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1 Introduction

How should a collection of honest and well-intentioned experts’ beliefs be
aggregated into a set of group judgements? Doubtless the most popular
proposal in economics, statistics and risk analysis is linear pooling, which
takes a weighted average of probabilistic beliefs (e.g. Stone, 1961; Cooke,
1991; Gilboa et al., 2004). It is based on a principle of consensus preserva-
tion: any consensus in beliefs concerning a particular issue, or in preferences
depending on that issue, is preserved in the group beliefs or preferences.
This issue-wise consensus preservation is formulated by the Pareto princi-
ple underpinning some preference-based axiomatisations of linear pooling
(Mongin, 1995), as well as of generalisations to non-Bayesian decision mod-
els (Crès et al., 2011; Danan et al., 2016). However, it has recently faced
severe challenges.

One central problem comes in examples where there is unfounded con-
sensus on an issue, or spurious unanimity (Mongin, 2016). In such cases,
linear pooling respects the issue-wide consensus, despite its spuriousness.
For instance, consider a (two-member) central bank committee pondering
whether to make a given interest rate rise. The committee agree that the
determining factor in the choice is whether the rise has a limited (nega-
tive) effect on both the labour market and the real estate sector. Table 1
displays the two members’ probability judgements for the rise having a lim-
ited effect on each of these sectors, and on both. Though both competent
economists, Laura is a specialist in the labour market, whilst Ray’s field of
expertise is the real estate sector. As is clear from the table, whilst they
disagree significantly on the effect of the rise on each sector, they agree on
the probability that it will have a limited effect on both sectors.

The linear pool of their judgements is given in the final row of the ta-
ble. Irrespective of the weights assigned to the individuals, it preserves
their common judgement on the effect on both sectors—a consequence of
the Pareto principle in this context. However, the agreement on this prob-
ability is arguably spurious, resulting from the fortuitous interplay of two
fundamental disagreements. After all, Laura gives a low probability to a
limited effect on both sectors because of the low probability she assigns to
a limited effect on real estate; Ray does so because of the low probability he
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Labour Real Estate Both
Laura 0.9 0.1 0.09
Ray 0.1 0.9 0.09

Linear pool 0.1 ` 0.8wL 0.9 ´ 0.8wL 0.09

Table 1: Probability that a certain interest rate has a limited effect on the
sector(s) in the top row
Final row gives the results of linear pooling ppEq “ wLpLpEq ` p1´wLqpRpEq, with wL

the weight for Laura, and 1 ´ wL for Ray.

assigns concerning the labour market; and they disagree on the judgements
concerning labour and real estate alone. Several authors have argued that
the automatic respect of such spurious issue-wide consensuses is unjustified
(Mongin, 2016), and hence a problem for linear pooling (Bradley, 2017b;
Mongin and Pivato, 2020; Dietrich, 2021). The stated aim of respecting
consensus is clearly reasonable; the problem, it seems, is that linear pooling
sometimes respects the wrong consensuses.

The example also illustrates a second, apparently distinct challenge,
involving the way linear pooling, as well as popular alternatives including
geometric pooling, incorporates expertise. It does so through the weights in
the rule (wL in Table 1): each individual is allocated a single weight, with
larger weights given to individuals with more expertise overall. It thus
cannot reflect expertise differences across issues: for instance, it cannot
capture the fact that Laura has more expertise on the labour market than
the real estate sector (Genest and Zidek, 1986; French, 1985). However,
in examples such as this, involving within-person expertise diversity, one
might want to respect Laura’s opinion more on labour and Ray’s more on
real estate. Linear pooling, like virtually all pooling rules in the literature,
does not allow this.

Both challenges are significant for the committee’s decision in this ex-
ample. If it follows linear pooling and accepts the ‘spurious’ consensus that
the probability of a limited effect on both sectors is low, it would not im-
plement the rise. By contrast, if it considered each expert’s judgement on
their respective sectors of expertise, this would suggest a higher probability
of a limited effect on both, hence allowing for the possibility of the rise.
Moreover, the decision-relevant factor—whether there is a limited effect on
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both sectors—lies at the intersection of the committee members’ fields of
expertise, hence posing the problem of how to incorporate their different
levels of expertise across issues.

This paper proposes a new approach to belief aggregation that incor-
porates respect for consensus into rationally-founded aggregation—hence
retaining the gist of the Pareto principle—whilst avoiding commitment to
unfounded or spurious consensuses. As a byproduct and separate con-
tribution, the approach naturally accommodates within-person cross-issue
expertise diversity.

Our approach introduces two novel insights. For the first, note that
spuriousness arises in examples where issue-level consensus is respected to
the detriment of other elements of agents’ states of opinion, such as infor-
mation, other beliefs, reasons or evidence (Mongin and Pivato, 2020; Diet-
rich, 2021; Bommier et al., 2021). Presumably Laura’s and Ray’s similar
judgements on the ‘Both’ issue are based on different evidence, supporting
the low probabilities they assign to Real Estate and Labour respectively.
It thus seems that an agent’s declared probability for an event does not
exhaust her relevant judgements pertaining to that event. This echoes a
position defended in the literatures on belief representation and decision
under uncertainty: a probability judgement does not fully capture all rele-
vant aspects of a (rational) agent’s state of belief concerning an event. For
instance, several approaches (e.g. Marinacci, 2015; Maccheroni et al., 2006;
Chateauneuf and Faro, 2009; Hill, 2013, 2019b; Bradley, 2017a) model be-
lief states as comprising agents’ confidence in beliefs. To the extent that
one’s confidence in a belief is related to one’s evidence, information and
reasons underlying it (Hill, 2019a), confidence could serve as an overarch-
ing concept to refer to what is being overlooked by linear pooling in these
spuriousness examples.

Our second insight concerns consensus: if issue-wise consensus preserva-
tion is problematic, what sort of consensus should be preserved instead? We
recognise that consensus typically requires compromise. One often speaks
of achieving a consensus, through which agents may compromise on or ‘put
aside’ some opinions to retain others. Under this conception, a consensus
is not a single issue on which people happen to have the same beliefs, but
a common ground comprising of a coherent set or ‘corpus’ of positions ac-
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ceptable to all. More precisely, such a corpus-level consensus is a coherent
set of judgements, each emanating from some member of the group, and
such that each member would be ready to ‘set aside’—or compromise—
any potential disagreements in the interests of the consensus. Note that a
corpus may be more or less complete: the associated judgements need not
settle every question. It seems reasonable that the judgements holding in
such corpus-level consensuses be preserved in the group’s beliefs.

But what compromises would agents be willing to make to achieve con-
sensus? In reply, our approach weaves together the two previous insights
by invoking confidence as a determinant of the propensity to compromise.
A (rational) individual is surely more concerned in seeing a judgement held
with high confidence respected in the final group beliefs, even if that is at
the expense of some lower-confidence beliefs. This suggests that confidence
determines compromise via the following maxim: the more confident an
individual is in a belief, the less willing she is to compromise on that belief.

The first contribution of this paper is to propose an aggregation rule
for confidence in beliefs that preserves corpus-level consensus judgements,
where consensuses are borne of compromise regulated by confidence accord-
ing to this maxim. We provide preference-based axiomatic foundations for
the rule, showing that it is characterised by a Pareto-style axiom, which
essentially states that judgements in such consensuses are preserved.

Our second main set of contributions concerns the aforementioned chal-
lenges to standard pooling rules. We first show that popular probabilistic
opinion pooling rules can be reproduced as special cases of our confidence
aggregation rule, corresponding to particular assumptions on individuals’
confidence in their beliefs. This sheds light on the comparison with existing
approaches: whereas classic pooling rules essentially postulate what indi-
viduals are willing to compromise to arrive at group beliefs, our approach
uses precisely the compromises determined by the individuals themselves,
as encoded in the confidence they have in their beliefs.

This analysis sets the stage for the integration of within-person cross-
issue expertise diversity. An individual with more expertise on one issue
than another would be justified in having more confidence ceteris paribus
in her beliefs concerning the former issue. Drawing on this insight, we
explore the consequences of our aggregation rule when applied in cases
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involving different degrees of confidence—reflecting differing expertise—
according to the issue under consideration. It yields group judgements that
more strongly respect an individual’s judgement on the issues on which she
is an expert, and less so on those on which she has less expertise. Be-
yond establishing that our approach resolves the expertise challenge, these
examples show that it does not respect spurious issue-level consensuses re-
sulting from ignoring expertise differences. Hence it resolves the spurious
unanimity challenge too.

As an application, we use confidence aggregation to generate a new fam-
ily of probabilistic belief aggregation rules that can accommodate within-
person expertise diversity. To our knowledge, these are the first such rules
in the literature, and certainly the first to have received preference-theoretic
axiomatic foundations.

Moreover, we briefly consider the issue of dynamic rationality, which
is typically evoked to justify geometric pooling (Genest and Zidek, 1986;
Dietrich, 2021). Drawing on a recently proposed account of rational update
for confidence in belief (Hill, 2022), we show that confidence aggregation
fully satisfies dynamically rationality with respect to this update, in the
standard sense: the two commute.

Finally, we consider the application of our approach to the analogous
question of deciding in the face of multiple ‘expert’ models. It recovers as
special cases both the Bayesian standard—Bayesian Model Averaging—and
the main non-expected utility approaches to model misspecification, whilst
suggesting improvements to incorporate within-model expertise diversity.

Section 2 sets out the framework and the aggregation rule. Section
3, which contains examples illustrating the approach, shows how confi-
dence aggregation overcomes the challenges to linear pooling and generates
a new family of probability aggregation rules tailored to cases of within-
person expertise diversity. Section 4 contains a preference-based charac-
terisation of confidence aggregation, and Section 5 considers its dynamic
rationality. Section 6 applies it to decisions with models, and concern for
misspecification. Section 7 discusses remaining related literature. Proofs
and supplementary material are contained in the Appendices.
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2 Confidence aggregation

2.1 Preliminaries

Setup Let Ω be a non-empty set of states.1 Subsets of Ω are called
events; partitions are sets of mutually disjoint events whose union is Ω . For
any partition P (including Ω itself), ∆pPq denotes the set of probability
measures over P ; henceforth, we let ∆ “ ∆pΩq.2 For any p P ∆ and
partition Pj, p|Pj

P ∆pPjq denotes the projection of p into ∆pPjq.
A (statistical) distance ρ on ∆pPq is a function ρ : ∆pPq2 Ñ r0,8s such

that: ρpq, pq “ 0 if and only if p “ q; and ρp‚, qq is a lower semicontinuous
function, for all q P ∆pPq. A distance ρ is convex if, for every q P ∆pPq, the
function ρp‚, qq is strictly convex.3 A (convex) classical statistical distance d
is the specification, for each partition P (including Ω itself), of a (convex)
statistical distance on ∆pPq; with slight abuse of notation, we use d to
refer to the distance for each ∆pPq. Metrics, such as the Euclidean metric
(for finite Ω), and divergences, such as the relative entropy or Kullback-
Leibler divergence, are (convex) classical statistical distances, insofar as
they specify a distance for each probability space (Table 2).

O Ď R is an ordered set of confidence levels, endowed with the (strict)
order ą inherited from R. ě is the corresponding weak order. No general
assumptions will be made about the cardinality of O in this paper: we only
assume that, if O is not finite, then it is a closed left-bounded interval in
R, with the associated topology.4 We shall use vector notation to denote
tuples of confidence levels, i.e. elements of On such as o “ po1, . . . , onq.
With slight abuse of notation, we use ě to denote the dominance relation
on such profiles: o ě o1 if and only if oi ě o1

i for all i “ 1, . . . , n.

Beliefs and confidence We work with a general model of confidence in
beliefs that, as explained below, underlies many recent models of decision
under ambiguity. The belief state of an agent—incorporating confidence—

1For the purposes of exposition, Ω can be taken to be finite, though extension to the
infinite case is straightforward.

2Throughout, we take the weak˚ topology on ∆ and ∆pPq.
3That is, for all p, r P ∆ with p ‰ r and α P p0, 1q, ρpαp ` p1 ´ αqr, qq ă αρpp, qq `

p1 ´ αqρpr, qq.
4It follows that ě is continuous: its upper and lower contour sets are closed.
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is represented by a confidence ranking: a function c : O Ñ 2∆zH that is
increasing in the containment order on sets and is upper semicontinuous.5

For each confidence level o, cpoq is the set of priors representing the beliefs
the agent hold with confidence of at least o. For any o P O and increasing,
upper semicontinuous function c : to1 P O : o1 ě ou Ñ 2∆zH, the natural
extension of c, denoted c, is the confidence ranking defined by cpo1q “ cpo1q

for o1 ě o and cpo1q “ cpoq otherwise.
The centre of confidence ranking c is its smallest element, i.e. minoPO cpoq.

A confidence ranking c is centred if its centre is a singleton. Centred con-
fidence rankings represent Bayesians with confidence: agents who assign
a precise probability to every event (namely, that given by the centre),
though may have more confidence in some judgements than others (as rep-
resented by the rest of the confidence ranking). A confidence ranking c

is convex (respectively, closed) if, for every o P O, cpoq is a convex (resp.
closed) set. For a confidence ranking c, its convex closure cclconv is defined
in the natural way: for all o P O, cclconvpoq “ clconvpcpoqq, where clconvpXq

for a set X Ď ∆ is the closure of the convex hull of X.
Confidence rankings admit two alternative equivalent representations.

Firstly, note that each probability judgement—i.e. judgement such as ‘the
probability of A is greater than x’, ‘A is probabilistically independent of B’
etc.—corresponds to a subset of ∆, namely the set of probability measures
where the judgement holds. Noting this, the function conf : 2∆ Ñ OYtHu,
defined by:

confpJ q “

$

&

%

H minoPO cpoq Ę J

max to : cpoq Ď J u otherwise
(1)

picks out, for any probability judgement J , the agent’s confidence in J—
the largest confidence level at which J is held if it is held, and nothing oth-
erwise. A confidence ranking also generates a unique implausibility function
ι : ∆ Ñ O Y H defined by ιppq “ min to P O : p P cpoqu whenever the set
is non-empty, and ιppq “ H otherwise.6 This yields the ‘implausibility’
of each probability measure, in terms of the smallest confidence level such

5I.e. for all o ě o1, cpoq Ě cpo1q and for any decreasing sequence oi P O with oi Ñ o,
cpoq “

Ş

i cpoiq.
6This is well-defined by the upper semicontinuity of c.
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that the probability measure doesn’t contradict a judgement held with that
much confidence.7

We consider a group of n individuals, indexed by i; individual 0 is the
group. A tuple pc1, . . . , cnq of confidence rankings for each individual, where
ci is the confidence ranking of individual i, is called a profile. The group
confidence ranking is denoted c0. As noted, this can equivalently be written
as a profile of implausibility functions pι1, . . . , ιnq and group implausibility
function ι0.

Related models and distance-based confidence As just noted, the
representation of confidence used here is equivalent to a real-valued func-
tion on the space of probability measures. As such, it includes many promi-
nent models of decisions under uncertainty—such as smooth, variational,
multiplier and confidence preferences (Klibanoff et al., 2005; Maccheroni
et al., 2006; Hansen and Sargent, 2001; Chateauneuf and Faro, 2009)—
which involve such functions (or functions generating them) in their pref-
erence representation, and often interpret them in terms of confidence. It
also includes the weaker representation of confidence in beliefs developed
by Hill (2013, 2019b) under the calibration in Hill (2019a) (see Section 7).

Moreover, the alternative representation in terms of implausibility im-
plies that it is possible to generate a confidence ranking from a probability
measure and a (statistical) distance on ∆. More specifically, given a prob-
ability p P ∆, weight w P Rą0 and distance ρ on ∆, the following defines
the confidence ranking centred on p with associated implausibility function
ιpqq “ wρpq, pq.

Definition 1. Let p P ∆ be a probability measure, ρ a statistical distance
on ∆ and w P Rą0. The w confidence ranking generated by p under ρ—or
simply the w ρ-confidence ranking generated by p—is defined by cpoq “

tq P ∆ : wdpq, pq ď ou for all o P O.

