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Abstract

This paper develops and defends a new approach to belief aggregation, involv-
ing confidence in beliefs. It is characterised by a variant of the Pareto condition
that enjoins respecting consensuses borne of compromise. Confidence aggregation
recoups standard probability aggregation rules, such as linear pooling, as special
cases, whilst avoiding the spurious unanimity issues that have plagued such rules.
Moreover, it generates a new family of probability aggregation rules that can faith-
fully accommodate within-person expertise diversity, hence resolving a longstanding
challenge. Confidence aggregation also outperforms linear aggregation: the group
beliefs it provides are closer to the truth, in expectation. Finally, confidence aggre-
gation is dynamically rational: it commutes with update.

Keywords: Belief aggregation, confidence in beliefs, Pareto principle, linear pooling,

spurious unanimity, expertise, consensus, model averaging, model misspecification.

JEL codes: D70, D81.

∗Acknowledgements and thanks to be added.
†1 rue de la Libération, 78351 Jouy-en-Josas, France. E-mail: hill@hec.fr.

1



Brian Hill Confidence, consensus and aggregation

1 Introduction

How should a collection of honest and well-intentioned experts’ beliefs be aggregated into

a set of group judgements? Doubtless the most popular proposal in the economic, statis-

tics, psychology and risk analysis literatures is linear pooling, which takes a weighted

average of probabilistic beliefs. It is based on a principle of consensus preservation:

any consensus in beliefs concerning a particular issue, or in preferences depending on

that issue, is preserved in the group beliefs or preferences. This issue-wise consensus

preservation is formulated by the Pareto principle, underpinning some preference-based

axiomatisations of linear pooling (Mongin, 1995), as well as of generalisations to non-

Bayesian decision models (Crès et al., 2011; Danan et al., 2016). However, it has recently

come under increasing criticism.

One central problem with linear pooling as a belief aggregation mechanism comes in

examples where there is unfounded consensus on an issue, or spurious unanimity (Mon-

gin, 2016). In such cases, linear pooling respects the issue-wide consensus, despite its

spuriousness. For instance, consider a (two-member) central bank committee pondering

whether to make a given interest rate rise. The committee agree that the determin-

ing factor in the choice is whether the rise has a limited (negative) effect on both the

labour market and the real estate sector. Table 1 displays the two members’ probability

judgements for the rise having a limited effect on each of these sectors, and on both.

Whilst competent economists, Laura is a specialist in the labour market, whilst Ray’s

field of expertise is the real estate sector. As is clear from the table, whilst they disagree

significantly on the effect of the rise on each sector, they agree on the probability that

it will have a limited effect on both sectors.

The linear pool of their judgements is given in the final row of the table. Irrespective

of the weights assigned to the individuals, it preserves their common judgement on the

effect on both sectors—a consequence of the Pareto principle in this context. However,

Labour Real Estate Both

Laura 0.9 0.1 0.09

Ray 0.1 0.9 0.09

Linear pool 0.1 ` 0.8wL 0.9 ´ 0.8wL 0.09

Table 1: Probability that a certain interest rate has a limited effect on the sector(s) in

the top row

Results of linear pooling ppEq “ wLpLpEq ` p1 ´wLqpRpEq, with wL the weight for Laura, and

1 ´ wL for Ray.
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the agreement on this probability is spurious, resulting from the fortuitous interplay of

two fundamental disagreements. After all, Laura gives a low probability to a limited

effect on both sectors because of the low probability she assigns to a limited effect

on real estate; Ray does so because of the low probability he assigns concerning the

labour market; and they disagree on the judgements concerning labour and real estate

alone. Several authors have argued that the automatic respect of such spurious issue-

wide consensuses is unjustified (Mongin, 2016), and hence a problem for linear pooling

(Bradley, 2017; Mongin and Pivato, 2020; Dietrich, 2021). The stated aim of respecting

consensus is clearly reasonable; the problem, it seems, is that linear pooling sometimes

respects the wrong consensuses.

The example also illustrates a second, apparently distinct challenge, involving the way

linear pooling, as well as popular alternatives including geometric pooling, incorporates

expertise. It does so through the weights in the rule (wL in Table 1): each individual

is allocated a single weight, with larger weights given to individuals with more expertise

overall. It thus cannot reflect expertise differences across issues—for instance, it cannot

capture the fact that Laura has some competence on the real estate sector but more

expertise on the labour market (Genest and Zidek, 1986; French, 1985). However, in

examples such as this, involving within-person expertise diversity, one might want to

respect Laura’s opinion more on labour and Ray’s more on real-estate. Linear pooling,

like virtually all pooling rules in the literature, does not allow this.

Both challenges are significant for the committee’s decision in this example. If it

follows linear pooling and accepts the ‘spurious’ consensus that the probability of a

limited effect on both sectors is low, it would not implement the rise. By contrast, if

it considered each expert’s judgement on their respective sectors, this would suggest a

higher probability of a limited effect on both, hence allowing for the possibility of the

rise. Moreover, the decision-relevant factor—whether there is a limited effect on both

sectors—lies at the intersection of the committee members’ fields of expertise, hence

posing the problem of how to incorporate their different levels of expertise across issues.

This paper proposes a new approach to belief aggregation that incorporates respect

for consensus into rationally-founded aggregation—hence retaining the gist of the Pareto

principle—whilst avoiding commitment to unfounded or spurious consensuses. As a

byproduct and separate contribution, the approach naturally accommodates within-

person cross-issue expertise diversity.

Our approach introduces two novel insights. For the first, note that spuriousness

arises in examples where issue-level consensus is respected to the detriment of other ele-

ments of agents’ states of opinion, including information, other beliefs, or reasons (Mon-

gin and Pivato, 2020; Dietrich, 2021; Bommier et al., 2021). One could add evidence to
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the list: presumably Laura’s and Ray’s similar judgements on the ‘Both’ proposition are

based on different evidence, supporting the low probabilities they assign to Real-Estate

and Labour respectively. This suggests that an agent’s declared probability concerning

an event does not exhaust her relevant judgements pertaining to that event. As such,

it echoes a position defended in the literature on rational belief representation, decision

and learning: a probability judgement does not fully capture all relevant aspects of a

rational agent’s state of belief concerning an event. For instance, Hill (2013, 2019b) has

argued that a rational belief state also comprises of the agent’s confidence in beliefs. To

the extent that one’s confidence in a belief is related to one’s evidence, information and

reasons underlying it (Hill, 2019a), confidence could serve as an overarching concept to

refer to what is being overlooked by linear pooling in these spuriousness examples.

Our second insight concerns consensus: if issue-wise consensus preservation is prob-

lematic, what sort of consensus should be preserved instead? We recognise that consensus

typically requires compromise. One often speaks of achieving a consensus, through which

agents may compromise on some opinions to retain the possibility of others. They may

‘put aside’ some beliefs to focus on others. Under this conception, a consensus is not

a single issue on which people happen to have the same beliefs, but a common ground

comprising of a coherent set or ‘corpus’ of positions acceptable to all. More precisely,

such a corpus-level consensus is a coherent set of judgements, each emanating from some

member of the group, and such that each member would be ready to ‘set aside’—or

compromise—any potential disagreements in the interests of the consensus. Note that a

corpus may be more or less complete: the associated judgements need not settle every

question. It seems reasonable that the judgements in any such consensus be preserved in

the group’s beliefs, or at least that they not be ruled out. In other words, the probability

judgements that should be preserved are those that belong to corpus-level consensuses—

in the sense that they fit into coherent sets of consensus positions encompassing all the

relevant issues.

But what compromises would agents be willing to make to achieve consensus? In

reply, our approach weaves together the two previous insights by invoking confidence as

a determinant of the propensity to compromise. A rational individual is surely more

concerned in seeing a judgement held with high confidence respected in the final group

beliefs, even if that is at the expense of some lower-confidence beliefs. This suggests

that confidence determines compromise via the following maxim: the more confident an

individual is in a belief, the less willing she is to compromise on that belief.

The first contribution of this paper is to propose an aggregation rule for confidence

in beliefs that preserves corpus-level consensus judgements, where consensuses are borne

of compromise regulated by confidence according to this maxim. We provide preference-
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based axiomatic foundations for the rule, showing that it is characterised by a Pareto-

style axiom, which essentially states that judgements in such consensuses are preserved.

Our second main set of contributions concerns the aforementioned challenges to linear

pooling. We first show that popular probabilistic opinion pooling rules can be reproduced

as special cases of confidence aggregation, corresponding to particular assumptions on

individuals’ confidence in their beliefs. This sheds light on the comparison with existing

approaches: whereas classic pooling rules are essentially based on assumptions about

what individuals are willing to compromise to arrive at group beliefs, our approach uses

precisely the compromises provided by the individuals themselves, as encoded in the

confidence they have in their beliefs.

This analysis also sets the stage for the integration of expertise diversity across issues

within individuals. An individual with more expertise on one issue than another would

be justified in having more confidence ceteris paribus in her beliefs concerning the former

issue than the latter. Drawing on this insight, we explore the consequences of our ag-

gregation rule when applied in cases involving different degrees of confidence—reflecting

differing expertise—according to the issue under consideration. It yields group judge-

ments that more strongly respect an individual’s judgement on the issues on which she

is an expert, and less so on those on which she has less expertise. Beyond establishing

that our approach resolves the expertise challenge, these examples show that it does

not respect spurious issue-level consensuses resulting from ignoring expertise differences.

Hence it resolves the spurious unanimity challenge too.

In an application of our approach, we use confidence aggregation to generate a new

family of probabilistic belief aggregation rules that can accommodate within-person ex-

pertise diversity. To our knowledge, these are the first such rules in the literature, and

certainly the first to have received preference-theoretic axiomatic foundations.

Our third contribution is to develop a preliminary comparative appraisal of the per-

formance of confidence aggregation, as measured by how correct the resultant group

beliefs are in expectation. Confidence is a topic of intense research in Cognitive Psy-

chology, where a significant literature has shown that, in many domains, a person’s

confidence in her judgement correlates positively with the judgement’s correctness (Ko-

riat, 2012a; Fleming and Lau, 2014; Rahnev et al., 2020). Incorporating such findings

into a toy model of the cognitive processes underlying confidence formation, we show

that confidence aggregation leads, in expectation, to group beliefs that are more correct

than those provided by linear pooling, according to standard measures such as the Brier

score. The essential insight is that confidence assessments convey useful information

about the chances that a probability judgement is correct and, while confidence aggre-

gation mobilises this information, classic pooling rules ignore it, tacitly imposing their
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own ‘automatic’ concept of confidence.

In a final contribution, we briefly consider the issue of dynamic rationality, which is

typically evoked to justify the geometric pooling rule (Genest and Zidek, 1986; Dietrich,

2021). Drawing on a recently proposed account of rational update for confidence in belief

(Hill, 2022), we show that confidence aggregation fully satisfies dynamically rationality

with respect to this update, in the standard sense: the two commute.

The paper is structured in a modular fashion: apart from Section 2, which sets out

the framework and the aggregation rule, the sections can be read in any order or skipped

at will. Section 3 shows how confidence aggregation overcomes the challenges to linear

pooling, and contains a serious of examples that illustrate the approach. In particular,

Section 3.1 establishes that standard pooling rules can be recovered as a special case

of confidence aggregation, whereas Sections 3.2 and 3.3 illustrate how it can faithfully

accommodate within-person expertise diversity. Section 3.3 also develops a new family

of probability aggregation rules tailored to cases of within-person expertise diversity.

Section 4 contains a preference-based characterisation of confidence aggregation. Section

5 compares the performance of confidence aggregation to that of linear pooling, and

Section 6 considers the topic of dynamic rationality. Section 7 discusses remaining related

literature and outstanding issues, including consequences of our approach for aggregation

of and robust decision with models. Proofs and supplementary material are contained

in the Appendices.

2 Confidence aggregation

2.1 Setup: Beliefs and Confidence

Let Ω be a non-empty set of states. For the purposes of exposition, Ω can be taken

to be finite, though extension to the infinite case is straightforward. Subsets of Ω are

called events and ∆ is the set of probability measures over Ω. O Ď R is an ordered

set of confidence levels, endowed with the (strict) order ą inherited from R. ě is the

corresponding weak order. No general assumptions will be made about the cardinality of

O in this paper: we only assume that, if O is not finite, then it is an interval in R, with

the associated topology.1 In the infinite case, all functions mentioned will be assumed

to be continuous. We shall use vector notation to denote tuples of confidence levels,

i.e. elements of On such as o “ po1, . . . , onq. With slight abuse of notation, we use ě

to denote the dominance relation on such profiles: o ě o1 if and only if oi ě o1
i for all

i “ 1, . . . , n.

We adopt the representation of confidence in beliefs proposed by Hill (2013); see Hill
1It follows that ě is continuous: its upper and lower contour sets are closed.
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(2019b) for a detailed defence of this approach as particularly appropriate for normative

applications. The belief state of an agent—incorporating confidence—is represented by a

confidence ranking: a function c : O Ñ 2∆zH that is increasing in the containment order

on sets.2 For each confidence level o, cpoq is the (non-empty) set of priors representing the

beliefs held with confidence at least o. If O is infinite, we assume that c has the following

upper semicontinuity property: for any decreasing sequence oi P O with oi Ñ o, cpoq “
Ş

i cpoiq. Hill (2013, 2016) axiomatise preferences involving confidence rankings satisfying

a stronger continuity property. For any o P O and function c : to1 P O : o1 ě ou Ñ 2∆zH,

the natural extension of c, denoted c, is the confidence ranking defined by cpo1q “ cpo1q

for o1 ě o and cpo1q “ cpoq otherwise.

A confidence ranking c is centred if, for some o P O, cpoq is a singleton. By the

monotonicity property of confidence rankings, if c is centred, there is a unique p P ∆

such that cpoq “ tpu for some o; we call this the centre of the confidence ranking. As

discussed in Hill (2013), centred confidence rankings represent Bayesians with confidence:

agents who assign a precise probability to every event (namely, that given by p), though

may have more confidence in some judgements than others. A confidence ranking c is

convex if, for every o P O, cpoq is a convex set; it is closed if, for every o P O, cpoq is a

closed set. For a confidence ranking c, its convex closure cclconv is defined in the natural

way: for all o P O, cclconvpoq “ clconvpcpoqq, where clconvpXq for a set X Ď ∆ is the

closure of the convex hull of X.

The previous definition of confidence rankings generates two alternative equivalent

representations. Firstly, note that each probability judgement—judgements such as ‘the

probability of A is greater than x’, ‘A is probabilistically independent of B’ etc.—

corresponds to a subset of ∆, namely the set of measures where the judgement holds.

Noting this, the function conf : 2∆ Ñ O X tHu, defined by:

confpPq “

$

&

%

H
Ş

oPO cpoq Ę P

max to : cpoq Ď Pu o{w
(1)

picks out, for any probability judgement P, the agent’s confidence in P—the largest

confidence level at which P is held if it is held, and nothing otherwise. The confidence

representation also generates a unique implausibility function ι : ∆ Ñ O X H defined

by ιppq “ min to P O : p P cpoqu whenever the set is non-empty, and ιppq “ H otherwise.

This yields the ‘implausibility’ of each probability measure, in terms of the smallest

confidence level such that the probability measure doesn’t contradict the judgements

held with that much confidence.3

2I.e. for all o ě o1, cpoq Ě cpo1
q.

3Note that c can be defined from ι: cpoq “ tp P ∆ : ιppq ď ou.
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We consider a group of n individuals, indexed by i; individual 0 is the group. A tuple

pc1, . . . , cnq of confidence rankings one for each individual, where ci is the confidence

ranking of individual i, is called a profile. The group confidence ranking is denoted

c0. As noted, this can equivalently be written as a profile of implausibility functions

pι1, . . . , ιnq and group implausibility function ι0.

2.2 Consensus and confidence aggregation

To introduce our the notion of consensus, consider a tuple o “ po1, . . . , onq of confidence

levels and a profile pc1, . . . , cnq of confidence rankings. If
Ş

i c
ipoiq “ H, then the indi-

viduals’ respective beliefs at the confidence levels o are in contradiction. By contrast, if
Ş

i c
ipoiq ‰ H they are not: there is a consistent overall consensus position, characterised

by
Ş

i c
ipoiq, which incorporates the beliefs of each individual at the assigned confidence

level. In other words, when
Ş

i c
ipoiq ‰ H, it represents a corpus-level consensus, in

which a probability judgement holds if and only if it is held by at least one individual at

the confidence level specified by o.4

In the consensus characterised by
Ş

i c
ipoiq, individuals are not compromising on the

beliefs they hold with confidence o or higher: these are all retained. Rather, each in-

dividual i compromises by only putting her beliefs held with confidence oi or more ‘on

the table’, and ignoring any lower-confidence beliefs. To that extent, the compromises

involved in such a consensus are reflected in the confidence level each individual uses to

determine the beliefs they contribute. When higher confidence levels are involved, more

compromise is required by the individuals. However, this means that the resulting con-

sensus is more robust: it only contains judgements on which individuals are particularly

unwilling to compromise.

There may be several such consensuses, involving different compromises—different

levels of confidence required in particular individuals’ beliefs for them to be taken into

account. To translate them into levels of confidence deemed relevant for the group, we

use a confidence-level aggregator: an operator b : On Ñ O that is monotonic in each

argument, i.e. such that for every pair of profiles of confidence levels with o ě o1,

bo ě bo1. For a consensus obtained with individual confidence levels o, the confidence

level aggregator picks out the group confidence warranted in the associated consensus

judgements. Monotonicity reflects the fact that the higher the individual confidence

levels o behind the consensus, the higher the corresponding group confidence level. Since

higher individual confidence levels translate into a consensus involving more compromise,

but that is also more robust, this seems reasonable.
4For instance, for a probability judgement P, if cipoiq Ď P for some individual i—so she holds the

judgement at this level of confidence—then clearly
Ş

i c
i
poiq Ď P—it holds in the consensus.
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In our preference-based characterisation, the relevant confidence-level aggregator will

be endogenous; however, it may be instructive to consider some examples.

Example 2.1 (Affine aggregator). An aggregator of the form bo “
řn

i“1wioi ` χ for

wi P Rą0, χ P R is called an affine aggregator.

Example 2.2 (Average aggregator). The special case of the affine aggregators with the

same weights are average aggregators: bo “
ř 1

noi ` χ for χ as above.

Example 2.3 (Generalised Maximum aggregator). An aggregator of the form bo “

max tψipoiqu, where ψi : O Ñ O (for i “ 1, . . . , n) are increasing transformations of

confidence levels, is called a generalised maximum aggregator.

Example 2.4 (Maximum aggregator). The special case of the generalised maximum ag-

gregator with the same transformation for all individuals is the maximum aggregator,

defined by bo “ ψpmax toiuq, where ψ : O Ñ O is as above.

We can now introduce our confidence aggregation rule. Since, in the general setup

used in this paper, agents’ beliefs are represented by confidence rankings, a suitable ag-

gregation rule needs to relate the profile of individual confidence rankings with a group

confidence ranking. Each confidence-level aggregator b generates such a rule, in the form

of the function Fb, taking profiles of confidence rankings into confidence rankings, de-

fined as follows. For every profile pc11, . . . , c1nq of confidence rankings, Fbpc11, . . . , c1nq “

Φbpc11, . . . , c1nq, where, for every o P O such that
Ť

o:boďo

Ş

i c
1ipoiq ‰ H

Φbpc11, . . . , c1nqpoq “
ď

o:boďo

n
č

i“1

c1ipoiq (2)

For the purposes of the preference-based characterisation in Section 4, where we

follow the economic literature and work in a single-profile setup (e.g. Mongin, 1995;

Gilboa et al., 2004; Crès et al., 2011; Danan et al., 2016), this yields the following

definition of consensus-preservation aggregation for a fixed confidence ranking c0 and

profile pc1, . . . , cnq.

Definition 1. The group confidence ranking c0 is a consensus-preserving confidence ag-

gregation of pc1, . . . , cnq if there exists a confidence-level aggregator b such that c0 “

Fbpc1, . . . , cnq. In this case, we say that c0 is a consensus-preserving confidence aggre-

gation of pc1, . . . , cnq under b.

