ∩[E,x] Epu(fEc) =
u(c) iff fEc ∼σ

E c, for all x ∈ [0, 1], as required. Finally, if fEc ∼σ
E c whenever fEc ∼σ c but 

for some f ∈ A and c ∈ Ac , there exists e, d ∈ Ac with e � d � c and fEe �σ d , then by the 
observations about �σ

f (case 1.ii.), minp∈Cσ ∩[E,x] Epu(gEd) = u(d) iff gEd ∼σ
E d , whenever 

x < λ for all λ ∈ �σ , as required. �
f
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Define the function φE relating E-resilient stakes levels to values in [0, 1] as follows:

1. If σ satisfies the conditions of clause 1. of Lemma 1, then φE(σ ) =xσ
E such that (13) holds.

2. If σ satisfies the conditions of clause 2. of Lemma 1, then φE(σ ) =sup
{
φE(σ ′) : σ ′ > σ

}
.39

3. If σ satisfies the conditions of clause 3. of Lemma 1, then φE(σ) = max
{

sup
{
φE(σ ′) : σ ′ >

σ
}
, xσ

E

}
, where xσ

E is as in Lemma 1.

By definition and Lemma 1, (13) holds for φE(σ) for every E-resilient stakes level σ .

Claim 2. For every E-resilient σ ′, σ ′′ with σ ′′ > σ ′, φE(σ ′′) ≤ φE(σ ′).

Proof. Let �σ ′
f ′ and �σ ′′

f ′′ be defined as in the proof of Lemma 1, for appropriate f ′, f ′′. By the 
proof of that Lemma, if the stakes levels σ ′, σ ′′ satisfy the conditions of clause 1. (i.e. there 
exists f ∈A and c ∈Ac with fEc ∼σ ′

E c but fEc �σ ′
c and similarly for σ ”), then xσ ′

E = inf�σ ′
f ′

(under case 1 in the proof of the Lemma) or xσ ′
E = 1 (in case 2), and similarly for xσ ′′

E . By 
Probability Consistency and Claim 1, for any λ /∈ �σ ′′

f ′′ , λ /∈ �σ ′
f ′ , so if xσ ′′

E = 1, then xσ ′
E = 1 (both 

stakes levels are in case 2), and if xσ ′′
E = inf�σ ′′

f ′ < 1, xσ ′
E = min

{
inf�σ ′

f ′ ,1
}

≥ inf�σ ′′
f ′ = xσ ′′

E . 

If σ ′ satisfies the conditions of clause 1 and is in case 1 of Lemma 1 (so xσ ′
E = inf�σ ′

f ′ < 1) 
and σ ′′ satisfies the conditions of clause 3. (in particular, for some f ∈ A and c ∈ Ac, there 

exists e, d ∈ Ac with e � d � c and fEe �σ ′′
d), xσ ′′

E = inf�σ ′′
f ′′ for appropriate f ′′, and xσ ′

E =
inf�σ ′

f ′ ≥ inf�σ ′′
f ′′ = xσ ′′

E by Probability Consistency and Claim 1, which implies, in the light of 
the previous analysis of case of clause 1, that φE(σ ′′) ≤ φE(σ ′). If σ ′ satisfies the conditions of 
clause 1 and is in case 2 of Lemma 1 (so xσ ′

E = 1), then by Probability Consistency and Claim 1
and the argument in case 2 of Lemma 1, σ ′′ does not satisfy the conditions of clause 3. Given 
the previous two cases, if σ ′ satisfies the conditions of clause 1. and σ ′′ satisfies the conditions 
of clause 2., then it follows from clause 2. and the fact that φE(σ1) ≤ φE(σ2) for all σ1 > σ2
satisfying the conditions of clause 1 or 3, that φE(σ ′′) ≤ φE(σ ′). If σ ′′ satisfies the conditions of 
clauses 2 or 3, then the result is immediate. �

For every E-resilient σ , let xσ
E = φE(σ). Let D =⋂

σ ′ E−resilient

(
Cσ ′ ∩ [E,xσ ′

E ])
E

and yE =
supσ E−resilient φE(σ ). As noted above, there exists an E-resilient stakes level, so D �= ∅. By 
Confidence Consistency, for any stakes level σ ′′ that is not E-resilient, σ ′ > σ ′′ for every E-
resilient stakes level σ ′. It follows from the confidence representation (3) that C′′ ⊆ D for every 
C′′ representing �σ ′′

E according to (12).