As an illustration, Table 2 lists some well-known classical statistical dis-
tances, and the corresponding generated confidence rankings. Several of the
previous references use such distance-generated confidence rankings; for in-

7Note that c can be defined from ι: cpoq “ tp P ∆ : ιppq ď ou. It follows immediately
that the implausibility function ι is lower semicontinuous if c is closed.
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Generating
distance

ρpq, pq “ w ρ-confidence ranking
generated by p, cpoq “

Euclidean
ř

ωPΩpqpωq ´ ppωqq2 tq P ∆ : w
ř

ωPΩpqpωq ´ ppωqq2 ď ou

Relative
entropy

Rpq}pq tq P ∆ : wRpq}pq ď ou

Reverse
relative
entropy

Rpp}qq tq P ∆ : wRpp}qq ď ou

Table 2: Examples of convex classical distances and distance-generated
confidence rankings.
Note: Euclidean distance only well-defined on finite Ω. R is the relative entropy, defined
by: Rpp}qq “ ´

ř

ppωqplog qpωq

ppωq
q.

stance, the w relative entropy confidence ranking is involved in multiplier
preferences (Hansen and Sargent, 2001; Maccheroni et al., 2006).

2.2 Consensus-preserving confidence aggregation

To introduce the notion of consensus, consider a tuple o “ po1, . . . , onq

of confidence levels and a profile pc1, . . . , cnq of confidence rankings. If
Ş

i c
ipoiq “ H, then the individuals’ beliefs at the confidence levels o are

in contradiction. By contrast, if
Ş

i c
ipoiq ‰ H they are not: there is

a consistent overall consensus position, characterised by
Ş

i c
ipoiq, which

incorporates the beliefs of each individual at the assigned confidence level.
In other words, when

Ş

i c
ipoiq ‰ H, it represents a corpus-level consensus,

in which a probability judgement holds if and only if it is held by at least
one individual at the confidence level specified for them by o.8

In the consensus characterised by
Ş

i c
ipoiq, individuals are not com-

promising on the beliefs they hold with confidence o or more: these are
all retained. Rather, each individual i compromises by only putting her
beliefs held with confidence oi or more ‘on the table’, and ignoring any
lower-confidence beliefs. To that extent, the compromises involved in such
a consensus are reflected in the confidence level each individual uses to

8For instance, for a probability judgement J , if cipoiq Ď J for some individual i—i.e.
she holds the judgement at this level of confidence—then clearly

Ş

i c
ipoiq Ď J—i.e. it

holds in the consensus.
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determine the beliefs they contribute. When higher confidence levels are
involved, more compromise is required by the individuals. However, this
means that the resulting consensus is more robust: it only contains judge-
ments on which individuals are particularly confident.

There may be several such consensuses, involving different compromises—
different levels of confidence required in particular individuals’ beliefs for
them to be taken into account. To translate them into levels of confidence
deemed relevant for the group, we use a confidence-level aggregator: an
operator b : On Ñ O that is monotonic in each argument, i.e. such that
for every pair of profiles of confidence levels with o ě o1, bo ě bo1. For
a consensus obtained with individual confidence levels o, the confidence-
level aggregator picks out the group confidence warranted in the associated
consensus judgements. Monotonicity reflects the fact that the higher the
individual confidence levels o behind the consensus, the higher the corre-
sponding group confidence level. Since higher individual confidence levels
translate into a consensus involving more compromise, but that is also more
robust, this seems reasonable.

In our preference-based characterisation (Section 4), the relevant confidence-
level aggregator will be endogenous; however, it may be instructive to con-
sider some examples.

Example 2.1 (Affine aggregator). An aggregator of the form bo “
řn

i“1wioi`

χ for wi P Rą0, χ P R is called an affine aggregator.

Example 2.2 (Average aggregator). The special case of the affine aggre-
gators with the same weights are average aggregators: bo “

ř

1
n
oi ` χ

for χ as above.

Example 2.3 (Maximum aggregator). An aggregator of the form bo “

ψpmax toiuq, for ψ : O Ñ O an increasing transformation of confidence
levels, is called a maximum aggregator.

Example 2.4 (Minimum aggregator). An aggregator of the form bo “

ψpmin toiuq, with ψ : O Ñ O as above, is called a minimum aggregator.

We can now introduce our aggregation rule. Since individuals’ beliefs
are represented by confidence rankings, a suitable aggregation rule needs to
relate the profile of individual confidence rankings with a group confidence
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ranking. Each confidence-level aggregator b generates such a rule, in the
form of the function Fb, defined as follows. For every profile pc11, . . . , c1nq

of confidence rankings, Fbpc11, . . . , c1nq “ Φbpc11, . . . , c1nq, where, for every
o P O such that

Ť

o:boďo

Ş

i c
1ipoiq ‰ H

Φbpc11, . . . , c1n
qpoq “

ď

o:boďo

n
č

i“1

c1i
poiq (2)

For the purposes of the preference-based characterisation in Section 4,
where we follow the economic literature and work in a single-profile setup
(e.g. Mongin, 1995; Gilboa et al., 2004; Crès et al., 2011; Danan et al.,
2016), this yields the following definition of consensus-preserving confidence
aggregation for a fixed confidence ranking c0 and profile pc1, . . . , cnq.

Definition 2. The group confidence ranking c0 is a consensus-preserving
confidence aggregation of pc1, . . . , cnq if there exists a confidence-level ag-
gregator b such that c0 “ Fbpc1, . . . , cnq. In this case, we say that c0 is a
consensus-preserving confidence aggregation of pc1, . . . , cnq under b.

Under consensus-preserving confidence aggregation—or confidence ag-
gregation for short—the group forms judgements with confidence level o by
looking at the consensuses considered to warrant a confidence level o or less
according to b.9 More specifically, the group holds a probability judgement
with confidence o if that judgement holds for all such consensuses: this is
guaranteed by the union in Eq. (2). In that sense, it preserves those judge-
ments that hold unanimously across the appropriate consensuses. In the
resulting group beliefs, none of the judgements held at confidence level o
contradict the corresponding consensus judgements, though if two consen-
suses contradict each other on an issue, neither’s judgement will be retained
in the group beliefs with confidence o.

A noteworthy consequence of this aggregation rule is that group and
individual confidence in a judgement co-vary: because of the monotonicity
of b, the group confidence in a judgement is higher when the individual

9The use of consensuses corresponding to confidence levels less than and equal to o
in Eq. (2) ensures that c0 is a well-defined confidence ranking, without requiring any
assumptions on b. As discussed in Appendix B, it can be replaced by the union over
consensuses with confidence level equal to o for various notable families of b, including
those in the examples above.
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Tuple of conf. rankings c Conf. ranking c

Tuple of probabilities p Probability p

conf. aggregation

centregenerate

derived pbty aggregation

Figure 1: Using confidence aggregation to generate probability aggregation
rules

beliefs feeding into the relevant consensuses are held at higher confidence
levels. This is arguably a reasonable property for a procedure for aggregat-
ing beliefs and confidence.

As shown in Proposition C.1 (Appendix C.1), this aggregation rule
can be formulated in terms of implausibility functions: c0 is a consensus-
preserving confidence aggregation of pc1, . . . , cnq under b if and only if, for
all p P ∆

ι0ppq “

$

&

%

bpι1ppq, . . . , ιnppqq if @i ιippq P O

H otherwise.
(3)

3 Confidence, probability aggregation and ex-

pertise diversity

We now consider how confidence aggregation deals with the challenges to
linear pooling. We first show that standard probability aggregation rules
can be recovered as special cases of confidence aggregation; analysing the
underlying assumptions will naturally reveal how confidence aggregation
can resolve both the spurious unanimity and the within-person cross-issue
expertise diversity challenges. The discussion also contains several exam-
ples of confidence aggregation, and culminates in a new probability aggre-
gation rule for within-person expertise diversity.
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3.1 Recovering probability aggregation from confidence

aggregation

Probability aggregation takes as input a profile of probability measures
p “ pp1, . . . , pnq P ∆n. To connect pooling rules operating on such profiles
with confidence aggregation, recall that, once a distance and a weight are
specified, each probability measure generates a unique centred confidence
ranking (Definition 1, Section 2.1). This provides the following possibility
for using consensus-preserving confidence aggregation to aggregate proba-
bility measures. Given a profile of probability measures, take a profile of
confidence rankings generated by them, say under a given distance. Pick-
ing a confidence-level aggregator, confidence aggregation can be applied on
them, to produce a confidence ranking, call it c. This naturally identifies
the ‘best-guess’ set of probability measures, namely minoPO cpoq. If c is
centred, then this is in fact a singleton, and the procedure yields a unique
probability measure. This schema is summarised in Figure 1.

The following result compares this probability aggregation method to
standard pooling rules.

Proposition 1. Let p “ pp1, . . . , pnq P ∆n be a profile of probability mea-
sures, and pw1, . . . , wnq an n-tuple of weights, with wi ě 0 for all i, with
strict inequality for some i. For each row in Table 3, the following holds:

(*) Let c be the consensus-preserving confidence aggregation under an av-
erage confidence-level aggregator of wi confidence rankings generated
by pi under the distance given in the first column of Table 3. Then
its centre is the pool of the pi under the rule specified in the second
column of the Table, with weights wi

řn
i“1 w

i . In other words, the centre
satisfies the equation in the third column of the Table.

Hence the two most prominent pooling rules in the literature (Genest
and Zidek, 1986; Mongin, 1995; Dietrich, 2021) in fact correspond to special
cases of confidence aggregation, where the probability measures involved in
the rules are the centres of the individuals’ and group’s confidence rankings.
Figure 2b provides a graphical illustration of this result on the example
from the Introduction, which will be further analysed below (Example 3.1).
Central to it is the use of specific confidence rankings for the individuals
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Generating distance Pooling rule Centre p satisfies

Euclidean Linear pooling p “
ř

i
wi

řn
i“1 w

ipi

Relative entropy Geometric pooling ppωq9
ś

i p
wi

řn
i“1

wi

i pωq

Reverse relative entropy Linear pooling p “
ř

i
wi

řn
i“1 w

ipi

Table 3: The pooling rules derived from confidence aggregation applied to
confidence rankings generated under given classical distances (as in Figure
1). To be read in the context of Proposition 1.

in the group. As is clear from the comparison of the cases in Table 3, the
‘shape’ of the confidence ranking determines the pooling rule reproduced.
In this sense, the use of, say, linear pooling, can be thought of as amounting
to the assumption that individuals’ confidence rankings are generated by
the Euclidean or reverse relative entropy distances.10 And the evaluation
of this pooling rule can thus pass via an appraisal of the corresponding
assumption.

The result also suggests a new strategy for facing the challenges cited
in the Introduction. If the weaknesses of traditional pooling rules can be
connected to how the confidence rankings are generated, then applying
confidence aggregation with different generation methods may avoid them.

3.2 Representing expertise using confidence rankings

One specificity of the classical-distance-based confidence rankings involved
in Proposition 1 is a certain ‘neutrality’ to the identity of the issues in-
volved. All that counts for the confidence with which a probability judge-
ment is held is the classical distance from the centre to the closest probabil-
ity measure where the judgement doesn’t hold—independently of the issue
concerned by the judgement. We illustrate this on a running example.

10Given that, as noted in Section 2.1, a distance and a probability measure generate
a confidence ranking, Proposition 1 is technically related to a literature characterising
aggregation rules in terms of distances in probability space (e.g. Abbas, 2009; Kemeny,
1959 initiated a similar approach for preference aggregation). This literature takes
the distances as given, whereas we consider them as purported representations of the
individuals’ belief states—and, as shall be clear below, evaluate them as such.
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Low Conf.

High Conf.0.9

p(L)

p(R)

0.9

0.1

0.1

p(L) >

0.9− ϵ

p(R) <

0.1− ϵ

(a) Illustration of ‘issue-neutrality’.
Note: The blue area represents the proba-
bility judgement, Lϵ, that ppLq is within ϵ

of Laura’s best-guess probability pLpLq “

0.9; the red area represents the judgement,
Rϵ, that ppRq is within ϵ of pLpRq “ 0.1.
The confidence in these judgements (cor-
responding to the largest circular set con-
tained in each area; Section 2.1) is the
same.

Confidence

aggregation

(centre)

Low Conf.

High Conf.0.9

p(L)

p(R)

0.9

0.1

0.1

linear pool

(b) Illustration of Proposition 1.
Note: The red point is the centre of the
result of confidence aggregation applied to
the two confidence rankings (Proposition
1). Each point on the dotted line is ob-
tained by linear pooling (with some choice
of weights). This graph displays the case of
wL “ wR; other cases produce centres ly-
ing on the dotted line (i.e. coinciding with
some linear pool).

Figure 2: Confidence rankings generated as in Proposition 1.
Note: Each graph shows the space of pairs of probability values pppLq, ppRqq for the
Labour and Real Estate events (L and R; Example 3.1). The areas (sets of probabil-
ity values) enclosed by the green circles represent the wL Euclidean confidence ranking
generated by Laura’s probability pL (Definition 1): they are the projection of the con-
fidence ranking into this space. Larger, lighter circles correspond to higher confidence
levels. The purple circles represent the wR Euclidean confidence ranking generated by
pR (Ray’s probabilities), with wR “ wL.

Example 3.1. We formalise the example from the Introduction with a
state space Ω “ tωLR, ωL, ωR, ωNu where ωLR (respectively ωL, ωR, ωN) is
the state in which there is a limited effect on both the labour and real
estate sectors (resp. only the labour market, only the real estate sec-
tor, neither). So the event that there is a limited effect on the labour
market is L “ tωLR, ωLu; the corresponding event for real estate is R “

tωLR, ωRu. Laura’s probability judgements (Table 1) define the measure pL

with pLpωLRq “ 0.09, pLpωLq “ 0.81, pLpωRq “ 0.01, pLpωNq “ 0.09. So,
for any ϵ P r0, 0.9s, she holds both the judgement, Lϵ, that the probability
of L is greater than 0.9 ´ ϵ, and the judgement, Rϵ, that the probability
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of R is less than 0.1 ` ϵ.11 Note that these judgements involve moving the
same amount away from her best-guess probability for L (0.9) and R (0.1)
respectively. Which of them is she more confident in?

Proposition C.3 (Appendix C.2) shows that, under the two confidence-
ranking-generating procedures yielding linear pooling (Table 2), the con-
fidence in the two judgements is the same, no matter the ϵ. Figure 2a
illustrates the intuition: given the ‘circular’ shape of the sets of priors in
the confidence ranking, the highest confidence levels at which the judge-
ments hold are the same. Hence the confidence assigned to a judgement
that ‘deviates’ from the best-guess probability by a certain amount de-
pends, in this example, only on the extent of the deviation, but not on the
issue concerned by the judgement—labour or real estate.

The confidence rankings generating standard pooling rules thus repre-
sent individuals as having the same confidence in the probability judge-
ments encoded in their probability measure pi, no matter the issues that
these judgements concern. As such, they cannot properly capture an in-
dividual who has different confidence in judgements pertaining to different
issues. The previous example is arguably such a case. Recall that Laura
has more expertise on one issue (labour) than another (real estate). But
an expertise difference typically translates into a difference in confidence:
ceteris paribus she will have more confidence in her judgements concern-
ing her issue of expertise than in those that do not. In other words, the
confidence rankings involved in Proposition 1, based on classical distances
on the probability space, assume that there is no within-person cross-issue
difference in expertise.

This observation brings a new perspective on the problem that linear
pooling and other standard pooling rules have with within-person exper-
tise diversity. The source of the problem isn’t so much the underlying rule
in our reconstruction—confidence aggregation—but the use of confidence-
ranking-generating procedures which de facto assume away within-person
cross-issue expertise differences. It thus suggests that confidence aggre-
gation applied to confidence rankings that do correctly capture expertise
differences could incorporate more faithfully such differences into group be-

11I.e. Lϵ “ tp P ∆ : ppLq ě 0.9 ´ ϵu and Rϵ “ tp P ∆ : ppRq ď 0.1 ` ϵu.
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liefs. We now confirm this suggestion, and show how it can produce new
expertise-sensitive probability aggregation rules.

For the presentation, we focus on issues that can be related to events
in Ω; see Section 3.5 for a generalisation. Consider a sequence P1, . . .Pm of
partitions of Ω; each partition could be thought of as an issue. For instance,
a partition could just be an event E and its complement: the issue is
whether the event holds. Another partition could have cells corresponding
to the event that a parameter takes a given value: the issue is the value
of the parameter. We say that a sequence of partitions P1, . . .Pm is rich
if, for any pp1, . . . , pmq P

śm
j“1∆pPjq, there exists at most one p P ∆ with

p|Pj
“ pj for all j “ 1, . . . ,m. When the sequence of partitions is rich,

then each tuple of probability measures, one on each partition, determines
at most one probability measure over the whole space.

