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Abstract
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1 Introduction

In 2019, 28 leading economists published a petition calling for a carbon tax to tackle climate

change (‘Economists’ Statement on Carbon Dividends’, 2019). They reflect a wide consensus

in the profession. The economic arguments in favour of market-based instruments – be they

by fixing a price for carbon via taxes, or a quantity via permits – are well-known. However,

economists typically go beyond, and incorporate a preference for taxes over permits in the case

of climate change. The reason draws on a pioneering theorem due to Weitzman (1974), which

suggests that, in the absence of complete information, the comparison between the two tools

hinges on the comparison of the slopes of the marginal abatement cost and damage curves.

Since climate change is a stock problem, the former is typically steeper than the latter, whence

the superiority of taxes, and the economic consensus (Nordhaus, 2007; Metcalf, 2009).

However, Weitzman’s result assumes that uncertainty about abatement costs and damages

can be represented by a probability distribution over possible abatement cost and damage func-

tions. In other words, his analysis applies in what decision theorists call situations of risk. By

contrast, many have noted that climate uncertainties are considerably more severe, especially as

concerns the abatement cost and damage functions (Pindyck, 2013; Stern, 2013; Stiglitz, 2019;

Stern et al., 2022; Blanchard et al., 2023). Probability distributions over possible (marginal)

damage or abatement cost functions are typically not provided by the current state of the sci-

ence. The situation is thus closer to what is often referred to as (Knightian) uncertainty, severe

uncertainty or ambiguity (Gilboa and Marinacci, 2013). This article revisits the comparison

between prices and quantities under severe uncertainty, by analysing the problem under one of

the main ambiguity models in the decision theory literature, Gilboa and Schmeidler’s (1989)

maxmin-Expected Utility (maxmin-EU). As discussed in Section 2.3, this rule reflects a con-

cern for robustness of policy evaluation and choice in the face of uncertainty; for instance, it

nests one of the robustness rules promoted by Hansen and Sargent (2008).

In the climate context, this model incorporates a set of probability distributions over the

possible abatement cost and damage functions, and evaluates a policy by the worst-case total

cost (abatement costs plus damages) across all distributions in the set. It is thus rich enough to

cover the spectrum of types of uncertainty between two extremes. On one side, when a single

probability distribution has been established, the set used in the rule contains only this distribu-

tion, and maxmin-EU rule reduces to standard expected utility. The analysis thus collapses to

Weitzman’s comparison of prices and quantities under risk. At the other extreme, the set could

contain every probability distribution with support contained in a given set of abatement cost or

damage functions. This reflects situations where it is known that the abatement cost function,

say, belongs to a certain family or satisfies certain constraints, but nothing more is known, for

instance about the probabilities of various family members. In such cases, the maxmin-EU rule

evaluates a policy by the worst case across all feasible abatement cost and damage functions.

Then, we show, the comparison of climate policies is diametrically opposed to the message typ-

ically drawn from Weitzman’s Theorem: the optimal quantity policy always performs at least
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as well as the optimal pricing one. Moreover, by identifying a condition for a strict ranking,

we establish that whenever current knowledge does not provide specific information about the

slope of the marginal abatement costs, the optimal permit policy strictly outperforms optimally

set taxes.

Our general result applies between these extremes: that is, to cases where the state of the

science may yield some probabilistic conclusions about (marginal) abatement costs and dam-

ages, without necessarily pinning down a single probability distribution over abatement cost

and damage functions. Roughly, the result introduces indices of risk and (severe) uncertainty,

and partially characterises the relative performance of quantity vs. pricing policies in terms of

them. When the former dominates, we are close to the Weitzman risk-only case, and taxes are

more likely to be preferable. When the extent of (severe) uncertainty outweighs risk, then the

term behind our previous worst-case result dominates, and permits outperform taxes. We ob-

tain results not only for uncertainty pertaining directly to abatement costs, damages, and their

(higher-order) derivatives, but also when the analyst adopts a parametric family for the abate-

ment cost or damage functions, and the uncertainty concerns parameter values.

Our results highlight the importance of carefully considering the extent and character of un-

certainty when formulating and recommending economic policies for effective emissions mit-

igation. The justification of taxes that relies on the assumption that the current state of the

science provides a probability distribution over abatement cost curves will lead to suboptimal

policies whenever this assumption is incorrect. Moreover, subsequent sensitivity analysis in the

application of these policies – for instance, when setting the carbon price – cannot fully cor-

rect this suboptimality. By applying an evaluation approach that incorporates the actual state

of uncertainty from the outset, according to the principles established by decades of research in

decision theory, our results provide the bedrock for an arguably more robust analysis of policies

for carbon mitigation. They suggest that for uncertainties similar to those that we actually face,

quantity policies are more efficient than pricing ones.

The paper is organised as follows. Section 2 introduces the setup and some preliminary

notions and notation, including the representation and types of uncertainty, and policy evaluation

with them. Section 3 sets out the optimisation problems for quantity and pricing problems under

(severe) uncertainty. Section 4 contains our theoretical results and discussion. Proofs and other

material are contained in the Appendix.

2 Setup

2.1 Emissions, abatement costs and damages

Let the set of potential carbon emissions reductions be [0, Emax] ⊆ R, where Emax is the

maximal emissions reduction (leading to zero emissions). Where necessary, it is taken to be

equipped with the Lebesgue measure. ∆([0, Emax]) is the space of probability distributions

over [0, Emax]. For every ϵ ∈ ∆([0, Emax]), if ϵ is a Dirac distribution with full weight on E,

we denote it, with slight abuse of notation, by E. For a fixed δ ∈ R, ϵ+δ is the distribution
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defined by ϵ+δ(E + δ) = ϵ(E), whenever such a distribution exists. It is the result of shifting ϵ

to the right by δ.

We follow Weitzman (1974) in considering a simple abstract problem, with (abatement)

costs and damages.1 Let Θ denote the space of possible abatement cost functions. For each

θ ∈ Θ, C(•, θ) is a positive-real-valued function defined on [0, Emax]: C(E, θ) is the abatement

cost of emission reduction E under the function θ. Θ contains all increasing, differentiable,

strictly convex functions on [0, Emax] that take the value 0 at zero emissions reductions. These

are standard assumptions for abatement cost functions in the literature.2

We use Ξ to denote the space of damage functions: D(E, ξ) are the damages brought about

by emissions reduction E under function ξ ∈ Ξ. Analogous with the case of abatement costs, Ξ

contains all decreasing, differentiable, strictly convex functions on [0, Emax] that take the value

0 at Emax.

The total costs of emissions reductions E under abatement cost and damage functions θ and

ξ are given by T (E, θ, ξ) = C(E, θ) +D(E, ξ).

2.2 Uncertainty

Let ∆(Θ) be the set of probability distributions over Θ, and similarly for ∆(Ξ). Scientific

knowledge about abatement costs can be summarised by a (non-empty) set of probability dis-

tributions C over the space of possible cost functions Θ; i.e. a set C ⊆ ∆(Ξ). Similarly, the set

D ⊆ ∆(Ξ) represents knowledge about damages. Without loss of generality for the evaluation

of policies, and following standard practice (Gilboa and Marinacci, 2013), we assume that C
and D are closed and convex.3

As standard, for a distribution p ∈ ∆(Θ), supp p is the support of p: supp p = {θ ∈ Θ :

p(θ) > 0}. The support of a set of priors C is defined similarly: supp C =
⋃

p∈C supp p. For

θ ∈ Θ, δθ denotes δθ denotes the Dirac distribution with weight on θ: i.e. such that δθ(θ) = 1.

We illustrate some possible types of uncertainty about abatement costs, and corresponding

forms for C. Similar examples and terminology can be developed for damages.

Example 1 (Risk). There is risk when scientific knowledge identifies a single probability distri-

bution representing uncertainty about abatement costs. In this case, C is a singleton containing

this distribution. This is the standard assumption in cost-benefit analysis, and the case consid-

ered by Weitzman (1974).

Example 2 (Generated by constraints on costs). Scientific knowledge could establish a set of

(categorical) conclusions such as ‘the abatement cost at E is less than x’, ‘the marginal abate-

ment cost at E is greater than y’ and so on. These can be summarised by: for every E, the

abatement costs for emissions reduction level E lie in a range [m(E),M(E)], marginal abate-

ment costs lie in the range [m1(E),M1(E)] and the slope of marginal abatement costs lie in the
1He talks of costs and benefits; we use climate terminology.
2Strict convexity is convenient insofar as it implies that inverses of first-order derivatives are unique; it can be

weakened at the price of more complexity, with no particular impact on the results.
3Whilst not needed for our results, it is standard to work with the weak∗ topology on ∆(Θ) and ∆(Ξ).
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range [m2(E),M2(E)], for increasing functions m,M,m1,M1,m2,M2 : [0, Emax] → R≥0.

In such cases, we say that uncertainty comes in the form of (categorical) constraints on abate-

ment costs, marginal costs and the slope of marginal costs. This can be represented by

Cm,M,m1,M1,m2,M2 , the set of priors generated by {m,M,m1,M1,m2,M2}, defined as fol-

lows:

Cm,M,m1,M1,m2,M2 =

p ∈ ∆(Θ) : ∀θ ∈ supp p,

C(E, θ) ∈ [m(E),M(E)]

C1(E, θ) ∈ [m1(E),M1(E)]

C11(E, θ) ∈ [m2(E),M2(E)]


Note that for any C(•, θ) satisfying all the constraints, the Dirac probability measure δθ ∈
Cm,M,m1,M1,m2,M2 . Sets of priors incorporating constraints on higher-order derivatives can

be defined similarly: for instance, C[m,M ],[m1,M1],[m2,M2],[m3,M3] is the set defined as above

with the added condition that the third derivative of the abatement cost at E lies in the interval

[m3(E),M3(E)].