Claim 3. Under Information-based Learning, for any stakes level σ ′′, if σ ′′ is not E-resilient, 
then �σ ′′

E is represented by D.

Proof. Let σ ′′ be a stakes level that is not E-resilient, and let C′′ be a closed convex set rep-
resenting �σ ′′

E according to (12). (Such a set exists by the representation (3).) As noted above, 

39 We adopt the convention that the infimum over the empty set is 1.
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C′′ ⊆ D). Suppose that the inverse containment does not hold, so there exists p ∈ convcl(D) \C′′. 
By a separating hyperplane argument, there exists f ∈ A, c ∈ Ac such that Equ(f ) ≥ u(c) for 
all q ∈ C′′ whereas Epu(f ) < u(c). It follows that f �σ ′

E c for all E-resilient σ ′ but f �σ ′′
E c, 

contradicting Information-based Learning. So C′′ = D and D represents �σ ′′
E , as required. �

Claim 4. For any stakes level σ ′′ that is not E-resilient and any C′′ representing �σ ′′
according 

to (12), C′′ ∩ {p ∈ 	(�) : p(E) ≥ yE} = ∅.

Proof. Consider a non-E-resilient σ ′′, and let C′′ represent �σ ′′
. By Claim 3, D =⋂

σ ′ E−resilient

(
Cσ ′ ∩ [E,xσ ′

E ])
E

= (⋂
σ ′ E−resilient

(
Cσ ′ ∩ [E,xσ ′

E ]))
E

represents �σ ′′
E ; how-

ever, by Confidence Consistency and the confidence representation, C′′ ⊆ ⋂
σ ′ E−resilient Cσ ′

. 

So if C′′ ∩ {p ∈ 	(�) : p(E) ≥ yE} �= ∅, then C′′ ∩ ⋂
σ ′ E−resilient

(
Cσ ′ ∩ [E,xσ ′

E ]
)

= C′′ ∩⋂
σ ′ E−resilient Cσ ′ ∩ ⋂

σ ′ E−resilient [E, xσ ′
E ] = C′′ ∩ ⋂

σ ′ E−resilient Cσ ′ ∩ [E, yE] �= ∅, and 
hence, for every f ∈ A, c ∈ Ac, if fEc �σ ′′

c, then fEc �σ ′′
E c by the reasoning in the 

proof of Lemma 1, contradicting the assumption that σ ′′ is not E-resilient. Hence C′′ ∩
{p ∈ 	(�) : p(E) ≥ yE} = ∅ as required. �

Define ρE : � ⇒ [0, 1] as follows40:

ρE(C) =
⎧⎨
⎩

{
xσ
E : D−1(C) ∩ σ �= ∅, σ E − resilient

}
if ∃E − resilient σ

s.t. D−1(C) ∩ σ �= ∅
yσ
E otherwise

(14)

Since xσ ′
E ≥ xσ ′′

E whenever σ ′ ≤ σ ′′ with σ ′, σ ′′ E-resilient, and since D respects �, ρE is 
a decreasing correspondence. By the fact that, for every E-resilient σ , �σ

E is represented by (
Cσ ′ ∩ [E,xσ ′

E ])
E

and by Claims 3 and 4, �E , defined with respect to ρE as in (5), represents 
�E . Hence �E is a confidence update of �, as required.