Example 3.2. In the example from the Introduction, with the state space
and events defined in Example 3.1, each of the three issues in Table 1
corresponds to a two-element partition: PL “ tL,Lcu (whether there will
be an effect on the labour market), PR “ tR,Rcu (concerning real estate),
PB “ tB,Bcu, where B “ tωLRu “ L X R (whether there will be an effect
on both). Clearly every specification of a probability on each of these
partitions determines at most one probability on Ω, so this sequence of
partitions is rich.

Now consider the following family of centred confidence rankings.

Definition 3. Let P1, . . .Pm be partitions of Ω and d be a classical sta-
tistical distance. For any probability measure p P ∆, and any vector
w “ pw1, . . . , wmq of positive real-valued weights, the w d-confidence rank-
ing generated by p is defined as: for each o P O,

cpoq “

#

q P ∆ :
m
ÿ

j“1

wjdpq|Pj
, p|Pj

q ď o

+

(4)

For such confidence rankings, at each confidence level, the correspond-
ing set of priors are those for which the weighted sum of the distances from
the centre probability, taken over all the partitions (or issues), is less than a
certain value. These belong to the family of distance-generated confidence
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rankings in Definition 1, with implausibility function determined by the
following distance on ∆:

ιpqq “ ρwd pq, pq “

m
ÿ

j“1

wjdpq|Pj
, p|Pj

q (5)

Apart from the special case involving a single partition P “ Ω, ρwd are not
classical distances.12

The issue-specific weights in w d-confidence rankings can capture an
agent’s relative expertise across issues, with higher weights on a given issue
translating more confidence in judgements concerning it. This can be seen
on a continuation of the running example.

Example 3.3. Consider pL as in Example 3.1, and suppose that Laura’s
confidence ranking is generated by it with Euclidean distance and vector
of weights wL “ pwL

L, w
L
R, w

L
Bq. I.e. Laura has the confidence ranking:

cLpoq “

$

&

%

q P ∆ :
ÿ

j“tL,R,Bu

2wL
j pqpjq ´ pLpjqq

2
ď o

,

.

-

(6)

The weights reflect Laura’s relative confidence in judgements about L,
R and B. Larger weights involve a higher ‘penalty’ for deviating too much
on the issue in question, as compared to other issues, so ceteris paribus, she
is represented as having more confidence in judgements concerning issues
with higher weights. This is borne out by the following proposition.

Proposition 2. Suppose, in (6), that wL
L ą wL

R and 0.8wL
B ă wL

L ´ wL
R.

Then, for every ϵ P r0, 0.9s, there exists o P O with cLpoq Ď Lϵ but cLpoq Ę

Rϵ (where Lϵ, Rϵ are as defined in Example 3.1).

Whenever wL
B is not too large, if wL

L ą wL
R, then any judgement Lϵ that

the probability of L is higher than a deviation ϵ below its best-guess prob-
ability 0.9 is held with more confidence than a judgement about R that
involves the same divergence ϵ from its best-guess probability 0.1 (Rϵ).
Figure 3a illustrates the intuition: when wL

L ą wL
R, the sets in the confi-

dence ranking have an ‘elliptical’ shape which is thinner along the L di-
mension, hence translating higher confidence in judgements on this issue.

12In particular, ρwd does not automatically provide a distance on any space except Ω.
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Low Conf.

High Conf.
0.9

p(L)

p(R)

0.9

0.1

0.1

p(L) >

0.9− ϵ

p(R) <

0.1− ϵ

(a) Illustration of Proposition 2.
Note: As in Figure 2a, the blue area rep-
resents the probability judgement, Lϵ, that
ppLq is within ϵ of Laura’s best-guess prob-
ability pLpLq “ 0.9; the red area represents
the judgement, Rϵ, that ppRq is within ϵ

of pLpRq “ 0.1. The confidence in these
judgements corresponds to the largest el-
liptical set contained in each area (Section
2.1): it is higher for the judgement concern-
ing L.

Low Conf.

High Conf.
0.9

p(L)

p(R)

0.9

0.1

0.1

linear pool

Confidence

aggregation

(centre)

(b) Illustration of expertise-sensitive
aggregation (Example 3.4).
Note: The red point is the centre of the
result of confidence aggregation applied to
the two confidence rankings, which coin-
cides with expertise-sensitive pooling (Defi-
nition 4). The aggregate probability of L is
closer to Laura’s judgement (pLpLq “ 0.9),
and similarly for R. The dotted line is
the set of points obtained by linear pool-
ing (with different weights).

Figure 3: Confidence rankings generated as in Eq. (6).
Note: Each graph shows the space of pairs of probability values pppLq, ppRqq for the
Labour and Real Estate events (L and R; Example 3.1). The areas (sets of probability
values) enclosed by the green ellipses represent the projection into this space of the
wL Euclidean-confidence ranking generated by pL—i.e. Eq. (6)—with wL

L ą wL
R and

wL
B low, representing Laura’s confidence in beliefs. Larger, lighter ellipses correspond

to higher confidence levels. The purple ellipses represent the wR Euclidean-confidence
ranking generated by pR (representing Ray), with wR

L ă wR
R and wR

B low.

So wL
L ą wL

R reflects higher confidence ceteris paribus in judgements about
the labour market as compared to the real estate sector, and would be
a natural assumption for Laura’s confidence ranking, given her expertise.
The clause concerning wL

B is related to the constraints that a given value
of ppBq places on the possible values of ppLq and ppRq, as will be discussed
shortly.

If Laura can be naturally represented by a confidence ranking of the
form (6), Ray can be represented with a similar confidence ranking, centred
on pR as specified in Table 1,13 with weights wR “ pwR

L , w
R
R, w

R
Bq where

13I.e. pR such that pRpωLRq “ 0.09, pRpωLq “ 0.01, pRpωRq “ 0.81, pRpωN q “ 0.09.
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wR
R ą wR

L , translating his relative expertise in real estate.

3.3 Confidence aggregation with within-person exper-

tise diversity

Armed with confidence rankings that capture cross-issue differences in ex-
pertise, and hence confidence, we now consider aggregation of such rank-
ings. The following Proposition characterises the centre of the confidence
ranking obtained by confidence aggregation with an average confidence-
level aggregator.

Proposition 3. Suppose that each agent i “ 1, . . . , n has a confidence
ranking of the form (4), with classical distance d, centre pi and vector of
positive real-valued weights wi. Then the centre of the consensus-preserving
confidence aggregation under an average confidence-level aggregator is:

argmin
pP∆

n
ÿ

i“1

m
ÿ

j“1

wi
jdpp|Pj

, pi|Pj
q (7)

This result is an immediate corollary of the characterisation of confi-
dence aggregation in Eq. (3) (Proposition C.1) and the observation that
the confidence ranking defined in Eq. (4) can equivalently expressed by the
implausibility function in Eq. (5).

As we now show on the running example, this aggregation naturally
incorporates within-person cross-issue expertise diversity.

Example 3.4. Suppose that Laura and Ray have the confidence rankings
defined in Example 3.3 with wL

L ą wL
R and wR

L ą wR
R. As discussed above,

these rankings faithfully reflect Laura’s higher expertise on the labour issue
as compared to the real estate one, and similarly for Ray. Moreover, the
example stipulates that Laura has more expertise in the labour market
than Ray; in the light of the analysis of confidence rankings of form (6),
this suggests that wL

L ą wR
L . Similarly, given Ray’s higher specialisation

in the real estate sector, wR
R ą wL

R. Note that wL
B`wR

B

wL
L`wR

L
reflects the ratio

of the overall confidence in the probability judgements on B (across both
agents) to the overall confidence in judgements concerning L, and similarly
for wL

B`wR
B

wL
R`wR

R
. Given that, in the example, Laura’s expertise concerns L but
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not specifically R or B “ LXR, and similarly for Ray, it seems reasonable
that these ratios will be low.

As shown in Appendix A (see also Section 3.4), the aggregate confidence
ranking is centred, and, when wL

B`wR
B

wL
L`wR

L
Ñ 0 and wL

B`wR
B

wL
R`wR

R
Ñ 0—i.e. the

confidence in judgements concerning B is dwarfed by the overall confidence
in the judgements concerning L and R—the centre probabilities tend to:

ppLq Ñ
wL

L

wL
L ` wR

L

pLpLq `
wR

L

wL
L ` wR

L

pRpLq

ppRq Ñ
wL

R

wL
R ` wR

R

pLpRq `
wR

R

wL
R ` wR

R

pRpRq

ppBq Ñ

$

&

%

0.09 if ppLq ` ppRq ´ 1 ď 0.09

ppLq ` ppRq ´ 1 otherwise

So the centre probability for L, ppLq, tends to the weighted average of
Laura’s and Ray’s judgements on L, where the weights are those in the
generation of the confidence rankings that correspond to the issue L. If,
as the example suggests, Laura has more expertise than Ray on the labour
market, so wL

L ą wR
L , this probability for L will be closer to Laura’s (pLpLq),

as one would have wanted. Similarly, ppRq tends to the weighted average
of the individuals’ judgements about R, except that here the weights corre-
sponding to the issue R are involved. Since Ray is more of a specialist here,
his weight will be larger wR

R ą wL
R, so the centre judgement will be closer to

his judgement on R (pRpRq). Figure 3b provides a visual illustration: the
centre under confidence aggregation belongs to sets with confidence lev-
els that are not too high on either ranking, and this picks out probability
measures that are close to both Laura’s probability on L and Ray’s on R.
Confidence aggregation applied to these confidence rankings, which reflect
cross-issue expertise differences, thus yields group judgements that follow
each individual more closely on their area of expertise. As such, it fairs
better on this score than linear (or, for that matter, geometric) pooling.

Given that the centres of the confidence rankings generated as in (6) are
probability measures with ppBq “ 0.09, the centre of the aggregate ranking
will stick as close to this value as possible. If the weights yield issue-wide
weighted averages which are consistent with ppBq “ 0.09, then this is the
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value of ppBq. If not, as will typically be the case, then ppBq takes the value
closest to 0.09 that satisfies the constraints, i.e. ppLq ` ppRq ´ 1. Since
this is typically not 0.09,14 this example demonstrates that the confidence
aggregation rule does not respect spurious unanimities.

We by no means wish to suggest that all individuals’ confidence rank-
ings subscribe to the form in Definition 3. The aim of this example is
rather to illustrate a simple way in which the confidence approach can
capture within-person expertise diversity, and to show that confidence ag-
gregation faithfully reflects these expertise differences in the resulting group
beliefs. As such, it resolves the within-person expertise diversity challenge.
Moreover, the example also shows that our aggregation procedures avoid
the much-discussed problem with spurious unanimities: when the individ-
uals are not comparatively confident in their judgements about B—so the
agreement is indeed spurious—the common judgement is not adopted by
the group.

Since the expertise-sensitive generation of confidence rankings in Defi-
nition 3 only requires probability measures as input, one could potentially
use it in tandem with confidence aggregation to define a new pooling rule.
We now consider this possibility.

3.4 Expertise-sensitive pooling

Just as confidence aggregation can recoup standard pooling rules by using
confidence rankings generated by classical distances (Proposition 1; Figure
1), we now show that using wi d-confidence rankings generates a new family
of pooling rules. To this end, let us define the function yielding the centre
in the result of confidence aggregation applied to wi d-confidence rankings.

Definition 4. Let P1, . . . ,Pm be a set of partitions, and d a classical
distance. The function F d

P1,...,Pm
: ∆n Ñ 2∆ is defined by

F d
P1,...,Pm

pp1, . . . , pnq “ argmin
pP∆

n
ÿ

i“1

m
ÿ

j“1

wi
jdpp|Pj

, pi|Pj
q (8)

14E.g. when wL
L “ wR

R “ 0.75, wL
R “ wL

R “ 0.25, ppLq “ ppRq “ 0.7, and ppBq “ 0.4.

22



Brian Hill Confidence, consensus and aggregation

where wi “ pwi
1, . . . , w

i
mq is a tuple of vectors of positive real-valued weights,

one for each individual.

As yet, F d
P1,...,Pm

is not a well-defined probability aggregation rule. In
particular, since the optimisation problem may have multiple solutions,
F d
P1,...,Pm

may yield a set of probability measures rather than a unique mea-
sure. However, the optimisation problem defining F d

P1,...,Pm
can typically

be reduced to a recognisable form.
More specifically, for a sequence of partitions P1, . . .Pm, let PP1,...Pm “

tpp|P1 , . . . , p|Pmq P
śm

k“1∆pPkq : p P ∆u, i.e. the set of sequences of prob-
ability measures on the partitions, each of which is derived from some
probability measure on Ω. Note that, since projection is a linear map,
PP1,...Pm is a convex set. Moreover, it is typically defined by a collection
of inequalities. For instance, in the case of our running example (Example
3.2), PPL,PR,PB

is defined by the following linear inequalities imposed by
the fact that B “ L X R: for any ppL, pR, pBq P ∆pPLq ˆ ∆pPRq ˆ ∆pPBq

pLpLq ě pBpBq

pRpRq ě pBpBq

1 ě pLpLq ` pRpRq ´ pBpBq

(9)

The centre of the aggregate confidence ranking (8) can thus be equivalently
characterised as the set of probability measures p such that pp|P1 , . . . , p|Pmq

belongs to:

argmin
pp1,...,pmqPPP1,...,Pm

n
ÿ

i“1

m
ÿ

j“1

wi
jdppj, p

i
|Pj

q (10)

For the w Euclidean-confidence rankings in Example 3.3, this is a quadratic
optimisation problem over a convex set (see Appendix A for details). More
generally, whenever d is convex, (10) is a minimisation of a strictly convex
lower semicontinuous function on a convex set, so there is a unique min-
imum. So whenever P1, . . . ,Pm is rich, (10) defines a unique probability
measure in ∆. Hence, for each convex d and rich set of issues, F d

P1,...,Pm
is

single-valued. This establishes the following Proposition.

Proposition 4. Let P1, . . . ,Pm be a rich set of partitions, and d a convex
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distance. Then F d
P1,...,Pm

is a well-defined pooling rule, i.e. a function from
∆n to ∆.

Confidence aggregation thus generates this new well-defined pooling rule,
which we call expertise-sensitive pooling. Since this is essentially the rule
used in Example 3.4, all of the conclusions there—and in particular the
capacity to naturally reflect within-person expertise diversity in the group
judgement—apply equally for this pooling rule. Indeed, as discussed in Sec-
tion 7, the limit expressions concerning L and R in Example 3.4 are remi-
niscent of early suggestions in the pooling literature; unlike them, however,
expertise-sensitive pooling is well-defined.

3.5 Confidence in independence judgements

A central factor in Example 3.4 is the trade-off between the confidence in
the judgements concerning the main two issues—labour and real estate—
and what happens to both, considered as a third issue. However, an alter-
native analysis considers individuals to have opinions on the main issues
and their relationship, rather than ‘primitive’ views on B. We now briefly
show that the confidence approach can easily support such perspectives.

Example 3.5. Now suppose that Laura and Ray hold beliefs about L
and R, and about the independence of L and R: they believe them to
be independent, without being maximally confident in this judgement.15

This can be reflected using a vector of weights wL “ pwL
L, w

L
R, w

L
I q (resp.

wR “ pwR
L , w

R
R, w

R
I q) and the following confidence ranking:

cLIndpoq “

$

’

&

’

%

q P ∆ :

ř

j“tL,Ru
2wL

j pqpjq ´ pLpjqq2

`2wL
I pqpBq ´ qpLq.qpRqq

2

ď o

,

/

.

/

-

(11)

and similarly for cRInd. These are clearly well-defined confidence rank-
ings. The weighted element corresponding to the event B here is pqpBq ´

qpLq.qpRqq2, which reflects the ‘distance’ from independence of L and R.
So, at higher confidence levels, probability measures with larger ‘distances’

15Independence here refers to the probabilistic sense: pipL X Rq “ pipLqpipRq. Note
that the belief in independence implies that pLpBq “ pRpBq “ 0.09, as per Table 1.
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from independence are contained in the set of priors, translating the limited
confidence in independence.

The solution of the minimisation problem (10) can be obtained simi-
larly to the analysis in Example 3.4, yielding as centre of the aggregate
confidence ranking p with:

ppLq “
wL

L

wL
L ` wR

L

pLpLq `
wR

L

wL
L ` wR

L

pRpLq

ppRq “
wL

R

wL
R ` wR

R

pLpRq `
wR

R

wL
R ` wR

R

pRpRq

ppBq “ppLq.ppRq

Here the aggregation on each of the issues L and R uses issue-specific
weights, reflecting differing confidence, as in the limit case in Example 3.4.
For the issue B, agents’ beliefs concerning the independence of L and R

generates the probability.