As we shall see, much scientific knowledge about abatement costs arguably comes in this

form.

Example 3 (Generated by constraints on parameters). Scientific knowledge could establish that

abatement cost functions belong to a certain parametric family (or families) of functions f(E,a)

for some vector of parameters a. Moreover, it could establish that a lies in a set A. This can be

represented by CA, the set of priors generated by this family and these vectors, defined as:

Cf,A = {p ∈ ∆(Θ) : ∀θ ∈ supp p, C(E, θ) = f(E,a) for some a ∈ A}

Example 4 (Generated by probabilistic constraints on costs). Scientific knowledge could estab-

lish probabilistic conclusions such as ‘the probability that the abatement cost at E is greater than

x is greater than ρ’, ‘the probability that the marginal abatement cost at E is less than y is greater

than ρ′’ and so on. The Intergovernmental Panel on Climate Change (IPCC) use an uncertainty

language involving probability intervals, and emit conclusions that effectively amount to state-

ments of this sort (Mastrandrea et al., 2010; IPCC, 2023).4 Such conclusions can be summarised

by: for every probability value ρ ∈ (0, 1] and every E, the probability is greater than ρ that

abatement costs for emissions reduction level E lie in a range [m(ρ)(E),M (ρ)(E)], marginal

abatement costs lie in the range [m(ρ)1(E),M (ρ)1(E)] and the slope of marginal abatement

costs lie in the range [m(ρ)2(E),M (ρ)2(E)], where m(ρ),M (ρ),m(ρ)1,M (ρ)1,m(ρ)2,M (ρ)2 :

[0, Emax] → R≥0, for ρ ∈ (0, 1], is a nested family of increasing functions.5 We say that uncer-

tainty comes in the form of probabilistic constraints on the abatement cost, marginal cost and

the slope of the marginal cost. This can be represented by C{m(ρ),M(ρ),m(ρ)1,M(ρ)1,m(ρ)2,M(ρ)2},

4For instance, they state (2023, §3.1.1) that the probability that equilibrium climate sensitivity is between 2.5◦C
and 4◦C is greater than 66%.

5A nested family is one such that [m(ρ),M (ρ)] ⊆ [m(ρ′),M (ρ′)] whenever ρ ≤ ρ′ and similarly for the deriva-
tives.
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the set of priors generated by the family {m(ρ),M (ρ),m(ρ)1,M (ρ)1,m(ρ)2,M (ρ)2}, defined as:p ∈ ∆(Θ) : ∀ρ ∈ (0, 1], p


θ ∈ Θ :

C(E, θ) ∈ [m(ρ)(E),M (ρ)(E)]

C1(E, θ) ∈ [m(ρ)1(E),M (ρ)1(E)]

C11(E, θ) ∈ [m(ρ)2(E),M (ρ)2(E)]


 ≥ ρ


Uncertainty involving higher derivatives or generated by probabilistic constraints on param-

eters can be defined similarly.

Scientific knowledge may establish combinations of the types of uncertainty just set out,

which can be represented by taking intersections of the corresponding sets of priors.

2.3 Policy evaluation

To choose among policies, we employ the maxmin-EU decision rule (Gilboa and Schmeidler,

1989), which evaluates an uncertain option by the worst-case expected utility of the outcomes

of that option. In the current context it selects the policy P , leading to a total cost T (P, θ, ξ)

under abatement cost function θ and damage function ξ, that minimises:

max
p∈C

max
q∈D

EpEqT (P, θ, ξ) (1)

where Ep denotes the expectation taken with respect to p (and similarly for q). Eq. (1) picks

out, for each policy, its ‘worst-case’ – i.e. maximum – total cost over all probability distribu-

tions in C and D. As such, it provides an evaluation that is robust to the uncertainty concerning

abatement costs and damages, as reflected in C and D. Indeed, the constraint preferences in the

robustness framework developed by Hansen and Sargent (2008) are a special case of maxmin-

EU preferences. Many other decision rules in the ambiguity literature (e.g. Maccheroni et al.,

2006; Klibanoff et al., 2005) are generalisations, to which our central conclusions extend. Sev-

eral researchers in economics, philosophy and climate science have argued that such rules are

normatively more appropriate than Expected Utility for policy decisions in the face of severe

uncertainty (Stainforth et al., 2007; Manski, 2013; Gilboa and Marinacci, 2013; Hill, 2019;

Bradley and Steele, 2015; Bradley, 2017; Bradley et al., 2017; Berger and Marinacci, 2020).

Note moreover that maxmin-EU policy evaluation includes both Expected Utility and worst-

case scenario analysis as special cases. If uncertainty comes in form of risk (Example 1), then

C and D are singletons. Eq. (1) then evaluates policies by their expected total cost, as under

standard Expected Utility-based cost-benefit analysis. At the other end of the spectrum, if un-

certainty is generated by (categorical) constraints (Examples 2 and 3), then Eq. (1) reduces to

the maximum total cost across all abatement cost and damage functions in supp C and suppD
respectively.6 This is the sort of evaluation used in worst-case analysis, insofar as it uses the

abatement cost and damage functions yielding the highest total cost.
6This is a well-known consequence of the fact that maximisation over C coincides with maximisation over supp C

when δθ ∈ C for every θ ∈ supp C.
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For future reference, define the functions Ĉ, D̂ : [0, Emax] → R by:

Ĉ(E) = max
p∈C

EpC(E, θ)

D̂(E) = max
q∈D

EqD(E, ξ)

Ĉ gives the worst-case (i.e. highest) expected abatement costs under the relevant uncertainty

(i.e. over all distributions in C), for every emissions reductions level; similarly for D̂ and worst-

case damages. Since all functions in Θ and Ξ are increasing and strictly convex, it follows from

standard convex analysis results that Ĉ and D̂ are increasing and strictly convex. However, they

need not be differentiable, so do not necessarily belong to Θ and Ξ.

As a final point of notation, define, for each r ∈ (0, 1], the function Ĉr : [0, Emax] → R by

Ĉr(E) = max
p∈C

sup {x : p({θ : C(E, θ) ≥ x}) ≥ r}

Ĉr yields the r-quantile worst-case cost for each emissions reduction level. More precisely, for

every r and emissions level E, Ĉr(E) is the value such that, according to the set C, the proba-

bility that emissions reduction E yields a cost of Ĉr(E) or higher is at most r. By Proposition

A.1 in the Appendix, Ĉr is strictly convex for all r.

2.4 Differentiability: notions and terminology

In the interests of generality, while we assume that all members of Θ are differentiable, we do

not assume differentiability of the generated worst-case abatement cost and damage functions

defined above. At points, we thus require results and notions from convex analysis, including

generalisations of the notion of differentiability to such functions. For a convex function f :

[0, Emax] → R and x ∈ R, we use ∂f(x) ⊆ R to denote the subgradient of f at x, which is

a generalisation of the notion of derivative for non-differentiable functions (Rockafellar, 1970,

Ch 25). If ∂f(x) contains one element, then f is differentiable at x and the standard derivative

f ′(x) is the unique member of ∂f(x). By Rademacher’s Theorem, since f is convex, it is

differentiable almost everywhere, i.e. at all points except a set of measure zero. Moreover, by

(Rockafellar, 1970, Theorems 23.5.1, 26.1 & 26.3), if f is strictly convex, its derivative has

a well-defined (i.e. single-valued) inverse: for every y, there exists at most one x such that

y ∈ ∂f(x).

For a convex function f : R → R, d ∈ ∂f(x), and x, y ∈ R the average second-order

derivative of f between x and y by d is

f ′′d
x,y =

2

(y − x)2
(f(y)− f(x)− d(y − x)) (2)

Note that, if f is twice differentiable, this is indeed an average of second-order derivatives

(see Remark A.1 in the Appendix). When f is differentiable at x, we omit the superscript d.
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Finally, for a convex function f , by the Alexandrov Theorem, f has a second derivative almost

everywhere; we denote it by f ′′(x) at all points x where it exists.

3 Policies

Our results will compare quantity and pricing policies under the maxmin-EU evaluation (1). We

first set out the application of policy evaluation to the two policies in turn.

3.1 Quantity policy

Under a quantity (or permit) policy, the policy maker chooses an emissions reduction level L.

Under Eq. (1), the optimal policy satisfies:

Tquant = min
L

max
p∈C

max
q∈D

EpEq (D(L, ξ) + C(L, θ)) (3)

I.e. it is the policy option leading to the lowest total cost under the maxmin-EU evaluation with

C and D. The optimal policy is L∗ such that there exists x with x ∈ ∂maxq∈D EqD(L, ξ) and

−x ∈ ∂maxq∈D EqD(L, ξ).7 In other words, the optimality condition is that D̂ and Ĉ share a

common subgradient (derivative), up to negation. Given the previously noted facts about D̂, Ĉ

and strictly convex functions (Sections 2.3 and 2.4), there is a unique quantity optimum – and

all other emissions levels have a strictly worse total cost under Eq. (1).