Under consensus-preserving confidence aggregation—or confidence aggregation for

short—the group forms judgements with confidence level o by looking at the consensuses

considered to warrant a confidence level o or less according to b. More specifically, it

holds a probability judgement with confidence o if that judgement holds for all such
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consensuses: this is guaranteed by the union in Eq. (2). In that sense, it preserves

those judgements that hold unanimously across the appropriate consensuses. In the

resulting group beliefs, none of the judgements held at confidence level o contradict the

corresponding consensus judgements, though if two consensuses contradict each other on

a judgement, neither judgement will be retained in the group beliefs with confidence o.

A noteworthy consequence of this aggregation procedure is that group and individual

confidence in a judgement co-vary. More precisely, because of the monotonicity of b, the

group confidence in a judgement is higher when the individual beliefs feeding into the

relevant consensuses are held at higher confidence levels. This appears to be a reasonable

property for a procedure for aggregating beliefs and confidence.

The use of consensuses corresponding to confidence levels less than and equal to o

ensures that c0 is a well-defined confidence ranking, without requiring any assumptions

on b. As discussed in Appendix A, it can be replaced by the union over consensuses

with confidence level equal to o for various notable families of b, including those in the

examples above. Note finally that, by the definitions above, the previous notion can be

formulated in terms of implausibility functions (Proposition 3, Appendix B.1): c0 is a

consensus-preserving aggregation of pc1, . . . , cnq under b if and only if, for all p P ∆

ι0ppq “ bpι1ppq, . . . , ιnppqq (3)

3 Confidence, probability aggregation and expertise diver-

sity

In this section, we consider the challenges to the linear pooling rule for probability

aggregation, showing that our confidence aggregation proposal is not only capable of

surmounting them, but does so very naturally. We first show that standard probability

aggregation rules can be recovered as special cases of confidence aggregation. More-

over, they correspond to particular assumptions about individuals’ confidence in their

probability judgements. We then consider applications of confidence aggregation that

do not make such assumptions, showing that, once one frees oneself from them, the rule

naturally resolves both the spurious unanimity and the within-person cross-issue exper-

tise diversity challenges. This discussion also contains several examples of confidence

aggregation, which provide illustrations of the approach.

3.1 Recovering probability aggregation from confidence aggregation

Probability aggregation takes as input a profile of probability measures p “ pp1, . . . , pnq.

To connect pooling rules operating on such profiles with confidence aggregation, recall
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that each centred confidence ranking is naturally associated with a unique probability

measure, namely its centre (Section 2.1). Conversely, given a probability measure, there

are several ways of generating a centred confidence ranking with the specified proba-

bility measure as its centre. The definition below provides some examples. Here and

throughout this section, we take O “ r0, 1s.

Definition 2. Let p P ∆ be a probability measure, ω1 P Ω and Ω1 “ Ωztω1u. Then, for

every w P p0, 1q:

1. If the state space Ω is finite, the w Euclidean confidence ranking generated by p is

defined by cpoq “
␣

q P ∆ : w
ř

ωPΩ1pqpωq ´ ppωqq2 ď o
(

.

2. The w relative entropy confidence ranking generated by p is defined by cpoq “

tq P ∆ : wRpq}pq ď ou, where Rpq}pq “ ´
ř

qpωqplog ppωq

qpωq
q is the Kullback-Leibler

divergence, or relative entropy.

3. The w reverse relative entropy confidence ranking generated by p is defined by

cpoq “ tq P ∆ : wRpp}qq ď ou, where Rpp}qq “ ´
ř

ppωqplog qpωq

ppωq
q is the relative

entropy.5

These examples hardly exhaust the ways of generating centred confidence rankings

from probability measures. They do illustrate an important way of doing so: by taking

the sets in the confidence ranking to be those which are closer to the specified probability

measure under some distance on ∆ (be it a metric, as in the first case, or a divergence

as in the other cases).

These provide the following possibility for using consensus-preserving confidence ag-

gregation to aggregate probability measures. Given a profile of probability measures,

take a profile of confidence rankings generated by them, say under one of the generation

procedures just illustrated. Picking a confidence-level aggregator, confidence aggrega-

tion can be applied on them, to produce a confidence ranking, call it c. This naturally

identifies the ‘best-guess’ set of probability measures, namely minoPO cpoq. If c is centred,

then this is in fact a singleton, so the procedure yields a unique probability measure.

This schema is summarised in Figure 1.

The following result compares this method of aggregating probability measures to

standard pooling rules.

Theorem 1. Let p “ pp1, . . . , pnq P ∆n be a profile of probability measures. Then, for

every n-tuple of weights pw1, . . . , wnq, with wi ě 0 for all i:
5Recall that the relative entropy is not symmetric.
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Tuple of conf. rankings c Conf. ranking c

Tuple of probabilities p Probability p

conf. aggregation

centregenerate

derived pbty aggregation

Figure 1: Using confidence aggregation to generate probability aggregation rules

1. if c is the consensus-preserving confidence aggregation under an average confidence-

level aggregator of wi Euclidean confidence rankings generated by pi (for each i),

then its centre p is the linear pool of pi, with weights wi
řn

i“1 w
i : p “

ř wi
řn

i“1 w
i pi;

2. if c is the consensus-preserving confidence aggregation under an average confidence-

level aggregator of wi relative entropy confidence rankings generated by pi (for each

i), then its centre p is the geometric pool of pi, with weights wi
řn

i“1 w
i : ppωq9

ś

p

wi
řn
i“1

wi

i pωq

for all ω P Ω;

3. if c is the consensus-preserving confidence aggregation under an average confidence-

level aggregator of wi reverse relative entropy confidence rankings generated by

pi (for each i), then its centre p is the linear pool of pi, with weights wi
řn

i“1 w
i :

p “
řn

i“1
wi

řn
i“1 w

i pi;

Hence the two most prominent pooling rules in the probability aggregation litera-

ture in fact correspond to special cases of confidence aggregation, where the probability

measures involved in the rules are the centres of the individuals’ and group’s confidence

rankings. Figure 2b provides a graphical illustration of this result on the example from

the Introduction, which will be further analysed below (Example 3.1). Central to this

result is the use of specific confidence rankings for the individuals in the group. As is

clear from the comparison of the clauses in the Theorem, the ‘shape’ of the confidence

ranking determines the pooling rule reproduced. In this sense, the use of, say, linear

pooling, can be thought of as amounting to the assumption that individuals’ confidence

rankings are wi Euclidean or wi reverse relative entropy.6

This observation brings a new perspective on the evaluation of these pooling rules.

Assessing the normative credentials of linear pooling, for instance, is equivalent to adopt-

ing the confidence framework and appraising the ‘rationality’ of the wi Euclidean or wi

6Given that, as noted above, a distance and a probability measure generate a confidence ranking,

Theorem 1 is technically related to a literature characterising aggregation rules in terms of distances in

probability space (e.g. Abbas, 2009; Kemeny, 1959 initiated a similar approach for preference aggrega-

tion). This literature takes the distances as given, whereas we consider them as purported representations

of the agents’ belief states—and, as shall be clear below, evaluate them as such.
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Low Conf.

High Conf.0.9

p(L)

p(R)

0.9

0.1

0.1

p(L) >

0.9− ϵ

p(R) <

0.1− ϵ

(a) Illustration of Proposition 5.
Note: The blue area represents the probability
judgement that ppLq is within ϵ of Laura’s best-
guess probability pLpLq “ 0.9; the red area rep-
resents the judgement that ppRq is within ϵ of
pLpRq “ 0.1. The confidence in these judgements
(corresponding to the largest circular set contained
in each area; Section 2.1) is the same.

Confidence

aggregation

(centre)

Low Conf.

High Conf.0.9

p(L)

p(R)

0.9

0.1

0.1

linear pool

(b) Illustration of Theorem 1.
Note: The red point is the centre of the result
of confidence aggregation applied to the two con-
fidence rankings (Theorem 1). Each point on the
dotted line is obtained by linear pooling (with some
choice of weights). This graph displays the case of
wL

“ wR; other cases produce centres lying on the
dotted line (i.e. coinciding with some linear pool).

Figure 2: Confidence rankings generated as in Theorem 1.
Note: Each graph shows the space of pairs of probability values pppLq, ppRqq for the Labour and Real
Estate events (L and R; Example 3.1). The areas (sets of probability values) enclosed by the green
circles represent the wL Euclidean confidence ranking generated by Laura’s probability pL (Definition
2): they are the projection of the confidence ranking into this space. Larger, lighter circles correspond
to higher confidence levels. The purple circles represent the wR Euclidean confidence ranking generated
by pR (Ray’s probabilities), with wR

“ wL.

reverse relative entropy methods of generating confidence rankings. More importantly,

it suggests a strategy for developing probability aggregation rules that overcomes the

challenges cited in the Introduction. If the weaknesses of linear pooling are in fact con-

nected to how rankings are generated from single probability measures, then applying

confidence aggregation with different generation methods may produce pooling rules that

avoid these problems. We now show that this strategy can be used to overcome both

the spurious unanimity and within-person expertise diversity challenges.

3.2 Representing expertise using confidence rankings

One specificity of the confidence rankings involved in Theorem 1, related to the fact

that they are based on distances in probability space, is a certain ‘neutrality’ to the

identity of the issues involved. All that counts for the confidence with which a probability

judgement is held is the distance from the centre to the closest probability measure where

the judgement doesn’t hold—independently of the issue concerned by the judgement. We

illustrate point on the example from the Introduction.

13
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Example 3.1. To formalise the example from the Introduction, consider a four-state

state space Ω “ tωLR, ωL, ωR, ωNu where ωLR (respectively, ωL, ωR, ωN ) is the state

where there is a limited effect on both the labour and real-estate sectors (resp. only the

labour market, only the real-estate sector, neither). So the event that there is a limited

effect on the labour market is L “ tωLR, ωLu and the corresponding event concerning

the real-estate sector is R “ tωLR, ωRu. Consider Laura, whose probability judgements

define the measure pL with pLpωLRq “ 0.09, pLpωLq “ 0.81, pLpωRq “ 0.01, pLpωN q “

0.09. So, for any ϵ P r0, 0.9s, she holds both the judgement that the probability of L is

greater than 0.9´ϵ, and the judgement that the probability of R is less than 0.1`ϵ. Note

that these judgements involve moving the same ‘distance’ from her best-guess probability

judgement for L (0.9) and R (0.1) respectively. Which of the judgements is she more

confident in?

Proposition 5 (Appendix B.2) shows that, under the two confidence ranking gener-

ating procedures yielding linear pooling—wL Euclidean and wL reverse relative entropy

confidence rankings—the confidence in the two judgements is the same, no matter the ϵ.

Figure 2a illustrates the intuition: given the ‘circular’ shape of the sets of priors in the

confidence ranking, the highest confidence levels at which the judgements hold are the

same. Hence the confidence assigned to a judgement that ‘deviates’ from the best-guess

probability by a certain amount depends, in this example, only on the extent of the

deviation, but not on the issue concerned by the judgement—labour or real-estate.

The confidence rankings generating standard pooling rules thus represent individuals

who have the same confidence in the probability judgements encoded in their probability

measure pi, no matter the issues that the judgements concern. As such, these rankings fail

to properly capture an individual who has different confidence in judgements pertaining

to different issues. The previous example is arguably such a case. As discussed in the

Introduction, Laura has more expertise on one issue (labour) than another (realestate).

But an expertise difference typically translates into a difference in confidence: ceteris

paribus she will have more confidence in her judgements concerning the issue of her

expertise than in those that do not. The confidence rankings discussed above, based

on (classic) distances on the probability space, assume that there is no within-person

cross-issue difference in expertise.

This observation, combined with Theorem 1, brings a new perspective on the prob-

lem that linear pooling and other standard pooling rules have with within-person ex-

pertise diversity. The source of the problem isn’t so much the underlying rule in our

reconstruction—confidence aggregation—but the use of confidence ranking generating

procedures which de facto assume away within-person expertise differences. It thus sug-

gests that confidence aggregation applied to confidence rankings that do correctly capture

14
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expertise differences could incorporate more faithfully such differences into the group

beliefs. We now confirm this suggestion, and show how it can produce new expertise-

sensitive probabilistic belief aggregation rules.

For presentation, we focus on issues that can be related to events in Ω; see Example

3.5 for a generalisation. Consider a sequence P1, . . .Pm of partitions of Ω; each partition

could be thought of as an issue. For instance, a partition could just be an event E and

its complement: the issue is whether the event holds. Another partition could have cells

corresponding to the event that a parameter takes a given value: the issue is the value

of the parameter.

Recall that the set of probability distributions on Ω is ∆ “ ∆pΩq; for any partition Pj

of Ω, ∆pPjq is the set of probability distributions on Pj . For any p P ∆ and partition Pj ,

let p|Pj P ∆pPjq be the projection of p into ∆pPjq. For a set of partitions P1, . . .Pm, let

PP1,...Pm “ tpp|P1 , . . . , p|Pmq P
śm

k“1∆pPkq : p P ∆u, i.e. the set of sequences of proba-

bility measures on the partitions, each of which is derived from some probability measure

on Ω. Note that, since projection is a linear map, PP1,...Pm is a convex set. As shall be

illustrated shortly, this set is typically defined by a set of inequalities. We say that a se-

quence of partitions P1, . . .Pm is rich if, for any pp1, . . . , pmq P
śm

j“1∆pPjq, there exists

at most one p P ∆ with p|Pj “ pj for all j “ 1, . . . ,m. When the sequence of partitions is

rich, then each tuple of probability measures, one on each partition, determines at most

one probability measure over the whole space.

Example 3.2. Consider the example from the Introduction, with the state space and

events defined in Example 3.1. Each of the three issues mentioned in the example

corresponds to a two-element partitions: PL “ tL,Lcu (whether there will be an effect

on the labour market), PR “ tR,Rcu (concerning real estate), PB “ tB,Bcu, where

B “ tωLRu “ LXR (whether there will be an effect on both).

Each probability measure p over tL,Lcu is determined by ppLq, and similarly for

the other partitions. So each tuple ppL, pR, pBq P ∆pPLq ˆ ∆pPRq ˆ ∆pPBq is fully

characterised by the vector ppLpLq, pRpRq, pBpBqq P r0, 1s3. The set PPL,PR,PB is defined

by the following linear inequalities imposed by the fact that B “ LXR: for any p P ∆

ppLq ě ppBq

ppRq ě ppBq

1 ě ppLq ` ppRq ´ ppBq (4)

Using the vector notation, justified as observed above, PPL,PR,PB is just the set of vectors
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q P r0, 1s3 satisfying the constraint Aq ď r where

A “

¨

˚

˚

˝

´1 0 1

0 ´1 1

1 1 ´1

˛

‹

‹

‚

, r “

¨

˚

˚

˝

0

0

1

˛

‹

‹

‚

Clearly each q satisfying this constraint determines a unique probability measure on

Ω “ tωLR, ωL, ωR, ωNu, so the sequence of partitions PL,PR,PB is rich.

A (statistical) distance d is the specification, for each partition P (including Ω itself),

of a function d : ∆pPq2 Ñ r0,8s such that: dpq, pq “ 0 if and only if p “ q; and dp‚, qq

is a lower semicontinuous function, for all q P ∆pPq.7 Clearly, many metrics (like the

Euclidean metric with Ω finite) and divergences (such as relative entropy) are distances.

A distance d is convex if, for every P and p P ∆pPq, the function dp‚, pq is strictly convex.8

It is straightforward to check that the Euclidean distance, as well as the two distances

defined from the relative entropy—d1pq, pq “ Rpq}pq and d2pq, pq “ Rpp}qq—are convex.

We now define a family of centred confidence rankings that can capture cross-issue

expertise diversity.

Definition 3. Let P1, . . .Pm be partitions of Ω and d be a distance. For any probability

measure p P ∆, and any vector w “ pw1, . . . , wmq of positive real-valued weights, the w

d-confidence ranking generated by p is defined as: for each o P O,

cpoq “

#

q P ∆ :
m
ÿ

j“1

wjdpq|Pj , p|Pj q ď o

+

(5)

For such confidence rankings, at each confidence level, the set of priors are those for

which the weighted sum of the distances from the centre probability, taken over all the

partitions (or issues), is less than a certain value. Note that the confidence rankings

in Definition 2 are special cases of w d-confidence rankings involving a single partition

P “ Ω and particular choices of distance d.

The issue-specific weights in w d-confidence rankings can capture an agent’s relative

expertise across issues, with higher weights on a given issue translating more confidence

in judgements concerning it. This can be seen on a continuation of our example.

Example 3.3. Consider pL as defined in Example 3.1, and suppose that Laura’s con-

fidence ranking is generated by it with Euclidean distance and vector of weights wL “

7Throughout, we take the weak˚ topology on ∆pPq (Aliprantis and Border, 2007). Note that one

can imagine conditions relating the d functions across partitions; no such conditions are required for the

developments below.
8That is, for all q, r P ∆pPq with q ‰ r and α P p0, 1q, dpαq ` p1 ´ αqr, pq ă αdpq, pq ` p1 ´ αqdpr, pq.
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pwL
L, w

L
R, w

L
Bq. I.e. Laura has the confidence ranking:

cLpoq “

$

&

%

q P ∆ :
ÿ

j“tL,R,Bu

wL
j pqpjq ´ pLpjqq2 ď o

,

.

-

(6)

The weights reflect Laura’s relative confidence in judgements about L, R and B.

Larger weights involve a higher ‘penalty’ for deviating too much on the issue in question,

as compared to other issues, so ceteris paribus, the agent is represented as having more

confidence in judgements concerning issues with higher weights. This is borne out by

the following proposition.

Proposition 1. Suppose that wL
L ą wL

R and 0.8wL
B ă wL

L ´ wL
R. Then, for every ϵ P

r0, 0.9s, and L “ tp P ∆ : ppLq ě 0.9 ´ ϵu, R “ tp P ∆ : ppRq ď 0.1 ` ϵu, there exists

o P O with cLpoq Ď L but cLpoq Ę R.

Whenever wL
B is not too large, if wL

L ą wL
R, then any judgement that the probability

of L is higher than a deviation ϵ below its best-guess probability 0.9 is held with more

confidence than a judgement about R that involves the same divergence ϵ from its best-

guess probability 0.1. Figure 3a illustrates the intuition: when wL
L ą wL

R, the sets in

the confidence ranking have an ‘elliptical’ shape which is thinner along the L dimension,

hence translating higher confidence in judgements on this issue. So wL
L ą wL

R reflects

higher confidence ceteris paribus in judgements about the labour market as compared to

the real estate sector, and would be a natural assumption for Laura’s confidence ranking,

given her expertise. The clause concerning wL
B is related to the constraints that a given

value of ppBq places on the possible values of ppLq and ppRq, as will be discussed shortly.

If Laura can be naturally represented by a confidence ranking of the form (6), Ray can

be represented with a similar confidence ranking, centred on pR (where where pRpωLRq “

0.09, pRpωLq “ 0.01, pRpωRq “ 0.81, pRpωN q “ 0.09), with weights wR “ pwR
L , w

R
R, w

R
Bq

where wR
R ą wR

L , translating his relative expertise in real estate.

Remark 1. For future reference, it is worth noting an alternative way to express cLpoq.

For each confidence level o, the map of cLpoq into the space ∆pPLq ˆ ∆pPRq ˆ ∆pPBq

can be written, using the vector notation introduced in Example 3.2, as:

cLpoq “
␣

q P r0, 1s3 : pq ´ pLqTDLpq ´ pLq ď o
(

(7)

where

pL “

¨

˚

˚

˝

0.9

0.1

0.09

˛

‹

‹

‚

, DL “

¨

˚

˚

˝

wL
L 0 0

0 wL
R 0

0 0 wL
B

˛

‹

‹

‚
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Low Conf.