In tandem with the preceding discussion, this illustrates that the con-
fidence approach can not only recoup averaging with issue-specific weights
whilst retaining consistency, but it can also incorporate varying opinions
about independence or more generally the relationship between issues.16

This is relevant for another recurrent criticism of linear pooling: that it
does not preserve independence. As is well known, even if all individuals
consider the events L and R to be independent, the linear pool might not
(e.g. Genest and Zidek, 1986). This is easy to see on our running exam-
ple: the linear pool of Laura’s and Ray’s probabilities with equal weights
(wL “ 1

2
) is pLP pLq “ 0.5, pLP pRq “ 0.5, pLP pBq “ 0.09, so L and R are not

independent under pLP , though they are under pL and pR. The aggregation
above based on confidence rankings of the form (11) shows how confidence
aggregation can respect independence, whilst retaining much of the spirit
of linear pooling. For instance, when wL

L “ wL
R “ wR

L “ wR
R, the result-

ing centre probability is pLP pLq “ 0.5, pLP pRq “ 0.5, pLP pBq “ 0.25: i.e.
the same as linear pooling for the issues L and R, but with independence
retained (and hence a different B).

16Note that whilst these examples used confidence rankings based on the Euclidean
distance, similar techniques can be applied to other distances, such as relative entropy.
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The beliefs about the independence of L and R in Example 3.5 are
considered merely for the purposes of illustration. The point of the example
is more general: by incorporating conditional probabilities much in the
way proposed in Eq. (11), the confidence approach can respect conditional
probability judgements (including, but not limited to, judgements about
independence) in the aggregate belief. In accordance with the philosophy
behind the approach, they are respected to the extent that the individuals
are confident in them.

4 Characterising Confidence Aggregation

In this section we provide a preference-based axiomatisation of consensus-
preserving confidence aggregation (Definition 2) in a single-profile setting.
First, we set out the decision framework and preference representation.

4.1 Preferences

Preliminaries Consider a standard Anscombe-Aumann (1963)-style frame-
work, as adapted by Fishburn (1970). Let X , the set of consequences, be a
convex subset of a vector space; for instance it could be the set of lotteries
over a set of prizes. A is the set of acts : (measurable) functions from states
Ω to consequences X . Mixtures of acts are defined pointwise as standard:
for any f, g P A and α P r0, 1s, the α-mixture of f and g, which we denote
with fαg, is defined by fαgpωq “ αfpωq ` p1 ´ αqgpωq for all ω P Ω.

We use ą (perhaps with superscripts) to denote a strict preference
relation on A. Preferences ą contradict ą1 if there exists f, g P A with
f ą g and f ă1 g. A preference relation ą is contradictory if there exists
f, g P A with f ą g and f ă g. As standard, a functional V : A Ñ R is said
to represent ą if, for all acts f, g P A, f ą g if and only if V pfq ą V pgq.

Each individual and the group has a preference relation ąi: the tuple
pą1, . . . ,ąnq is a profile of individual preference relations, and ą0 is the
group preference.

Decision models As noted in Section 2.1, the representation of con-
fidence in beliefs used here is compatible with several models of decision
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under uncertainty. Here we work with the confidence family, which requires
the weakest properties of the belief representation and supports both am-
biguity averse and incomplete preference models (Hill, 2019b). Under the
ambiguity averse maxmin-EU model in this family (Hill, 2013), preferences
are represented by

min
pPcpDpfqq

Epupfq (12)

whereas a typical corresponding incomplete preference model (Hill, 2016)
is such that for all acts f, g P A, f ą g if and only if:

Epupfq ą Epupgq for all p P cpmaxtDpfq, Dpgquq. (13)

In these expressions Ep is the expectation with respect to a probability
measure p P ∆,17 u : X Ñ R is a non-constant affine utility function, c is
a closed convex confidence ranking and D : A Ñ O satisfies the following
richness condition: for every f, g P A and o P DpAq, there exists h P A and
α P p0, 1s such that maxtDpfαhq, Dpgαhqu “ o. This function, called the
cautiousness coefficient, picks out the confidence level the decision maker
considers relevant for evaluating each act, and hence each decision. As
shown in the cited papers, it captures the decision maker’s attitudes to
choosing on the basis of limited confidence (or ambiguity attitudes). Models
(12) and (13) are related in the standard way (Ghirardato et al., 2004;
Gilboa et al., 2010) ; see Hill (2013, 2016, 2019b) for discussion and details.

If (12) or (13) holds, we say that pc,D, uq represents ą (under the
relevant model). In each case, the representing u is unique up to positive
affine transformation, cpOq is unique up to convex closure, and c ˝ D is
unique.

Following Danan et al. (2016), we study aggregation in the context of in-
complete preferences, and thus assume that all preferences are represented
according the previous incomplete preference model.18

17I.e. for any ϕ : Ω Ñ R, Epϕ “
ř

ωPΩ ppωqϕpωq and similarly for infinite Ω.
18To the extent that the decision models cited in Section 2.1 involve complete pref-

erences with representations generating confidence rankings, this incomplete preference
model can be thought of as embedded in them. Accordingly, our axiomatic analysis of
aggregation can be considered as applying under those models (see also Danan et al.,
2016). A corresponding characterisation of confidence aggregation can be easily obtained
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Assumption 1. For each i “ 0, . . . , n, ąi is represented according to (13).

To focus on aggregation of beliefs, we follow the literature (e.g. Crès
et al., 2011) in assuming that all individuals and the group have the
same tastes. Since the confidence model has two parameters represent-
ing tastes—the utility function u and the cautiousness coefficient D—this
is expressed by the following assumption.19

Assumption 2. Let pc0, D, uq represent ą0 according to (13). Then, for
each i “ 1, . . . , n, there exists ci with pci, D, uq representing ąi according
to (13).

Henceforth, we fix representations pci, D, uq of ąi, for i “ 0, . . . , n.

Stakes A central idea behind the confidence family is that the beliefs one
relies on to decide are held to a level of confidence that is appropriate given
the importance of the decision (Hill, 2013, 2016, 2019b; Bradley, 2017a).
For instance, (13) represents decision makers for which determinate prefer-
ences held at low stakes—where less confidence is required—may become
indeterminate at higher stakes. In the light of this, when higher-confidence
beliefs are invoked—i.e. maxtDpfq, Dpgqu ą maxtDpf 1q, Dpg1qu—then this
is an indication that the decision maker considers the choice between f and
g to be more important than the choice between f 1 and g1: it involves higher
stakes. In the context of (13), this can be formalised by a surjective func-
tion σ : AˆA Ñ S Ď R, assigning to each binary choice the stakes involved
in it. Hill (2016) contains several examples of such (real-valued) notions of
stakes.20 For pf, gq P A ˆ A and s P S, we say that pf, gq has stakes s if
σpf, gq “ s. Assumption 2 guarantees that all individuals and the group

under (12), relying on the aforementioned relationship between the models.
19Given the aforementioned uniqueness of the representation, this is equivalent to

the uniqueness of u and D up to appropriate transformations. Indeed, whilst stated
on the models for ease, this Assumption and the previous one can be reformulated in
behavioural terms, drawing, for instance, on the choice-based foundations for the weak
preference version of (13) provided by Hill (2016) (which can be extended to strict
preference using the work of Bewley, 1986; Karni, 2011).

20Hill (2016) also discusses the relationship between the stakes involved in an act and
the stakes in a (binary) choice: in particular, whilst, for simplicity, we adopt one possible
relationship in (13) (the stakes in the choice as the highest stakes among available acts),
Hill (2016) contains examples of others (for which the results below also hold).
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have preferences consistent with a single stakes function σ, in the sense
that D and σ are linked by a monotone transformation.21

Given a preference relation ą represented according to (13) and a stakes
level s P S, the derived relation ąs is defined as follows: for all f, g P A,
f ąs g if and only if there exists h P A and α P p0, 1s such that pfαh, gαhq

has stakes s and fαh ą gαh.22 As discussed in Hill (2013, 2016), f ąs g

essentially says that, if the acts were evaluated ‘as if’ the decision involved
stakes s, then f would be preferred. For example, consider two choices.
One is between the bet f on the Democrat candidate winning the 2024 US
President election, yielding $1 million if you win and a loss of $1 million
if not, and nothing g. The other choice is between a similar bet f 1 on
the 2028 election, with stakes (winnings and losses) a million times less
in utility terms, and no utility change, g1. An agent with beliefs that are
more precise and slightly more favorable for the 2024 bet might nevertheless
choose the bet in the 2028 choice but have indeterminate preferences in the
2024 one because of the difference in stakes: with lower stakes, he can rely
on low-confidence beliefs when comparing f 1 and g1, but not for the choice
between f and g. However, if the 2024 choice was evaluated at the low
stakes level, say s, then f would typically be chosen over g: i.e. f ąs g.
When f ąs g, we say that f is preferred to g at stakes level s, and we call
ąs the preferences at stakes level s.

Consensus preferences We denote tuples of stakes levels ps1, . . . , snq P

Sn with vectors s. Under this notation, si is understood to be the ith stakes
level under s. The following definition shall prove crucial.

Definition 5. For a profile of stakes levels s “ ps1, . . . snq P Sn, define
the relation ąs on A by ąs“

Ťn
i“1 ąi

si
. s exhibits consensus when ąs is

not contradictory, and it does not exhibit consensus otherwise. Moreover,
we say that ą0 respects the consensus ąs at stakes level s if s exhibits
consensus and ą0

sĎąs.

The relation ąs assembles all the (determinate) preferences of the in-
dividuals in the group, at the stakes levels specified by s. The group ex-

21More precisely, for all f, g P A, maxtDpfq, Dpgqu “ ζ ˝ σpf, gq for some strictly
increasing real-valued function ζ.

22This is well-defined because of the richness of D.
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hibits consensus across s if none of the assembled preferences contradict
each other, in the sense of strictly preferring different acts. In other words,
were each individual i to only put their preferences at stakes level si ‘on the
table’, a coherent consensus position would exist, consisting of all such pref-
erences. In this case, ąs represents the preferences under this consensus.
The group preference ą0 respects the consensus ąs at a given stakes level s
if it doesn’t decide more than that consensus: all of the preferences decided
upon in ą0

s appear in the consensus, though some determinate preferences
in the consensus may be left open in ą0

s. In other words, consensus respect
at stakes level s means that the group doesn’t adopt stronger positions on
preferences than the consensus, at that stakes level.

4.2 Confidence aggregation and Pareto

The preference-based characterisation of confidence aggregation relies on
one main axiom. To introduce it, first consider the Pareto principle, the
axiom behind linear pooling in a sufficiently rich, single-profile aggregation
context (Mongin, 1995). The strict preference version is as follows.

Axiom (Issue-wise Pareto). For all acts f, g P A, if f ąi g for all i, then
f ą0 g.

As discussed in the Introduction, this principle encodes respect for issue-
wise consensus, and hence faces challenges relating to spurious unanimity.
We thus consider the following variant.

Axiom (Corpus-wise Pareto). For every stakes level s P S and acts f, g P

A, if f ąs g for all s for which ą0 respects the consensus at s, then f ą0
s g.

Rather than asking the group to adopt a preference if everyone in the
group holds it, Corpus-wise Pareto looks at whether it holds in all rele-
vant consensuses. If the preference holds in all consensuses respected at a
given stakes level, then the group adopts that preference at those stakes.
Note that more consensuses are respected at higher stakes levels than at
lower ones, so fewer preferences hold in all such consensuses: this principle
thus applies to fewer preferences at higher stakes levels, in line with the
expectation that fewer preferences are held with higher confidence.
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Whilst, logically, neither Issue-wise Pareto nor Corpus-wise Pareto im-
ply the other, Proposition 1 shows that linear pooling can be recovered as
a special case of confidence aggregation. In this sense, the latter condition
could be considered more general.

Our characterisation requires two auxiliary axioms.

Axiom (Consensus-based beliefs). For every stakes level s P S and acts
f, g P A, if f č0

s1 g for every stakes level s1 such that some consensus ąs is
respected at s1, then f č0

s g.

Axiom (Non-degeneracy). There exists a tuple of stakes levels s exhibiting
consensus.

In aggregation, groups beliefs should come from individuals’ beliefs.
Under confidence aggregation, the latter translate into group beliefs prin-
cipally in the context of corpus-level consensuses. In terms of preferences,
this occurs at stakes levels where some consensus is respected. Consensus-
based beliefs states that all group preferences are determined by those
formed on the basis of consensuses: in particular, any preferences at a
stakes level where no consensus is respected must already be present at
a level where some are. Non-degeneracy states that,if individuals leave
sufficiently many preferences aside, they can come to a consensus.

We have the following characterisation result.

Theorem 1. Let tąiu,ą0 satisfy Assumptions 1 and 2. They satisfy
Corpus-wise Pareto, Consensus-based beliefs and Non-degeneracy if and
only if, up to convex closure, c0 is a consensus-preserving confidence aggre-
gation of pc1, . . . , cnq.

Moreover, there is a unique minimal confidence-level aggregator b under
which c0 is a consensus-preserving confidence aggregation: that is, for all b1

such that c0 is a consensus-preserving confidence aggregation of pc1, . . . , cnq

under b1, b1poq ě bpoq for all o such that
Şn

i“1 c
ipoiq ‰ H.

So the central axiom characterising confidence aggregation is Corpus-
wise Pareto, which is no more than a reformulation of the standard Pareto
condition to apply to (corpus-level) consensuses rather than individual pref-
erences. Indeed, Consensus-based beliefs can be dropped whenever the
group confidence ranking is centred. More generally, without it, the group
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confidence ranking is always that obtained by a confidence aggregation,
except at confidence levels at the bottom of the ranking.

No assumption of a particular confidence-level aggregator is required for
this result; rather, the appropriate aggregator is determined endogenously
by the individual and group preferences. Moreover, there is a unique min-
imal one: that is, one which always takes the lowest value across all aggre-
gators representing the profile of preferences. Further axioms can be added
to characterise the special cases of confidence-level aggregators mentioned
in Section 2.2; details are provided in Appendix B.

5 Dynamic rationality

A common theme in the literature is the interaction between aggregation
and update. Dietrich (2021) argues that a ‘rational group’ requires belief
aggregation to be in sync with updating. This is typically formulated in
terms of commutivity between the two: aggregation followed by update
on some information yields the same group beliefs as updating all indi-
vidual beliefs on the information and then aggregating. The version of
this condition for Bayesian beliefs, where updating is performed on events
(or likelihoods) by Bayesian conditionalisation, has been called ‘external
Bayesianism’ in the pooling literature (Genest and Zidek, 1986) or ‘Dy-
namic Rationality’ by Dietrich (2021).

However, the natural domain for our aggregation approach is not Bayesian
beliefs but richer and more refined confidence in beliefs. Here, Bayesian
conditionalisation no longer applies, without revision. Hill (2022) proposes
a confidence update rule for the general representation of confidence in
beliefs used here, and argues for its normative validity, suggesting in par-
ticular that it deals appropriately with situations where Bayesian update
struggles. So the question of dynamic rationality in our context is whether
confidence aggregation commutes with confidence update.

In the framework set out in Section 2.1, the probability-threshold con-
fidence update rule from Hill (2022, Definition 2) can be defined as follows,
where, for a set C P 2∆zH and event E, CE “ tpp‚|Eq : p P C, ppEq ą 0u,
and a probability-threshold function ρE is a decreasing function O Ñ r0, 1s.
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Definition 6 (Confidence Update). For event E Ď 2∆zH, confidence rank-
ing c : O Ñ 2∆zH and probability-threshold function ρE : O Ñ r0, 1s, the
confidence update of c by E under ρE is the ranking c|ρE “ Φ, where
the partial function Φ : O Ñ 2∆zH is defined, for all o P O such that
tp P cpoq : ppEq ě ρEpoqu ‰ H, by:

Φpoq “tp P cpoq : ppEq ě ρEpoquE (14)

See Hill (2022) for a full discussion and axiomatic characterisation of
this and a more general class of confidence update rules.

We have the following result (where Fb, the confidence aggregation rule
with confidence-level aggregator b, is as defined in Section 2.2).