3.2 Pricing policy

Under a pricing (or tax) policy, the policy maker chooses a tax level τ . Under Eq. (1), the

optimal policy satisfies:

Tprice = min
τ

max
p∈C

max
q∈D

EpEq (D(h(τ, θ), ξ) + C(h(τ, θ), θ))

where h(τ, θ) is the emissions reductions level resulting from tax τ , under cost function θ, in

equilibrium. Following Weitzman (1974), note that under standard market assumptions and the

assumption that agents learn the parameter θ, we have:

C1(h(τ, θ), θ) = τ

So the optimisation problem becomes:

Tprice = min
τ

max
p∈C

max
q∈D

EpEq

(
D(C−1

1 (τ, θ), ξ) + C(C−1
1 (τ, θ), θ)

)
(4)

7This reduces to the standard equality of (absolute values of) derivatives when the functions involved are differ-
entiable.
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where C−1
1 (E, θ) is the inverse of C1(•, θ), considered as a function of the first coordinate at

E. Since all cost functions are differentiable and strictly convex, C−1
1 (•, θ) is a well-defined

function on [0, Emax] for all θ ∈ Θ.

For every tax level τ and p ∈ ∆(Θ), p generates a distribution ϵτ,p ∈ ∆([0, Emax])

on the emissions reduction levels under τ , defined by ϵτ,p([0, E]) = p({θ : C1(E
′, θ) =

τ for some E′ ≤ E, }) for all E ∈ [0, Emax]. For each abatement cost function θ, tax τ will

lead to a unique level of emissions reduction; ϵτ,p is the distribution over emissions reductions

levels generated by τ , under the distribution p over possible abatement cost functions.

Under tax τ , define, for each r ∈ (0, 1], Er to be such that τ ∈ ∂Ĉr(Er).8 Recall (Section

2.3) that the function Ĉr gives the r-quantile worst-case (highest) abatement cost; Er is the

emissions reduction level under tax τ for this r-quantile worst case. This defines a distribution

over emissions levels by ϵτ ([0, E]) = inf{r : Er ≤ E}. Under tax τ , ϵτ is the distribution over

emissions levels generated by cost functions yielding worst-case abatement costs of emissions

under uncertainty C. Note that, since the worst-case (highest) costs are involved, there is a

sense in which this distribution is as far to the left as possible, among all emissions reductions

distributions under τ consistent with uncertainty C.

For tax τ , let Eτ = EϵτE and σ2
τ = Eϵτ (E−EϵτE)2. The former is the expected emissions

reduction under τ , under the worst-case abatement costs consistent with uncertainty C. The

latter is the variance of this worst-case: it is a proxy for the risk (as opposed to the uncertainty)

concerning emissions reductions levels resulting from tax τ .

Define:

ετ = max{δ : ϵ+δ
τ ∈ {ϵτ,p : p ∈ C}} (5)

ετ is an indication of the ‘width’ of the set of priors C, when projected down onto the con-

sequences of tax τ in terms of emissions reduction. It tracks how far the previous emissions

reduction distribution can be shifted to the right whilst remaining consistent with the set of pri-

ors C. For instance, if C contains a single probability distribution, which corresponds to the

risk-only case studied by Weitzman, then ετ = 0. By contrast, large ετ indicate a large variety

in expected emissions reductions that could result from tax τ , according to C. In the light of

this, we refer to ετ as the uncertainty concerning emissions reductions levels resulting from tax

τ .

4 Policy comparisons

4.1 Worst-case analysis: Constraints on costs

Figure 1, which is drawn from the chapter on long-term mitigation pathways in the latest IPCC

report, provides a starting point for consideration of uncertainty. It plots the marginal abatement

8By the strict convexity of Ĉr and the observations in Section 2.4, ∂Ĉr has a well-defined inverse, so Er is
uniquely defined.
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Figure 1: Marginal abatement cost of carbon in 2030 (a) and 2050 (b).
IPCC (2023, Figure 3.33). Note that marginal abatement costs are plotted against emissions, whereas the setup

introduced in Section 2 works with (marginal) abatement costs as a function of emissions reductions.

cost against emissions for a range of mitigation pathways and climate models in the IPCC AR6

scenario database, consistent with different global warming levels.9 As such, it summarises the

state of scientific knowledge about marginal abatement costs at the time of the last IPCC report.

The Figure suggests that marginal abatement costs at a given time can, at best, be reasonably

bounded between two functions, following roughly the upper and lower limits of the range of

points. In the terminology introduced in Section 2.2, these are (categorical) constraints on the

marginal abatement costs. However, there is little more that can be said with any confidence,

as confirmed by the accompanying text (IPCC, 2023, Ch 3.6.1.1). For instance, whereas it

states that marginal abatement costs increase with the extent of emissions reduction, no (other)

bounds are reported on the slope of the marginal abatement cost curve.10 Indeed, the Figure

is consistent with a range of ‘precise’ marginal abatement cost functions, with differing slopes

at different points, as long as these functions lie within the upper and lower limits mentioned

above. Likewise, the Figure (and accompanying text) offers little to justify robust probabilistic

constraints on marginal abatement costs. All of which poses the question: if this summarises the

current state of knowledge about abatement costs, how do pricing and quantity policies compare

under this extent of uncertainty?

In the terms introduced in Section 2.2, the IPCC report would seem to imply, at best, uncer-

tainty about abatement costs generated by constraints (upper and lower limits) [m′,M ′] on the

9As emphasised by the IPCC, the points are thus not random draws from an underlying distribution, nor even the
results of systematic runs of the same model; this limits the relevance of classical statistical analyses conducted on
them, and inhibits drawing strong conclusions about the shape of marginal abatement cost curves from them.

10In personal communication, a lead author of this chapter who was willing to comment on the slope of the
marginal abatement cost curve ‘did not believe that there were any established results on [it]’. Several lead authors, in
personal communication, emphasised that Figure 1 cannot be used to draw strong conclusions on marginal abatement
costs, suggesting that it was tenuous to use the Figure to bound marginal abatement costs, much less their slope.
They emphasised the relevance of systematic comparisons of marginal abatement costs with the same model; the
two studies they provided are discussed in Section 4.3 below. Only one lead author expressed a stronger opinion on
marginal abatement costs, stating that ‘the slope of the marginal abatement costs is generally assumed to be positive
and increasing with emissions reductions’. Section 4.3 examines the consequences of incorporating such constraints
on the third derivative of abatement costs, establishing an extension of Theorem 1 below.
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marginal abatement costs, and a lower bound of 0 for the slope of the marginal abatement curve.

Our first result concerns the more general case of constraints [m,M ], [m′,M ′] on the abate-

ment and marginal abatement costs, and a single lower constraint C ′′ on the slope of marginal

costs. Using the notation introduced previously, such uncertainty concerning abatement costs is

represented by the set of priors C[m,M ],[m′,M ′],[C′′,∞).

Theorem 1. Consider any D ⊆ ∆(Ξ) characterising uncertainty about damages, and sup-

pose that uncertainty about abatement costs is characterised by C[m,M ],[m′,M ′],[C′′,∞) for some

[m,M ], [m′,M ′], C ′′. Then Tprice ≥ Tquant.

Moreover, the inequality is strict whenever ετ∗ > 0 for optimal tax τ∗, D̂ and Ĉ are second-

order differentiable at the optimal quantity level L∗ and D̂′′(L∗) > Ĉ′′(L∗)C′′

Ĉ′′(L∗)−C′′ .

Theorem 1 paints a markedly different picture of the comparison between taxes and permits

in the world of (severe) uncertainty, as opposed to risk. For one, under uncertainty characterised

by constraints on the abatement cost function, quantity policies always do at least as well as

pricing policies: there are no cases in which the latter outperform the former in a robust worst-

case analysis.

Moreover, the Theorem identifies a condition under which quantity policies are guaranteed

to perform strictly better than pricing policies.11 The first clause essentially demands there is

some uncertainty, in the sense specified in Section 3.2, i.e. a spread in the emissions reductions

distributions consistent with the state of knowledge and uncertainty C[m,M ],[m′,M ′],[C′′,∞), under

tax τ∗. The second clause – D̂′′(L∗) > Ĉ′′(L∗)C′′

Ĉ′′(L∗)−C′′ – covers some notable special cases, and

calls for interpretation.

Note firstly that if the lower bound on the second derivative is 0, then this condition is

automatically satisfied (since D̂ is strictly convex; Section 2.3). This corresponds to the absence

of known constraints on the slope of the marginal cost, apart from that it is positive: the result

says that quantity policies always fair better than pricing policies under such uncertainty. To

return to the previous example, if, as the IPCC report and Figure 1 suggest, our knowledge

can be summarised by constraints on marginal abatement costs with nothing about the slope

of marginal cost apart from the fact that it is positive, then the corresponding uncertainty is

characterised by C(−∞,∞),[m′,M ′],[0,∞). Since this corresponds to a lower bound on the slope of

marginal abatement of 0, Theorem 1 shows that, under current uncertainty as reported by the

IPCC, quantity policies are more efficient than pricing policies.

More generally, this clause resembles Weitzman’s condition pertaining to taxes vs. permits

under risk (see Section 4.2) insofar as it compares a slope for marginal damages with a term

involving slopes of marginal abatement costs. However, there are several crucial differences.

The first concerns the abatement cost term. Instead of, say, comparing D̂′′(L∗) with the slope of

the marginal worst-case costs (Ĉ ′′(L∗)), the condition involves the lower known bound on the

slope, C ′′. Moreover, the term decreases as the lower bound decreases, but also as the difference
11The condition can be strengthened to accommodate non-second-order differentiability of damages and abate-

ment costs at L∗, using notions from convex analysis. Such technical details are omitted.
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between the slope of the marginal worst-case costs and the lower bound increases. So, whilst

Ĉ ′′(L∗) – which could conceivably be gleaned from Figure 1 by looking at the upper limit on

the marginal abatement costs – may be larger than D̂′′(L∗), if the known lower bound is much

lower, the condition in the Theorem may still be satisfied. This suggests that the performance

comparison between quantity and pricing policies may be sensitive to the slope of the marginal

costs used. In particular, a value reflecting the extent of uncertainty about the slope is more

relevant than ‘average’ slopes drawn, say, from fitting marginal abatement curves to the points

in plots such as Figure 1.