High Conf.
0.9

p(L)

p(R)

0.9

0.1

0.1

p(L) >

0.9− ϵ

p(R) <

0.1− ϵ

(a) Illustration of Proposition 1.
Note: As in Figure 2a, the blue area represents
the probability judgement that ppLq is within ϵ of
Laura’s best-guess probability pLpLq “ 0.9; the red
area represents the judgement that ppRq is within
ϵ of pLpRq “ 0.1. The confidence in these judge-
ments corresponds to the largest elliptical set con-
tained in each area (Section 2.1): it is higher for
the judgement concerning L.

Low Conf.

High Conf.
0.9

p(L)

p(R)

0.9

0.1

0.1

linear pool

Confidence

aggregation

(centre)

(b) Illustration of expert-sensitive pooling (Ex-
ample 3.4).
Note: The red point is the centre of the re-
sult of confidence aggregation applied to the two
confidence rankings, which coincides with expert-
sensitive pooling (Definition 4). The aggregate
probability of L is closer to Laura’s judgement
(pLpLq “ 0.9), and similarly for R. The dotted
line is the set of points obtained by linear pooling
(with different weights).

Figure 3: Confidence rankings generated as in Eq. (6).
Note: Each graph shows the space of pairs of probability values pppLq, ppRqq for the Labour and Real
Estate events (L and R; Example 3.1). The areas (sets of probability values) enclosed by the green
ellipses represent the projection into this space of the wL Euclidean-confidence ranking generated by
pL—i.e. Eq. (6)—with wL

L ą wL
R and wL

B low, representing Laura’s confidence in beliefs. Larger, lighter
ellipses correspond to higher confidence levels. The purple ellipses represent the wR Euclidean-confidence
ranking generated by pR (representing Ray), with wR

L ă wR
R and wR

B low.

and similarly for Ray, with

pR “

¨

˚

˚

˝

0.1

0.9

0.09

˛

‹

‹

‚

, DR “

¨

˚

˚

˝

wR
L 0 0

0 wR
R 0

0 0 wR
B

˛

‹

‹

‚

3.3 Aggregation with within-person expertise diversity

Armed with confidence rankings that capture cross-issue differences in expertise, and

hence confidence, we now consider confidence aggregation of such rankings. The follow-

ing Theorem characterises the centre of the confidence ranking obtained by confidence

aggregation with an average confidence-level aggregator.

Theorem 2. Suppose that each agent i “ 1, . . . , n has a confidence ranking of the form

(5), with distance d, centre pi and vector of positive real-valued weights wi. Then the

centre of the consensus-preserving confidence aggregation under an average confidence-

level aggregator is:
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argmin
pP∆

n
ÿ

i“1

m
ÿ

j“1

wi
jdpp|Pj , p

i|Pj q (8)

This result is an immediate corollary of the characterisation of confidence aggregation

in Eq. (3) and the observation that the confidence ranking defined in Eq. (5) can

equivalently expressed by the following implausibility function:

ιpqq “

m
ÿ

j“1

wjdpq|Pj , p|Pj q (9)

We shall examine the properties of this aggregate judgement presently. Before doing

so, we note that confidence aggregation applied to w d-confidence rankings generates a

new family of pooling rules.

To this end, let us define the function yielding the lowest-confidence set in the result

of confidence aggregation applied to wi d-confidence rankings.

Definition 4. Let P1, . . . ,Pm be a set of partitions, and d a distance. The function

F d
P1,...,Pm

: ∆n Ñ 2∆ is defined by

F d
P1,...,Pm

pp1, . . . , pnq “ argmin
pP∆

n
ÿ

i“1

m
ÿ

j“1

wi
jdpp|Pj , p

i|Pj q (10)

where wi “ pwi
1, . . . , w

i
mq is a tuple of vectors of positive real-valued weights, one for

each individual.

As yet, F d
P1,...,Pm

is not a well-defined probability aggregation rule—a rule taking a

profile of probability measures pp1, . . . , pnq P ∆ to a probability measure. Since the op-

timisation problem may have multiple solutions, F d
P1,...,Pm

may yield a set of probability

measures rather than a unique measure.

However, note that, given the previous definitions, the centre of the aggregate confi-

dence ranking (8) can equivalently be characterised as the set of probability measures p

such that pp|P1 , . . . , p|Pmq belongs to:

argmin
pp1,...,pmqPPP1,...,Pm

n
ÿ

i“1

m
ÿ

j“1

wi
jdppj , p

i|Pj q (11)

Whenever d is convex, (11) is a minimisation of a strictly convex lower semicontinuous

function on a convex set, so there is a unique minimum. So whenever P1, . . . ,Pm is rich,

(8) defines a unique probability measure in ∆. Hence, for each convex d and rich set of

issues, F d
P1,...,Pm

is single-valued. Hence we have the following Proposition.

Proposition 2. Let P1, . . . ,Pm be a rich set of partitions, and d a convex distance.

Then F d
P1,...,Pm

is a well-defined pooling rule, i.e. a function from ∆n to ∆.

19



Brian Hill Confidence, consensus and aggregation

Hence confidence aggregation generates this new well-defined pooling rule, which we

call expert-sensitive pooling. As we now show on an example, it incorporates within-

person cross-issue expertise diversity in a natural way.

Example 3.4. Suppose that Laura and Ray have the confidence rankings defined in

Example 3.3 with wL
L ą wL

R and wR
L ą wR

R. As discussed above, these rankings faithfully

reflect Laura’s higher expertise on the labour issue as compared to the real estate one,

and similarly for Ray. Since the example stipulates that Laura has more expertise in the

labour market than Ray, it is natural, in the light of the analysis of confidence rankings

of form (5), to assume that wL
L ą wR

L . Similarly, given Ray’s higher specialisation in the

real estate sector, wR
R ą wL

R.

Using the formulation of the image of these confidence rankings in ∆pPLq ˆ∆pPRq ˆ

∆pPBq (Remark 1), and integrating the constraints defining PPL,PR,PB
, as specified

in Example 3.2, the minimisation problem (11) defining the centre of the confidence

aggregation becomes:

argmin
Aqďr

ÿ

i“L,R

pq ´ piqTDipq ´ piq

where A and r are as defined above (Example 3.2).

If
´

wL
L

wL
L`wR

L

pLpLq `
wR

L

wL
L`wR

L

pRpLq

¯

`

´

wL
R

wL
R`wR

R

pLpRq `
wR

R

wL
R`wR

R

pRpRq

¯

´1 ď 0.09, then

the constraints are slack, and the solution is:

ppLq “
wL
L

wL
L ` wR

L

pLpLq `
wR
L

wL
L ` wR

L

pRpLq

ppRq “
wL
R

wL
R ` wR

R

pLpRq `
wR
R

wL
R ` wR

R

pRpRq

ppBq “0.09

Otherwise, solving the minimisation problem yields:

ppLq “

`

wL
Lp

LpLq ` wR
Lp

RpLq
˘

`
wL

B`wR
B

wL
R`wR

R

`

wL
Lp

LpLq ` wR
Lp

RpLq ´ wL
Rp

LpRq ´ wR
Rp

RpRq
˘

` 1.09pwL
B ` wR

Bq

pwL
L ` wR

L q ` pwL
B ` wR

Bqp
wL

L`wR
L

wL
R`wR

R

` 1q

ppRq “

`

wL
Rp

LpRq ` wR
Rp

RpRq
˘

´
wL

B`wR
B

wL
L`wR

L

`

wL
Lp

LpLq ` wR
Lp

RpLq ´ wL
Rp

LpRq ´ wR
Rp

RpRq
˘

` 1.09pwL
B ` wR

Bq

pwL
R ` wR

Rq ` pwL
B ` wR

Bqp
wL

R`wR
R

wL
L`wR

L

` 1q

ppBq “ppLq ` ppRq ´ 1

where, as specified above, pLpLq “ pRpRq “ 0.9, pLpRq “ pRpLq “ 0.1 and pLpBq “

pRpBq “ 0.09.
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Note that wL
B`wR

B

wL
L`wR

L

reflects the ratio of the overall confidence in the probability judge-

ments on B (across both agents) to the overall confidence in judgements concerning L,

and similarly for wL
B`wR

B

wL
R`wR

R

. When wL
B`wR

B

wL
L`wR

L

Ñ 0 and wL
B`wR

B

wL
R`wR

R

Ñ 0—i.e. the confidence in

judgements concerning B is dwarfed by the overall confidence in the judgements con-

cerning L and R—the group probabilities tend to:

ppLq Ñ
wL
L

wL
L ` wR

L

pLpLq `
wR
L

wL
L ` wR

L

pRpLq

ppRq Ñ
wL
R

wL
R ` wR

R

pLpRq `
wR
R

wL
R ` wR

R

pRpRq

ppBq ÑppLq ` ppRq ´ 1

So the group probability for L, ppLq, tends to the weighted average of Laura’s and Ray’s

judgements on L, where the weights are those in the generation of the confidence rankings

that correspond to the issue L. If, as the example suggests, Laura has more expertise

than Ray on the labour market, so wL
L ą wR

L , the group probability for L will be closer

to Laura’s (pLpLq), as one would have wanted. Similarly, ppRq tends to the weighted

average of the agents’ judgements about R, except that here the weights corresponding

to the issue R are involved. Since Ray is more of a specialist here, his weight will be

larger wR
R ą wL

R, so the group judgement will be closer to his judgement on R (pRpRq).

Figure 3b provides a visual illustration: the centre under confidence aggregation belongs

to sets with confidence levels that are not too low on either ranking, and this picks out

probability measures that are close to both Laura’s probability on L and Ray’s on R.

Hence, as desired, confidence aggregation applied to these confidence rankings, which

properly reflect cross-issue expertise differences, yields a group judgement that follows

each agent more closely on her area of expertise, as one would have wanted. Moreover,

this also shows that expertise-sensitive pooling (Definition 4) can reflect these within-

person cross-issue expertise differences, and hence fairs better on this score than linear

(or, for that matter, geometric) pooling.

Given the confidence rankings of the form (6), where the centre is a probability

measure with ppBq “ 0.09, the centre of the aggregate ranking will stick as close to this

value as possible. If the weights yield issue-wide weighted averages which are consistent

with ppBq “ 0.09 (i.e. when the constraints (4) are slack), then this is the value of

ppBq. If not, as will typically be the case, then ppBq takes the value closest to 0.09

which satisfies the constraints, i.e. ppLq `ppRq ´1. Since this is typically not 0.099, this

example demonstrates that the confidence aggregation rule does not respect spurious

unanimities. The same goes for expertise-sensitive pooling.
9E.g. when wL

L “ wR
R “ 0.75, wL

R “ wL
R “ 0.25, ppLq “ ppRq “ 0.7, and ppBq “ 0.4.
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The case where wL
B`wR

B

wL
L`wR

L

Ñ 0 and wL
B`wR

B

wL
R`wR

R

Ñ 0 translates low confidence in the judge-

ments about B compared to the judgements concerning L and R. This is clearly most

relevant to the example in the Introduction, where Laura’s expertise, say, concerns L but

not R, so there is no reason to expect her to have particular expertise on B “ LXR. To

complete the discussion, note that, in the opposite case of wL
B`wR

B

wL
L`wR

L

Ñ 8 and wL
B`wR

B

wL
R`wR

R

Ñ 8,

the confidence in the probability judgements concerning B grows very large compara-

tively, so these are retained at the expense of others. Hence, we have:

ppLq Ñ
1.09pwL

R ` wR
Rq `

`

wL
Lp

LpLq ` wR
Lp

RpLq ´ wL
Rp

LpRq ´ wR
Rp

RpRq
˘

wL
L ` wR

L ` wL
R ` wR

R

ppRq Ñ
1.09pwL

L ` wR
L q ´

`

wL
Lp

LpLq ` wR
Lp

RpLq ´ wL
Rp

LpRq ´ wR
Rp

RpRq
˘

wL
L ` wR

L ` wL
R ` wR

R

ppBq Ñ0.09

Here the judgement about B is fully preserved, as one would expect given the high

confidence postulated in it. This places a strong constraint on ppLq and ppRq (namely,

ppLq ` ppRq “ 1.09). The possible probability available is shared between L and R

according to the comparison between the issue-wide weighted averages and the ratio

between the overall confidence (i.e. wL
L `wR

L v.s. wL
R `wR

R) in each of these judgements.

This example shows that, when there is comparative expertise on issues, both con-

fidence aggregation and expertise-sensitive pooling faithfully reflect it in the resulting

group probability judgements. As such, they resolve the within-person expertise diver-

sity challenge. Moreover, in so doing, the example also shows that these aggregation

procedures avoid the much-discussed problem with spurious unanimities: when the indi-

viduals are not comparatively confident in their judgements about B—so the agreement

is indeed spurious—the common judgement is not adopted by the group.

The early literature on probabilistic belief aggregation contains suggestions using

weighted averaging with potentially different weights for each event (e.g. Bordley and

Wolff, 1981). To a certain extent, the limit case in the example above captures the

intuition behind these proposals, for the events L and R. More importantly, it over-

comes their well-understood limits. Such rules are not well-defined: they fail to yield

probability measures unless the weights are the same for all events, in which case one

returns to standard linear pooling in the presence of a minimal Pareto-like condition

(e.g. McConway, 1981; Genest and Zidek, 1986). This, and in particular the apparent

impossibility in capturing within-person expertise diversity, has been argued to be a

problem for linear pooling (e.g. French, 1985). However, the expertise-sensitive pooling

rule derived from confidence aggregation is well-defined, by Proposition 2; accordingly,

it does not coincide with weighted averaging for all events. The event B is a clear ex-

22



Brian Hill Confidence, consensus and aggregation

ample of this: when ppBq “ ppLq ` ppRq ´ 1 ą 0.09, it is not a weighted average of the

individuals’ probability judgements for B.

Example 3.4 illustrates a straightforward application of confidence aggregation, with

rankings reflecting varying expertise, to the example in the Introduction. One central

factor is the trade-offs between the confidence in judgements concerning the main two

issues—labour and real estate—and what happens to both, considered as a third issue.

However, an alternative possibility for analysing this example is to consider that the

individuals have opinions on the main issues and their relationship, rather than ‘primi-

tive’ views on B. We now show that the confidence approach can easily cope with such

possibilities.

Example 3.5. Here suppose that Laura and Ray hold beliefs about L and R, and about

the independence of L and R: they believe them to be independent,10 without being

maximally confident in this judgement. Note that the belief in independence implies

that pLpBq “ pRpBq “ 0.09, as per Table 1. To integrate this, take a 3-dimensional

vector of weights wL “ pwL
L, w

L
R, w

L
I q (resp. wR “ pwR

L , w
R
R, w

R
I q), and consider the

following confidence ranking:

cLIndpoq “

#

q P ∆ :

ř

j“tL,Ru w
L
j pqpjq ´ pLpjqq2

`wL
I pqpBq ´ qpLq.qpRqq

2
ď o

+

(12)

and similarly for cRInd. These are clearly well-defined confidence rankings. The weighted

element corresponding to the event B here is pqpBq ´ qpLq.qpRqq2, which reflects the

‘distance’ from independence of L and R. So, at higher confidence levels, probability

measures with larger ‘distances’ from independence are contained in the set of priors,

translating the limited confidence in independence.

The solution of the minimisation problem can be obtained similarly to the analysis

in Example 3.4, yielding as centre of the aggregate confidence ranking p with:

ppLq “
wL
L

wL
L ` wR

L

pLpLq `
wR
L

wL
L ` wR

L

pRpLq

ppRq “
wL
R

wL
R ` wR

R

pLpRq `
wR
R

wL
R ` wR

R

pRpRq

ppBq “ppLq.ppRq

Here the aggregation on each of the issues L and R uses issue-specific weights, reflecting

differing confidence, as in the limit case in Example 3.4. For the issue B, the assumption

that agents consider independence to be their best guess concerning the relationship

between L and R generates the probability.
10In the standard probabilistic sense: pipL X Rq “ pipLqpipRq.
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In tandem with the previous example, this illustrates that the confidence approach

can not only recoup averaging with issue-specific weights whilst retaining consistency,

but it can also incorporate varying opinions about independence or more generally the

relationship between issues.11 This is relevant for another recurrent criticism of linear

pooling: that is does not preserve independence. As is well known, even if all individuals’

consider the events L and R to be independent, the linear pool might not (e.g. Genest and

Zidek, 1986). This is easy to see on our leading example: the linear pool of Laura’s and

Ray’s probabilities with equal weights (wL “ 1´wL “ 1
2) is pLP pLq “ 0.5, pLP pRq “ 0.5,

pLP pBq “ 0.09, so L and R are not independent under pLP , though they are under pL

and pR. The aggregation above based on confidence rankings of the form (12) shows how

confidence aggregation can respect independence, whilst retaining much of the spirit of

linear pooling. For instance, when wL
L “ wL

R “ wR
L “ wR

R, the resulting centre probability

is pLP pLq “ 0.5, pLP pRq “ 0.5, pLP pBq “ 0.25: i.e. the same as linear pooling for the

issues L and R, but with independence retained (and hence a different B).

The beliefs about the independence of L and R in Example 3.5 are considered merely

for the purposes of illustration.12 The point of the example is more general: by incor-

porating conditional probabilities in much the way proposed in Eq. (12), the confidence

approach can respect conditional probability judgements (including, but not limited to,

judgements about independence) in the aggregate belief. In accordance with the phi-

losophy behind the approach, they are respected to the extent that the individuals are

confident in them.

4 Characterising Confidence Aggregation

In this section we provide a preference-based axiomatisation of confidence aggregation.

We begin by setting out the framework and the representation of preferences.

4.1 Preferences

We use a standard Anscombe-Aumann-style framework, as adapted by Fishburn (1970).

Let X , the set of consequences, be a convex subset of a vector space; for instance it

could be the set of lotteries over a set of prizes, as in the Anscombe and Aumann (1963)

setting. A is the set of acts: (measurable) functions from states Ω to consequences X .

Ac is the set of constant acts (acts taking a constant value). Mixtures of acts are defined
11Note that whilst these examples used confidence rankings based on the Euclidean distance, similar

techniques can be applied to other distances, such as relative entropy.
12Arguably, the effects of an interest rise on the labour and real estate sectors would not typically be

considered independent.
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pointwise as standard: for any f, g P A and α P r0, 1s, the α-mixture of f and g, which

we denote by fαg, is defined by fαgpωq “ αfpωq ` p1 ´ αqgpωq for all ω P Ω.

We use ą (perhaps with superscripts) to denote a strict preference relation on A.

Preferences ą will be said to contradict ą1 if there exists f, g P A with f ą g and f ă1 g.

A preference relation ą is contradictory if there exists f, g P A with f ą g and f ă g.

As discussed in Hill (2019b), there are several decision models in the confidence

family. Here we work with the incomplete preference version of the confidence model

(Hill, 2016), with strict preferences as primitive, as in Bewley (1986); Galaabaatar and

Karni (2013).13 According to it, for all acts f, g P A, f ą g if and only if:

Epupfq ą Epupgq for all p P cpDpf, gqq (13)

where Ep is the expectation with respect to a probability measure p P ∆,14 u : X Ñ R is

a non-constant affine utility function, c is a closed confidence ranking and D is a function

from AˆA to O, satisfying the following richness condition: for every pf, gq P AˆA and

o P DpAˆAq, there exist h P A and α P p0, 1s such that Dpfαh, gαhq “ o. This function,

called the cautiousness coefficient, picks out the relevant confidence level for the decision,

and captures the decision maker’s ambiguity attitudes, or attitudes to choosing on the

basis of limited confidence. We refer to the cited papers for discussion and details.

When (13) holds for preferences ą, we say that the triple pc,D, uq represents ą. In

this case, there is a unique u, up to positive affine transformation, a unique closed and

convex c and a unique minimal D representing ą (Hill, 2016); we refer to this pc,D, uq

as the representation of ą.

Each individual and the group has a preference relation ąi: the tuple pą1, . . . ,ąnq

is a profile of individual preference relations, and ą0 is the group preference. We assume

that all preferences are represented according the confidence model (13).15

Assumption 1. For every i “ 0, 1, . . . , n, ąi is represented according to (13).