Theorem 2. For every tuple of confidence rankings pc1, . . . , cnq, every
confidence-level aggregator b, every event E and probability-threshold func-
tion for it ρE:

Fbpc1|ρE, . . . , c
n
|ρEq “ Fbpc1, . . . , cnq|ρE (15)

So confidence aggregation commutes with confidence update: it is ‘dy-
namically rational’, to use Dietrich’s (2021) term. Such coherence has
been argued to be an important property of an aggregation rule, so much
so that some use it to promote aggregation rules having this property, and
to criticise those that don’t. Theorem 2 thus provides a reassuring message
concerning confidence aggregation’s credentials on this score.

6 Model misspecification and confidence

The focus thus far has been on the contribution that confidence aggrega-
tion can make to challenges faced by probability aggregation per se. Now
we briefly comment on its relevance in the context of subsequent group
decision, including in situations involving non-expected utility preferences.
A topical relevant such case is where the ‘experts’ are models.

To this end, consider a decision maker faced with a set M Ă ∆ of
models, each of which, like the experts in standard probability aggregation,
is a probability measure over states. As set out in Section 3, confidence
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aggregation can be applied to confidence rankings generated from M, given
an assignment w : M Ñ ℜě0 of weights to models, a distance ρ, and a
confidence-level aggregator bmPM (Section 2.2). As noted in Section 2.1,
the resulting confidence representation is consistent with a range of decision
models; for illustration we consider the ambiguity averse model (12) in the
confidence family (Section 4; Hill, 2013, 2019b). Applied on the aggregate
confidence ranking, it evaluates an act f according to

min
qP∆:

bmPMwpmqρpq,mqďDpfq

Equpfq (16)

where the notation is as in Section 4. Like Gilboa and Schmeidler (1989)
maxmin-EU, this decision rule evaluates acts by the worst-case expected
utility over a set of priors; unlike it, the set used is determined by the
act evaluated, with acts involving higher stakes being evaluated using sets
corresponding to higher confidence levels. As such, this rule recovers sev-
eral approaches in the literature as special cases corresponding to various
settings of b, ρ and the stakes of the group’s decision (Table 4).

Low stakes: Bayesian Model Averaging In evaluating acts involving
low stakes, sets of priors held with low confidence levels will be used; if
these sets are singletons (i.e. the set in the subscript of the minimisation is
a singleton for low enough Dpfq), then (16) coincides with subjective ex-
pected utility (SEU). So, for confidence-level aggregators b and distances
ρ yielding the results of, say, linear pooling (Proposition 1), (16) coincides
with SEU on a linear pool of the models, at low stakes. Confidence ag-
gregation with the confidence decision model (12) thus subsumes Bayesian
Model Averaging (Raftery et al., 1997; Steel, 2020), a popular approach
to dealing with multiple models that involves the linear pool of the distri-
butions provided by the various models, with weights determined by the
posterior probabilities over them (Table 4, row 1).

Medium / High stakes: Model misspecification At higher stakes,
sets further up the confidence ranking will feature in (16). For a fixed Dpfq,
(16) generalises Hansen and Sargent’s (2001; 2008) constraint preferences,
which are the special case with singleton M and relative entropy distance ρ.
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To that extent, confidence aggregation combined with confidence decision
rule (12) naturally reflects concern for model misspecification. Indeed, just
as constraint preferences yield the same optima as so-called multiplier pref-
erences on various classes of decision problems (Hansen and Sargent, 2008),
for convex distances and confidence-level aggregators, the optimal choice
under (16) in these problems coincides with the optimal choice under:23

min
qP∆

pEqupfq ` λ bmPM wpmqρpq,mqqq (17)

for appropriate λ. (17) is a generalisation of multiplier preferences (which
involve singleton M and relative entropy ρ; Hansen and Sargent, 2001),
using the same ingredients as in (16) and providing the same solutions on
the aforementioned classes of problems. As such, it dovetails with recent
literature on multi-model generalisations of multiplier preferences; as set
out in Table 4 (rows 3 & 4), several recent models are special cases of (17),
corresponding to particular settings of b and ρ.

Whilst misspecification-motivated models in the literature bake every-
thing together into the decision rule, the confidence-aggregation perspec-
tive fully separates two challenges: the epistemic issue of identifying the
beliefs (and confidence) that can or should be formed on the basis of a
set of models; and the pragmatic question of their role in decision making.
This is clear in Table 4: the resulting ‘overall’ decision rule depends not
just on the aggregation parameters (first two columns), but also on the
stakes, which under (16) regulate the degree of exhibited ambiguity aver-
sion (Hill, 2013, 2019b). Indeed, this perspective can even bring to light
hitherto unrecognised relationships between aggregation rules: for instance
(Table 4, rows 2 & 4), SEU with geometric pooling and the average robust
control rule turn out to be equivalent as concerns aggregation, differing
only on the decision front. Moreover, separating out the aggregation part
of the model misspecification challenge reconceptualises how to evaluate
misspecification-sensitive decision models, and can suggest new directions.

23Hansen and Sargent’s proof for multiplier preferences relies on the Lagrange multi-
plier theorem (Luenberger, 1969), and hence on the convexity of the constraint (Rpq}mq

in their case) as a function of q. The stated convexity conditions ensure the theorem
applies to (16) and (17).

35



Brian Hill Confidence, consensus and aggregation

Model expertise Notably, confidence aggregation’s ability to deal with
expertise remains relevant when the ‘experts’ are models. In real applica-
tions, it is not uncommon for some models to be ‘better’ on certain issues
and ‘worse’ on others. In climate science, say, one model could have a more
detailed representation of cloud formation, whereas another is more accu-
rate on elements of the biosphere: the former might thus be expected to do
a better job in predicting hurricanes; the latter in predicting ground-level
temperature (Masson-Delmotte et al., 2021, Section 1.5.3). However, the
distances typically underlying Bayesian Model Averaging and virtually all
existing misspecification models (Table 4, rows 1–4) encode the assumption
that all models are equally ‘good’—they have comparable expertise—on
all issues (Section 3.2). Like standard pooling rules (Section 3.1), existing
model-misspecification decision rules thus cannot cope with intra-model
cross-issue expertise-diversity.

As shown in Section 3, confidence aggregation can comfortably ac-
commodate expertise differences within models. Using the same sort of
expertise-sensitive confidence rankings (Definition 3) as in the derivation
of our expertise-sensitive pooling rule (Definition 4) yields a expertise-
sensitive generalisation of Bayesian Model Averaging (Table 4, row 5) at
low stakes. At higher stakes levels, the same confidence ranking yields
misspecification-sensitive decision rules that can accommodate differing de-
grees of expertise within models. Table 4 (rows 6–7) provides two exam-
ples, obtained by replacing the distance generating existing misspecification
models by the expertise-sensitive distance introduced in Section 3.2. For
the reasons set out in Section 3, they constitute arguably more pertinent
misspecification-sensitive decision rules in situations where models’ perfor-
mance may vary across issues.

24As standard, the geometric pool involves a multiplicative constant, denoted χ.
25This generalised constraint rule takes wpmq “ 1 for all m P M. Hansen and Sargent

(2022) proposed the multiplier version of this model (i.e. (17) with b and ρ as specified
in the Table and wpmq “ 1 for all m P M); Cerreia-Vioglio et al. (2020, Theorem
1) axiomatise a version with general convex ρ, minimum b and convex, compact set
of models M. In such cases, the convexity assumptions needed to run Hansen and
Sargent’s (2008) argument hold (footnote 23), so these constraint preferences yield the
same optima as the corresponding multiplier version, in the relevant decision problems.

26Although this representation concerns the case of finitely many models (Section
2) extension to a measure over (potentially infinitely many) models is straightforward.
Hansen and Sargent (2007) used a multiplier version of this model (i.e. (17) with b and
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ρ b Stakes ‘Overall’ Decision rule

Reverse
RE

Average Low
Eř

M
wpmq

ř

mPM wpmq
m
upfq

Bayesian Model Averaging & SEU (Steel, 2020)

RE Average Low
E
χ
ś

M m
wpmq

ř

M wpmq

upfq

Geometric pooling & SEU (Dietrich, 2021)24

RE Minimum Medium
/ High

min qP∆:
minmPM Rpq}mqďη

Equpfq

‘Minimum’ robust control

(Hansen and Sargent, 2022; Cerreia-Vioglio et al., 2020)25

RE Average Medium
/ High

min qP∆:
ř

M wpmqRpq}mqďη

Equpfq

‘Average’ robust control

(Hansen and Sargent, 2007; Lanzani, 2022)26

Exp-sens.
RE Average Low

EargminqP∆

ř

M
řl

j“1 wpm,lqRpq|Pj
}m|Pj

qupfq

Expertise-sensitive pooling & SEU (Defn 4)

Exp-sens.
RE Minimum

Medium
/ High

min qP∆:

minM
řl

j“1 wpm,lqRpq|Pj
}m|Pj

qďη

Equpfq

Expertise-sensitive minimum robust control

Exp-sens.
RE

Average Medium
/ High

min qP∆:
ř

M
řl

j“1 wpm,lqRpq|Pj
}m|Pj

qďη

Equpfq

Expertise-sensitive average robust control

Table 4: Confidence aggregation & confidence decision (Eq. (16)): Special
cases.
Note: RE stands for ‘Relative Entropy’; Exp-sens. RE is short for ‘Expertise-sensitive
Relative Entropy’, i.e. ρ as in Definition 3 (and (5)), with the relative entropy classical
distance. In the last three rows, w : M ˆ t1, . . . , lu Ñ ℜě0 is an assignment of weights
to models and issues. Other notation is as in Sections 3, 4 and the text.

7 Discussion

This paper has largely focused on the contribution of confidence aggrega-
tion to recognised challenges for aggregating probability measures. Part of
the related literature takes probabilities as primitive, rather than working

ρ as specified in the Table, for infinite M), which was axiomatised by Lanzani (2022).
In such cases, the convexity assumptions needed to run Hansen and Sargent’s (2008)
argument hold (footnote 23), so these constraint preferences yield the same optima as
the corresponding multiplier version, in the relevant decision problems.
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with preferences (Genest and Zidek, 1986). The within-person expertise
diversity challenge was first raised in this literature, with some early con-
tributions suggesting averaging with potentially different weights for each
event (e.g. Bordley and Wolff, 1981). Such rules turned out not to be well-
defined: they fail to yield probability measures unless the weights are the
same for all events, in which case one returns to standard linear pooling
in the presence of a minimal Pareto-like condition (e.g. McConway, 1981;
Genest and Zidek, 1986). This, and in particular the apparent impossibil-
ity in capturing within-person expertise diversity, has been argued to be a
problem for linear pooling (e.g. French, 1985). The limit case in Example
3.4 (Section 3.3)—involving different weights for the labour and real es-
tate events—shows that confidence aggregation can capture the intuition
behind the early proposals. It does so whilst overcoming their limits: as
testified by Proposition 4, the expertise-sensitive pooling rule derived from
confidence aggregation is always well-defined.

Confidence aggregation operates directly on confidence rankings, and
hence, like pooling rules, does not require a preference setup to be applied.
Just as pooling rules tacitly assume interpersonal comparison of probabil-
ity judgements—one can say when two individuals are assigning the same
probability—in direct application, confidence aggregation requires inter-
personal comparison of confidence—one can tell when two individuals are
talking about the same confidence level. Hill (2019a) discusses the problem
of ‘calibrating’ confidence levels across individuals, providing and theoret-
ically founding a scale for interpersonal confidence comparison which can
be used for ‘direct’ applications of confidence aggregation. Interpersonal
comparison can alternatively be provided by preferences, in the context of
many decision models mentioned in Section 2.1 (see Section 4).

Another literature on belief aggregation works in preference-based frame-
works. Spurious unanimity, for instance, first arose as an issue for prefer-
ence aggregation with potentially differing utilities and subjective prob-
abilities (Mongin, 1995, 2016), and only recently has been recognised as
relevant for aggregation of belief tout court. For instance, Mongin and
Pivato (2020); Dietrich (2021); Pivato (2022) criticise the influential ap-
proach of Gilboa et al. (2004)—which characterises utilitarian aggregation
of utility and linear pooling of probabilities—on these grounds. Several
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reactions in this literature work with preferences and consist in restricting
the domain of the Pareto condition. Dietrich (2021) restricts it to cases
where all agents have identical subjective probabilities, and adds a dynam-
ical rationality condition of the sort discussed in Section 5. Mongin and
Pivato (2020); Pivato (2022) restrict Pareto to such an extent that their
representations involve “no connection between the social probability and
the individual ones”. Unlike the approach to belief aggregation developed
here, these make no attempt to retain the consensus-preservation intuition
behind Pareto. By contrast, Bommier et al. (2021) present a condition
preserving consensuses on prospects yielding identical distributions of out-
comes for all individuals, and use it to provide a decision rule aggregating
probabilistic beliefs. Under their procedure, the group ‘belief’ (distribu-
tion) used in the evaluation of a given prospect depends on the prospect
in question, whereas ours produces a representation of group belief that is
independent of the decision situation. Alon and Gayer (2016) and Stanca
(2021) consider aggregation of SEU preferences when group preferences
may be non-expected utility, and under identical utilities in the latter case.
Both involve versions of Pareto that, were group preferences expected util-
ity, would lead to linear pooling.

To the extent that confidence rankings support both ambiguity averse
and incomplete preferences (Section 4.1), confidence aggregation provides
an aggregation rule for both sorts of non-expected utility preferences. Crès
et al. (2011) characterises an aggregation rule for maxmin-EU preferences,
and Danan et al. (2016) explore aggregation of incomplete preferences, with
potentially differing utilities and beliefs. Both adopt conditions compara-
ble with standard, issue-wise Pareto. By contrast, the approach proposed
here leverages the non-probabilistic structure of beliefs in aggregation, in
concordance with the insight that confidence has a role in consensus forma-
tion (Introduction and Section 2.2). Nau (2002) proposes an aggregation
rule for a confidence-based belief representation which is a special case of
that used here (see Hill, 2016, Sect. 6). His rule is based on a different in-
tuition, pertaining to the Bayesian risk function of the group, as defined in
terms of an opponent’s minimum expected loss in a betting game. Neither
approach is contained in the other.27

27This can be seen from the fact that Nau’s rule violates Eqn. (3); see Nau (2002,
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Appendices: For Online
Publication

A Expertise-sensitive pooling: Examples 3.2–

3.4

In this Appendix, for completeness, we set out the details concerning the
running Example in Sections 3.2–3.5, as well as some further comments.