Secondly, the condition in Theorem 1, unlike in Weitzman’s result, is sufficient but not

necessary. This reflects the global nature of our result: the fact that taxes lead to higher worst-

case total costs under the specified conditions depends on no local approximations. This is

relevant in the current context since, as we have seen, there is little reason to think that the

relevant uncertainties are ‘small’.

4.2 General case: Probabilistic constraints

The previous result is a special case of a more general one involving probabilistic constraints on

costs (Example 4). For readability, we report the most general form of the result in the Appendix

(Theorem A.1) and focus here on a simplification obtained by making the following assumption,

parts of which are comparable to assumptions made by Weitzman (1974).

Assumption 1. For optimal tax level τ∗, suppose that Ĉr
′′τ∗
Er,Eτ∗

(considered as a random vari-

able varying with r) is independent from (Er − Eτ∗)
2, and that the slope of Ĉr

′
is relatively

stable in the region of Er and Eτ∗ , so that, for all sufficiently small δ, Ĉr
′′τ∗
Er,Eτ∗

, Ĉr
′′τ∗
Er,Er−δ ≈

Ĉr
′′
(Eτ∗), which exists for all r ∈ (0, 1].12

Similarly, suppose that D̂′ is relatively stable in the region of Eτ∗+ετ∗ , so the expected slope

of the marginal damages over distributions with mean Eτ∗ + ετ∗ is approximately D̂′′(Eτ∗ +

ετ∗), which exists. Suppose also that D̂ is differentiable at Eτ∗ .

Finally, suppose that the Eτ∗ = L∗, the optimal quantity policy.

As above, we consider the case of a single lower bound on the slope of marginal abatement

costs, which in the terminology of Section 2.2 corresponds to C{m(ρ),M(ρ),m(ρ)1,M(ρ)1,m(ρ)2,M(ρ)2}
for some family of probabilistic constraints {m(ρ),M (ρ),m(ρ)1,M (ρ)1,m(ρ)2,M (ρ)2} with [m(ρ)2,M (ρ)2] =

[C ′′,∞) for all ρ ∈ (0, 1].

Theorem 2. Consider any D ⊆ ∆(Ξ) characterising uncertainty about damages, and suppose

that uncertainty about abatement costs is characterised by C{m(ρ),M(ρ),m(ρ)1,M(ρ)1,m(ρ)2,M(ρ)2}
for some family of probabilistic constraints {m(ρ),M (ρ),m(ρ)1,M (ρ)1,m(ρ)2,M (ρ)2} with

12The first assumption corresponds, in our framework, to the independence stipulated in Weitzman (1974, p486,
footnote 1); the second allows replacement of average second-order derivatives (Section 2.4) with second-order
derivatives, as under local approximations.

12



[m(ρ)2,M (ρ)2] = [C ′′,∞) for all ρ ∈ (0, 1]. Under Assumption 1:

Tprice − Tquantity

≥ σ2
τ∗

2

(
D̂′′(L∗ + ετ∗)− Ĉ ′′(L∗)

)
︸ ︷︷ ︸

Risk

+
ε2τ∗

2

(
D̂′′

L∗,L∗+ετ∗
− Eu

C ′′Ĉr
′′
(L∗)

Ĉr
′′
(L∗)− C ′′

)
︸ ︷︷ ︸

Uncertainty

(6)

where τ∗ is the optimal tax, L∗ the optimal quota, and Eu is the expectation over r under the

uniform probability distribution u over [0, 1].13

Note first of all that this Theorem generalises the previous one involving non-probabilistic

uncertainty, as well as Weitzman’s result concerning risk. When there is only risk ετ∗ = 0, so

the optimal tax policy leads to higher cost that the optimal quantity policy whenever D̂′′(L∗) >

Ĉ ′′(L∗). Recalling that the expectation here is taken over resulting emission reductions rather

than parameters in the specification of the abatement cost function, this is easily seen to be

equivalent to Weitzman’s (1974) result. On the other hand, when there is only uncertainty

σ2
τ∗ = 0, so the comparison between tax and quantity policies turns on the ‘Uncertainty’ term.

In the absence of risk (and notably non-trivial probabilistic constraints), this term reduces to a

comparison of the sort in Theorem 1. As discussed above, when little is known about the slope

of the marginal abatement costs, it will be positive: taxes lead to a higher total cost than permits.

Eq. (6) tells us that between these two extremes, the comparison between optimal taxes

and permits turns, largely, on the extent of risk and uncertainty in our current knowledge about

abatement costs. More specifically, let’s call PR = D̂′′(L∗ + ετ∗) − Ĉ ′′(L∗) the pure-risk

term, and PU = D̂′′
L∗,L∗+ετ∗

− Eu
C′′Ĉr

′′
(L∗)

Ĉr
′′
(L∗)−C′′

the pure-uncertainty term. As noted, PR is

very similar to the well-known Weitzman term; economists typically consider that it is negative

(Nordhaus, 2007). PU compares the average slope of the marginal damage curve across the

uncertainty in expected emissions under τ∗ (i.e. between L∗ and L∗+ ετ∗) with the expectation

of a term, C′′Ĉr
′′
(L∗)

Ĉr
′′
(L∗)−C′′

, that is of a similar form to that in Theorem 1. As argued previously, given

current ignorance about slopes of marginal abatement costs, C ′′ is can reasonably be considered

to be small, so C′′Ĉr
′′
(L∗)

Ĉr
′′
(L∗)−C′′

will be close to zero and the PU term is typically positive.

The comparison between taxes and permits thus depends on the extent to which the limits on

our knowledge reflect bona fide uncertainty as opposed to risk. If σ2
τ∗ ≫ ε2τ∗ – i.e. the extent of

probabilised risk, captured by the variance, dwarfs the non-probabilised uncertainty, as reflected

in the ‘width’ of the set of priors C – then the pure-risk term dominates. If ε2τ∗ ≫ σ2
τ∗ – the extent

of dispersion between priors in C outstrips the variance under appropriate worst-case priors –

then the pure-uncertainty term dominates. In the latter case, our result implies that quantity

policies outperform pricing ones. If Figure 1 and the frequent admonitions as to the severity of
13The other notation is defined in Sections 2 and 3.
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the uncertainty concerning the economics of climate change (Pindyck, 2013; Bradley and Steele,

2015; Stern et al., 2022) are to be believed, this most closely corresponds to the uncertainties

facing us today. Pace the conclusion typically drawn from Weitzman’s Theorem, Theorem 2

would suggest that, under current uncertainty, permits are better than taxes.

4.3 Higher derivatives

Whilst the previous analyses incorporate constraints up to the second derivative of the abatement

costs, several parametric forms involve a positive third derivative of the abatement cost curve

– i.e. convex marginal abatement costs. Some model-based diagnostic studies (Kriegler et al.,

2015; Harmsen et al., 2021) tentatively corroborate this suggestion. We now extend our analysis

to incorporate such constraints. To this end, recall the notation mentioned in Example 2 (Sec-

tion 2.2), under which C[m,M ],[m′,M ′],[m′′,M ′′],[m′′′,M ′′′] involves, in addition to the constraints

considered in the previous sections, the constraint that the third derivative of the abatement cost

always lies in the interval [m′′′,M ′′′]. The following extends the result in Section 4.1 to the case

of general constraints on abatement, marginal abatement costs and their slopes, and a single

lower constraint C ′′′ ≥ 0 on the convexity of marginal abatement costs.

Theorem 3. Consider any D ⊆ ∆(Ξ) characterising uncertainty about damages, and suppose

that uncertainty about abatement costs is characterised by C[m,M ],[m′,M ′],[m′′,M ′′],[C′′′,∞) for

some [m,M ], [m′,M ′], [m′′,M ′′], C ′′′. Then Tprice ≥ Tquant.

Moreover, if the third derivative of Ĉ is approximately constant, then the inequality is strict

whenever

D̂′′τ∗
L∗,L∗+ετ∗

+ Ĉ ′′(L∗) +
1

3
ετ∗Ĉ

′′′(L∗) >

(
2Ĉ ′′(L∗) + ετ∗Ĉ

′′′(L∗)
) 3

2

3ε
1
2
τ∗

(
Ĉ ′′′(L∗)− C ′′′

) 1
2

(7)

The assumption concerning the third derivative of Ĉ is merely for simplicity. The proof de-

livers a version of the result without this assumption, where Ĉ ′′′(L∗) is replaced by the average

third derivative Ĉ à la Eq. (2) (Section 2.4); see Appendix A.3 for details. The points below

thus hold in the absence of this assumption, using the appropriate replacement.

As for the case considered in Section 4.1, under constraints on abatement costs and higher

derivatives, optimal quantity policies never perform worse than optimal pricing ones. Moreover,

Theorem 3 provides a sufficient condition for them to do strictly better. Whilst they are a few

studies suggesting convex marginal abatement costs (Kriegler et al., 2015; Harmsen et al., 2021),

no lower bound to its convexity has been proposed, suggesting that C ′′′ reflecting the current

state of knowledge can be taken close to zero, so ετ∗ Ĉ
′′′(L∗)

3
2

3(Ĉ′′′(L∗)−C′′′)
1
2
≈ 1

3ετ∗Ĉ
′′′(L∗). Hence, as

ετ∗ increases, the term on the right tends to 1
3ετ∗Ĉ

′′′(L∗). Given that the other terms on the

left are positive, it follows that the condition in the Theorem holds when ετ∗ is not too small.