Necessity of the axioms is straightforward, given, in the cases of Probability Consistency and 
Null consistency, the insights involved in Lemma 1 and its proof. �
Proof of Proposition 1. Lemma 1 implies that xσ

E is uniquely defined under clause 1, which 
immediately implies the second part of the uniqueness clause, taking C to be the D in the proof 
of the Theorem. As for the first part, it follows from the fact that φE in the proof of Theorem 2
was defined to take the highest admissible value for each stakes level, and the fact that there a 
unique highest admissible value for each stakes level, by Lemma 1. �
Proof of Proposition 2. Use the same reasoning as the proof of Theorem 2 and Proposition 1, 
relying on the following strengthening of Lemma 1.

Lemma 2. Under the conditions in Theorem 2 and Strong Probability Consistency, for all 
non-null E, F ∈ � and for every stakes level σ that is both E- and F -resilient, there exists 
xσ ∈ [0, 1] such that �σ

E and �σ
F are represented according to (13) with xσ . (I.e. V σ

E (f ) =

40 Recall from Section 2.3 that stakes levels are defined as sets (equivalence classes) of acts.
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minp∈(Cσ ∩[E,xσ ])E Epu(f ) represents �σ
E and V σ

F (f ) = minp∈(Cσ ∩[F,xσ ])F Epu(f ) represents 
�σ

F .) Moreover, the uniqueness of xσ is as in Lemma 1.

Proof. The proof employs the same reasoning as the proof of Lemma 1, with the definition of 
cases by (for instance) “there exists f ∈ A and c ∈ Ac with fEc ∼σ

E c but fEc �σ c such that 
there exists e ∈ Ac with e � c and fEe �σ c” replaced by “there exists f ∈ A and c ∈ Ac with 
fEc ∼σ

E c, fEc �σ c and fEe �σ c for some e ∈ Ac with e � c, or with fF c ∼σ
F c, fF c �σ c

and fF e �σ c for some e ∈ Ac with e � c” (and similarly for the other cases). ��
Proof of Proposition 3. Fix a non-null event E, and let �E , respectively �′

E be the confidence 
rankings and DE and D′

E the cautiousness coefficients representing �E and �′
E and obtained 

by confidence update according to Theorem 2. Let φE and φ′
E be as defined prior to Claim 2 in 

the proof of Theorem 2 for decision makers � and �′ respectively. By (Hill, 2013, Thm 2 and 
the arguments used in its proof), (i) iff for every stakes level σ that is E-resilient according to 
�, D′

E(f ) ⊇ DE(f ) for every f ∈ σ . Note that it follows that any such stakes level is also E-

resilient according to �′. Since, by Theorem 2 and its proof, DE(f ) = (
D(f ) ∩ [E,φE(σf )])

E
, 

and similarly for D′
E(f ), the previous containment holds iff φE(σ) ≥ φ′

E(σ ) for every such 
stakes level σ . By the definition of the maximal correspondences ρE and ρ′

E representing the 
updates, this holds iff (ii), as required. �
A.2. Proofs of other results

Proof of Proposition 4. As is well-known (Hammond, 1994), when the state space is finite, 
pCPS is equivalent to a sequence (p1, . . . , pn) of (ordinary) probability measures, with disjoint 
supports, in the following sense: for every E1, E2 ∈ � with E2 �= ∅, pCPS(E1/E2) = pj (E1/E2)

where pj (E2) �= 0 and pk(E2) = 0 for all k < j . Define the confidence ranking �(pCPS) =
{{pi : i ≤ k} : k = 1, . . . n}. This is a well-defined min-closed confidence ranking. Taking, for 
each E ∈ �, ρE with ρE(C) = 0 for all C ∈ �(pCPS), it is clear that, for every E ∈ �, the confi-
dence update �(pCPS)E = {{pi(•/E)} : pi(E) > 0}, whose centre p�(pCPS)E

= pj (•/E) where 
pk(E) = 0 for all k < j . Hence p�(pCPS)E

= pCPS(•/E), and the confidence update exhibits the 
same conditional probabilities are the conditional probability system pCPS , as required. �
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