First note that each probability measure p over tL,Lcu is determined
by ppLq, and similarly for the other partitions (Example 3.2). So each
tuple ppL, pR, pBq P ∆pPLq ˆ ∆pPRq ˆ ∆pPBq is fully characterised by the
vector ppLpLq, pRpRq, pBpBqq P r0, 1s3. Hence the inequalities defining the
set PPL,PR,PB

(Eq. (9), Section 3.4) can be written in vector notation:
PPL,PR,PB

is just the set of vectors q P r0, 1s3 satisfying the constraint
Aq ď r where

A “

¨

˚

˚

˚

˚

˚

˝

´1 0 1

0 ´1 1

1 1 ´1

˛

‹

‹

‹

‹

‹

‚

, r “

¨

˚

˚

˚

˚

˚

˝

0

0

1

˛

‹

‹

‹

‹

‹

‚

Moreover, for each confidence level o in the confidence ranking (6) in Ex-
ample 3.3, the map of cLpoq into the space ∆pPLq ˆ ∆pPRq ˆ ∆pPBq can
be written as:

cLpoq “
␣

q P r0, 1s
3 : pq ´ pL

q
TDL

pq ´ pL
q ď o

(

(A.1)

where

pL
“

¨

˚

˚

˚

˚

˚

˝

0.9

0.1

0.09

˛

‹

‹

‹

‹

‹

‚

, DL
“

¨

˚

˚

˚

˚

˚

˝

2wL
L 0 0

0 2wL
R 0

0 0 2wL
B

˛

‹

‹

‹

‹

‹

‚

43



Brian Hill Confidence, consensus and aggregation

and similarly for Ray, with

pR
“

¨

˚

˚

˚

˚

˚

˝

0.1

0.9

0.09

˛

‹

‹

‹

‹

‹

‚

, DR
“

¨

˚

˚

˚

˚

˚

˝

2wR
L 0 0

0 2wR
R 0

0 0 2wR
B

˛

‹

‹

‹

‹

‹

‚

It follows that the minimisation problem (10) defining the centre of
the confidence aggregation in Example 3.4 becomes the following simple
quadratic optimisation problem under constraints:

argmin
Aqďr

ÿ

i“L,R

pq ´ pi
q
TDi

pq ´ pi
q

If
´

wL
L

wL
L`wR

L
pLpLq `

wR
L

wL
L`wR

L
pRpLq

¯

`

´

wL
R

wL
R`wR

R
pLpRq `

wR
R

wL
R`wR

R
pRpRq

¯

´ 1 ď

0.09, then the constraints are slack, and the solution is:

ppLq “
wL

L

wL
L ` wR

L

pLpLq `
wR

L

wL
L ` wR

L

pRpLq

ppRq “
wL

R

wL
R ` wR

R

pLpRq `
wR

R

wL
R ` wR

R

pRpRq

ppBq “0.09

Otherwise, solving the minimisation problem yields:

ppLq “

`

wL
Lp

LpLq ` wR
Lp

RpLq
˘

`
wL

B`wR
B

wL
R`wR

R

`

wL
Lp

LpLq ` wR
Lp

RpLq ´ wL
Rp

LpRq ´ wR
Rp

RpRq
˘

` 1.09pwL
B ` wR

Bq

pwL
L ` wR

L q ` pwL
B ` wR

Bqp
wL

L`wR
L

wL
R`wR

R

` 1q

ppRq “

`

wL
Rp

LpRq ` wR
Rp

RpRq
˘

´
wL

B`wR
B

wL
L`wR

L

`

wL
Lp

LpLq ` wR
Lp

RpLq ´ wL
Rp

LpRq ´ wR
Rp

RpRq
˘

` 1.09pwL
B ` wR

Bq

pwL
R ` wR

Rq ` pwL
B ` wR

Bqp
wL

R`wR
R

wL
L`wR

L

` 1q

ppBq “ppLq ` ppRq ´ 1

where, as specified, pLpLq “ pRpRq “ 0.9, pLpRq “ pRpLq “ 0.1 and
pLpBq “ pRpBq “ 0.09. Taking limits as wL

B`wR
B

wL
L`wR

L
Ñ 0 and wL

B`wR
B

wL
R`wR

R
Ñ 0

and combining them with the expressions under slack constraints gives the
expressions cited in Example 3.4.
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Example 3.4 considers the case where wL
B`wR

B

wL
L`wR

L
Ñ 0 and wL

B`wR
B

wL
R`wR

R
Ñ 0,

which, arguably, is closest to the example described in the Introduction.
For completeness, note that, in the opposite case of wL

B`wR
B

wL
L`wR

L
Ñ 8 and

wL
B`wR

B

wL
R`wR

R
Ñ 8, the confidence in the probability judgements concerning B

grows very large comparatively, so these are retained at the expense of
others. Hence, we have:

ppLq Ñ
1.09pwL

R ` wR
Rq `

`

wL
Lp

LpLq ` wR
Lp

RpLq ´ wL
Rp

LpRq ´ wR
Rp

RpRq
˘

wL
L ` wR

L ` wL
R ` wR

R

ppRq Ñ
1.09pwL

L ` wR
L q ´

`

wL
Lp

LpLq ` wR
Lp

RpLq ´ wL
Rp

LpRq ´ wR
Rp

RpRq
˘

wL
L ` wR

L ` wL
R ` wR

R

ppBq Ñ0.09

Here the judgement about B is fully preserved, as one would expect given
the high confidence postulated in it. This places a strong constraint on ppLq

and ppRq (namely, ppLq ` ppRq “ 1.09). The possible probability available
is shared between L and R according to the comparison between the issue-
wide weighted averages and the ratio between the overall confidence (i.e.
wL

L ` wR
L v.s. wL

R ` wR
R) in each of these judgements.

B Characterising confidence aggregation: spe-

cial cases

In this Appendix, we extend Theorem 1 to characterise, as special cases,
confidence aggregation under the families of confidence-level aggregators
mentioned in Section 2.2, as well as the following generalisation of the
maximum aggregator.

Example B.1 (Generalised Maximum aggregator). An aggregator of the
form bo “ max tψipoiqu, where ψi : O Ñ O (for i “ 1, . . . , n) are increasing
transformations of confidence levels, is called a generalised maximum
aggregator.

More specifically, we will provide results for the following stronger repre-
sentation: c0 “ 9Fbpc1, . . . , cnq, with 9F pc11, . . . , c1nq “ 9Φpc11, . . . , c1nq, where,
for every o P O such that

Ť

o:bo“o

Ş

i c
1ipoiq ‰ H
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Axioms Aggregator

Consensus Independence Affine

Consensus Independence, Neutrality Average

Consensus Join Generalised Maximum

Consensus Join, Neutrality Maximum

Consensus Meet, Neutrality Minimum

Table 5: Characterisations of special case confidence-level aggregators, to
be read in the context of Theorem B.1.

9Φbpc1, . . . , cnqpoq “
ď

o:bo“o

č

i

c1i
poiq (B.1)

The only difference with respect to the representation involved in The-
orem 1 is that here the union is taken over all tuples of confidence levels
whose confidence-level aggregate equals o, whereas the previous procedure
looks at all those with confidence-level aggregate at most o (Section 2.2).
It follows directly from the fact that confidence rankings are increasing in
o that, if c0 “ 9Fbpc1, . . . , cnq, then c0 is a consensus-preserving confidence
aggregation in the sense of Definition 2.

Recall that, under Assumptions 1 and 2, maxtDp‚q, Dp‚qu is a mono-
tonically increasing transformation of σ. By appropriate choice of normal-
isation for O and S, it can be assumed that they are identical. Under
this assumption, we have the following result, which involves the axioms in
Figure 4, and defines clauses according to Table 5.

Theorem B.1. Suppose that O is infinite, let tąiu,ą0 satisfy Assumptions
1 and 2 with maxtDpfq, Dpgqu “ σpf, gq for all f, g P A. For each of
the rows in Table 5: tąiu,ą0 satisfy Corpus-wise Pareto, Consensus-based
beliefs, Non-degeneracy and the axiom(s) in the first column of the table if
and only if there exists a confidence-level aggregator b of the type specified
in the second column such that c0 “ 9Fbpc1, . . . , cnq, up to convex closure.

We make no particular claim for any of the confidence-level aggregators
in Table 5 on normative grounds; we present this result to illustrate the
richness of the approach, and exemplify some simple aggregators.
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Axiom (Consensus Independence). For all tuples of stakes
levels s1, . . . , sl, t1, . . . , tm P Sn exhibiting consensus and
α1, . . . , αl, β1, . . . , βm P r0, 1s with

řl
k“1 αk “

řm
j“1 βj “ 1 and

řl
k“1 αksl “

řm
j“1 βjtj, if, for some stakes levels s1, . . . , sl, t1, . . . , tm,

ą0 does not respect the consensuses ąsi at sk for each k “ 1, . . . , l,
and ątj are uncovered consensuses at tj for all j “ 1, . . . ,m, then
řl

k“1 αksk ă
řm

j“1 βjtj.

Axiom (Consensus Join). For any tuples of stakes levels s, t exhibiting
consensus, if ą0 respects the consensuses ąs,ąt at s, then it respects
the consensus ąs_t at s.

Axiom (Consensus Meet). For any tuples of stakes levels s, t exhibiting
consensus, if ą0 respects the consensuses ąs,ąt at s, then it respects
the consensus ąs^t at s.

Axiom (Neutrality). For any stakes levels s, tuple of stakes levels s
and permutation π such that s, πpsq exhibit consensus, ą0 respects the
consensus ąs at s if and only if ą0 respects the consensus ąπpsq at s.

Where, for any s, t P Sn and α P r0, 1s, pαs ` p1 ´ αqtqi “ αsi ` p1 ´ αqti,
ps _ tqi “ maxtsi, tiu and ps ^ tqi “ mintsi, tiu.

Figure 4: Axioms for special cases

The axiom involved in the characterisation of confidence aggregation
with an affine aggregator, Consensus Independence, uses the notion of un-
covered consensus. For every tuple of stakes levels s exhibiting consensus
and stakes level s with ą0 respecting the consensus ąs at s, we say that
the consensus at s is covered when, for all acts f, g, if f čs g then there
exists a tuple s1 exhibiting consensus with s1 ğ s such that ą0 respects the
consensus ąs1 at s and f čs1 g. Otherwise, say that the consensus is uncov-
ered at s. When the consensus ąs is covered, there is no f, g such that the
absence of preference between them according to ą0

s can be pinpointed as
being due to the respect for consensus ąs, for there is some other consen-
sus respected at s that does not have any preference either. So, when the
consensus is uncovered, it contributes for sure to the construction of group
preferences, even in the context of the other relevant consensuses. In par-
ticular, it means that the group confidence level assigned to this consensus
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can’t be a lower than that corresponding to stakes level s.
In the light of this, Consensus Independence can be thought of as an

Independence-like axiom, adapted to this context. An Independence ax-
iom in this context would imply that if ą0 does not respect ąsi at si, for
all i, then it does not respect any mixture ąř

k αksk exhibiting consensus
at

ř

k αksk. However, consensus-preserving aggregation with an affine ag-
gregator can violate such a condition when, for instance, the consensus
involved is respected ‘by accident’, because it is covered; so the implication
does not hold. Consensus Independence corrects the first-pass indepen-
dence condition to account for such cases, using the notion of uncovered
consensus. It allows that the mixture of uncovered consensuses may not
be uncovered, and it allows that a mixture of non-respected consensus may
be respected, but doesn’t allow the mixture of uncovered consensuses to
coincide with a mixture of non-respected ones.

The characterising axiom for a generalised maximum confidence-level
aggregator, Consensus Join, states that respect for consensus at s is pre-
served if one takes the consensus corresponding to the largest stakes level
for each entry in the tuple (the join). Consensus Meet is the dual axiom,
involving the lowest stakes level for each entry. Neutrality is a standard
neutrality axiom, adapted to the current context, stating that respect for
consensus is preserved under permutation of individuals. Added to the
other conditions, it characterises the ‘neutral’ average, maximum and min-
imum confidence-level aggregators.

C Proofs

C.1 Proofs of results in Sections 2, 4 and Appendix B

We begin with the following Proposition, mentioned in Section 2.2.

Proposition C.1. c0 is a consensus-preserving confidence aggregation of
pc1, . . . , cnq under b if and only if

ι0ppq “

$

&

%

bpι1ppq, . . . , ιnppqq if @i ιippq P O

H otherwise
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where the implausibility function ιi for ci is as defined in Section 2.1.

Proof. By the definition, p P c0poq if and only if, for some o with bo ď o,
p P cipoiq for all i “ 1, . . . , n. First consider p such that ιippq P O for all
i. For such p, p P cipιippqq for all i and hence p P c0pbpι1ppq, . . . , ιnppqqq.
Moreover, for any o with bo ă bpι1ppq, . . . , ιnppqq, oi ă ιippq for some i by
the monotonicity of b; since ιippq “ minto1 P O : p P cipo1qu, it follows that
p R cipoiq. Hence, for every o1 ă bpι1ppq, . . . , ιnppqq, p P c0po1q. The first
clause of the required formula follows from the definition of ι. As concerns
the other case, if there exists i with ιippq “ H, then p R cipoq for all o P O,
so, by the definition of confidence aggregation (notably Eq. (2)), p R c0poq

for all o P O. So ι0ppq “ H, as required by the second clause.

We now prove Theorems 1 and B.1. Recall that, under Assumptions
1 and 2, tpci, D, uqu, pc0, D, uq denote the representations of the tąiu,ą0.
Moreover, as noted in Section 4.1 (footnote 21), maxtDpfq, Dpgqu “ ζ ˝ σ

for some strictly increasing ζ : R Ñ R. Throughout the rest of this section,
with slight abuse of notation, for any stakes level s P S, we shall denote
cipζpsqq by cipsq, for all i.

C.1.1 Proof of Theorem 1

We first show sufficiency of the axioms. Let X Ď Sn be the set of tuples
exhibiting consensus. By Non-degeneracy, X ‰ H. Let ě be the domi-
nance ordering on Sn: s ě t if and only if si ě ti for all i. X is closed
under ě: if s P X and t ě s, then ąs is not contradictory; but ątiĎąsi for
all i by the properties of confidence rankings, so ąt is not contradictory
and hence t P X.

The following claim follows immediately from standard arguments (e.g.
Ghirardato et al., 2004), for every ąs exhibiting consensus.

Claim C.1. ą0 respects the consensus ąs at stakes level s if and only if
c0psq Ě

Şn
i“1 c

ipsiq.

Claim C.2. For any set Y Ď Sn such that ąs exhibits consensus for every
s P Y ,

Ş

sPY ąs is represented by
Ť

sPY

Şn
i“1 c

ipsiq in the following sense:
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for all f, g P A, f ąs g if and only if

Epupfq ą Epupgq for all p P
ď

sPY

n
č

i“1

cipsiq (C.1)

Proof of Claim C.2. First consider ąs exhibiting consensus, and let ąŞ

s

be the ‘Bewley’ preference such that, for every f, g P A, f ąŞ

s g if and
only if

Epupfq ą Epupgq for all p P

n
č

i“1

cipsiq (C.2)

Note that, since the ci are closed and convex, so is their intersection. For
every f, g P A, f ąs g if and only if f ąi

si
g for some i and f ći

si
g for every

i. By Assumption 1, this holds if and only if, for some i, Epupfq ą Epupgq

for all p P cipsiq, and, for every i, it is not the case that Epupfq ă Epupgq

for all p P cipsiq. Since
Şn

i“1 c
ipsiq ‰ H, this holds if and only if, for all

p P
Şn

i“1 c
ipsiq, Epupfq ą Epupgq. Hence ąs“ąŞ

s.
Now consider Y as specified. The case in which Y is a singleton has

just been treated, so suppose that Y contains several elements. By the
previous observation, for every f, g P A, f ąs g for every s P Y if and only
if f ąŞ

s g for every s P Y , which holds if and only if Epupfq ą Epupgq for
all p P

Şn
i“1 c

ipsiq for every s P Y . This holds if and only if Epupfq ą Epupgq

for all p P
Ť

sPY

Şn
i“1 c

ipsiq, as required.

Define the function G : X Ñ S as follows:

Gpsq “ min
␣

s :ą0
sĎąs

(

“ min

#

s : c0psq Ě

n
č

i“1

cipsiq

+

where the equality follows from Claim C.1. Note that if GpXq is a finite
set, then minGpXq P GpXq. The following proposition implies that this
is the case when GpXq, and hence O, is infinite—and hence, given our
assumptions, when the confidence rankings are upper semicontinuous.

Proposition C.2. If the confidence rankings ci are all upper semicontin-
uous, then, for any decreasing sequence sj P X with sj Ñ s, s P X and
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Gpsq ď limGpsjq.

Proof. Consider a decreasing sequence sj P X with sj Ñ s. Since each
ci is upper semicontinuous,

Ş

j c
ipsji q “ cipsiq for each i, so

Şn
i“1 c

ipsiq “
Şn

i“1

Ş

j c
ipsji q “

Ş

j

Şn
i“1 c

ipsji q ‰ H. So s P X. Moreover, by the defi-
nition of G, c0pGpsqq Ě

Ş

j

Şn
i“1 c

ipsji q, so Gpsq ď Gpsjq for all j. Hence
Gpsq ď limGpsjq, as required.

Claim C.3. For every s ě minGpXq, ą0
s is represented by

Ť

sPX:sěGpsq

Ş

i c
ipsiq

in the Bewley sense: i.e. for all f, g P A, f ą0
s g if and only if:

Epupfq ą Epupgq for all p P
ď

sPX:sěGpsq

č

i

cipsiq (C.3)

Proof. Fix a stakes level s with s ě minGpXq, and consider any s1 with
Gps1q ď s. (By the previous observations guaranteeing the existence of a
minimum, such s1 exists.) By the definition of G, there exists s2 P X with
s2 ď s and ą0

s2Ďąs1 . It follows from the nestedness properties of confidence
rankings that ą0

sĎą0
s2Ďąs1 . Since this holds for all s1 with Gps1q ď s, it

follows that ą0
sĎ

Ş

sPX:sěGpsq
ąs.

To establish the opposite containment, consider f, g with f ąs g for
all s P X with s ě Gpsq. For any s1 such that ą0 respects the consensus
ąs1 at s, it follows from the definition of G that s ě Gps1q, so f ąs1 g by
the assumption specifying f, g. Hence, by Corpus-wise Pareto, f ą0

s g. So
ą0

sĚ
Ş

sPX:sěGpsq
ąs, and hence there is equality. It follows from Claim C.2

that (C.3) holds for all s ě minGpXq.