The general conclusion in the case of convex marginal abatement costs is thus as in the previous
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analyses: in the context of significant uncertainty, permits are better than taxes.14

4.4 Parametric constraints

Another potential form of uncertainty concerning abatement costs consists in certainty that cost

functions belong to a particular family (or families), and knowledge about the range of possible

or probable parameter values (Section 2.2, Example 3). Similar results can be obtained in this

case (see Theorem A.2 in Appendix A.4 for a general result). We illustrate them by considering

the logarithmic marginal abatement cost family used by Nordhaus (1991): C = Cf,A, where each

θ ∈ supp C is such that C1(E, θ) = f(E, a, b) = a−b ln(Emax−E) for positive (a, b) ∈ A. We

consider the case where there is a lowest marginal cost curve in supp C, characterised by (a, b),

and a highest marginal cost curve, characterised by (a, b), i.e. there exists (a, b), (a, b) ∈ A such

that for all (a, b) ∈ A and all E ∈ [0, Emax], f(E, a, b) ≤ f(E, a, b) ≤ f(E, a, b).

Proposition 1. Consider any D ⊆ ∆(Ξ) characterising uncertainty about damages, and sup-

pose that uncertainty about abatement costs is characterised by parametric constraints, con-

cerning the family f(E, a, b) = a − b ln(Emax − E), with highest and lowest marginal cost

curves (a, b) and (a, b). Then Tprice ≥ Tquant.

Moreover, the inequality is strict whenever

D̂′′τ∗
L∗,L∗+ετ∗

>
2
[
−
(
b(L∗ + ετ∗)− bL∗)+ Emax(a− b lnEmax − (a− b lnEmax))

]
ε2τ∗

(8)

where L∗ is the optimal quantity level and τ∗ is the optimal tax level.

The central message of Theorem 1 thus continues to hold when one assumes uncertainty to

be characterised by constraints on parametric forms for abatement cost functions. On the one

hand, under parametric constraints, permits never fare worse than taxes. On the other hand,

there is a condition for permits to strictly outperform taxes, which differs from that in Theorem

1 and involves two terms on the right-hand side of the inequality. To interpret the second term,

note that a− b lnEmax − (a− b lnEmax) is the difference in the marginal cost of the first unit

of emissions reduction under the highest and lowest marginal cost curves consistent with the

uncertainty C. If this marginal cost is well understood (as suggested by Figure 1), uncertainty

concerning it will be low, and the second term in (8) will be small. As for the first term, if

uncertainty concerning the marginal costs for the first unit of emissions reduction is low, a −
b lnEmax ≈ a − b lnEmax, whence it follows from the specification that b ≥ b . Substituting

in the parametric expressions for L∗ and L∗ + ετ∗ yields:

b(L∗ + ετ∗)− bL∗ = b(Emax − exp−τ∗ − a

b
)− b(Emax − exp−τ∗ − a

b
)

14Whilst we have considered constraints on costs for illustration here, extensions of Theorem 2 comparable to
Theorem 3 are obtainable by similar techniques (see Appendix A.3), so the conclusion of Section 4.2 continues to
hold when incorporating higher derivatives.
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This is greater than zero under the previous specifications; moreover, it is decreasing in b

throughout most of the range, for any fixed b. Hence the first term on the right-hand side of

(8) is negative whenever ετ∗ > 0. Notice moreover that b
b is the ratio of slopes of the highest

vs. lowest marginal cost at any emissions reduction level, and hence an indication of the uncer-

tainty concerning the slope of the marginal cost curve. So the first term in (8) is decreasing in

the uncertainty about the slope of marginal cost. As for the case discussed in Section 4.1, when

there is significant uncertainty – as opposed to risk – about the slope of the marginal cost curve,

quantity policies are strictly better than pricing ones.
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A Appendix: Proofs

A.1 General Result

We first state and prove a general result involving uncertainty characterised by (probabilistic)

constraints on costs. The results in Sections 4.1 and 4.2 will be corollaries, as shown in the next

Section. As a point of notation, for a tax τ , let

Tτ = max
p∈C

max
q∈D

EpEq

(
D(C−1

1 (τ, θ), ξ) + C(C−1
1 (τ, θ), θ)

)
We consider a general probabilistic lower constraint on the slope of marginal abatement costs,

which can be represented by C generated as in Example 4 from a family {m(ρ),M (ρ),m(ρ)1,M (ρ)1,m(ρ)2,M (ρ)2}
with [m(1−t)2,M (1−t)2] = [C ′′t,∞) for all t ∈ [0, 1), for some C ′′t increasing in t.

Theorem A.1. Consider any D ⊆ ∆(Ξ) characterising uncertainty about dam-

ages, and suppose that uncertainty about abatement costs is characterised by

C{m(ρ),M(ρ),m(ρ)1,M(ρ)1,m(ρ)2,M(ρ)2} for some family of probabilistic constraints

{m(ρ),M (ρ),m(ρ)1,M (ρ)1,m(ρ)2,M (ρ)2} with [m(1−t)2,M (1−t)2] = [C ′′t,∞) for all

t ∈ [0, 1), for some C ′′t increasing in t. For any τ such that τ ∈ ∂Ĉ(E) for some

E ∈ [0, Emax], and any D̂′ ∈ ∂D̂(Eτ ):

Tτ ≥Ĉ(Eτ ) + D̂(Eτ ) + ετ (τ + D̂′)

+
σ2
τ

2

(
ED̂′′ −

(
EuĈr

′′τ
Er,Eτ

+
1

σ2
τ

cov(Ĉr
′′τ
Er,Eτ

, (Er − Eτ )
2)

))

+
ε2τ
2

D̂′′D̂′
Eτ ,Eτ+ετ − EurEut

C ′′tĈr
′′τ
Er,Er−δr,t

Ĉr
′′τ
Er,Er−δr,t − C ′′t


(A.1)

where ED̂′′ is an expected average second derivative over the support of ϵ+ετ
τ under a worst-

case distribution over damage functions (see Eqn (A.12) and surrounding discussion below);

for each r, t ∈ (0, 1], δr,t is defined implicitly by max ∂Ĉr(Er − δr,t) = τ − (ετ + δr,t)C
′′t;

EurEut are expectations taken over r and t according to independent uniform distributions

ur, ut ∈ ∆([0, 1]) over [0, 1].

Proof. Consider τ such that τ ∈ ∂Ĉ(E) for some E ∈ [0, Emax]. For each r ∈ (0, 1], recall

that τ ∈ ∂Ĉr(Er) and (by the definition in Eqn (2))

Ĉr
′′τ
Er,Eτ

=
2

(Eτ − Er)2

(
Ĉr(Eτ )− τ(Eτ − Er)− Ĉr(Er)

)
It follows that

Ĉr(Er) = Ĉr(Eτ )− (τ + Ĉr
′′τ
Er,Eτ

(Eτ − Er))(Eτ − Er) +
Ĉr

′′τ
Er,Eτ

2
(Eτ − Er)

2
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For each τ , and every r ∈ (0, 1], let θr ∈ Θ be such that C1(Er, θr) = τ and C(Er, θr) =

Ĉr(Er). (By the definition of Er etc, such θr exist.) We have:

EuC(Er, θr) =EuĈr(Eτ )− Eu

(
Ĉr

′′τ
Er,Eτ

2
(Er − Eτ )

2

)
=Ĉ(Eτ )−

1

2

(
EuĈr

′′τ
Er,Eτ

σ2
τ + cov(Ĉr

′′τ
Er,Eτ

, (Er − Eτ )
2)
) (A.2)

since EuEr = Eτ and Eu(Er −Eτ )
2 = σ2

τ . In the second equation, EuĈr
′′τ
Er,Eτ

is the expected

average second order derivative in that area, across the worst-case cost functions, and the last

term is the covariance with the square difference in emissions with respect to Eτ .

For each r, t ∈ (0, 1], note that there exists δ such that:

τ − (ετ + δ)C ′′t ∈ ∂Ĉr(Er − δ) (A.3)

Moreover, by the strict convexity of Ĉr, such δ is unique. By the convexity of Ĉr and Rademacher’s

Theorem (e.g. Rockafellar, 1970, Theorem 25.4), ∂Ĉr is single-valued except on a set of mea-

sure zero. So, for every r, t ∈ (0, 1] such that ∂Ĉr(Er − δ) is not a singleton (i.e. Ĉr is not

differentiable at Er − δ) for δ satisfying the expression above, there exists a small ρr,t > 0 and

δ′ such that τ − (ετ + δ′)(C ′′t + ρr,t) ∈ ∂Ĉr(Er − δ′) and ∂Ĉr(Er − δ′) is a singleton.

For each r, t ∈ (0, 1], let δr,t be the solution to:

τ − (ετ + δr,t)C
′′t = Ĉr

′
(Er − δr,t) (A.4)

if such δr,t exists (i.e. when Ĉr is differentiable at Er − δr,t), and the solution to

τ − (ετ + δr,t)(C
′′t + ρr,t) = Ĉr

′
(Er − δr,t)

otherwise. As noted above, δr,t is well-defined, and for each r, it satisfies (A.4) for all t except

a set of measure zero.