Behavioural foundations for an incomplete preference version of the confidence model

have been provided in Hill (2016).16 They can be used to provide a reformulation of this

assumption in terms of preferences.
13Given the close relationship between incomplete and ambiguity averse preferences (Ghirardato et al.,

2004; Gilboa et al., 2010), similar foundations to those developed here can be provided in terms of the

maxmin-EU member of the confidence family (Hill, 2013), for instance.
14That is, for any ϕ : Ω Ñ R, Epϕ “

ř

ωPΩ ppωqϕpωq.
15Note that this implies that preferences are non-contradictory.
16The cited paper takes the weak preference relation as primitive; similar techniques can be used with

the strict preference, drawing on the work of Bewley (1986); Karni (2011).
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Following Assumption 1, let pc0, D, uq be the representation of ą0, and, for each

i “ 1, . . . , n, pci, Di, uiq be the representation of ąi. To focus on aggregation of be-

liefs, we follow other papers on that topic (e.g. Crès et al., 2011) in assuming that all

individuals and the group have the same tastes. Since the confidence model has two pa-

rameters representing tastes—the utility function and the cautiousness coefficient—this

is expressed by the following assumption.

Assumption 2. For all i “ 1, . . . , n:

1. ui and u are identical up to positive affine transformation;

2. Di “ D.

A central idea behind the confidence model is that the beliefs one relies on to decide

are held to a level of confidence that is appropriate given the importance of the decision

(Hill, 2013, 2019b). In the light of this, when higher-confidence beliefs are invoked—i.e.

Dpf, gq ą Dpf 1, g1q—then this is an indication that the decision maker considers the

choice between f and g to be more important than the choice between f 1 and g1: it

involves higher stakes. This can be formalised by a surjective function σ : A ˆ A Ñ

S Ď R, assigning to each binary choice the stakes involved in it. We use s, s1 P S as

notation for stakes levels. Hill (2016) contains several examples of such (real-valued)

notions of stakes. For pf, gq P A ˆ A and s P S, we say that pf, gq has stakes s (read

as: ‘the choice between f and g has stakes s’) if σpf, gq “ s. Under the intuition

mooted above, the confidence level deemed appropriate for a decision is determined by

the stakes involved in the decision: formally, this amounts to the assumption that there

exists a monotonically increasing function ζ : S Ñ O such that D “ ζ ˝ σ. In general,

different agents could use the same notions of stakes σ but have different cautiousness

coefficients Di, corresponding to different ζi. However, in the context of Assumption 2,

the cautiousness coefficient is the same for all agents; for simplicity, we thus assume that

ζ is the identity, so D “ σ.

Finally, given a preference relation ą represented according to (13) and a stakes level

s P S, we define the derived relation ąs as follows: for all f, g P A, f ąs g if and only

if there exists h P A and α P p0, 1s such that pfαh, gαhq has stakes s and fαh ą gαh.17

As discussed in Hill (2013, 2016), f ąs g essentially says that, if the acts were evaluated

‘as if’ the decision involved stakes s, then f would be preferred. For example, consider

two choices. One is between the bet f on the Democrat candidate winning the 2024

US President election, yielding $1 million if you win and a loss of $1 million if not, and

nothing g. The other choice is between a similar bet f 1 on the 2028 election, with stakes

(winnings and losses) a million times less in utility terms, and no utility change, g1. An
17This is well-defined because of the richness of D.
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agent with beliefs that are more precise and slightly more favorable for the 2024 bet

might nevertheless choose the bet in the 2028 choice but have indetermine preferences

in the 2024 one because of the difference in stakes: with lower stakes, he can rely on

low-confidence beliefs when comparing f 1 and g1, but not for the choice between f and g.

However, if the 2024 choice was evaluated at the low stakes level, then f would typically

be chosen over g: i.e. f ąs g, where s is the appropriate stakes level. When f ąs g,

we say that f is preferred to g at stakes level s, and we call ąs the preferences at stakes

level s.

Whilst stated on the models for ease, Assumption 2 can be reformulated in be-

havioural terms. The first clause corresponds to the standard axiom that all individuals

and the group have the same preferences over constant acts. The latter is built into

axiomatisations of the confidence model assuming an exogenously given notion of stakes

(Hill, 2016); framework-specific axioms characterise it in setups where stakes are endoge-

nous (Hill, 2015).

We shall use vector notation, and often express the tuple of stakes levels ps1, . . . , snq P

Sn as the vector s. Under this notation, si is understood to be the ith stakes level under

vector s. The following definition shall play a central role in the sequel.

Definition 5. For a profile of stakes levels s “ ps1, . . . snq P Sn, define the relation ąs

on A by ąs“
Ťn

i“1 ąi
si . s exhibits consensus when ąs is not contradictory, and it does

not exhibit consensus otherwise. Moreover, we say that ą0 respects the consensus ąs at

stakes level s if s exhibits consensus and ą0
sĎąs.

The relation ąs assembles all the (determinate) preferences of the indivuduals in the

group, at the specified stakes levels. The group exhibits consensus across the tuple of

stakes levels s if the assembled preferences are consistent; in this case, ąs represents the

preferences under this consensus. The group preference ą0 respects the consensus ąs at

a given stakes level s if it doesn’t decide more than that consensus: all of the preferences

decided upon in ą0
s appear in the consensus, though some preferences determined in the

consensus may be left open in ą0
s. In other words, consensus respect means that the

group doesn’t adopt stronger positions on preferences than the consensus, at that stakes

level.

4.2 Confidence aggregation and Pareto

The preference-based characterisation of confidence aggregation relies on one main ax-

iom. To introduce it, first consider the Pareto principle, the axiom behind linear pooling

in a sufficiently rich, single-profile aggregation context (Mongin, 1995). The strict pref-

erence version is as follows.
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Axiom (Strict (issue-wise) Pareto). For all acts f, g P A, if f ąi g for all i, then f ą0 g.

As discussed in the Introduction, this principle encodes respect for issue-wise con-

sensus, and hence faces challenges relating to spurious unanimity. We thus consider the

following variant.

Axiom (Corpus-wise Pareto). For every stakes level s P S and acts f, g P A, if f ąs g

for all s for which ą0 respects the consensus at s, then f ą0
s g.

Rather than asking the group to adopt a preference if everyone in the group holds it,

Corpus-wise Pareto looks at whether it holds in all relevant consensuses. If the preference

holds at all consensuses respected at a given stakes level, then the group adopts that

preference at those stakes. Note that more consensuses are respected at higher stakes

levels than at lower ones, so fewer preferences hold in all such consensuses: this principle

thus applies to fewer preferences at higher stakes levels, in line with the expectation that

fewer preferences are held with higher confidence.

Whilst, logically, neither Strict (issue-wise) Pareto nor Corpus-wise Pareto imply

the other, Theorem 1 shows that linear pooling can be recovered as a special case of

confidence aggregation. In this sense, the latter condition could be considered more

general.

Our characterisation requires two auxiliary axioms.

Axiom (Consensus-based beliefs). For every stakes level s P S and acts f, g P A, if

f č0
s1 g for every stakes level s1 such that some consensus ąs is respected at s1, then

f č0
s g.

Axiom (Non-degeneracy). There exists a tuple of stakes levels s exhibiting consensus.

Under aggregation, groups beliefs should come from individuals’ beliefs. Under con-

fidence aggregation, the latter translate into group beliefs principally in the context of

corpus-level consensuses. In terms of preferences, this occurs at stakes levels where some

consensus is respected. Consensus-based beliefs states that all group preferences are

determined by those formed on the basis of consensuses: in particular, any preferences

at a stakes level where no consensus is respected must be ‘inherited’ from a level where

some are. Non-degeneracy states that there is some consensus among the individuals: if

they leave sufficiently many preferences aside, they can come to a consensus.

Our base characterisation result is that the previous axioms characterise consensus-

preserving confidence aggregation.

Theorem 3. Let tąiu,ą0 satisfy Assumptions 1 and 2. They satisfy Corpus-wise

Pareto, Consensus-based beliefs and Non-degeneracy if and only if, up to convex clo-

sure, c0 is a consensus-preserving confidence aggregation of pc1, . . . , cnq.
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Moreover, there is a unique confidence-level aggregator b that is minimal on consen-

suses under which c0 is a consensus-preserving confidence aggregation: that is, for all b1

such that c0 is a consensus-preserving confidence aggregation of pc1, . . . , cnq under b1,

b1poq ě bpoq for all o such that
Şn

i“1 c
ipoiq ‰ H.

So the central axiom characterising confidence aggregation is Corpus-wise Pareto,

which is no more than a reformulation of the standard Pareto condition to apply to

(corpus-level) consensuses rather than individual preferences. Indeed, even Consensus-

based beliefs can be dropped without jeopardising the core of confidence aggregation: in

its absence, the group confidence ranking is that obtained by a confidence aggregation,

except at confidence levels at the bottom of the ranking.

As indicated previously, no assumption of a particular confidence-level aggregator is

required for this result; rather, the appropriate aggregator is determined endogenously

by the individual and group preferences. Moreover, there is a unique minimal confidence-

level aggregator: that is, one which always takes the lowest value across all aggregators

representing the profile of preferences. Further axioms can be added to characterise the

special cases corresponding to the confidence-level aggregators mentioned in Section 2.2;

details are given in Appendix A.

5 The Performance of Confidence Aggregation

A wide body of literature in cognitive psychology has studied people’s confidence in

their answers or actions in a wide variety of situations, including those involving per-

ception, memory, cognitive tasks and decision making (Metcalfe and Shimamura, 1994;

Koriat, 2012a; Rahnev et al., 2020). Some empirical evidence in that literature even

suggests the communicating confidence judgements—as broadly recommended by our

proposed aggregation procedure—can improve group decisions (Bahrami et al., 2010),

at least in some situations (Koriat, 2012b). In this section, we draw upon well-known

findings in this literature to propose a rudimentary comparison of the performance of

confidence aggregation against that of linear pooling—where performance is measured

by the propensity to yield group judgements that are closer to the truth.

We work with a special case of the setup from Section 3.2, with two-element parti-

tions. There are n individuals, each of whom provides a probability judgement on each

of m issues, where an issue is an statement that is true (1) or false (0). For ease, we

assume that the issues are logically independent, in the sense that any combination of

truth values for each issue is possible. So each individual’s report can be any point in

r0, 1sm, and the group must come to a (probabilistic) judgement on each of the issues,

which too will correspond to a point in r0, 1sm. Performance of an aggregation rule will
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be assessed by the result’s proximity to the truth. We adopt the convention that for

each issue, the statement corresponding to it is true, so the closer a judgement is to 1,

the better it is, for all issues. The truth is thus 1, the vector of 1’s.

Any evaluation of the performance of aggregation rules will have to rely on some

understanding of where individuals’ confidence assessments come from, or at the least

how they are related to the correctness of the stated probability judgements. Here we

rely on insights from the psychology literature, which typically focusses on subjects’

confidence concerning their performance in a task. For instance, the task could be

to answer a cognitive or knowledge question, and the subject would then report her

confidence that his reply was correct, which may or may not be a probability (e.g.

Rahnev et al., 2020). The ‘task’ of each expert in a standard probability aggregation

situation is to state informed subjective probabilities for the issues at hand—this is

the data used by pooling rules. In the light of this relationship, the comparison with

confidence aggregation amounts to seeing what changes when experts also report their

confidence in their probability judgements.

The psychology and neuroscience literature has produced an impressive array of

(competing) models of the sources of confidence judgements. Most build upon existing

models of task responses, which are generally stochastic (e.g. Green and Swets, 1966;

Ratcliff, 1978; Mamassian, 2016). Although, to our knowledge, there have been no

studies of confidence concerning probability reports in the psychological literature—and

hence models which could apply directly here18—we work with the following simple but

fairly general model of the cognitive process ‘behind’ confidence and probability reports.

Reflecting the stochastic nature of the cognitive processes underlying reports, we

assume that each individual i draws a vector pi of probability values or ‘signals’ for each of

the issues from a distribution over r0, 1sm, with mean µi and positive-definite covariance

matrix Γi. This distribution captures the accuracy of and noise in the cognitive process of

the individual—where we understand the notion of ‘cognitive process’ in this context to

be wide enough to encompass the (perhaps differing) information held by the individuals.

The individual reports pi
j as her best-guess probability for each issue j. We assume

moreover than the draws are independent both across individuals and across issues.

Assumption 3. For all i, i1 P t1, . . . , nu and j, j1 P t1, . . . ,mu with i ‰ i1 or j ‰ j1, pi
j

and pi1
j1 are independent.19

This translates the assumption that the stochastic cognitive processes determining

the probability reports individuals bring to the table are independent across individuals
18Most models, to our knowledge, concern tasks with few alternatives, often two, while the task of

reporting a probability can in principle yield any real number between 0 and 1.
19So, in particular, Eppi

jp
i1

j1 q “ Eppi
jqEppi1

j1 q.
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and issues. It allows for interactions in beliefs across individuals and issues, as long

as they translate into relations between properties of the distributions governing the

stochastic processes, rather than into dependencies in the processes themselves. For in-

stance, if Ann considers the belief about one issue to be related to that about another,

this could be reflected by appropriate relationships between, say, the means of her distri-

bution for the two issues. Or if Bob’s beliefs about an issue are influenced by Cat’s, this

can translate into a specific link between the means or variances of their distributions

on the given issue. Under Assumption 3, such relations cover all relevant interaction be-

tween beliefs: there is no further correlation between the ‘signals’ drawn at the moment

of probability reporting. In Appendix B.3, we prove a stronger version of the main result

in this section, where this independence assumption is weakened.

In the light of Assumption 3, each Γi is a diagonal matrix, with the variances of

signals for each issue, pσijq
2, on the diagonal.

Turning to confidence, each individual’s confidence is represented by a confidence

ranking centred on her reported best-guess probability pi. We assume that the confidence

ranking is generated by the Mahalanobis distance from pi, according to the inverse of

a positive-definite matrix Σi. We also assume that Σi is diagonal for each i, with

entries pρijq
2 on the diagonal. In other words, the confidence ranking corresponds to the

implausibility function given by20

ιpxq “ px ´ piqTΣi´1
px ´ piq (14)

Σi may coincide with the covariance matrix of the process determining probability re-

ports Γi, though this need not be the case. Each individual i reports her best-guess proba-

bility pi and her confidence ranking, determined by pi and Σi, so
`

pp1,Σ1q, . . . , ppn,Σnq
˘

characterises the profile of probability-and-confidence reports across all individuals.

Our main substantive assumption draws on two insights from the aforementioned

psychology literature. The first is the close, inverse relationship between the confidence

in one’s response to a task and the variability of that response. This is supported by

empirical studies (Koriat, 2012a), and many models of confidence judgements relate, in

some way or another, confidence judgements to the signal(s) or stochastic process which

determines the answer or action in the task, either because they monitor actual signal

production, or a continuation of the signal production mechanism, or are determined

by the signal structure (e.g. Pleskac and Busemeyer, 2010; Ratcliff and Starns, 2013;

Mamassian, 2016). The second is the old and well-established finding that in many

situations most people have ‘positive metcognitive sensitivity’ (Henmon, 1911; Fleming

and Lau, 2014; Rahnev et al., 2020) or ‘monitoring resolution’ (Koriat, 2012a): the
20Note that this belongs to the family of expertise-sensitive confidence rankings defined in Section 3.2;

see Definition 3 and Remark 1.
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confidence they report is positively correlated with their performance in the task. In the

case of interest here, this means that an individual whose probability judgements on one

issue are typically closer to the truth that those on another issue—she tends to perform

better in the task concerning the first issue—will tend to have higher confidence in the

former judgements. These inspire the following assumption.

Assumption 4. For all i, i1, j, pσijq
2 ě pσi

1

j q2 if and only if pρijq
2 ě pρi

1

j q2 if and only if

1 ´ µij ě 1 ´ µi
1

j.

The assumption that individuals whose probability reports are on average closer to

the truth (which, recall, is 1) on an issue j also have lower pρijq
2 on that issue—and

hence more confidence in their judgements about it—reflects the finding that confidence

assessments accurately distinguish between correct and incorrect judgements. The as-

sumption that pρijq
2 is lower—i.e. confidence is higher—when the variance pσijq

2 in the

signal underlying the report is lower reflects the insight behind the neuro-psychology

models than confidence is inversely related to the dispersion produced by the mechanism

yielding the task response.

The finding of positive metacognitive sensitivity is not to be confused with the phe-

nomenon of ‘metacognitive bias’ or ‘monitoring miscalibration’ (Fleming and Lau, 2014;

Koriat, 2012a): the ‘absolute’ confidence levels may be misaligned with the actual per-

formance in the task. The well-known overconfidence bias is an example of this: for

instance, when a subject states as confidence a probability of success in the task which

is larger than her actual success rate.21 People can be overconfident—expressing higher

than warranted confidence in performance—whilst also exhibiting positive metcognitive

sensitivity—they express higher confidence in tasks which they perform better in. As-

sumption 4 may still hold if individuals have metacognitive bias, and even if different

individuals exhibit different amounts of metacognitive bias. It only requires that the

metacognitive bias does not outweigh the positive metcognitive sensitivity: if Ann is

more of an expert than Bob on issue 1, and B is more of an expert on issue 2, then

metacognitive sensitivity implies that Ann is more confident in her beliefs about 1 than

those about 2, and vice versa for Bob. Our assumption requires that, no matter how

underconfident she in general and how overconfident Bob is, she remains more confident

in her beliefs about 1 than Bob is in his beliefs about 1. We take it that the appro-

priateness of this assumption may depend on the situation, and read the result below

as drawing out consequences for performance in situations where the assumption holds,
21Note that such biases can typically only be measured if confidence is elicited on a probability

scale. This scale is not used in many psychology studies (Fleming and Lau, 2014); moreover, confidence

rankings, since they are ordinal (Section 2; Hill, 2013) do not necessarily permit measurement on a

probability scale. So standard notions of overconfidence do not apply, as such, to them.
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without meaning to claim that all situations must be of this sort. We leave a systematic

exploration of the circumstances in which such biases are more or less propitious for

confidence aggregation for future research.

We compare two pooling rules. The first is (equal-weight) linear pooling, defined by:

λppp1,Σ1q, . . . , ppn,Σnqq “
1

n

n
ÿ

i“1

pi (15)

Note that no assumption of general expertise over all issues is made here—indeed, each

individual could be an expert on a different issue. Moreover, it is not assumed that the

group (or its representative) has any information on the relative expertise of members—

such information could trump reported confidence, hence requiring a more refined anal-

ysis. There thus seems to be no reason to use anything other than the equal-weight

version of linear pooling for comparison. Section 7.3 discusses some extensions of the

result obtained here to weighted linear pooling.

The other rule is confidence aggregation under the average confidence-level aggrega-

tor, with the centre of the aggregate confidence ranking used as the group judgement,

as set out in Section 3 (see Figure 1). Formally:22

ϕppp1,Σ1q, . . . , ppn,Σnqq “ argmin
x

n
ÿ

i“1

px ´ piqTΣi´1
px ´ piq (16)

We will compare these two pooling rules using two performance measures. For a

vector of probability judgements, one for each issue, p, its absolute distance from the

truth on issue j is 1 ´ pj if issue j is true, and pj otherwise. So, in our setup where all

issues are true, the mean absolute distance of a judgement p from the truth, taken over

all issues, is
řm

j“1p1 ´ pqj .

On the other hand, a popular measure used for evaluating expert assessments in

theory and in practice is the Brier score (Brier, 1950; Winkler and Murphy, 1968; Cooke,

1991). In our setup, it is defined, for a vector of probability judgements p, as Bppq “
řm

j“1p1 ´ pq2j . The lower the Brier score, the lower the Euclidean distance to the truth.

Our main result says that, in expectation, confidence aggregation yields a group

judgement that is closer to the truth than linear pooling, under both of these measures.