Since c0psq represents ą0
s by the confidence representation (Hill, 2016),

it follows that, up to convex closure, c0psq “
Ť

sPX:sěGpsq

Ş

i c
ipsiq.

By the nestedness of confidence rankings (i.e. the fact that c is increas-
ing in o), we have that, for any s, s1, if s1 ě s, then Gps1q ě Gpsq, so G

is monotonic. Moreover, if ąs“ąt, then Gpsq “ Gptq, so G generates a
well-defined function on the equivalence classes of Sn under the relation
setting s and t equivalent if and only if ąs“ąt, which we also call G. So
b, defined by
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bpo1, . . . , onq “

$

&

%

ζ ˝ Gpζ´1po1q, . . . , ζ
´1ponqq pζ´1po1q, . . . , ζ

´1ponqq P X

ζpminpGpXqqq otherwise

is well-defined; i.e. even if pζ´1po1q, . . . , ζ´1ponqq is multi-valued, for any
s, t P pζ´1po1q, . . . , ζ

´1ponqq, ąs“ąt by the confidence decision model, and
so Gppζ´1po1q, . . . , ζ

´1ponqqq is well-defined (Gpsq “ Gptq). Moreover, b is
monotonic, and thus a confidence level aggregator. It follows from Claim
C.3 that (2) holds up to convex closure for all o with

Ť

o:boďo

Ş

i c
ipoiq ‰

H. For any s ă minGpXq, by the nestedness of confidence rankings,
ą0

sĎ
Ť

s1PGpXq
ą0

s1 . However, by Consensus-based beliefs, if f ą0
s g, then

f ą0
s1 g for some s1 P GpXq, so ą0

s“
Ť

s1PGpXq
ą0

s1 . Hence, for any o

with
Ť

o:boďo

Ş

i c
ipoiq “ H, cpoq “

Ş

s1PGpXq
c0ps1q “ c0pminGpXqq (by the

upper semicontinuity of confidence rankings), up to convex closure, so c0

is consensus preserving, as required. This establishes the Theorem.
Moreover, note that since b is monotonic on the domain where ζ´1poq P

X, any monotonic operator coinciding with b on this domain is also a con-
fidence level aggregator, and represents aggregated preferences according
to (2), hence establishing the ‘only if’ direction.

The ‘if’ direction is a direct consequence of (2) and Claims C.1 and C.2.
Finally, suppose that b1 ‰ b is another confidence level aggregator

such that, up to convex closure, c0 is a consensus-preserving aggregation of
pc1, . . . , cnq under b1. Let G1psq “ b1psq. By the confidence representation
and the fact that c0 is a consensus-preserving aggregation of pc1, . . . , cnq

under b1, for every s P X, ą0
G1psq

Ďąs. It follows from the definition of G
that Gpsq ď G1psq for all s P X. So, either b1 coincides with b on X, or
there s P X with b1o ‰ bo, so b1o ą bo. Hence b is the unique b taking
minimal values on all consensuses, as required.

Remark 1. Note that the use of profiles of confidence levels with bo less
than or equal to o, rather than just equal, as in (B.1), is a result of the
general framework adopted for this result. More specifically, it is clear to
see that one can prove, using arguments along the lines above, that one
can replace the less than or equal with equality under the condition that,
if bo ă o, then there exists o1 ě o with bo1 “ o. For an example where
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this condition is not satisfied, consider O “ ta, b, cu with a ą b ą c, and
two agents 1, 2. Consider b giving the value c on pc, cq and the value a
otherwise. Clearly, the condition is not satisfied for b—in fact, there is no
o with bo “ b. So there is no b such that (3) holds with equality in the
place of the inequality.

C.1.2 Proof of Theorem B.1

Proof for Table 5, row 1 (affine aggregation). Let X be as defined in the
proof of Theorem 1. Let

C “ tps, sq P Rn`1 : s P X, ą0
sĎąsu

K “ tps, sq P C :ąsĚ
č

s1:ps1,sqPC, s1ğs

ąs1u

C is the set of consensuses and K is the set of ‘covered’ consensuses—i.e.
where there is consensus because the other consensuses at this s ‘cover’
this one. For a tuple of stakes levels s and a stakes level s1, s1

is is the
tuple obtained by replacing the ith stakes level in s by s1. An individual
i is non-null if there exist s, s1

is P X and t P S with ps, tq P CzK but
ps1

is, tq R C. Let NN “ ti P t1, . . . , nu : i non-nullu and Y “ SNN Ď Rn

be the subspace of Sn containing the stakes levels for non-null individuals
only; we use XY , CY , KY etc to refer to the projection of X,C,K etc onto
Y , Y ˆ R etc.

Define

L “ tps, sq P Y ˆ R : s P XY , ą0
sĘąsu “ pXY ˆ RqzCY

U “ tps, sq P CY : Ds1
ď s, ps, s1

q P CY zKY u

For a set Z, let convpZq be the convex hull of Z. Note that L,U Ď XY ˆR,
so convpLq, convpUq Ď convpXY q ˆ R.

Claim C.4. convpLq X convpUq “ H.

Proof. For reductio, suppose that there exist ps1, s1q, . . . , psl, slq P L, pt1, t1q, . . . , ptm, tmq P
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U , α1, . . . , αl, β1, . . . , βm P r0, 1s with
řl

i“1 αi “
řm

i“1 βi “ 1,
řl

i“1 αisi “
řm

i“1 βiti and
řl

i“1 αisi “
řm

i“1 βiti. Without loss of generality, the ti can
be chosen to be minimal such that pti, tiq P U . It follows from Consen-
sus Independence (extending to tuples to take any value off NN for which
there is consensus, if necessary) that

řl
i“1 αisi ă

řm
i“1 βiti, which is a con-

tradiction.

Claim C.5. convpLq is open in the subspace topology on convpXY q ˆ R.

Proof. Note that Lc X pXY ˆ Rq “ CY “ tps, sq P Y ˆ R : s P X, Gpsq ě

su, where G is as defined in the proof of Theorem 1. By Proposition
C.2 and the nestedness of the preferences orders at different stakes levels,
Lc X pXY ˆ Rq is closed. Hence L is open in the subspace topology on
XY ˆ R. It follows that the convex hull convpLq is open in the subspace
topology on convpXY q ˆ R.

By the previous claims and a separating hyperplane theorem (Rockafel-
lar, 1970, Thm 11.3), there exists an linear function ϕ : RNN Ñ R and
χ P R with ϕpps, sqq ă χ for all ps, sq P convpLq, and ϕpps, sqq ě χ for all
ps, sq P convpUq. Since it is linear, and without loss of generality, ϕ, χ can
be chosen so there exist wi, i P NN such that ϕpps, sqq “ s´

ř

iwisi. Define
Gaff : Rn Ñ S by Gaff psq “

ř

iPNN wisi ` χ. Note that Gaff is an affine
function on Rn, with zero weights on i R NN . By construction, s ă Gaff psq

for all ps, sq P convpLq, and s ě Gaff psq for all ps, sq P convpUq.
We first show that wi ą 0 for all i P NN . By the nestedness of con-

fidence rankings, for any s1, s P Y , s1 ě s, if ps, sq P L, then ps1, sq P L.
For reductio, suppose, for some k, that wk ă 0, and consider ps, s1q P L.
By construction, s, with s ´

ř

iwisi “ χ, is such that ps, sq R L. Consider
s1 “ ps1, . . . , sk ´ s´s1

wk
, . . . , snq. s1 ě s since wk ă 0, so ps1, s1q P L. How-

ever, s1 ´
ř

iwis
1
i “ χ, contradicting the established properties of ϕ. Hence

wi ě 0 for all i P NN . Suppose now that for some i P NN , wi “ 0. By the
nestedness of the confidence representation and the definition of NN , there
exists s P X, s1, t such that ps, tq P U and ps1

is, tq P L; however, since wi “ 0,
Gaff psq “ Gaff ps1

isq, which contradicts the definition of Gaff . So, for all
i P NN , wi ‰ 0. Hence wi ą 0 for all i P NN , and Gaff is monotonic.
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Claim C.6. For all s ě inf Gaff pXq, ą0
s is represented by

Ť

sPX:s“Gaff psq

Ş

i c
ipsiq

in the Bewley sense: for all f, g P A, f ą0
s g if and only if:

Epupfq ą Epupgq for all p P
ď

sPX:s“Gaff psq

č

i

cipsiq (C.4)

Proof. Fix a stakes level s, with s ě inf Gaff pXq. For any s P X with
Gaff psq “ s, by the construction of ϕ and the definition of NN , ą0

sĎąs.
So ą0

sĎ
Ş

sPX:s“Gaff psq
ąs.

We now establish the opposite containment. By Corpus-wise Pareto,
ą0

sĚ
Ş

s:ps,sqPC ąs. Consider any s1 such that ą0 respects the consen-
sus ąs1 at s—so ps1, sq P C—and Gaff ps1q ă s. Then by the fact that
the wi ě 0 for all i, there exists s ě s1 with Gaff psq “ s; by the nest-
edness of confidence rankings and the preference representation, ąs1ĚąsĚ
Ş

s:ps,sqPC, Gaff psqěs ąs. Since this holds for all such s1, ą0
sĚ

Ş

s:ps,sqPC, Gaff psqěs ąs“
Ş

s:Gaff psq“s ąs X
Ş

s:ps,sqPC, Gaff psqąs ąs, where the equality is due to the
construction of Gaff . Now consider any s1 with ps1, sq P C and Gaff ps1q ą s.
If ps1, sq R K, then ps1, sq P U , contradicting the fact that Gaff ps1q ą s and
the construction of Gaff . Hence ps1, sq P K, so ąs1Ě

Ş

s2:ps2,sqPC, s2ğs1 ąs2 .
So

Ş

s:Gaff psq“s ąs X
Ş

s:ps,sqPC, Gaff psqąs ąs“
Ş

s:Gaff psq“s ąs X
Ş

s:ps,sqPC, Gaff psqąs,sğs1 ąs.
Since this holds for all such s1, it follows that

Ş

s:Gaff psq“s ąs X
Ş

s:ps,sqPC, Gaff psqąs ąs“
Ş

s:Gaff psq“s ąs, so ą0
sĚ

Ş

s:Gaff psq“s ąs.
So ą0

s“
Ş

s:Gaff psq“s ąs; it follows from Claim C.2 that (C.4) holds for
all s ě inf Gaff pXq.

Since c0psq represents ą0
s by the confidence representation (Hill, 2016),

it follows that, up to convex closure, c0psq “
Ť

sPX:Gaff psq“s

Ş

i c
ipsiq.

Define b by
bo “

ÿ

wioi ` χ

Clearly, this is an affine confidence level aggregator. Moreover, by Claim
C.6 and the fact that ζ is the identity, (B.1) holds up to convex closure for
every o with

Ť

o:boi“o

Ş

i c
ipoiq ‰ H. By a similar argument to that used

in the proof of Theorem 1, the representation extends to other o P O as
required. Hence, up to convex closure, c0 is a consensus preserving with
affine aggregator b as required.

For the necessity of the Consensus Independence axiom, suppose that
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there is an affine aggregator b representing preferences. Consider any
s1, . . . , sl, t1, . . . , tm exhibiting consensus, and α1, . . . , αl, β1, . . . , βm P r0, 1s

with
řl

k“1 αk “
řm

k“1 βk “ 1 and
řl

k“1 αksk “
řm

k“1 βktk. If ą0 does not
respect the consensuses ąsk at sk, then c0 pskq Ğ

Ş

i c
ippskqiq, whereas,

by the aggregation rule c0 p
ř

iwipskqi ` χq Ě
Ş

i c
ippskqiq, so, by the nest-

edness of confidence rankings, sk ă wipskqi ` χ. If this holds for all k,
then

řl
k“1 αksk ă

ř

iwi

řl
k“1 αkpskqi ` χ. Similarly, if ątk is an uncov-

ered consensus at tk then, by the confidence representation of preferences,
c0 ptkq Ě

Ş

i c
ipptkqiq and

Ş

i c
ipptkqiq Ę

Ť

sğtk, ps,tkqPC

Ş

i c
ipsiq Ď c0 ptkq.

By the aggregation representation, it follows that c0 p
ř

iwiptkqi ` χq “
Ť

s:
ř

i wisi“
ř

i wiptkqi

Ş

i c
ipsiq Ď

Ş

i c
ipptkqiqY

Ť

sğtk, ps,tkqPC

Ş

i c
ipsiq Ď c0ptkq,

so, by the nestedness of confidence rankings,
ř

iwiptkqi `χ ď tk. So if ątk

is an uncovered consensus at tk for each k, it follows that
řm

k“1 βktk ě
ř

iwi

řm
k“1 βkptkqi ` χ. Since,

ř

iwi

řl
k“1 αkpskqi “

ř

iwi

řm
k“1 βkptkqi, it

follows that
řm

k“1 βktk ą
řl

k“1 αksk, as required.

Proof for Table 5, row 2 (averaging aggregation). We show that there ex-
ists a representation of the sort obtained in the proof of part i. where the
weights are equal. For reductio, suppose not, and consider a representation
with an affine aggregator with wj ą wk for some j, k. First, by Neutrality
and Non-degeneracy, NN “ t1, . . . , nu, so wj, wk ‰ 0.

First consider the case where there exists s and s such that ps, sq P C,
s is a maximum, under ě, of ts1 : ps1, sq P Cu, and sj ‰ sk; take any such s
and s. By the upper semicontinuity of confidence rankings, for any strictly
decreasing sequences tl Ñ sj and t1l Ñ sk,

Ş

i‰j c
ipsiq X ckpt1lq Ñ

Ş

i c
ipsiq

and
Ş

i‰k c
ipsiq X cjptlq Ñ

Ş

i c
ipsiq as l Ñ 8. By the fact that s is a

maximum, pptlqjs, sq R C, ppt1lqks, sq R C for all l. By the affine aggregator
representation and the upper semicontinuity of confidence rankings, for
each s2 ą s, there exist mt,mt1 with pptlqjs, s

2q P C and ppt1lqks, s
2q P C

for all l ą mt and l ą mt1 . In particular Gaff ptjsq ą s and Gaff pt1ksq ą s

for all t ą sj, t
1 ą sk, where Gaff is as in the proof of part i., though

Gaff pptlqjsq Ñ Gaff psq and Gaff ppt1lqksq Ñ Gaff psq as l Ñ 8, so by the
continuity of the affine representation, Gaff psq “ s.

If sj ą sk, then Gaff ppskqjpsjqksq ă s, by the form of Gaff , the fact
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that wj ą wk and the rearrangement inequality. Hence, by the continuity
of the representation, for some t ą sk, Gaff ptjpsjqksq ă s, from which
it follows that ptjpsjqks, sq P C. Since tjpsjqks is a permutation of tks, it
follows from Neutrality that ptks, sq P C, contradicting the maximality of s.
If sj ă sk, then Gaff ppskqjpsjqksq ą s. By the construction of s there exists
s2 ă Gaff ppskqjpsjqksq and t ą sk with ptks, s

2q P C. Moreover, since t can
be chosen such that there exists t1 ą t with pt1ks, s

2q R C, t can be chosen
so that ptks, s

2q R K. By Neutrality, it follows that ptjpsjqks, s
2q P CzK, so

ptjpsjqks, s
2q P U , contradicting the construction of Gaff and the fact that

Gaff ptjpsjqks
1q ě Gaff ppskqjpsjqks

1q ą s2.
Now consider the case where there does not exist s and s such that

ps, sq P C, s is a maximum, under ě, of ts1 : ps1, sq P Cu, and sj ‰ sk.
Hence, for all s and s such that ps, sq P C and s is a maximum, under
ě, of ts1 : ps1, sq P Cu, sj “ sk. For any s, let ŝ be such that: ŝi “ si

when i ‰ j, k, ŝj “ ŝk “ maxtsj, sku. So, in the case under consideration,
for every s with sj ‰ sk and every stakes level s, ps, sq P C if and only if
pŝ, sq P C.