Let θ̂r be any cost function such that C1(Er − δr,t, θ̂r) = Ĉr
′
(Er − δr,t) and C(Er −

δr,t, θ̂r) = Ĉr(Er − δr,t); such a function exists by the definition of Ĉr (and the fact that it is

differentiable at the points involved). Consider the function G : [0, Er + ετ ] → R defined by

G(E) =


C(E, θr) if E ≤ Er − δr,t

C(Er − δr,t, θ̂r) + Ĉr
′
(Er − δr,t)(E − Er + δr,t)

+C′′t

2 (E − Er + δr,t)
2

if Er − δr < E ≤ Er + ετ

This hits the Ĉr curve at a point, and then increases with the t-lowest second-order derivative

until the marginal abatement cost reaches τ , which occurs at Er+ ετ . Note that G is increasing,

differentiable, strictly convex and satisfies all the constraints in C on its domain. Hence there
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exists θr,t ∈ C with C(E, θr,t) = G(E) for all E ∈ [0, Er + ετ ]. Take any such θr,t.

Note that, since

Ĉr
′′τ
Er,Er−δr,t =

2

δ2r,t

(
Ĉr(Er − δr,t)− Ĉr(Er) + τδr,t

)
(A.5)

is the average second-order derivative of Ĉr in this range (Eqn (2)), we have

Ĉr(Er − δr,t) = Ĉr(Er)− τδr,t +
δ2r,t
2

Ĉr
′′τ
Er,Er−δr,t

from which it follows that

Ĉr
′
(Er − δr,t) = τ − δr,tĈr

′′τ
Er,Er−δr,t (A.6)

Plugging this into (A.4) yields:

δr,t = C ′′t ετ

Ĉr
′′τ
Er,Er−δr,t − C ′′t

(A.7)

for all (r, t) ∈ [0, 1]2 except a set of measure zero. δr,t = (C ′′t + ρr,t)
ετ

Ĉr
′′τ
Er,Er−δr,t

−(C′′t+ρr,t)

otherwise.

It follows, substituting these equations in appropriately, that

C(Er + ετ , θr,t) = C(Er − δr,t, θr,t) + Ĉr
′
(Er − δr,t)(ετ + δr,t) +

C ′′t

2
(ετ + δr,t)

2

=C(Er, θr)− τδr,t +
δ2r,t
2

Ĉr
′′τ
Er,Er−δr,t

+ (τ − δr,tĈr
′′τ
Er,Er−δr,t)(ετ + δr,t) +

C ′′t

2
(ετ + δr,t)

2

=C(Er, θr)−
δ2r,t
2

Ĉr
′′τ
Er,Er−δr,t + τετ

− δr,tετ Ĉr
′′τ
Er,Er−δr,t +

C ′′t

2
(ετ + δr,t)

2

=C(Er, θr) + τετ +
ε2τ

2(Ĉr
′′τ
Er,Er−δr,t − C ′′t)2

[
−C ′′t2Ĉr

′′τ
Er,Er−δr,t

−2C ′′tĈr
′′τ
Er,Er−δr,t(Ĉ

r
′′τ
Er,Er−δr,t − C ′′t) + C ′′tĈr

′′τ
Er,Er−δr,t

2
]

=C(Er, θr) + τετ −
ε2τ
2

C ′′tĈr
′′τ
Er,Er−δr,t

Ĉr
′′τ
Er,Er−δr,t − C ′′t

(A.8)

for all (r, t) ∈ [0, 1]2 except a set of measure zero.

For two independent uniform distributions ur, ut over [0, 1], let p over {θr,t} be the distribu-

tion over cost functions that they generate; i.e. p({θr,t : r ≤ r′, t ≤ t′}) = ur([0, r
′]).ut([0, t

′])
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for all r′, t′. This belongs to C because by construction it satisfies all the probabilistic con-

straints. Note moreover that, by construction, ϵτ,p = ϵ+ετ
τ . So

EpC(C−1(τ, θ), θ) = EurEutC(Er + ετ , θr,t)

=EurC(Er, θr) + τετ −
ε2τ
2
EurEut

C ′′tĈr
′′τ
Er,Er−δr,t

Ĉr
′′τ
Er,Er−δr,t − C ′′t

=Ĉ(Eτ )−
1

2

(
EuĈ

′′σ2
τ + cov(Ĉ ′′, σ2

τ )
)
+ τετ

− ε2τ
2
EurEut

C ′′tĈr
′′τ
Er,Er−δr,t

Ĉr
′′τ
Er,Er−δr,t − C ′′t

(A.9)

by (A.2), the definition of Er and the fact that (A.8) holds for all (r, t) ∈ [0, 1]2 except a set of

measure zero.

Take any D̂′ ∈ ∂D̂(Eτ ) and recall that:

D̂′′D̂′
Eτ ,Eτ+ετ =

2

(Eϵτ,pE − Eτ )2

(
D̂(Eτ ) + D̂′(Eϵτ,pE − Eτ )− D̂(Eϵτ,pE)

)
is the average second order derivative of D̂ between Eτ and Eϵτ,pE = Eτ + ετ . Hence:

D̂(Eϵτ,pE) = D̂(Eτ ) + D̂′ετ +
D̂′′D̂′

Eτ ,Eτ+ετ

2
ε2τ (A.10)

by the specification of p.

Moreover, for any q ∈ D with EqD(Eϵτ,pE, ξ) = D̂(Eϵτ,pE),

EqEϵτ,pD(E, ξ) =EqD(Eϵτ,pE, ξ) + EqEϵτ,pD1(Eϵτ,pE, ξ)(E − Eϵτ,pE)

+ EqEϵτ,p

D′′(ξ)

2
(E − Eϵτ,pE)2

=D̂(Eϵτ,pE) +
EqD

′′(ξ)

2
σ2
τ

(A.11)

since ϵτ,p = ϵ+ε
τ and so Eϵτ,p(E − Eϵτ,pE)2 = σ2

τ , and where, for each ξ ∈ Ξ

D′′(ξ) =
2

Eϵτ,p(E − Eϵτ,pE)2

(
Eϵτ,pD(E, ξ)−D(Eϵτ,pE, ξ)− Eϵτ,pD1(Eϵτ,pE, ξ)(E − Eϵτ,pE)

)
Note that

D′′(ξ) =
Eϵτ,pD(•, ξ)

′′D1(Eϵτ,pE,ξ)

Eϵτ,pE,E

Eϵτ,p(E − Eϵτ,pE)2
(A.12)
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so D′′(ξ) is an expectation, over ϵτ,p, of the average second derivative of the damage function

D(•, ξ) between ϵτ,p and each point the support of ϵτ,p. So EqD
′′(ξ) is an expected average

second derivative over ϵτ,p, under the distribution q.

Combining (A.11) and (A.10), and denoting EqD
′′(ξ) by ED̂′′, yields:

max
q∈D

EpEϵτ,pD(E, ξ) ≥EqEϵτ,pD(E, ξ)

=D̂(Eτ ) + D̂′ετ +
D̂′′D̂′

Eτ ,Eτ+ετ

2
ε2τ +

ED̂′′

2
σ2
τ

(A.13)

Combining (A.9) and (A.13), we obtain:

Tprice =max
p∈C

(
max
q∈D

EqEϵτ,pD(E, ξ) + EpC(C−1
1 (τ, θ), θ)

)
≥max

q∈D
EqEϵτ,pD(E, ξ) + EpC(C−1

1 (τ, θ), θ)

≥Ĉ(Eτ ) + D̂(Eτ ) + ετ (τ + D̂′)

+
σ2
τ

2

(
ED̂′′ −

(
EuĈr

′′τ
Er,Eτ

+
1

σ2
τ

cov(Ĉr
′′τ
Er,Eτ

, (Er − Eτ )
2)

))

+
ε2τ
2

D̂′′D̂′
Eτ ,Eτ+ετ − EurEut

C ′′tĈr
′′τ
Er,Er−δr,t

Ĉr
′′τ
Er,Er−δr,t − C ′′t



(A.14)

as required.

Let L∗ be the optimal quantity policy. Under the tax policy τ ,

Tτ − Tquantity

≥
(
Ĉ(Eτ ) + D̂(Eτ )

)
−
(
Ĉ(L∗) + D̂(L∗)

)
︸ ︷︷ ︸

Misspecification

+ ετ (τ + D̂′)︸ ︷︷ ︸
1st order

+
σ2
τ

2

(
ED̂′′ −

(
EuĈr

′′τ
Er,Eτ

+
1

σ2
τ

cov(Ĉr
′′τ
Er,Eτ

, (Er − Eτ )
2)

))
︸ ︷︷ ︸

Risk

+
ε2τ
2

D̂′′D̂′
Eτ ,Eτ+ετ − EurEut

C ′′tĈr
′′τ
Er,Er−δr,t

Ĉr
′′τ
Er,Er−δr,t − C ′′t


︸ ︷︷ ︸

Uncertainty

(A.15)

At this level of generality, the optimal tax policy τ∗ does not necessarily yield the optimal

quota for emissions reduction in expectation: i.e. Eτ∗ may differ from L∗. The first ‘Misspec-

ification’ term is the difference between the expected total costs under the expected emissions

reduction level generated by the pricing and quantity policies. Since the quantity policy provides
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the emissions reductions level minimising expected total costs, this term is always positive. Re-

latedly, the marginal damages at the expected emissions reduction level Eτ∗ need not match (the

negation of) the optimal tax level τ∗; whence the second, ‘1st-order’ term. Whenever the ex-

pected worst-case emissions reduction under tax τ∗ is equal to the optimal emissions reduction

level L∗, these two terms reduce to zero. By specifying this in Assumption 1, we concentrate

on this case in the text, hence focusing on the ‘Risk’ and ‘Uncertainty’ terms.