Theorem 4. Under Assumptions 3 and 4:

i in expectation, the mean absolute distance from the truth is smaller under con-

fidence aggregation with the average confidence-level aggregator, as compared to

linear pooling:

E
m
ÿ

j“1

`

1 ´ ϕppp1,Σ1q, . . . , ppn,Σnqq
˘

j
ď E

m
ÿ

j“1

`

1 ´ λppp1,Σ1q, . . . , ppn,Σnqq
˘

j

22By Proposition 2, this is a well-defined probability aggregation rule.
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ii in expectation, the Brier score is smaller under confidence aggregation with the

average confidence-level aggregator, as compared to linear pooling:

EBpϕppp1,Σ1q, . . . , ppn,Σnqqq ď EBpλppp1,Σ1q, . . . , ppn,Σnqqq

This Theorem suggests that, under an assumption that translates findings in psy-

chology about the role of confidence assessments and their relationship to probability

reports, confidence aggregation outperforms linear pooling: in expectation, it provides

judgements that are closer to the truth. So, not only does it overcome the challenges

for linear pooling discussed in previous sections, it promises to fair better epistemically,

at least in a range of situations. The basic intuition behind this result is not completely

disassociated with how confidence aggregation incorporates within-person expertise di-

versity, as discussed in Section 3. Since confidence in a probability judgement co-varies

with its accuracy, by giving judgements on issues where individuals have higher confi-

dence more weight, confidence aggregation tends to produce judgements that are closer

to the truth.

6 Confidence aggregation and dynamic rationality

This section treats a common theme in the aggregation literature, which has recently

been reintroduced by Dietrich (2021): the interaction between aggregation and update.

Dietrich argues that a ‘rational group’ requires belief aggregation to be in sync with

belief updating. This is typically formulated in terms of commutation between the two:

aggregation followed by update on some information yields the same group beliefs as

updating all individual beliefs on the information and then aggregating. The version of

this condition for Bayesian beliefs, where updating is performed on events (or likelihoods)

by Bayesian conditionalisation, has been called external Bayesianism in the pooling

literature (Genest and Zidek, 1986) or Dynamic Rationality by Dietrich (2021).

However, the natural domain for our aggregation approach is not Bayesian beliefs but

richer and more refined confidence in beliefs. And Bayesian conditionalisation no longer

applies, without revision, to such beliefs. Hill (2022) proposes a confidence update rule

for confidence in beliefs, and argues for its normative validity, suggesting in particular

that it deals appropriately with situations in which standard Bayesian update struggles.

So the question of dynamic rationality in our context is whether confidence aggregation,

as set out in Section 2.2, commutes with confidence update.

In the framework set out in Section 2, the probability-threshold confidence update

rule from Hill (2022, Definition 2) can be defined as follows, where, for a set C P 2∆zH

and event E, CE “ tpp‚|Eq : p P C, ppEq ą 0u:
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Definition 6 (Confidence Update). For event E Ď 2∆zH, confidence ranking c : O Ñ

2∆zH and probability-threshold function ρE : O Ñ r0, 1s, the probability-threshold

confidence update of c by E under ρE is the ranking c|ρE “ Φ, where the partial function

Φ : O Ñ 2∆zH is defined by, for all o P O such that tp P cpoq : ppEq ě ρEpoqu ‰ H:

Φpoq “tp P cpoq : ppEq ě ρEpoquE (17)

Readers are referred to Hill (2022) for a full discussion and axiomatic characterisation

of this and a more general class of confidence update rules.

We have the following result (where Fb, the confidence aggregation rule with confidence-

level aggregator b, is as defined in Section 2.2).

Theorem 5. For every tuple of confidence rankings pc1, . . . , cnq, every confidence-level

aggregator b, every event E and probability-threshold function for it ρE:

Fbpc1|ρE , . . . , c1|ρEq “ Fbpc1, . . . , cnq|ρE (18)

So confidence aggregation commutes with confidence update: it is ‘dynamically ra-

tional’ with respect to the appropriate update rule for confidence, to use the term coined

by Dietrich (2021). As argued by Dietrich and others, such coherence can be considered

an important property of an aggregation rule, so much so that some use it to promote

aggregation rules having this property, and to criticise those that don’t. This Theorem

thus provides a reassuring message concerning confidence aggregation’s credentials on

this score.

7 Discussion

7.1 Probabilistic and non-probabilistic belief aggregation

The developments in this paper have largely focused on the contribution of confidence

aggregation with respect to recognised challenges for aggregating probability measures.

Part of the literature on probability aggregation takes probabilities as primitive, rather

than working with (subjective expected utility) preferences; a classic survey is Genest

and Zidek (1986). The within-person expertise diversity challenge has been raised in this

literature, as has already been discussed in Section 3.

The confidence aggregation rule defined in Section 2.2 operates directly on confi-

dence rankings, and hence, like pooling rules, does not require a preference setup to

be applied. However, just as pooling rules tacitly assume interpersonal comparison

of probability judgements—i.e. one can say when two agents are assigning the same
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probability—in direct application, confidence aggregation assumes interpersonal com-

parison of confidence levels: i.e. one can tell when two agents are talking about the

same confidence level. (In the preference foundations provided in Section 4, this is im-

plied by the assumption that all agents have identical tastes.) Hill (2019a) provides a

detailed discussion of the problem of ‘calibrating’ confidence levels across individuals,

and provides a calibration scale, drawing on an analogy with the role the probability

scale plays in calibrating subjective probability judgements. Such a scale can be used

for applications of confidence aggregation.

Another part of the literature touching on belief aggregation works in preference-

based frameworks. Spurious unanimity, for instance, first arose as an issue for preference

aggregation with potentially differing utilities and subjective probabilities (Mongin, 1995,

2016), and only recently has been recognised as relevant also for aggregation of belief tout

court. For instance, Mongin and Pivato (2020); Dietrich (2021) criticise the influential

approach of Gilboa et al. (2004)—which characterises utilitarian aggregation of utility

and linear pooling of probabilities—on these grounds. Several reactions in the literature

work with preferences and consist in restricting the domain of the Pareto condition. Di-

etrich (2021) restricts it to cases where all agents have identical subjective probabilities,

and adds a dynamical rationality condition of the sort discussed in Section 6. Mongin

and Pivato (2020) restrict Pareto to objective uncertainty; indeed, their representation

involves ‘no connection between the social probability and the individual ones’. Unlike

the approach developed here, these make no attempt to retain the insight behind Pareto

by replacing it with a more appropriate consensus preservation condition. By contrast,

Bommier et al. (2021) present a condition involving the preservation of consensuses con-

cerning prospects yielding identical distributions of outcomes for all individuals, and use

it to provide a decision rule aggregating probabilistic individual beliefs. Under their

procedure, the group ‘belief’ (distribution) used in the evaluation of a given prospect

depends on the prospect in question, whereas ours produces a representation of group

belief that is independent of the decision situation. Drawing on Gilboa et al. (2004),

Alon and Gayer (2016) consider aggregation of subjective expected utility preferences,

where group preferences may be non-expected utility; Stanca (2021) undertakes a similar

exercise, for a different class of non-expected utility preferences, and under the assump-

tion that all individuals have the same utilities. Both involve versions of Pareto that,

were group preferences expected utility, would lead to linear pooling.

To the extent that confidence rankings support both classes of ambiguity averse and

incomplete preferences (Hill, 2013, 2016), confidence aggregation provides an aggregation

rule for both sorts of non-expected utility preferences. Crès et al. (2011) characterises

an aggregation rule for maxmin-EU preferences, whereas Nascimento (2012); Hill (2012)
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characterise similar rules for more general classes of preferences, all under the assumption

of identical utilities. Danan et al. (2016) explore aggregation of incomplete preferences,

with potentially differing utilities and beliefs. All these approaches adopt conditions

comparable with standard, issue-wise Pareto. By contrast, the approach proposed here

leverages the non-probabilistic structure of beliefs in aggregation, in concordance with

the insight that confidence has a role in consensus formation (Introduction and Section

2.2). Nau (2002) proposes an aggregation rule for a confidence-based belief representation

which is a special case of that used here (see Hill, 2016, Sect. 6). It is based on a different

intuition, pertaining to the Bayesian risk function of the group, as defined in terms of

an opponent’s minimum expected loss in a betting game. Neither approach is contained

in the other.23

As recalled in Section 4.1 (see also Hill, 2013, 2019b), the set of priors in the confidence

ranking that are mobilised in a decision will depend on the stakes involved, with larger

sets being used for more important decisions. So, whilst the group may act as a subjective

expected utility agent with the aggregate (centre) probability when the stakes are low,

when the stakes are higher, it will use a larger set of priors, and, in the case of the

maxmin-EU version of the model (Hill, 2013), be more ambiguity averse. Importantly,

the aggregation procedure is independent of the stakes relevant for any post-aggregation

decision, so the same aggregate confidence ranking can be used for both low- and high-

stakes decisions. One domain where such flexibility could be useful is where the ‘experts’

are ‘models’.

7.2 Aggregating models: averaging and misspecification

In a range of domains, including climate science and economics, decision makers are

faced with a set of (scientific) models, each of which may give different predictions or

evaluations of prospects. One popular approach in such contexts is Bayesian Model

Averaging (Raftery et al., 1997; Steel, 2020). At its base, it involves linear pooling of

the probability distributions provided by the various models, with weights determined

by the posterior probabilities over the models. As such, Theorem 1 shows that Bayesian

Model Averaging is a special case of confidence aggregation, corresponding to particular

assumptions about the confidence in the various models. Moreover, the subsequent

developments in Section 3, notably the development of probability aggregation rules

accommodating within-person expertise diversity, may be relevant when the ‘experts’

are ‘models’. In climate science for instance, it is not uncommon for some models to be

‘better’ on certain issues, and others ‘better’ on others. One model could have a more

detailed representation of cloud formation, whereas another is more accurate on elements
23This can be seen from the fact that Nau’s rule violates (3); see Nau (2002, Figs 2 & 3).
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of the biosphere: the former might thus be expected to do a better job in predicting

hurricanes, and the latter in predicting ground-level temperature. The developments in

Section 3.3 provide a blueprint for procedures for aggregating models that can faithfully

integrate inherent differences in models’ domains of specialisation.

Another direction taken in the face of a class of models focuses on robustness; in

the economics literature, this is typically associated with decision rules sensitive to the

possibility of model misspecification (Hansen and Sargent, 2001; Hansen, 2007; Hansen

and Sargent, 2022). As ambiguity averse decision models, they do not coincide with

subjective expected utility with a unique probability measure—which would be the nat-

ural decision procedure associated with model averaging. The confidence approach can

nevertheless recoup the essence of this misspecification approach too, and sheds light on

its relationship to model averaging. We illustrate this point on an example.

Consider a set M Ă ∆ of models, each of which is a probability distribution (over

states). Let w : M Ñ ℜě0 be an assignment of weights to models, and consider the w

reverse relative entropy confidence rankings generated by each model (Definition 2): for

m P M, cmpoq “ tq P ∆ : wpmqRpm}qq ď ou. Under confidence aggregation with the

average confidence-level aggregator (Example 2.2), the group confidence ranking cbav is

such that, for every confidence level o, cbavpoq “ tq P ∆ : 1
|M|

ř

mPMwpmqRpm}qq ď ou,

where in this example we take M to be finite for ease.24 Under the maxmin-EU version

of the confidence model (Hill, 2013), an act f is thus evaluated according to

min
qP∆: 1

|M|

ř

mPM wpmqRpm}qqďDpfq

Equpfq

where D : A Ñ O is a cautiousness coefficient assigning the appropriate confidence level

for evaluating act f on the basis of the stakes involved. By Theorem 1, for low enough

stakes, this becomes

Eř

mPM
wpmq

ř

mPM wpmq
m
upfq

i.e. the decision maker evaluates acts according to the model average, with weights
wpmq

ř

mPM wpmq
. For appropriate w, this coincides with the evaluation of acts, and hence

choice, under Bayesian Model Averaging. On the other hand, for higher stakes, say with

Dpfq “ o, an act f is evaluated according to

min
qP∆: 1

|M|

ř

mPM wpmqRpm}qqďo
Equpfq

where tq P ∆ : 1
|M|

ř

mPMwpmqRpm}qq ď ou is not a singleton. This translates greater

aversion to ambiguity, or concern for misspecification of the models. For medium stakes,
24Extensions to the infinite case can be carried out with known techniques.
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the set may not be too far away from the Bayesian model average; for very high stakes,

and hence high o, the set over which the minimisation is taken may include M. As might

be expected, more robustness to misspecification is involved when the decision is more

important.

A tighter connection to existing misspecification models comes when combining the

same maxmin-EU version of the confidence decision model with the 1 relative entropy

confidence rankings (Definition 2)—i.e. cmpoq “ tq P ∆ : Rpq}mq ď ou for eachm P M—

and the minimum aggregator. The latter is defined by bmino “ minmPM opmq. This

yields a decision maker who evaluates acts according to:

min
qP∆:minmPM Rpq}mqďDpfq

Equpfq “ min
mPM

ˆ

min
qP∆:Rpq}mqďDpfq

Equpfq

˙

(19)

For a fixed Dpfq and a singleton M, these are just the constraint preferences defined

by Hansen and Sargent (2001, 2008). So this application of confidence aggregation in

the context of the confidence decision model extends constraint preferences, firstly, by

centring on a set of models rather than a single one, and secondly, by allowing the

degree of concern for misspecification—Dpfq in the expression above—to depend on the

importance of the decision. The second aspect has already been discussed in Hill (2019b,

Sect 5); here we focus on the first.

Hansen and Sargent (2008) show that constraint preferences yield the same optimal

behaviour as so-called multiplier preferences on various classes of decision problems.

Whenever M is a convex, compact set, essentially the same proof can be used to show

that, for these classes of decision problems, the optimal choice under (19) for fixed Dpfq

coincides with the optimal choice under:25

min
qP∆

ˆ

Equpfq ` λ min
mPM

Rpq}mq

˙

(20)

for appropriate λ. Multiplier preferences (Hansen and Sargent, 2001) correspond to the

special case where M is a singleton; indeed, (20) is the extension of multiplier preferences

to account for multiple models proposed by Hansen and Sargent (2022) and axiomatised

by Cerreia-Vioglio et al. (2020). To this extent, confidence aggregation, embedded in the

confidence decision framework, can recover several classes of misspecification-motivated

decision models. Note that the confidence approach fully separates the epistemic issue

of the beliefs (and confidence in them) that can or should be formed on the basis of a

set of models from the pragmatic question of their role—as well as that of caution or
25Hansen and Sargent’s proof relies on the Lagrange multiplier theorem (Luenberger, 1969), and hence

on the convexity of Rpq}mq as a function of q. For convex, compact M, minmPM Rpq}mq is a convex

function of q, so, for any decision problem in which the standard constraint and multiplier preferences

yield the same optima, the same holds for (19) and (20).
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ambiguity attitude—in decision making. Misspecification-motivated decision models, by

contrast, bake both issues together into the decision rule.

7.3 Performance, expertise and weights

An oft-discussed question related to linear pooling or similar rules concerns the appropri-

ate weights. Influential approaches in risk analysis (Cooke, 1991; Cooke and Goossens,

2008) and psychology (Collins et al., 2023) have developed methods of assigning weights

to individuals based on, say, their performance on related questions for which correct

replies are available. There is also evidence that such performance-weighted probability

aggregation rules outperform equal-weight rules, at least in certain contexts, including

in the field of expert judgement (Colson and Cooke, 2018; Budescu and Chen, 2015).

The general message of Section 5 carries over to these approaches: confidence aggrega-

tion, by accommodating within-person expertise diversity, will outperform performance-

weighted linear pooling in a range of situations. This can be seen on a variant of the

case considered in that section.26 Whilst details differ, a typical performance-weighted

approach assigns weights to experts on the basis of past or ‘calibration’ tasks, under

the tacit assumption that they are indicative of performance in the future or on the

questions of interest. Using the notation from Section 5, appropriate weights for linear

pooling pv1, . . . , vnq can thus be assumed to satisfy: for all individuals i, i1 “ 1, . . . , n:

vi ě vi
1 if and only if

řm
j“1 Epi

j ě
řm

j“1 Epi1
j . In other words, the higher weights are

assigned to those individuals with the better performance, as measured by the closeness

to the truth, taken over all the issues. We call issue-independent weights satisfying this

property calibrated.

If ‘calibration’ questions can be used to gauge experts’ mean performance over all

issues, then there may be situations in which they can gauge performance on each issue

separately. This can be used to propose issue-specific weights for each individual, for

use in the expertise-sensitive pooling rule derived from confidence aggregation (Section

3.3). Analogously to the weights taken for linear pooling above, one can thus set weights

wi
j such that, for all individuals i, i1 “ 1, . . . , n and issues j, j1 “ 1, . . . ,m, wi

j ě wi1

j1 if

and only if Epi
j ě Epi1

j1 . In other words, the expert and issue where there is better

performance get higher weight. We call issue-specific weights satisfying this property

calibrated.

Using such weights, one can define performance-weighted linear pooling and expertise-

sensitive pooling analogously to the rules considered in Section 5:
26In this discussion, all notation is as in Section 5. In particular, we retain the convention that all

issues are true.
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λpwpp1, . . . ,pnq “

n
ÿ

i“1

vipi (21)

ϕpwpp1, . . . ,pnq “ argmin
x

n
ÿ

i“1

px ´ piqTΥi´1
px ´ piq (22)

where Υi is the diagonal matrix with jjth entry wi
j .

As shown in Appendix B.3 (Proposition 6), under some mild conditions on the re-

lationship between the issue-specific and issue-independent weights, similar results to

Theorem 4 hold here: the performance-weighted expertise-sensitive pooling rule ϕpw out-

performs the corresponding linear pooling rule λpw, in terms of closeness to the truth.

Whilst linear pooling is taken as the reference in the cited literatures (Cooke, 1991),

some approaches have dabbled with issue-specific weights (Collins et al., 2023). The de-

velopments in this paper provide further support for such approaches, beyond proposing

a coherent, well-defined method for incorporating issue-specific expertise that overcomes

known challenges, as discussed in Section 3.3.

Whilst this paper focuses on aggregation of non-categorical beliefs—i.e. probabilities

or generalisations thereof—there is of course a large diverse literature on the aggre-

gation of categorical, yes-or-no judgements, parts of which consider performance (e.g.

Condorcet, 1785; Galton, 1907; Surowiecki, 2005). For instance, Prelec et al. (2017) pro-

poses an algorithm for aggregating categorical judgements which relies on participants’

judgements about others’ responses and provides evidence that, in a variety of settings,

it outperforms more traditional methods, including linear pooling (which, confusingly

from the perspective of the current paper, they call ‘confidence-weighted voting’). Ex-

amination of consequences of the confidence-in-belief-based approach developed here in

such contexts is left as a topic for future research.
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Axioms Aggregator

Consensus Independence Affine

Consensus Independence, Neutrality Average

Consensus Join Generalised Maximum

Consensus Join, Neutrality Maximum

Table 2: Characterisations of special cases

A Characterising confidence aggregation: special cases

In this Appendix, we extend Theorem 3 to characterise, as special cases, confidence

aggregation under the families of confidence-level aggregators mentioned in Section 2.2.

More specifically, we will provide results for the following stronger representation:

c0 “ 9Fbpc1, . . . , cnq, with 9F pc11, . . . , c1nq “ 9Φpc11, . . . , c1nq, where, for every o P O such

that
Ť

o:bo“o

Ş

i c
1ipoiq ‰ H

9Φbpc1, . . . , cnqpoq “
ď

o:bo“o

č

i

c1ipoiq (A.1)

The only difference with respect to the representation involved in Theorem 3 is that

here the union is taken over all tuples of confidence levels whose confidence-level aggre-

gate equals o, whereas the previous procedure looks at all those with confidence-level

aggregate at most o. It follows directly from the nestedness property of confidence rank-

ings (i.e. the fact that c is increasing in o) that, if c0 “ 9Fbpc1, . . . , cnq, then c0 is a

consensus-preserving confidence aggregation in the sense of Definition 1.