Hence the map ψ : Sn Ñ Sn´1, defined by ψpsqi “ si for i ‰ j, k and
ψpsqj “ maxtsj, sku, is a well-defined map sending C to ψpCq “ Ĉ which
is such that ψ´1pĈq “ C. Hence images of other sets in the proof of part
i., which are defined in terms of C, can be defined in terms of Ĉ and have
the same pull-back property. It follows that the argument in the proof of
part i. goes through, yielding a representation of c0 in terms of an affine
function zGaff : Rn´1 Ñ R of the following form: for all s ě inf zGaff pX̂q:

c0psq “
ď

sPX̂:s“{Gaff psq

č

i‰k

cipsiq X ckpsjq

up to convex closure. Letting zGaff psq “
ř

i‰k wisi `χ, define G1
aff : Rn Ñ

R by zGaff psq “
ř

i‰j,k wisi`
wj

2
sj`

wj

2
sk`χ. Noting that, for all s P Sn with

sj “ sk, G1
aff psq “ zGaff ps|t1,...nuztkuq, we have that, for all s ě inf G1

aff pXq,

c0psq “
ď

sPX:s“G1
aff psq, sj“sk

n
č

i“1

cipsiq

up to convex closure.
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For any s with sj ‰ sk and G1
aff psq “ s, since ps, sq P C, it fol-

lows that pŝ, sq P C by the specification of the case. So
Ş

i c
ipsiq Ď

Ş

i c
ipŝiq Ď

Ť

s1PX:s“G1
aff ps1q, sj“sk

Ş

i c
ipsiq. Hence, for all s ě inf G1

aff pXq,
c0psq “

Ť

sPX:s“G1
aff psq

Şn
i“1 c

ipsiq, up to convex closure. So there is an affine
aggregator representation with equal weights for j and k, as required.

Necessity of Neutrality is straightforward.

Proof for Table 5, row 3 (generalised maximum aggregator). ConsiderG as
defined in the proof of Theorem 1. By Consensus Join, for any s, t,
Gps _ tq ď maxtGpsq, Gptqu. However, by the monotonicity of G, since
s _ t ě s, t, Gps _ tq ě maxtGpsq, Gptqu, so Gps _ tq “ maxtGpsq, Gptqu.
For each s ě minGpXq, consider ts “

Ž

s:Gpsqďs s. By the previous obser-
vation, Gptsq “ s and for any s with si ą tsi for some i, Gpsq ą s. Since,
for any s, if s ď ts, then Gpsq ď s by the monotonicity of G, we have that,
for all s, Gpsq ą s if and only if there exists i with si ą tsi . Hence Gpsq ă s

if and only if there exists s1 ă s with si ď ts
1

i for all i. Hence Gpsq “ s if
and only if s ď ts and there is no s1 ă s with s ď ts

1 .
Moreover, since, by the nestedness of the confidence representation,

Ş

i c
ipsiq Ď

Ş

i c
iptsi q for all s with Gpsq ď s, it follows that

Ş

i c
iptsi q “

Ť

sPX:s“Gpsq

Ş

i c
ipsiq “

Ť

sPX:sěGpsq

Ş

i c
ipsiq. So, up to convex closure,

c0psq “
Ş

i c
iptsi q.

For i “ 1, . . . , n, define ψi : O Ñ O by ψipoq “ ζpmints P S : ζptsi q ě

ouq. Since ζ is strictly increasing and, by the confidence representation, tsi
is increasing in s for all i, ψi is increasing for all i. For any o P On, s P S
and s P ζ´1poq, Gpsq “ s if and only if s ď ts and s ę ts

1 for all s1 ă s,
which is the case if and only if maxi ψipoiq “ s. Hence Gpζ´1poqq is well-
defined, and Gpζ´1poqq “ maxi ψipoiq. Defining b by bo “ maxi ψipoiq, we
thus have that, for every o with

Ť

o:boi“o

Ş

i c
ipoiq ‰ H, (B.1) holds with

b, up to convex closure. By a similar argument to that used in the proof
of Theorem 1, the representation extends to other o P O as required. Since
the ψi are increasing, b is monotonic, and hence a generalized maximum
aggregator. Hence, up to convex closure, c0 is a consensus preserving with
generalised maximum aggregator b as required.

The proof of necessity of Consensus Join is straightforward.
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Proof for Table 5, row 4 & 5 (maximum & minimum aggregators). We
present the proof for the maximum aggregator; the case of the minimum
aggregator is similar. Consider ts, as defined in the proof of part iii;
we show that tsj “ tsk for all j, k. For reductio, suppose that this is
not the case for some j, k, and suppose without loss of generality that
tsj ą tsk. By Neutrality, Gpptskqjpt

s
jqkt

sq “ Gptsq “ s; but since tsj ą tsk,
it follows by the properties of G established in the proof of part iii.
that Gpptskqjpt

s
jqkt

sq ą Gptsq “ s, which is a contradiction. So tsj “ tsk
for all j, k and s. Hence, for ψi as defined in the proof of part iv.,
ψjpoq “ ψkpoq “ ψpoq for all j, k and o P O, whence b as defined in that
proof of the proof can be written as bo “ maxi ψpoiq “ ψpmaxi oiq. Hence
it is a maximum aggregator, as required.

C.2 Proofs of results in Section 3

Proof of Proposition 1. By (3), the centre of c is:

argmin
pP∆

bpι1ppq, . . . , ιnppqq “ argmin
pP∆

p

n
ÿ

i“1

1

n
ιippq ` χq

“ argmin
pP∆

n
ÿ

i“1

1

n
ιippq

For the first row of Table 3, ιippq “ wi
ř

ωPΩpppωq´pipωqq2, so the centre
of c is p “ argminpP∆

řn
i“1w

i
ř

ωPΩpppωq ´ pipωqq2. It is well-known that
this is the mean of the distributions: the FOC is d

dppωq
“ 2

řn
i“1w

ipppωq ´

pipωqq “ 0 for each ω P Ω, yielding ppωq “
řn

i“1
wi

řn
i“1 w

ipipωq for every
ω P Ω, which belongs to ∆.

For the second row of the Table, ιippq “ wiRpp}piq, so the centre of c is
p “ argmin

řn
i“1w

iRpp}piq. Yet:
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n
ÿ

i“1

wiRpp}piq “ ´

n
ÿ

i“1

wi
ÿ

ωPΩ

ppωqplog
pipωq

ppωq
q

“ ´
ÿ

ωPΩ

ppωq log

˜

n
ź

i“1

pipωqw
i

ppωqw
i

¸

“ ´

˜

n
ÿ

i“1

wi

¸

ÿ

ωPΩ

ppωq log

¨

˝

śn
i“1 pipωq

wi
řn
i“1

wi

ppωq

˛

‚

“

˜

n
ÿ

i“1

wi

¸

»

–´
ÿ

ωPΩ

ppωq log

¨

˝

śn
i“1 pipωq

wi
řn
i“1

wi

ppωq
.

1

ř

ωPΩ

śn
i“1 pipωq

wi
řn
i“1

wi

˛

‚

` log

¨

˝

1

ř

ωPΩ

śn
i“1 pipωq

wi
řn
i“1

wi

˛

‚

fi

fl

“

˜

n
ÿ

i“1

wi

¸

»

–´
ÿ

ωPΩ

ppωq log

ˆ

GMppiqpωq

ppωq

˙

` log

¨

˝

1

ř

ωPΩ

śn
i“1 pipωq

wi
řn
i“1

wi

˛

‚

fi

fl

“

˜

n
ÿ

i“1

wi

¸

»

–Rpp}GMppiqq ` log

¨

˝

1

ř

ωPΩ

śn
i“1 pipωq

wi
řn
i“1

wi

˛

‚

fi

fl

where GMppiqpωq “
śn

i“1 pipωq

wi
řn
i“1

wi

ř

ωPΩ

śn
i“1 pipωq

wi
řn
i“1

wi

. This expression is clearly min-

imised at p “ GMppiq P ∆, so the centre of c is GMppiq, as required.
For the third row, ιippq “ wiRppi}pq, so the centre of c is p “ argmin

řn
i“1w

iRppi}pq.
Yet:
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n
ÿ

i“1

wiRppi}pq “ ´

n
ÿ

i“1

wi
ÿ

ωPΩ

pipωqplog
ppωq

pipωq
q

“

n
ÿ

i“1

wi
ÿ

ωPΩ

pipωq log pipωq ´
ÿ

ωPΩ

log ppωq

n
ÿ

i“1

wipipωq

“

n
ÿ

i“1

wi
ÿ

ω

pipωq log pipωq ´

˜

n
ÿ

i“1

wi

¸˜

ÿ

ωPΩ

AMppiqpωq logAMppiqpωq

¸

`

˜

n
ÿ

i“1

wi

¸˜

ÿ

ωPΩ

plogAMppiqpωq ´ log ppωqqAMppiqpωq

¸

“

n
ÿ

i“1

wi
ÿ

ω

pipωq log pipωq ´

˜

n
ÿ

i“1

wi

¸˜

ÿ

ω

AMppiqpωq logAMppiqpωq

¸

`

˜

n
ÿ

i“1

wi

¸

RpAMppiq}pq

where AMppiq “
řn

i“1
wi

řn
i“1 w

ipi. This expression is clearly minimised at
p “ AMppiq P ∆, so the centre of c is AMppiq, as required.

The next two results and proofs adopt the notation from Example 3.1.

Proposition C.3. Under the conditions and setup of Example 3.1, let cEucl

be the wL Euclidean confidence ranking generated by pL (with ω1 “ ωR),
cRE be the wL reverse relative entropy confidence ranking generated by pL.
Then, for all o P O, cEuclpoq Ď Lϵ if and only if cEuclpoq Ď Rϵ, and
cREpoq Ď Lϵ if and only if cREpoq Ď Rϵ.

Proof. It suffices to show that the appropriate distance (or, equivalently
ι-value) between p and the closest q with qpLq “ 0.9 ´ ϵ is the same as the
distance to the closest q1 with q1pRq “ 0.1 ` ϵ.

Both the distance functions involved (Euclidean distance, relative en-
tropy) are functions of pLpωLRq, pLpωLq, pLpωNq, ppωLRq, ppωLq, ppωNq; write
this function as ϕppLpωLRq, pLpωLq, pLpωNq, ppωLRq, ppωLq, ppωNqq. More
specifically, in the Euclidean case,
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ϕppLpωLRq, pLpωLq, pLpωNq, ppωLRq, ppωLq, ppωNqq

“pppωLRq ´ pLpωLRqq
2

` pppωLq ´ pLpωLqq
2

` ppppωNq ´ pLpωNqq
2

` pp1 ´ ppωLRq ´ ppωLq ´ ppωNqq ´ p1 ´ pLpωLRq ´ pLpωLq ´ pLpωNqqq
2

In the relative entropy case,

ϕppLpωLRq, pLpωLq, pLpωNq, ppωLRq, ppωLq, ppωNqq

“ ´ pLpωLRq log

ˆ

ppωLRq

pLpωLRq

˙

´ pLpωLq log

ˆ

ppωLq

pLpωLq

˙

´ pLpωNq log

ˆ

ppωNq

pLpωNq

˙

´ p1 ´ pLpωLRq ´ pLpωLq ´ pLpωNqq log

ˆ

p1 ´ ppωLRq ´ ppωLq ´ ppωNqq

p1 ´ pLpωLRq ´ pLpωLq ´ pLpωNqq

˙

Note that, since pLpωLRq “ pLpωNq,
ϕppLpωLRq, pLpωLq, pLpωNq, ppωLRq, ppωLq, ppωNqq “

ϕppLpωLRq, pLpωLq, pLpωNq, ppωNq, ppωLq, ppωLRqq for all p.
Let q minimise the distance from pL among all p with ppLq “ 0.9 ´ ϵ.

I.e. q minimises ϕppLpωLRq, pLpωLq, pLpωNq, qpωLRq, qpωLq, qpωNqq among
all p with ppLq “ 0.9 ´ ϵ. Hence, by the previous observation, q minimises
ϕppLpωLRq, pLpωLq, pLpωNq, qpωNq, qpωLq, qpωLRqq among all p with ppLq “

ppωLq ` ppωLRq “ 0.9 ´ ϵ. Define q1 by q1pωLRq “ qpωNq, q1pωLq “ qpωLq,
q1pωNq “ qpωLRq. By the previous observation, q1 minimises ϕppLpωLRq, pLpωLq, pLpωNq, q1pωLRq, q1pωLq, q1pωNqq

among all p with ppRcq “ ppωLq ` ppωNq “ 0.9 ´ ϵ. So q1 minimises the
distance from pL among all p with ppRq “ 0.1 ` ϵ. By the previous obser-
vation, the distance between q and pL is the same as the distance between
q1 and pL, as required.

Proof of Proposition 2. Take o “ 2
`

wL
Lϵ

2 ` wL
B pmaxtϵ ´ 0.81, 0uq

2
˘

. q,
defined by qpωLRq “ pLpωLRq ´ maxtϵ ´ 0.81, 0u “ 0.09 ´ maxtϵ ´

0.81, 0u, qpωRq “ pLpωRq ` maxtϵ ´ 0.81, 0u “ 0.01 ` maxtϵ ´ 0.81, 0u,
qpωLq “ pLpωLq ´ ϵ “ 0.81 ´ mintϵ, 0.81u and qpωNq “ pLpωNq `

mintϵ, 0.81u “ 0.09 ` mintϵ, 0.81u is a probability measure over Ω. More-
over,

ř

j“tL,R,Bu
2wL

j pqpjq ´ pLpjqq2 “ 2
`

wL
Lϵ

2 ` wL
B pmaxtϵ ´ 0.81, 0uq

2
˘

,
so q P cLpoq. Since, for any q1 with q1pLq ă 0.9 ´ ϵ,

ř

j“tL,R,Bu
2wL

j pq1pjq ´
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pLpjqq2 ą 2
`

wL
Lϵ

2 ` wL
B pmaxtϵ ´ 0.81, 0uq

2
˘

, such q1 R cLpoq, so cLpoq Ď

Lϵ. For any δ P r0, 0.9s, consider qδ defined by qδpωLRq “ pLpωLRq `

maxt0, δ ´ 0.09u “ 0.09 ` maxt0, δ ´ 0.09u, qpωRq “ pLpωRq `

mintδ, 0.09u “ 0.01 ` mintδ, 0.09u, qδpωLq “ pLpωLq ´ maxt0, δ ´ 0.09u “

0.81 ´ maxt0, δ ´ 0.09u and qδpωNq “ pLpωNq ´ mint0.09, δu “ 0.09 ´

mint0.09, δu; this is clearly a probability measure.
ř

j“tL,R,Bu
2wL

j pqδpjq ´

pLpjqq2 “ 2
`

wL
Rδ

2 ` wL
B pmaxt0, δ ´ 0.09uq

2
˘

. Noting that wL
Rϵ

2 `

wL
B pmaxt0, ϵ ´ 0.09uq

2
ă wL

Lϵ
2 ` wL

B pmaxtϵ ´ 0.81, 0uq
2 if and only if

wL
B

1
ϵ2

`

pmaxt0, ϵ ´ 0.09uq
2

´ pmaxtϵ ´ 0.81, 0uq
2
˘

ă wL
L ´wL

R, it is straight-
forward to check that this is the case for all ϵ P r0, 0.9s whenever
0.8wL

B “ wL
B

0.812´0.092

0.92
ă wL

L ´ wL
R. It follows that there exists δ ą ϵ with

ř

j“tL,R,Bu
2wL

j pqδpjq ´pLpjqq2 ď 2
`

wL
Lϵ

2 ` wL
B pmaxtϵ ´ 0.81, 0uq

2
˘

“ o, so
cLpoq Ę Rϵ, as required.

C.3 Proofs of results in Section 5

Proof of Theorem 2. Fix E and ρE, and define cρ : O Ñ 2∆zH by cρpoq “

tp P ∆ : ppEq ě ρEpoqu. Clearly, for any confidence ranking c, c|ρE “ Φ

for Φpoq “ pcpoq X cρpoqqE, whenever cpoq X cρpoq ‰ H (and it is undefined
otherwise).

By Definition 6 and the definition of Fb, for every o P O such that
`
Ť

o:boďo

Ş

i c
ipoiq

˘

X cρpoq ‰ H

Fbpc1, . . . , cnq|ρEpoq

“

˜˜

ď

o:boďo

č

i

cipoiq

¸

X cρpoq

¸

E

“

˜

ď

o:boďo

č

i

`

cipoiq X cρpoq
˘

¸

E

“

˜

ď

o:boďo

č

i

`

cipoiq X cρpoq
˘

E

¸

“ Fbpc1|ρE, . . . , c1|ρEqpoq
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as required.
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