A.2 Proofs of Theorems 1 and 2

Proof of Theorem 1. Let τ∗ be an optimal tax level. Suppose that τ∗ ∈ ∂Ĉ(E) for some E ̸=
L∗. By Lemma A.1 (Appendix A.5), then there exists θ ∈ supp C with C1(E, θ) = τ∗ and

C(E, θ) = Ĉ(E), so:

D̂(C−1
1 (τ∗, θ)) + C(C−1

1 (τ∗, θ), θ) =D̂(E) + Ĉ(E)

>D̂(L∗) + Ĉ(L∗) = Tquant

since, by the strict convexity of D̂ and Ĉ (Section 2.3), L∗ is the unique quantity optimum.

If τ∗ ∈ ∂Ĉ(L∗), then by a similar argument there exists θ ∈ supp C with D̂(C−1
1 (τ∗, θ)) +

C(C−1
1 (τ∗, θ), θ) = D̂(L∗) + Ĉ(L∗) = Tquant. So Tprice ≥ Tquant.

As concerns the second clause of the theorem, note first that the reasoning in the proof of

Theorem A.1 applies for any ε ≤ ετ∗ . Noting that when C is generated by constraints σ2
τ∗ = 0

and that, since L∗ is the quantity optimum, τ∗ ∈ ∂D̂(L∗), the reasoning in the proof of Theorem

A.1 implies that, for τ∗ ∈ ∂Ĉ(L∗) and any ε ∈ [0, ετ∗ ]:

Tτ∗ ≥Ĉ(L∗) + D̂(L∗) +
ε2

2

[
D̂′′τ∗

L∗,L∗+ε −
C ′′Ĉ ′′τ∗

L∗,L∗−δ

Ĉ ′′τ∗
L∗,L∗−δ − C ′′

]
(A.16)

(A.17)

where δ satisfies δ = C ′′ ε
Ĉ′′τ∗

L∗,L∗−δ
−C′′ . Since, for sufficiently small ε, D̂′′τ∗

L∗,L∗+ε ≈ D̂′′(L∗) and

Ĉ ′′τ∗
L∗,L∗+ε ≈ Ĉ ′′(L∗) whenever these functions are second-order differentiable, Tτ∗ > Tquantity

whenever D̂′′(L∗) > Ĉ′′(L∗)C′′

Ĉ′′(L∗)−C′′ , as required.

Proof of Theorem 2. Under Assumption 1, the ‘Misspecification’ and ‘Risk’ terms reduce to

zero. Moreover Ĉr
′′τ∗
Er,Eτ∗

≈ Ĉr
′′
(Eτ∗) so EuĈr

′′τ∗
Er,Eτ∗

≈ EuĈr
′′
(Eτ∗) = Ĉ ′′(Eτ∗), noting

that Ĉ ′′(Eτ∗) exists because Ĉr
′′
(Eτ∗) does for all r. Substituting this in, proceeding simi-

larly for ED̂′′ and incorporating the assumption on the covariance yields the ‘Risk’ term. The

substitution yielding the ‘Uncertainty’ term follows similarly.

A.3 Higher derivatives

Proof of Theorem 3. The proof of the first clause is essentially identical to the proof of Theorem

1. The proof of the second clause is similar to that of Theorems 1 and A.1, with the passage in
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the latter theorem concerning the function G (and up to Eq. (A.8)) replaced by the following

reasoning. (For notational simplicity, we remove mention of t, and work with the single lower

bound C ′′′ on the third derivative. The rest of the notation is as in the proof of Theorem A.1.)

For each r ∈ (0, 1], let δr be such that

τ − (ετ + δr)Ĉr
′′
(Er − δr)−

1

2
(ετ + δr)

2C ′′′ = Ĉr
′
(Er − δr) (A.18)

if such δr exists (i.e. when Ĉr is twice differentiable at Er − δr), and the solution to

τ − (ετ + δr)Ĉr
′′
(Er − δr)−

1

2
(ετ + δr)

2(C ′′′ + ρr) = Ĉr
′
(Er − δr)

for some small ρr > 0 such that such a solution exists, otherwise . By the reasoning in the proof

of Theorem A.1 (and the fact that, by the third-derivative constraint, the marginal abatement

curve is convex), δr is well-defined, and for each r, it satisfies (A.18) except a set of measure

zero.

Let θ̂r be any cost function such that C1(Er − δr, θ̂r) = Ĉr
′
(Er − δr), C(Er − δr, θ̂r) =

Ĉr(Er − δr) and C11(Er − δr, θ̂r) = Ĉr
′′
(Er − δr); such a function exists by the definition

of Ĉr (and the fact that it is twice differentiable at the points involved). Consider the function

G : [0, Er + ετ ] → R defined by

G(E) =


C(E, θr) if E ≤ Er − δr

C(Er − δr, θ̂r) + Ĉr
′
(Er − δr)(E − Er + δr)

+
Ĉr

′′
(Er−δr,t)

2 (E − Er + δr)
2 + C′′′

6 (E − Er + δr)
3

if Er − δr < E ≤ Er + ετ

This hits the Ĉr curve at a point, and then increases with the t-lowest third-order derivative until

the marginal abatement cost reaches τ , which occurs at Er + ετ . Note that G is increasing,

twice differentiable, strictly convex and satisfies all the constraints in C on its domain. Hence

there exists θr ∈ C with C(E, θr) = G(E) for all E ∈ [0, Er + ετ ]. Take any such θr.

Analogous to the definition of average second-order derivative (Section 2.4), define the av-

erage third-order derivative Ĉr
′′′τ
Er,Er−δr to be such that:

Ĉr(Er − δr) = Ĉr(Er)− τδr +
δ2r
2
Ĉr

′′
(Er)−

δ3r
6
Ĉr

′′′τ
Er,Er−δr

from which it follows that

Ĉr
′
(Er − δr) = τ − δrĈr

′′
(Er) +

δ2r
2
Ĉr

′′′τ
Er,Er−δr (A.19)

and

Ĉr
′′
(Er − δr) = Ĉr

′′
(Er)− δrĈr

′′′τ
Er,Er−δr (A.20)
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Plugging this into (A.18) yields:

(δr + ετ )
2 = 2

ετ Ĉr
′′
(Er) +

ε2τ
2 Ĉ

r
′′′τ
Er,Er−δr

Ĉr
′′′τ
Er,Er−δr − C ′′′

(A.21)

for all r ∈ [0, 1] except a set of measure zero. A similar expression holds, with C ′′′ replaced by

C ′′ + ρr, otherwise. Hence

δr = (X − 1)ετ (A.22)

for X =

(
2
ετ

Ĉr
′′
(Er)+Ĉr

′′′τ
Er,Er−δr

Ĉr
′′′τ
Er,Er−δr

−C′′′

) 1
2

> 0.

It follows, substituting these equations in appropriately, that

C(Er + ετ , θr) = C(Er − δr, θr) + Ĉr
′
(Er − δr,t)(ετ + δr)

+
Ĉr

′′
(Er − δr)

2
(ετ + δr)

2 +
C ′′′

6
(ετ + δr)

3

=C(Er, θr)− τδr +
δ2r
2
Ĉr

′′
(Er)−

δ3r
6
Ĉr

′′′τ
Er,Er−δr

+ (τ − δrĈr
′′
(Er) +

δ2r
2
Ĉr

′′′τ
Er,Er−δr)(ετ + δr)

+
Ĉr

′′
(Er)− δrĈr

′′′τ
Er,Er−δr

2
(ετ + δr)

2 +
C ′′′

6
(ετ + δr)

3

=C(Er, θr) + τετ +
ε2τ
2
Ĉr

′′
(Er)

+
ε3τ
2
Ĉr

′′′τ
Er,Er−δr

(
−1

3
(X − 1)3 + (X − 1)2X −X2(X − 1)

)
+

ε3τ
2

C ′′′

3
X3

=C(Er, θr) + τετ +
ε2τ
2
Ĉr

′′
(Er)

− ε3τ
6

[
X3
(
Ĉr

′′′τ
Er,Er−δr − C ′′′

)
− Ĉr

′′′τ
Er,Er−δr

]
=C(Er, θr) + τετ +

ε2τ
2

[
Ĉr

′′
(Er)

−1

3

1(
Ĉr

′′′τ
Er,Er−δr − C ′′′

) 1
2

[(
2ε

− 1
3

τ Ĉr
′′
(Er) + ε

2
3
τ Ĉr

′′′τ
Er,Er−δr

) 3
2

−ετ Ĉr
′′′τ
Er,Er−δr

(
Ĉr

′′′τ
Er,Er−δr − C ′′′

) 1
2

]]
(A.23)

for all r ∈ [0, 1] except a set of measure zero. Continuing as in the proof of Theorem A.1 yields

an expression like Eq. (A.1) except that the uncertainty term (see Eq. (A.15)) is replaced by
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(inserting the subscript t back in):

ε2τ
2

[
D̂′′D̂′

Eτ ,Eτ+ετ + EurEut

(
Ĉr

′′
(Er)

− 1

3
(
Ĉr

′′′τ
Er,Er−δr − C ′′′

) 1
2

((
2ε

− 1
3

τ Ĉr
′′
(Er) + ε

2
3
τ Ĉr

′′′τ
Er,Er−δr

) 3
2

− ετ Ĉr
′′′τ
Er,Er−δr

(
Ĉr

′′′τ
Er,Er−δr − C ′′′

) 1
2

)


=
ε2τ
2

D̂′′D̂′
Eτ ,Eτ+ετ + EurEut

Ĉr
′′
(Er) +

1

3
ετ Ĉr

′′′τ
Er,Er−δr −

ε
− 1

2
τ

(
2Ĉr

′′
(Er) + ετ Ĉr

′′′τ
Er,Er−δr

) 3
2

3
(
Ĉr

′′′τ
Er,Er−δr − C ′′′

) 1
2




(A.24)

Noting, as in the proof of Theorem 1, the simplifications implied by the problem under con-

straints, we obtain that Tτ∗ > Tquantity whenever

D̂′′τ∗
L∗,L∗+ετ∗

+ Ĉ ′′(L∗) +
1

3
ετ∗Ĉ

′′′(L∗)−

(
2Ĉ ′′(L∗) + ετ∗Ĉ

′′′(L∗)
) 3

2

3ε
1
2
τ∗

(
Ĉ ′′′(L∗)− C ′′′

) 1
2

> 0

as required.