We have the following result, which involves the axioms in Figure 4, and defines

clauses according to Table 2.

Theorem 6. Suppose that O is infinite, and let tąiu,ą0 satisfy Assumptions 1 and 2.

For each of the rows in Table 2: tąiu,ą0 satisfy Corpus-wise Pareto, Consensus-based

beliefs, Non-degeneracy and the axiom(s) in the first column of the table if and only if

there exists a confidence-level aggregator b of the type specified in the second column

such that c0 “ 9Fbpc1, . . . , cnq, up to convex closure.

We make no particular claim for any of the confidence-level aggregators in Table 2

on normative grounds; we present this result to illustrate the richness of the approach,

and exemplify some simple aggregators.

The axiom involved in the characterisation of confidence aggregation with an affine

aggregator, Consensus Independence, uses the notion of uncovered consensus. For every

tuple of stakes levels s exhibiting consensus and stakes level s with ą0 respecting the

consensus ąs at s, we say that the consensus at s is covered when, for all acts f, g,
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if f čs g then there exists a tuple s1 exhibiting consensus with s1 ğ s such that ą0

respects the consensus ąs1 at s and f čs1 g. Otherwise, say that the consensus is

uncovered at s. When the consensus ąs is covered, there is no f, g such that the absence

of preference between them according to ą0
s can be pinpointed as being due to the respect

for consensus ąs, for there is some other consensus respected at s that does not have the

required preference. So, when the consensus is uncovered, it contributes for sure to the

construction of group preferences, even in the context of the other relevant consensuses.

In particular, it means that the group confidence level assigned to this consensus can’t

be a lower than that corresponding to stakes level s.

In the light of this, Consensus Independence can be thought of as an Independence-

like axiom, adapted to this context. An Independence axiom in this context would

imply that if ą0 does not respect ąsi at si, for all i, then it does not respect any mixture

ąř

k αksk exhibiting consensus at
ř

k αksk. However, consensus-preserving aggregation

with an affine aggregator can violate such a condition when, for instance, the consensus

involved is respected ‘by accident’, because it is covered, and so the implication does not

hold. Consensus Independence corrects the first-pass independence condition to account

for such cases, using the notion of uncovered consensus. It allows that the mixture

of uncovered consensuses may not be uncovered, and it allows that a mixture of non-

respected consensus may be respected, but doesn’t allow that the mixture of uncovered

consensuses can coincide with a mixture of non-respected ones.

The characterising axiom for a Generalised maximum confidence-level aggregator,

Consensus Join, states that respect for consensus at s is preserved if one takes the

Axiom (Consensus Independence). For all tuples of stakes levels s1, . . . , sl, t1, . . . , tm P

Sn exhibiting consensus and α1, . . . , αl, β1, . . . , βm P r0, 1s with
řl

k“1 αk “
řm

j“1 βj “ 1

and
řl

k“1 αksl “
řm

j“1 βjtj, if, for some stakes levels s1, . . . , sl, t1, . . . , tm, ą0 does not

respect the consensuses ąsi at sk for each k “ 1, . . . , l, and ątj are uncovered consensuses

at tj for all j “ 1, . . . ,m, then
řl

k“1 αksk ă
řm

j“1 βjtj.

Axiom (Consensus Join). For any tuples of stakes levels s, t exhibiting consensus, if ą0

respects the consensuses ąs,ąt at s, then it respects the consensus ąs_t at s.

Axiom (Neutrality). For any stakes levels s, tuple of stakes levels s and permutation π

such that s, πpsq exhibit consensus, ą0 respects the consensus ąs at s if and only if ą0

respects the consensus ąπpsq at s.

Where, for any s, t P Sn and α P r0, 1s, pαs ` p1 ´ αqtqi “ αsi ` p1 ´ αqti and ps _ tqi “

maxtsi, tiu.

Figure 4: Axioms for special cases
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consensus corresponding to the largest stakes level for each entry in the tuple (the join).

Neutrality is a standard neutrality axiom, adapted to the current context, stating that

respect for consensus is preserved under permutation of individuals. Added to each of the

other conditions, it characterises the ‘neutral’ version of affine and generalised maximum

aggregators respectively.

B Proofs

B.1 Proofs of results in Sections 2, 4 and Appendix A

We begin with the following Proposition, mentioned in Section 2.

Proposition 3. c0 is a consensus-preserving aggregation of pc1, . . . , cnq under b if and

only if

ι0ppq “ bpι1ppq, . . . , ιnppqq

Proof. By the definition, p P c0poq if and only if, for some o with bo ď o, p P cipoiq

for all i. p P cipιippqq for all i and hence p P c0pbpι1ppq, . . . , ιnppqqq. Moreover, for

any o with bo ă bpι1ppq, . . . , ιnppqq, oi ă ιippq for some i by the monotonicity of b;

since ιippq “ minto1 P O : p P cipo1qu, it follows that p R cipoiq. Hence, for every

o1 ă bpι1ppq, . . . , ιnppqq, p P c0po1q. The required formula follows from the definition of

ι.

We now prove Theorems 3 and 6. Throughout the rest of this section, with slight

abuse of notation, for any stakes level s P S, we shall denote cipζpsqq by cipsq, for all i.

B.1.1 Proof of Theorem 3

We first show sufficiency of the axioms. Recall that tpci, D, uqu, pc0, D, uq denote the

representations of the tąiu,ą0. Let X Ď Sn be the set of tuples exhibiting consensus.

By Non-degeneracy, X ‰ H. Let ě be the dominance ordering on Sn: s ě t if and only

if si ě ti for all i. X is closed under ě: if s P X and t ě s, then ąs is consistent; but

ątiĎąsi for all i by the properties of confidence rankings, so ąt is consistent and hence

t P X.

We say that a preference relation ą is a Bewley preference if there exists a repre-

sentation à la Bewley: i.e. there exists a closed convex set of priors P Ď ∆ and utility

function u1 such that, for every f, g P A, f ą g if and only if

Epu
1pfq ą Epu

1pgq for all p P P (B.1)

The following claim follows immediately from standard arguments (e.g. Ghirardato

et al., 2004), for every ąs exhibiting consensus.
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Claim 1. ą0 respects the consensus ąs at stakes level s if and only if c0psq Ě
Şn

i“1 c
ipsiq.

Claim 2. For any set Y Ď Sn such that ąs exhibits consensus for every s P Y ,
Ş

sPY ąs

is represented by
Ť

sPY

Şn
i“1 c

ipsiq in the following sense: for all f, g, f ąs g if and only

if

Epupfq ą Epupgq for all p P
ď

sPY

n
č

i“1

cipsiq (B.2)

Proof. First consider ąs exhibiting consensus, and let ąŞ

s be the Bewley preference with

utility u and set of priors
Şn

i“1 c
ipsiq. Note that, since the ci are closed and convex, so is

their intersection. For every f, g P A, f ąs g if and only if f ąi
si g for some i and f ći

si g

for every i. By Assumption 1, this holds if and only if, for some i, Epupfq ą Epupgq for

all p P cipsiq, and, for every i, it is not the case that Epupfq ă Epupgq for all p P cipsiq.

Since
Şn

i“1 c
ipsiq ‰ H, this holds if and only if, for all p P

Şn
i“1 c

ipsiq, Epupfq ą Epupgq.

Hence ąs“ąŞ

s.

Now consider Y as specified. The case in which Y is a singleton has just been

treated, so suppose that Y contains several elements. By the previous observation, for

every f, g P A, f ąs g for every s P Y if and only if f ąŞ

s g for every s P Y , which

holds if and only if Epupfq ą Epupgq for all p P
Şn

i“1 c
ipsiq for every s P Y . This holds

if and only if Epupfq ą Epupgq for all p P
Ť

sPY

Şn
i“1 c

ipsiq, as required.

Define the function G : X Ñ S as follows:

Gpsq “ min
␣

s :ą0
sĎąs

(

“ min

#

s : c0psq Ě

n
č

i“1

cipsiq

+

where the equality follows from Claim 1. Note that if GpXq is a finite set, then

minGpXq P GpXq. The following proposition implies that this is the case when GpXq,

and hence O, is infinite—and hence, given our assumptions, when the confidence rankings

are upper semicontinuous.

Proposition 4. If the confidence rankings ci are all upper semicontinuous, then, for any

decreasing sequence sj P X with sj Ñ s, s P X and Gpsq ď limGpsjq.

Proof. Consider a decreasing sequence sj P X with sj Ñ s. Since each ci is up-

per semicontinuous,
Ş

j c
ipsji q “ cipsiq for each i, so

Şn
i“1 c

ipsiq “
Şn

i“1

Ş

j c
ipsji q “

Ş

j

Şn
i“1 c

ipsji q ‰ H. So s P X. Moreover, by the definition ofG, c0pGpsqq Ě
Ş

j

Şn
i“1 c

ipsji q,

so Gpsq ď Gpsjq for all j. Hence Gpsq ď limGpsjq, as required.
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Claim 3. For every s ě minGpXq, ą0
s is represented by

Ť

sPX:sěGpsq

Ş

i c
ipsiq in the

Bewley sense: i.e. for all f, g P A, f ą0
s g if and only if:

Epupfq ą Epupgq for all p P
ď

sPX:sěGpsq

č

i

cipsiq (B.3)

Proof. Fix a stakes level s with s ě minGpXq, and consider any s1 with Gps1q ď s. (By

the previous observations guaranteeing the existence of a minimum, such s1 exists.) By

the definition of G, there exists s2 P X with s2 ď s and ą0
s2Ďąs1 . It follows from the

nestedness properties of confidence rankings that ą0
sĎą0

s2Ďąs1 . Since this holds for all

s1 with Gps1q ď s, it follows that ą0
sĎ

Ş

sPX:sěGpsq ąs.

To establish the opposite containment, consider f, g with f ąs g for all s P X with

s ě Gpsq. For any s1 such that ą0 respects the consensus ąs1 at s, it follows from the

definition of G that s ě Gps1q, so f ąs1 g by the assumption specifying f, g. Hence, by

Corpus-wise Pareto, f ą0
s g. So ą0

sĚ
Ş

sPX:sěGpsq ąs, and hence there is equality. It

follows from Claim 2 that (B.3) holds for all s ě minGpXq.

Since c0psq represents ą0
s by the confidence representation (Hill, 2016), it follows

that, up to convex closure, c0psq “
Ť

sPX:sěGpsq

Ş

i c
ipsiq.

By the nestedness of confidence rankings, we have that, for any s, s1, if s1 ě s, then

Gps1q ě Gpsq, so G is monotonic. Moreover, if ąs“ąt, then Gpsq “ Gptq, so G generates

a well-defined function on the equivalence classes of Sn under the relation setting s and

t equivalent if and only if ąs“ąt, which we also call G. So b, defined by

bpo1, . . . , onq “

$

&

%

ζ ˝Gpζ´1po1q, . . . , ζ´1ponqq
`

ζ´1po1q, . . . , ζ´1ponq
˘

P X

ζpminpGpXqqq otherwise

is well-defined; i.e. even if ppζ´1po1q, . . . , ζ´1ponqq is multi-valued, for any s, t P ppζ´1po1q, . . . , ζ´1ponqq,

ąs“ąt by the confidence decision model, and so Gppζ´1po1q, . . . , ζ´1ponqq is well-defined

(Gpsq “ Gptq). Under the simplifying assumption that ζ is the identity, b “ G on X.

Moreover, b is monotonic, and thus a confidence level aggregator. It follows from Claim

3 that (2) holds up to convex closure for all o with
Ť

o:boďo

Ş

i c
ipoiq ‰ H. For any

s ă minGpXq, by the nestedness of confidence rankings, ą0
sĎ

Ť

s1PGpXq ą0
s1 . How-

ever, by Consensus-based beliefs, if f ą0
s g, then f ą0

s1 g for some s1 P GpXq, so ą0
s“

Ť

s1PGpXq ą0
s1 . Hence, for any o with

Ť

o:boďo

Ş

i c
ipoiq “ H, cpoq “

Ş

s1PGpXq c
0ps1q “

c0pminGpXqq (by the upper semicontinuity of confidence rankings), up to convex closure,

so c0 is consensus preserving, as required. This establishes the Theorem.

Moreover, note that since b is monotonic on the domain where ζ´1poq P X, any

monotonic operator coinciding with b on this domain is also a confidence level aggrega-
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tor, and represents aggregated preferences according to (2), hence establishing the ‘only

if’ direction.

The ‘if’ direction is a direct consequence of (2) and Claims 1 and 2.

Finally, suppose that b1 ‰ b is another confidence level aggregator such that, up

to convex closure, c0 is a consensus-preserving aggregation of pc1, . . . , cnq under b1. Let

G1psq “ b1psq. By the confidence representation and the fact that c0 is a consensus-

preserving aggregation of pc1, . . . , cnq under b1, for every s P X, ą0
G1psq

Ďąs. It follows

from the definition of G that Gpsq ď G1psq for all s P X. So, either b1 coincides with b

on X, or there s P X with b1o ‰ bo, so b1o ą bo. Hence b is the unique b taking

minimal values on all consensuses, as required.

Remark 2. Note that the use of profiles of confidence levels with bo less than or equal

to o, rather than just equal, as in (A.1), is a result of the general framework adopted

for this result. More specifically, it is clear to see that one can prove, using arguments

along the lines above, that one can replace the less than or equal with equality under

the condition that, if bo ă o, then there exists o1 ě o with bo1 “ o. The following is

an example where this condition is not satisfied.

Example B.1. Consider O “ ta, b, cu with a ą b ą c, and two agents 1, 2. Consider

b giving the value c on pc, cq and the value a otherwise. Clearly, the condition is not

satisfied for b—in fact, there is no o with bo “ b. So there is no b such that (3) holds

with equality in the place of the inequality.

B.1.2 Proof of Theorem 6

Proof of part i. (affine aggregation). Let X be as defined in the proof of Theorem 3. Let

C “ tps, sq P Rn`1 : s P X, ą0
sĎąsu

K “ tps, sq P C :ąsĚ
č

s1:ps1,sqPC, s1ğs

ąs1u

C is the set of consensuses and K is the set of ‘covered’ consensuses—i.e. where there is

consensus because the other consensuses at this s ‘cover’ this one. For a tuple of stakes

levels s and a stakes level s1, s1
is is the tuple obtained by replacing the ith stakes level in s

by s1. An individual i is non-null if there exist s, s1
is P X and t P S with ps, tq P CzK but

ps1
is, tq R C. Let NN “ ti P t1, . . . , nu : i non-nullu and Y “ SNN Ď Rn be the subspace

of Sn containing the stakes levels for non-null individuals only; we use XY , CY ,KY etc

to refer to the projection of X,C,K etc onto Y , Y ˆ R etc.

Define
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L “ tps, sq P Y ˆ R : s P XY , ą0
sĘąsu “ pXY ˆ RqzCY

U “ tps, sq P CY : Ds1 ď s, ps, s1q P CY zKY u

For a set Z, let convpZq be the convex hull of Z. Note that L,U Ď XY ˆ R, so

convpLq, convpUq Ď convpXY q ˆ R.

Claim 4. convpLq X convpUq “ H.

Proof. For reductio, suppose that there exist ps1, s1q, . . . , psl, slq P L, pt1, t1q, . . . , ptm, tmq P

U , α1, . . . , αl, β1, . . . , βm P r0, 1s with
řl

i“1 αi “
řm

i“1 βi “ 1,
řl

i“1 αisi “
řm

i“1 βiti and
řl

i“1 αisi “
řm

i“1 βiti. Without loss of generality, the ti can be chosen to be minimal such

that pti, tiq P U . It follows from Consensus Independence (extending to tuples to take

any value off NN for which there is consensus, if necessary) that
řl

i“1 αisi ă
řm

i“1 βiti,

which is a contradiction.

Claim 5. convpLq is open in the subspace topology on convpXY q ˆ R.

Proof. Note that Lc X pXY ˆ Rq “ CY “ tps, sq P Y ˆ R : s P X, Gpsq ě su, where

G is as defined in the proof of Theorem 3. By Proposition 4 and the nestedness of the

preferences orders at different stakes levels, Lc X pXY ˆ Rq is closed. Hence L is open

in the subspace topology on XY ˆ R. It follows that the convex hull convpLq is open in

the subspace topology on convpXY q ˆ R.

By the previous claims and a separating hyperplane theorem (Rockafellar, 1970,

Thm 11.3), there exists an linear function ϕ : RNN Ñ R and χ P R with ϕpps, sqq ă χ

for all ps, sq P convpLq, and ϕpps, sqq ě χ for all ps, sq P convpUq. Since it is linear,

and without loss of generality, ϕ, χ can be chosen so there exist wi, i P NN such that

ϕpps, sqq “ s ´
ř

iwisi. Define Gaff : Rn Ñ S by Gaff psq “
ř

iPNN wisi ` χ. Note

that Gaff is an affine function on Rn, with zero weights on i R NN . By construction,

s ă Gaff psq for all ps, sq P convpLq, and s ě Gaff psq for all ps, sq P convpUq.

We first show that wi ą 0 for all i P NN . By the nestedness of confidence rankings,

for any s1, s P Y , s1 ě s, if ps, sq P L, then ps1, sq P L. For reductio, suppose, for some

k, that wk ă 0, and consider ps, s1q P L. By construction, s, with s ´
ř

iwisi “ χ, is

such that ps, sq R L. Consider s1 “ ps1, . . . , sk ´ s´s1

wk
, . . . , snq. s1 ě s since wk ă 0, so

ps1, s1q P L. However, s1 ´
ř

iwis
1
i “ χ, contradicting the established properties of ϕ.

Hence wi ě 0 for all i P NN . Suppose now that for some i P NN , wi “ 0. By the

nestedness of the confidence representation and the definition of NN , there exists s P X,

s1, t such that ps, tq P U and ps1
is, tq P L; however, since wi “ 0, Gaff psq “ Gaff ps1

isq,
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which contradicts the definition of Gaff . So, for all i P NN , wi ‰ 0. Hence wi ą 0 for

all i P NN , and Gaff is monotonic.

Claim 6. For all s ě inf Gaff pXq, ą0
s is represented by

Ť

sPX:s“Gaff psq

Ş

i c
ipsiq in the

Bewley sense: i.e. for all f, g P A, f ą0
s g if and only if:

Epupfq ą Epupgq for all p P
ď

sPX:s“Gaff psq

č

i

cipsiq (B.4)

Proof. Fix a stakes level s, with s ě inf Gaff pXq. For any s P X with Gaff psq “ s, by

the construction of ϕ and the definition of NN , ą0
sĎąs. So ą0

sĎ
Ş

sPX:s“Gaff psq ąs.

We now establish the opposite containment. By Corpus-wise Pareto, ą0
sĚ

Ş

s:ps,sqPC ąs.

Consider any s1 such that ą0 respects the consensus ąs1 at s—so ps1, sq P C—and

Gaff ps1q ă s. Then by the fact that the wi ě 0 for all i, there exists s ě s1 withGaff psq “

s; by the nestedness of confidence rankings and the preference representation, ąs1ĚąsĚ
Ş

s:ps,sqPC, Gaff psqěs ąs. Since this holds for all such s1, ą0
sĚ

Ş

s:ps,sqPC, Gaff psqěs ąs“
Ş

s:Gaff psq“s ąs X
Ş

s:ps,sqPC, Gaff psqąs ąs, where the equality is due to the construction

of Gaff . Now consider any s1 with ps1, sq P C and Gaff ps1q ą s. If ps1, sq R K, then

ps1, sq P U , contradicting the fact that Gaff ps1q ą s and the construction of Gaff . Hence

ps1, sq P K, so ąs1Ě
Ş

s2:ps2,sqPC, s2ğs1 ąs2 . So
Ş

s:Gaff psq“s ąs X
Ş

s:ps,sqPC, Gaff psqąs ąs“
Ş

s:Gaff psq“s ąs X
Ş

s:ps,sqPC, Gaff psqąs,sğs1 ąs. Since this holds for all such s1, it follows

that
Ş

s:Gaff psq“s ąs X
Ş

s:ps,sqPC, Gaff psqąs ąs“
Ş

s:Gaff psq“s ąs, so ą0
sĚ

Ş

s:Gaff psq“s ąs.

So ą0
s“

Ş

s:Gaff psq“s ąs; it follows from Claim 2 that (B.4) holds for all s ě

inf Gaff pXq.

Since c0psq represents ą0
s by the confidence representation (Hill, 2016), it follows

that, up to convex closure, c0psq “
Ť

sPX:Gaff psq“s

Ş

i c
ipsiq.

Define b by

bo “
ÿ

wioi ` χ

Clearly, this is an affine confidence level aggregator. Moreover, by Claim 6 and the

fact that ζ : S Ñ O is the identity, (A.1) holds up to convex closure for every o with
Ť

o:boi“o

Ş

i c
ipoiq ‰ H. By a similar argument to that used in the proof of Theorem 3,

the representation extends to other o P O as required. Hence, up to convex closure, c0

is a consensus preserving with affine aggregator b as required.

For the necessity of the Consensus Independence axiom, suppose that there is an

affine aggregator b representing preferences. Consider any s1, . . . , sl, t1, . . . , tm exhibit-

ing consensus, and α1, . . . , αl, β1, . . . , βm P r0, 1s with
řl

k“1 αk “
řm

k“1 βk “ 1 and
řl

k“1 αksk “
řm

k“1 βktk. If ą0 does not respect the consensuses ąsk at sk, then c0 pskq Ğ
Ş

i c
ippskqiq, whereas, by the aggregation rule c0 p

ř

iwipskqi ` χq Ě
Ş

i c
ippskqiq, so,

by the nestedness of confidence rankings, sk ă wipskqi ` χ. If this holds for all k,
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then
řl

k“1 αksk ă
ř

iwi
řl

k“1 αkpskqi ` χ. Similarly, if ątk is an uncovered consen-

sus at tk then, by the confidence representation of preferences, c0 ptkq Ě
Ş

i c
ipptkqiq

and
Ş

i c
ipptkqiq Ę

Ť

sğtk, ps,tkqPC

Ş

i c
ipsiq Ď c0 ptkq. By the aggregation representa-

tion, it follows that c0 p
ř

iwiptkqi ` χq “
Ť

s:
ř

i wisi“
ř

i wiptkqi

Ş

i c
ipsiq Ď

Ş

i c
ipptkqiq Y

Ť

sğtk, ps,tkqPC

Ş

i c
ipsiq Ď c0ptkq, so, by the nestedness of confidence rankings,

ř

iwiptkqi`

χ ď tk. So if ątk is an uncovered consensus at tk for each k, it follows that
řm

k“1 βktk ě
ř

iwi
řm

k“1 βkptkqi ` χ. Since,
ř

iwi
řl

k“1 αkpskqi “
ř

iwi
řm

k“1 βkptkqi, it follows that
řm

k“1 βktk ą
řl

k“1 αksk, as required.

Proof of part ii. (averaging aggregation). We show that there exists a representation of

the sort obtained in the proof of part i. where the weights are equal. Suppose not, and

consider a representation with an affine aggregator with wj ą wk for some j, k. First,

by Neutrality and Non-degeneracy, NN “ t1, . . . , nu, so wj , wk ‰ 0.

First consider the case where there exists s and s such that ps, sq P C, s is a maximum,

under ě, of ts1 : ps1, sq P Cu, and sj ‰ sk; take any such s and s. By the upper

semicontinuity of confidence rankings, for any strictly decreasing sequences tl Ñ sj and

t1l Ñ sk,
Ş

i‰j c
ipsiq X ckpt1lq Ñ

Ş

i c
ipsiq and

Ş

i‰k c
ipsiq X cjptlq Ñ

Ş

i c
ipsiq as l Ñ 8.

By the fact that s is a maximum, pptlqjs, sq R C, ppt1lqks, sq R C for all l. By the affine

aggregator representation and the upper semicontinuity of confidence rankings, for each

s2 ą s, there exist mt,mt1 with pptlqjs, s
2q P C and ppt1lqks, s

2q P C for all l ą mt and

l ą mt1 . In particular Gaff ptjsq ą s and Gaff pt1ksq ą s for all t ą sj , t
1 ą sk, where Gaff

is as in the proof of part i., though Gaff pptlqjsq Ñ Gaff psq and Gaff ppt1lqksq Ñ Gaff psq

as l Ñ 8, so by the continuity of the affine representation, Gaff psq “ s.

If sj ą sk, thenGaff ppskqjpsjqksq ă s, by the form ofGaff , the fact that wj ą wk and

the rearrangement inequality. Hence, by the continuity of the representation, for some

t ą sk, Gaff ptjpsjqksq ă s, from which it follows that ptjpsjqks, sq P C. Since tjpsjqks

is a permutation of tks, it follows from Neutrality that ptks, sq P C, contradicting the

maximality of s. If sj ă sk, then Gaff ppskqjpsjqksq ą s. By the construction of s there

exists s2 ă Gaff ppskqjpsjqksq and t ą sk with ptks, s
2q P C. Moreover, since t can be

chosen such that there exists t1 ą t with pt1ks, s
2q R C, t can be chosen so that ptks, s

2q R

K. By Neutrality, it follows that ptjpsjqks, s
2q P CzK, so ptjpsjqks, s

2q P U , contradicting

the construction of Gaff and the fact that Gaff ptjpsjqks
1q ě Gaff ppskqjpsjqks

1q ą s2.

Now consider the case where there does not exist s and s such that ps, sq P C, s is a

maximum, under ě, of ts1 : ps1, sq P Cu, and sj ‰ sk. Hence, for all s and s such that

ps, sq P C and s is a maximum, under ě, of ts1 : ps1, sq P Cu, sj “ sk. For any s, let

ŝ be such that: ŝi “ si when i ‰ j, k, ŝj “ ŝk “ maxtsj , sku. So, in the case under

consideration, for every s with sj ‰ sk and every stakes level s, ps, sq P C if and only if
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pŝ, sq P C.

Hence the map ψ : Sn Ñ Sn´1, defined by ψpsqi “ si for i ‰ j, k and ψpsqj “

maxtsj , sku, is a well-defined map sending C to ψpCq “ Ĉ which is such that ψ´1pĈq “

C. Hence images of other sets in the proof of part i., which are defined in terms of C,

can be defined in terms of Ĉ and have the same pull-back property. It follows that the

argument in the proof of part i. goes through, yielding a representation of c0 in terms

of an affine function zGaff : Rn´1 Ñ R of the following form: for all s ě inf zGaff pX̂q:

c0psq “
ď

sPX̂:s“{Gaff psq

č

i‰k

cipsiq X ckpsjq

up to convex closure. Letting zGaff psq “
ř

i‰k wisi ` χ, define G1
aff : Rn Ñ R by

zGaff psq “
ř

i‰j,k wisi `
wj

2 sj `
wj

2 sk ` χ. Noting that, for all s P Sn with sj “ sk,

G1
aff psq “ zGaff ps|t1,...nuztkuq, we have that, for all s ě inf G1

aff pXq,

c0psq “
ď

sPX:s“G1
aff psq, sj“sk

n
č

i“1

cipsiq

up to convex closure.

For any s with sj ‰ sk and G1
aff psq “ s, since ps, sq P C, it follows that pŝ, sq P C by

the specification of the case. So
Ş

i c
ipsiq Ď

Ş

i c
ipŝiq Ď

Ť

s1PX:s“G1
aff ps1q, sj“sk

Ş

i c
ipsiq.

Hence, for all s ě inf G1
aff pXq, c0psq “

Ť

sPX:s“G1
aff psq

Şn
i“1 c

ipsiq, up to convex closure.

So there is an affine aggregator representation with equal weights for j and k, as required.

Necessity of Neutrality is straightforward.

Proof of part iii. (generalised maximum aggregator). Consider G as defined in the proof

of Theorem 3. By Consensus Join, for any s, t, Gps _ tq ď maxtGpsq, Gptqu. However,

by the monotonicity of G, since s _ t ě s, t, Gps _ tq ě maxtGpsq, Gptqu, so Gps _ tq “

maxtGpsq, Gptqu. For each s ě minGpXq, consider ts “
Ž

s:Gpsqďs s. By the previous

observation, Gptsq “ s and for any s with si ą tsi for some i, Gpsq ą s. Since, for any s,

if s ď ts, then Gpsq ď s by the monotonicity of G, we have that, for all s, Gpsq ą s if

and only if there exists i with si ą tsi . Hence Gpsq ă s if and only if there exists s1 ă s

with si ď ts
1

i for all i. Hence Gpsq “ s if and only if s ď ts and there is no s1 ă s with

s ď ts
1 .

Moreover, since, by the nestedness of the confidence representation,
Ş

i c
ipsiq Ď

Ş

i c
iptsi q for all s with Gpsq ď s, it follows that

Ş

i c
iptsi q “

Ť

sPX:s“Gpsq

Ş

i c
ipsiq “

Ť

sPX:sěGpsq

Ş

i c
ipsiq. So, up to convex closure, c0psq “

Ş

i c
iptsi q.

For i “ 1, . . . , n, define ψi : O Ñ O by ψipoq “ mints : tsi ě ou. This is well-defined,

since ζ : S Ñ O is the identity map. Since, by the confidence representation, tsi is
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increasing in s for all i, ψi is increasing for all i. For any o P On, s P S and s P ζ´1poq,

Gpsq “ s if and only if s ď ts and s ę ts
1 for all s1 ă s, which is the case if and only

if maxi ψipoiq “ s. Hence Gpζ´1poqq is well-defined (and would be even if ζ were not

invertible), and Gpζ´1poqq “ maxi ψipoiq. Defining b by bo “ maxi ψipoiq, we thus

have that, for every o with
Ť

o:boi“o

Ş

i c
ipoiq ‰ H, (A.1) holds with b, up to convex

closure. By a similar argument to that used in the proof of Theorem 3, the representation

extends to other o P O as required. Since the ψi are increasing, b is monotonic, and

hence a generalized maximum aggregator. Hence, up to convex closure, c0 is a consensus

preserving with generalised maximum aggregator b as required.

The proof of necessity of Consensus Join is straightforward.

Proof of part iv. (maximum aggregator). Consider ts, as defined in the proof of part iii;

we show that tsj “ tsk for all j, k. For reductio, suppose that this is not the case for some

j, k, and suppose without loss of generality that tsj ą tsk. By Neutrality, Gpptskqjpt
s
jqkt

sq “

Gptsq “ s; but since tsj ą tsk, it follows by the properties of G established in the proof

of part iii. that Gpptskqjpt
s
jqkt

sq ą Gptsq “ s, which is a contradiction. So tsj “ tsk for

all j, k and s. Hence, for ψi as defined in the proof of part iv., ψjpoq “ ψkpoq “ ψpoq

for all j, k and o P O, whence b as defined in that proof of the proof can be written as

bo “ maxi ψpoiq “ ψpmaxi oiq. Hence it is a maximum aggregator, as required.

B.2 Proofs of results in Section 3

Proof of Theorem 1. By (3), the centre of c is:

argmin
pP∆

bpι1ppq, . . . , ιnppqq “ argmin
pP∆

p

n
ÿ

i“1

1

n
ιippq ` χq

“ argmin
pP∆

n
ÿ

i“1

1

n
ιippq

In part i., ιippq “ wi
ř

ωPΩ1pppωq´pipωqq2, so the centre of c is p “ argminpP∆

řn
i“1w

i
ř

ωPΩ1pppωq´

pipωqq2. It is well-known that this is the mean of the distributions: the FOC is d
dppωq

“

2
řn

i“1w
ipppωq ´ pipωqq “ 0 for each ω P Ω1, yielding ppωq “

řn
i“1

wi
řn

i“1 w
i pipωq for every

ω P Ω, which belongs to ∆.

In part ii., ιippq “ wiRpp}piq, so the centre of c is p “ argmin
řn

i“1w
iRpp}piq. Yet:
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n
ÿ

i“1

wiRpp}piq “ ´

n
ÿ

i“1

wi
ÿ

ωPΩ

ppωqplog
pipωq

ppωq
q

“ ´
ÿ

ωPΩ

ppωq log

˜

n
ź

i“1

pipωqw
i

ppωqw
i

¸

“ ´

˜

n
ÿ

i“1

wi

¸

ÿ

ωPΩ

ppωq log

¨

˚

˝

śn
i“1 pipωq

wi
řn
i“1

wi

ppωq

˛

‹

‚

“

˜

n
ÿ

i“1

wi

¸

»

—

–

´
ÿ

ωPΩ

ppωq log

¨

˚

˝

śn
i“1 pipωq

wi
řn
i“1

wi

ppωq
.

1

ř

ωPΩ

śn
i“1 pipωq

wi
řn
i“1

wi

˛

‹

‚

` log

¨

˚

˝

1

ř

ωPΩ

śn
i“1 pipωq

wi
řn
i“1

wi

˛

‹

‚

fi

ffi

fl

“

˜

n
ÿ

i“1

wi

¸

»

—

–

´
ÿ

ωPΩ

ppωq log

ˆ

GMppiqpωq

ppωq

˙

` log

¨

˚

˝

1

ř

ωPΩ

śn
i“1 pipωq

wi
řn
i“1

wi

˛

‹

‚

fi

ffi

fl

“

˜

n
ÿ

i“1

wi

¸

»

—

–

Rpp}GMppiqq ` log

¨

˚

˝

1

ř

ωPΩ

śn
i“1 pipωq

wi
řn
i“1

wi

˛

‹

‚

fi

ffi

fl

where GMppiqpωq “

śn
i“1 pipωq

wi
řn
i“1

wi

ř

ωPΩ

śn
i“1 pipωq

wi
řn
i“1

wi

. This expression is clearly minimised at p “

GMppiq P ∆, so the centre of c is GMppiq, as required.

In part iii., ιippq “ wiRppi}pq, so the centre of c is p “ argmin
řn

i“1w
iRppi}pq. Yet:

n
ÿ

i“1

wiRppi}pq “ ´

n
ÿ

i“1

wi
ÿ

ωPΩ

pipωqplog
ppωq

pipωq
q

“

n
ÿ

i“1

wi
ÿ

ωPΩ

pipωq log pipωq ´
ÿ

ωPΩ

log ppωq

n
ÿ

i“1

wipipωq

“

n
ÿ

i“1

wi
ÿ

ω

pipωq log pipωq ´

˜

n
ÿ

i“1

wi

¸˜

ÿ

ωPΩ

AMppiqpωq logAMppiqpωq

¸

`

˜

n
ÿ

i“1

wi

¸˜

ÿ

ωPΩ

plogAMppiqpωq ´ log ppωqqAMppiqpωq

¸

“

n
ÿ

i“1

wi
ÿ

ω

pipωq log pipωq ´

˜

n
ÿ

i“1

wi

¸˜

ÿ

ω

AMppiqpωq logAMppiqpωq

¸

`

˜

n
ÿ

i“1

wi

¸

RpAMppiq}pq
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where AMppiq “
řn

i“1
wi

řn
i“1 w

i pi. This expression is clearly minimised at p “ AMppiq P

∆, so the centre of c is AMppiq, as required.

The next two results and proofs adopt the notation from Example 3.1.

Proposition 5. Under the conditions and setup of Example 3.1, let csq be the wL Eu-

clidean confidence ranking generated by pL (with ω1 “ ωR), crKL be the wL reverse

relative entropy confidence ranking generated by pL. For ϵ P r0, 0.9s let L “ tp P ∆ :

ppLq ě 0.9 ´ ϵu, R “ tp P ∆ : ppLq ď 0.1 ` ϵu. Then, for all o P O, csqpoq Ď L if and

only if csqpoq Ď R, and crKLpoq Ď L if and only if crKLpoq Ď R.

Proof. It suffices to show that the appropriate distance (or, equivalently ι-value) between

p and the closest q with qpLq “ 0.9 ´ ϵ is the same as the distance to the closest q1 with

q1pRq “ 0.1 ` ϵ.

Both the distance functions involved (Euclidean distance, relative entropy) are func-

tions of pLpωLRq, pLpωLq, pLpωN q, ppωLRq, ppωLq, ppωN q; write this function as ϕppLpωLRq, pLpωLq, pLpωN q, ppωLRq, ppωLq, ppωN qq.

More specifically, in the Euclidean case, with ω1 “ ωR,

ϕppLpωLRq, pLpωLq, pLpωN q, ppωLRq, ppωLq, ppωN qq

“pppωLRq ´ pLpωLRqq2 ` pppωLq ´ pLpωLqq2 ` ppppωN q ´ pLpωN qq2

In the relative entropy case,

ϕppLpωLRq, pLpωLq, pLpωN q, ppωLRq, ppωLq, ppωN qq

“ ´ pLpωLRq log

ˆ

ppωLRq

pLpωLRq

˙

´ pLpωLq log

ˆ

ppωLq

pLpωLq

˙

´ pLpωN q log

ˆ

ppωN q

pLpωN q

˙

´ p1 ´ pLpωLRq ´ pLpωLq ´ pLpωN qq log

ˆ

p1 ´ ppωLRq ´ ppωLq ´ ppωN qq

p1 ´ pLpωLRq ´ pLpωLq ´ pLpωN qq

˙

Note that, since pLpωLRq “ pLpωN q, ϕppLpωLRq, pLpωLq, pLpωN q, ppωLRq, ppωLq, ppωN qq “

ϕppLpωLRq, pLpωLq, pLpωN q, ppωN q, ppωLq, ppωLRqq for all p.

Let q minimise the distance from pL among all p with ppLq “ 0.9 ´ ϵ. I.e. q min-

imises ϕppLpωLRq, pLpωLq, pLpωN q, qpωLRq, qpωLq, qpωN qq among all p with ppLq “ 0.9´ϵ.

Hence, by the previous observation, q minimises ϕppLpωLRq, pLpωLq, pLpωN q, qpωN q, qpωLq, qpωLRqq

among all p with ppLq “ ppωLq ` ppωLRq “ 0.6. Define q1 by q1pωLRq “ qpωN q, q1pωLq “

qpωLq, q1pωN q “ qpωLRq. By the previous observation, q1 minimises ϕppLpωLRq, pLpωLq, pLpωN q, q1pωLRq, q1pωLq, q1pωN qq

among all p with ppRcq “ ppωLq ` ppωN q “ 0.9 ´ ϵ. So q1 minimises the distance from

pL among all p with ppRq “ 0.1 ` ϵ. By the previous observation, the distance between

q and pL is the same as the distance between q1 and pL, as required.
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Proof of Proposition 1. Take o “ wL
Lϵ

2`wL
B pmaxtϵ´ 0.81, 0uq

2. q, defined by qpωLRq “

pLpωLRq ´ maxtϵ ´ 0.81, 0u “ 0.09 ´ maxtϵ ´ 0.81, 0u, qpωRq “ pLpωRq ` maxtϵ ´

0.81, 0u “ 0.01 ` maxtϵ ´ 0.81, 0u, qpωLq “ pLpωLq ´ ϵ “ 0.81 ´ mintϵ, 0.81u and

qpωN q “ pLpωN q ` mintϵ, 0.81u “ 0.09 ` mintϵ, 0.81u is a probability measure over

Ω. Moreover,
ř

j“tL,R,Bu w
L
j pqpjq ´ pLpjqq2 “ wL

Lϵ
2 ` wL

B pmaxtϵ´ 0.81, 0uq
2, so q P

cLpoq. Since, for any q1 with q1pLq ă 0.9 ´ ϵ,
ř

j“tL,R,Bu w
L
j pq1pjq ´ pLpjqq2 ą wL

Lϵ
2 `

wL
B pmaxtϵ´ 0.81, 0uq

2, such q1 R cLpoq, so cLpoq Ď L. For any δ P r0, 0.9s, consider qδ
defined by qδpωLRq “ pLpωLRq ` maxt0, δ ´ 0.09u “ 0.09 ` maxt0, δ ´ 0.09u, qpωRq “

pLpωRq`mintδ, 0.09u “ 0.01`mintδ, 0.09u, qδpωLq “ pLpωLq´maxt0, δ´0.09u “ 0.81´

maxt0, δ´0.09u and qδpωN q “ pLpωN q´mint0.09, δu “ 0.09´mint0.09, δu; this is clearly

a probability measure.
ř

j“tL,R,Bu w
L
j pqδpjq ´ pLpjqq2 “ wL

Rδ
2 `wL

B pmaxt0, δ ´ 0.09uq
2.