We note finally that this proof also establishes a generalisation of Theorem A.1 to incorpo-

rate uncertainty in the third derivative of abatement costs.

A.4 Constraints on parameters

The following is the general result concerning uncertainty generated by parametric constraints.

The Proposition presented in the text is a corollary, as shown below.

Theorem A.2. Consider any D ⊆ ∆(Ξ) characterising uncertainty about damages, and sup-

pose that uncertainty about abatement costs is characterised by probabilistic parametric con-

straints (Section 2.2). For any τ such that τ ∈ ∂Ĉ(E) for some E ∈ [0, Emax], any D̂′ ∈
∂D̂(Eτ ), any p ∈ C such that ϵτ,pE = ϵ+ετ

τ and any family θr, θr ∈ supp C such that

C1(Er, θr) = τ , C(Er, θr) = Ĉr(Er), C1(Er + ετ , θr) = τ and θr ∈ supp p for every

r ∈ (0, 1]:

Tτ ≥Ĉ(Eτ ) + D̂(Eτ ) + ετ (τ + D̂′) (A.25)

+
σ2
τ

2

(
ED̂′′ −

(
EuĈr

′′τ
Er,Eτ

+
1

σ2
τ

cov(Ĉr
′′τ
Er,Eτ

, (Er − Eτ )
2)

))
(A.26)

+
ε2τ
2

[
D̂′′D̂′

Eτ ,Eτ+ετ +
2

ε2τ
Eu

(∫ Er

0
e
(
C11(e, θr)− C11(e, θr)

)
de−

∫ Er+ετ

Er

eC11(e, θr)de

)]
(A.27)
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where all the terms are as in Theorem A.1.

Proof. The proof is identical to the proof of Theorem A.1, apart from the part introducing δr,t

(and finishing with Eqn (A.9)), which should be replaced by the following.

Now consider p ∈ C with ϵτ,pE = ϵ+ετ
τ (by the definition of ετ , such p exists), and θr ∈

supp p as specified in the statement of the Theorem. For each such θr, we have:

C(Er + ετ , θr) = C(Er, θr) +

(∫ Er+ετ

0
C1(e, θr)de−

∫ Er

0
C1(e, θr)de

)
= C(Er, θr) +

(
τ(Er + ετ )−

∫ Er+ετ

0
eC11(e, θr)de− τEr +

∫ Er

0
eC11(e, θr)de

)
= C(Er, θr) + τετ +

∫ Er

0
e
(
C11(e, θr)− C11(e, θr)

)
de−

∫ Er+ετ

Er

eC11(e, θr)de

where the second inequality follows by integration by parts, and θr is as specified in the state-

ment of the Theorem (as well as in the proof of Theorem A.1). Whence

EpC(C−1
1 (τ, θ), θ) = EuC(Er + ετ , θr)

= EuC(Er, θr) + Euτετ

+ Eu

(∫ Er

0
e
(
C11(e, θr)− C11(e, θr)

)
de−

∫ Er+ετ

Er

eC11(e, θr)de

)
= Ĉ(Eτ ) + τετ −

1

2

(
EĈ ′′σ2

τ + cov(Ĉ ′′, σ2
τ )
)

+ Eu

(∫ Er

0
e
(
C11(e, θr)− C11(e, θr)

)
de−

∫ Er+ετ

Er

eC11(e, θr)de

)
(A.28)

where the third equality comes from substituting in Eq. (A.2).

Proof of Proposition 1. The proof of the first clause is essentially identical to the proof of

Theorem 1, noting that Ĉ is second-order differentiable (for E < Emax) since Ĉ ′(E) =

a − b ln(Emax − E) for all E. For the second clause, first note that, for τ∗ = Ĉ ′(L∗),

f(L∗, a, b) = τ∗ since this is the highest marginal cost function; similarly, by the definition

of ετ∗ , f(L∗ + ετ∗ , a, b) = τ∗. Taking Theorem A.2, applying the reductions employed in the

proof of Theorem 1 and substituting the parametric expressions for C(•, θ) yields, for L∗ the
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quantity optimum:

Tτ∗ ≥Ĉ(L∗) + D̂(L∗) +
ε2τ∗

2

[
D̂′′τ∗

L∗,L∗+ετ∗
+

2

ε2τ∗

(
(L∗ + ετ∗)b− L∗b

−Emax(a− b lnEmax − (a− b lnEmax))
)]

=Ĉ(L∗) + D̂(L∗) +
ε2τ∗

2

[
D̂′′τ∗

L∗,L∗+ετ∗
+

2

ετ∗

(
(L∗ + ετ∗)b− L∗b

)
ετ∗

− 2

ε2τ∗
Emax(a+ b lnEmax − (a+ b lnEmax))

]
(A.29)

since ln(Emax−(L∗+ε)) = τ∗−a
b and ln(Emax−L∗) = τ∗−a

b
. The result follows immediately.

A.5 Other results and remarks

Proposition A.1. Consider C generated by probabilistic constraints (be they on costs or para-

metric). For all r ∈ (0, 1], Ĉr is strictly convex.

Proof. We reason for the case of probabilistic constraints on costs; the case of probabilistic

parametric constraints is analogous. Let C = C{m(ρ),M(ρ),m(ρ)1,M(ρ)1,m(ρ)2,M(ρ)2} and for every

ρ ∈ (0, 1], let Θρ ⊆ Θ be

θ ∈ Θ :

C(E, θ) ∈ [m(ρ)(E),M (ρ)(E)]

C1(E, θ) ∈ [m(ρ)1(E),M (ρ)1(E)]

C11(E, θ) ∈ [m(ρ)2(E),M (ρ)2(E)]

. Hence, by the

definition of C, for every p ∈ C, p(Θρ) ≥ ρ.

Suppose that there exists x and p ∈ C with p({θ : C(E, θ) ≥ x}) ≥ r. Since, by the

previous observation, p(Θ1−r) ≥ 1−r, it follows that there exists θ ∈ Θ1−r with C(E, θ) ≥ x.

So {x : ∃p ∈ C, p({θ : C(E, θ) ≥ x}) ≥ r} ⊆ {x : ∃θ ∈ Θ1−r, C(E, θ) ≥ x}. Conversely,

consider x such that C(E, θ) ≥ x for some θ ∈ Θ1−r. By the nestedness of the family of

constraints defining C, any p satisfying the constraints for s < 1 − r and putting weight r on θ

satisfies all of the constraints (including those for t ≥ 1− r); so there exists such p ∈ C. Since,

by construction, p({θ : C(E, θ) ≥ x}) ≥ r, we have the converse inclusion. Hence

{x : ∃p ∈ C, p({θ : C(E, θ) ≥ x}) ≥ r} = {x : ∃θ ∈ Θ1−r, C(E, θ) ≥ x}

It thus follows that

Ĉr(E) =max
p∈C

sup {x : p({θ : C(E, θ) ≥ x}) ≥ r}

=sup{x : ∃p ∈ C, p({θ : C(E, θ) ≥ x}) ≥ r}

=sup{x : ∃θ ∈ Θ1−r, C(E, θ) ≥ x}

=sup{C(E, θ) : θ ∈ Θ1−r}
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So Ĉr is the pointwise supremum of strictly convex functions, and hence strictly convex.

Remark A.1 (Average second-order derivatives). Let f : R → R be twice differentiable, and

consider f ′′
x,y for x, y,∈ R, defined as in Eqn (2). Then:

f(y) = f(x) +

∫ y

x
f ′(z)dz

= f(x) +

∫ y

x

(
f ′(x) +

∫ z

x
f ′′(u)du

)
dz

So

f ′′
x,y =

2

(y − x)2
(
f(y)− f(x)− f ′(x)(y − x)

)
(A.30)

=

∫ y
x

(∫ z
x f ′′(u)du

)
dz∫ y

x

(∫ z
x du

)
dz

(A.31)

which is a (normalised) expectation over the values of f ′′ between x and y.

Lemma A.1. Under the conditions of Theorem 1 (C generated by constraints), if y ∈ ∂Ĉ(E)

for some E, then there exists θ ∈ Θ with δθ ∈ supp C such that C1(E, θ) = y and C(E, θ) =

Ĉ(E).

Proof. Let ∂Ĉ(E) = [x, z]. By standard results in convex analysis, there exists δθ, δθ ∈ C with

C(E, θ) = C(E, θ) = Ĉ(E), C1(E, θ) = x and C1(E, θ) = z. Since y ∈ ∂Ĉ(E), there

exists α ∈ [0, 1] with y = αx + (1 − α)z. Consider the function C ′ : [0, Emax] → R such

that C ′(e) = αC(e, θ) + (1− α)C(e, θ). This function is clearly increasing, differentiable and

strictly convex since C(•, θ), C(•, θ) are; hence there exists θ ∈ Θ such that C ′ = C(•, θ).
Moreover, for constraints m,M and every e, m(e) ≤ C(e, θ), C(e, θ) ≤ M(e), the same holds

for C(E, θ). Since the same holds for constraints on marginal cost and its slope, it follows that

θ satisfies all the constraints, so δθ ∈ supp C, establishing the result.
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