Noting that wL
Rϵ

2 `wL
B pmaxt0, ϵ´ 0.09uq

2
ă wL

Lϵ
2 `wL

B pmaxtϵ´ 0.81, 0uq
2 if and only

if wL
B

1
ϵ2

´

pmaxt0, ϵ´ 0.09uq
2

´ pmaxtϵ´ 0.81, 0uq
2
¯

ă wL
L ´ wL

R, it is straightforward

to check that this is the case for all ϵ P r0, 0.9s whenever 0.8wL
B “ wL

B
0.812´0.092

0.92
ă

wL
L ´ wL

R. It follows that there exists δ ą ϵ with
ř

j“tL,R,Bu w
L
j pqδpjq ´ pLpjqq2 ď

wL
Lϵ

2 ` wL
B pmaxtϵ´ 0.81, 0uq

2
“ o, so cLpoq Ę R, as required.

B.3 Proofs of results in Section 5

To prove Theorem 4, we prove a stronger theorem, involving the following assumptions.

First, we split Assumption 3 into two assumptions. On the one hand, we retain the

assumption that the stochastic processes underlying different individuals’ reports are

independent.

Assumption 5. For all i, i1 P t1, . . . , nu with i ‰ i1, pi and pi1 are independent (so

Eppipi1q “ EppiqEppi1q).

On the other hand, we no longer assume that all issues are independent, i.e. that the

covariance matrices Γi and Σi are diagonal. Rather, for each i, since Γi is a positive-

definite covariance matrix, there exist an orthonormal matrix Pi, constructed from the

principal components of Γi, and a diagonal matrix Ei with Γi “ PiEiPiT . Note that

Pi can always be chosen so that pPiT1qj ě 0 for each j; henceforth we assume that this

holds for all Pi. Since Σi is also positive-definite, there is a similar decomposition for it:

Σi “ QiDiQiT for a diagonal matrix Di. We replace independence across issues with

the following simplifying assumption throughout:

Assumption 6. For all i, i1, Qi “ Pi “ Pi1 “ Qi1 .

This says that, whatever ‘distortion’ there is between the true probability distribu-

tion over answers and what is reflected in the confidence, it does not change the principal
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components reflecting a subjects’ minimal view of the correlation across issues. More-

over, the individuals share a minimum view of the correlation across issues, in the sense

that their covariance matrices share the same principal components. Recall that the

variability in probability estimates concerning a principal component (a column in P) is

entirely captured by the variance of the underlying distribution as concerns that issue—

Ei
jj . Similarly, the confidence concerning the component is entirely captured by the

corresponding element of the diagonal matrix Di
jj . Note that, in the special case in

which Σi and Γi are diagonal (the draws for different events are independent), Di
jj and

Ei
jj are just the appropriate variances. Clearly, Assumption 3 implies Assumptions 5

and 6 (with P the identity matrix in the latter case).

In the light of this assumption, Assumption 4 needs to be modified to apply on the

common principal components, as follows:

Assumption 7. For all i, i1, j, Ei
jj ě Ei1

jj if and only if Di
jj ě Di1

jj if and only if

pPT p1 ´ µiqqj ě pPT p1 ´ µi
1

qqj.

Again, when P is the identity, as implied by Assumption 3, this coincides with

Assumption 4.

We have the following Theorem, of which Theorem 4 is clearly a direct corollary.

Theorem 7. Under Assumptions 5, 6 and 7:

i in expectation, the ℓ1 distance from the truth is smaller under confidence aggrega-

tion with the average confidence-level aggregator, as compared to linear pooling:

E
m
ÿ

j“1

`

1 ´ ϕppp1,Σ1q, . . . , ppn,Σnqq
˘

j
ď E

m
ÿ

j“1

`

1 ´ λppp1,Σ1q, . . . , ppn,Σnqq
˘

j

ii in expectation, the Brier score is smaller under confidence aggregation with the

average confidence-level aggregator, as compared to linear pooling:

EBpϕppp1,Σ1q, . . . , ppn,Σnqqq ď EBpλppp1,Σ1q, . . . , ppn,Σnqqq

Proof of Theorem 7 . Let Ai “ pΣiq´1, Ei
jj “ pσijq

2 and Di
jj “ pρijq

2.Then the centre

of the confidence ranking is x minimising:

n
ÿ

i“1

px ´ piqTAipx ´ piq

Differentiating, we get the FOC for the solution x˚:

2
n
ÿ

i“1

Aipx˚ ´ piq “ 0 (B.5)
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hence
˜

n
ÿ

i“1

Ai

¸

x˚ “

n
ÿ

i“1

Aipi (B.6)

Taking the expectations, we have
˜

n
ÿ

i“1

Ai

¸

Ex˚ “

n
ÿ

i“1

Aiµi (B.7)

Moreover, noting that the previous equalities imply that:
˜

n
ÿ

i“1

Ai

¸

x˚ ´ E

«˜

n
ÿ

i“1

Ai

¸

x˚

ff

“

n
ÿ

i“1

Aipi ´ E

«

n
ÿ

i“1

Aipi

ff

(B.8)

we have, by multiplying with their own transpose and taking the expectation, that:
˜

n
ÿ

i“1

Ai

¸

E
“

px˚ ´ Ex˚qpx˚ ´ Ex˚qt
‰

˜

n
ÿ

i“1

Ai

¸T

“ E

¨

˝

˜

n
ÿ

i“1

Aipi ´ E

«

n
ÿ

i“1

Aipi

ff¸˜

n
ÿ

i“1

Aipi ´ E

«

n
ÿ

i“1

Aipi

ff¸T
˛

‚ (B.9)

By Assumption 6, Ai “ PDi´1
PT , so

řn
i“1A

i “ P
´

řn
i“1D

i´1
¯

PT ; henceforth let

D̂ “
řn

i“1D
i´1. From (B.7), we have that

PD̂PTEx˚ “

n
ÿ

i“1

PDi´1
PTµi

PTEx˚ “

n
ÿ

i“1

D̂´1Di´1
PTµi

It follows that:

pPTEx˚qj “
1

řn
i“1

1
pρijq2

n
ÿ

i“1

1

pρijq
2

pPTµiqj

for each j “ 1, . . . ,m. By Assumption 7, 1
pρijq2

ď 1

pρi
1

j q2
whenever pPT p1 ´ µiqqj ě

pPT p1 ´ µi
1

qqj , so, for all j,

pPT p1 ´ Ex˚qqj ďpPT p1 ´

n
ÿ

i“1

1

n
µiqqj (B.10)

Hence
`

PTEx˚
˘

j
´
`
řn

i“1
1
nP

Tµi
˘

j
ě 0 for all j. Since pPT1qj ě 0 for all j, it follows

that
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E
m
ÿ

j“1

`

1 ´ ϕppp1,Σ1q, . . . , ppn,Σnqq
˘

j
´ E

m
ÿ

j“1

`

1 ´ λppp1,Σ1q, . . . , ppn,Σnqq
˘

j

(B.11)

“

m
ÿ

j“1

p1 ´ Eϕppp1,Σ1q, . . . , ppn,Σnqqqj ´

m
ÿ

j“1

p1 ´ Eλppp1,Σ1q, . . . ,pn,Σnqqqj

“1T p1 ´ Ex˚q ´ 1T

˜

1 ´

n
ÿ

i“1

1

n
µi

¸

“1TP
`

PT p1 ´ Ex˚q
˘

´ 1TP

˜

PT

˜

1 ´

n
ÿ

i“1

1

n
µi

¸¸

ď0 (B.12)

establishing clause i. of the Theorem.

As concerns clause ii., first note that, from (B.10), we have:

m
ÿ

j“1

p1 ´ Eϕppp1,Σ1q, . . . , ppn,Σnqqjq
2 ´

m
ÿ

j“1

p1 ´ Eλppp1,Σ1q, . . . , ppn,Σnqqqjq
2

“ p1 ´ Ex˚qT p1 ´ Ex˚q ´

˜

1 ´

n
ÿ

i“1

1

n
µi

¸T ˜

1 ´

n
ÿ

i“1

1

n
µi

¸

“ pPT p1 ´ Ex˚qqT
`

PT p1 ´ Ex˚q
˘

´

˜

PT p1 ´

n
ÿ

i“1

1

n
µiq

¸T ˜

PT p1 ´

n
ÿ

i“1

1

n
µiq

¸

ď 0 (B.13)
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Moreover, by (B.9), we have the following expression for the covariance matrix of x˚

Kx˚x˚ “ E
“

px˚ ´ Ex˚qpx˚ ´ Ex˚qT
‰

“

˜

n
ÿ

i“1

Ai

¸´1
»

–E

¨

˝

˜

n
ÿ

i“1

Aipi ´ E

«

n
ÿ

i“1

Aipi

ff¸˜

n
ÿ

i“1

Aipi ´ E

«

n
ÿ

i“1

Aipi

ff¸T
˛

‚

fi

fl

¨

˝

˜

n
ÿ

i“1

Ai

¸T
˛

‚

´1

“

˜

n
ÿ

i“1

Ai

¸´1

E

¨

˝

˜

n
ÿ

i“1

Ai
`

pi ´ Epi
˘

¸˜

n
ÿ

i“1

Ai
`

pi ´ Epi
˘

¸T
˛

‚

¨

˝

˜

n
ÿ

i“1

Ai

¸T
˛

‚

´1

“

˜

n
ÿ

i“1

Ai

¸´1

E

˜

n
ÿ

i“1

n
ÿ

k“1

Ai
`

pi ´ Epi
˘

´

pk ´ Epk
¯T

AkT

¸

¨

˝

˜

n
ÿ

i“1

Ai

¸T
˛

‚

´1

“

˜

n
ÿ

i“1

Ai

¸´1 n
ÿ

i“1

AiΓiAkT

¨

˝

˜

n
ÿ

i“1

Ai

¸T
˛

‚

´1

“

˜

n
ÿ

i“1

Ai

¸´1 n
ÿ

i“1

PDi´1
EiDi´1

PT

¨

˝

˜

n
ÿ

i“1

Ai

¸T
˛

‚

´1

“ PD̂´1

˜

n
ÿ

i“1

Di´1
EiDi´1

¸

D̂´1PT

where the fourth equality holds due to Assumption 5, and the last two by Assumption

6. So:

`

PTKx˚x˚P
˘

jj
“

1
ˆ

řn
i“1

1
pρijq2

˙2

n
ÿ

i“1

pσijq
2

pρijq
4

“

n
ÿ

i“1

pσijq
2

¨

˚

˚

˝

1
pρijq2

ˆ

řn
i“1

1
pρijq2

˙

˛

‹

‹

‚

2

ď

n
ÿ

i“1

pσijq
2

n
ÿ

i“1

¨

˚

˚

˝

1
pρijq2

ˆ

řn
i“1

1
pρijq2

˙

˛

‹

‹

‚

2

ď
1

n2

n
ÿ

i“1

pσijq
2 (B.14)

for all j, where the first inequality holds by the rearrangement inequality and Assump-

tion 7 (which implies that, for all j and individuals i, i1, 1
pρijq2

ě 1

pρi
1

j q2
if and only if

pσijq
2 ď pσi

1

j q2), and the second inequality holds by basic mathematics.27 Hence, using

σ2ϕppp1,Σ1q,...,ppn,Σnqqj to denote the variance of x˚
j
28 and similarly for σ2λppp1,Σ1q,...,ppn,Σnqqj

27The maximal value of
řn

1“1 a
2
i for ai ě 0 such that

řn
1“1 ai “ 1 is obtained when ai “ 1

n
for all i.

28I.e. σ2
ϕppp1,Σ1q,...,ppn,Σnqqj “ Epϕppp1,Σ1

q, . . . , ppn,Σn
qqj ´ Eϕppp1,Σ1

q, . . . , ppn,Σn
qqjq

2.
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and 1
n

řn
i“1 p

i
j , we have:

m
ÿ

j“1

σ2ϕppp1,Σ1q,...,ppn,Σnqqj “trpKx˚x˚q

“tr
`

PTKx˚x˚P
˘

ď

m
ÿ

j“1

1

n2

n
ÿ

i“1

pσijq
2

“tr

˜

PT

˜

1

n2

n
ÿ

i“1

Γi

¸

P

¸

“tr

˜

1

n2

n
ÿ

i“1

Γi

¸

“

m
ÿ

j“1

σ2λppp1,Σ1q,...,ppn,Σnqqj (B.15)

It follows from (B.12) and (B.15) that, for all j,

EBpϕppp1,Σ1q, . . . , ppn,Σnqqq

“

m
ÿ

j“1

Ep1 ´ ϕppp1,Σ1q, . . . , ppn,Σnqqjq
2

“

m
ÿ

j“1

p1 ´ Epϕppp1,Σ1q, . . . , ppn,Σnqqjq
2

`

m
ÿ

j“1

Epϕppp1,Σ1q, . . . , ppn,Σnqqj ´ Eϕppp1,Σ1q, . . . , ppn,Σnqqjq
2

“

m
ÿ

j“1

p1 ´ Epϕppp1,Σ1q, . . . , ppn,Σnqqjq
2 `

m
ÿ

j“1

σ2ϕppp1,Σ1q,...,ppn,Σnqqj

ď

m
ÿ

j“1

p1 ´ Epλppp1,Σ1q, . . . , ppn,Σnqqjq
2 `

m
ÿ

j“1

σ2λppp1,Σ1q,...,ppn,Σnqqj

“

m
ÿ

j“1

Ep1 ´ λppp1,Σ1q, . . . , ppn,Σnqqjq
2

“EBpλppp1,Σ1q, . . . , ppn,Σnqqq

establishing clause ii. of the Theorem.

The following Proposition, which can be considered a partial extension of the previous

result to different weights, uses the terminology introduced in Section 7.3.

Proposition 6. Let λpw and ϕpw be as defined in equations (21) and (22), with calibrated

weights wi
j and vi, where vi “ 1

řn
i“1

řm
j“1 w

i
j

řm
j“1w

i
j for all i “ 1, . . . , n and

řn
i“1w

i
j “ 1
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for all j “ 1, . . . ,m. Then:

E
m
ÿ

j“1

`

1 ´ ϕpwpp1, . . . ,pnq
˘

j
ď E

m
ÿ

j“1

`

1 ´ λpwpp1, . . . ,pnq
˘

j

Moreover, under Assumptions 3 and 4:

EBpϕpwpp1, . . . ,pnqq ď EBpλpwpp1, . . . ,pnqq

Proof. Let µ be the Rnˆm vector of Epi
j , written in increasing order: i.e. there is a

bijection τ : t1, . . . , n ˆ mu Ñ t1, . . . , nu ˆ t1, . . . ,mu with µk “ Epτ1pkq
τ2pkq for all

k “ 1, . . . , nˆm, and, for all k, k1, k ą k1 implies µk ě µk1 . Let σ be the Rnˆm vector of

variances, under the same ordering: i.e. σk “ pσ2q
τ1pkq

τ2pkq
“ E

´

pτ1pkq
τ2pkq ´ Epτ1pkq

τ2pkq

¯2

for all k “ 1, . . . , nˆm. Under Assumption 4, this vector is in decreasing order. Let w be

the corresponding vector of issue-dependent weights, ordered according to the order of µ:

wk “ w
τ1pkq

τ2pkq
for all k “ 1, . . . , nˆm. Since pwi

jq are calibrated, this vector is in increasing

order: for all k, k1, if k ě k1, then wk ě wk1 . Finally, let v be the corresponding vector

of issue-independent weights, vk “ vτ1pkq. Note that, since
ř

iw
i
j “ 1 for all j, it follows

that vi “

ř

j w
i
j

ř

i

ř

j w
i
j

“

ř

j w
i
j

m for each i “ 1, . . . , n.

Let Ă denote majorization of series, in the sense of Hardy et al. (1934); Marshall

et al. (2011), and let Ăw denote weak majorization.29 By standard arguments, for each

i:

pvi, . . . , viq “
ÿ

j

wi
j

ˆ

1

m
, . . . ,

1

m

˙

Ă pwi
1, . . . , w

i
mq

Whence, since v is the concatenation of the vectors on the left, for i “ 1, . . . , n, and w

is the concatenation of the vectors on the right, by (Marshall et al., 2011, Prop. 5.A.7)

v Ă w

Hence

ÿ

j

Eϕpwpp1, . . . ,pnqj “
ÿ

j

ÿ

i

wi
jEpi

j

“
ÿ

k

wkµk

ě
ÿ

k

vkµk

“
ÿ

j

ÿ

i

viEpi
j “

ÿ

j

Eλpwpp1, . . . ,pnqj

29For vectors px1, . . . , xnq, py1, . . . , ynq P Rn, let xr1s ě ¨ ¨ ¨ ě xrns and yr1s ě ¨ ¨ ¨ ě yrns denote

their components in decreasing order. Then px1, . . . , xnq Ă py1, . . . , ynq if
řk

i“1 xris ď
řk

i“1 yris for all

k “ 1, . . . , n and
řn

i“1 xris “
řn

i“1 yris, whereas px1, . . . , xnq Ăw py1, . . . , ynq if the first condition holds

but not necessarily the second.
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where the first equality follows from an argument analogous to that in the proof of

Theorem 7, and the inequality follows from Marshall et al. (2011, Prop 4.H.2.c), the

previous majorization and the fact that µ is increasing.

Moreover, by Marshall et al. (2011, Prop 5.A.1.b)

pv2
1, . . . ,v

2
nˆmq Ăw pw2

1, . . . ,w
2
nˆmq

whence

ÿ

j

Epϕpwpp1, . . . ,pnqj ´ Eϕpwpp1, . . . ,pnqjq
2

“
ÿ

j

Ep
ÿ

i

wi
jp

i
j ´ E

ÿ

i

wi
jp

i
jq

2

“
ÿ

j

ÿ

i

pwi
jq

2EpXi
j ´ EXi

jq
2

“
ÿ

k

w2
kσk

ď
ÿ

k

v2
kσk

“
ÿ

j

ÿ

i

pviq2EpXi
j ´ EXi

jq
2

“
ÿ

j

Ep
ÿ

i

viXi
j ´ E

ÿ

i

viXi
jq

2

“
ÿ

j

Epλpwpp1, . . . ,pnqj ´ Eλpwpp1, . . . ,pnqjq
2

where the first equality follows from an argument analogous to that in the proof of

Theorem 7, the second and second last equalities hold due to Assumption 3, and the

inequality follows from Marshall et al. (2011, Prop 4.H.3.b), the previous majorization

and the fact that, under Assumption 4, σ is decreasing.

These two observations suffice to establish the result, by the arguments in the proof

of Theorem 7.

C Proofs of results in Section 6

Proof of Theorem 5. Fix E and ρE , and define cρ : O Ñ 2∆zH by cρpoq “ tp P

∆ : ppEq ě ρEpoqu. Clearly, for any confidence ranking c, c|ρE “ Φ for Φpoq “

pcpoq X cρpoqqE , whenever cpoq X cρpoq ‰ H (and it is undefined otherwise).

By Definition 6 and the definition of Fb, for every o P O such that
`
Ť

o:boďo

Ş

i c
ipoiq

˘

X

cρpoq ‰ H
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Fbpc1, . . . , cnq|ρEpoq

“

˜˜

ď

o:boďo

č

i

cipoiq

¸

X cρpoq

¸

E

“

˜

ď

o:boďo

č

i

`

cipoiq X cρpoq
˘

¸

E

“

˜

ď

o:boďo

č

i

`

cipoiq X cρpoq
˘

E

¸

“ Fbpc1|ρE , . . . , c1|ρEqpoq

as required.
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