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1. Introduction1

The standard Bayesian model of decision under uncertainty stipulates that a decision maker’s2

beliefs are fully captured by a single probability measure (Savage, 1954; Anscombe and Au-3

mann, 1963). Empirical applications often call for elicitation of subjective beliefs (Manski,4

2004), and a wide array of probability elicitation methods have been proposed including, bey-5

ond stated probabilities, scoring rules and matching-probability based approaches. Importantly,6

the latter are choice based and incentive compatible, and hence can be used to evaluate simpler7

methods and ground their use in the field. For instance, studies showing that stated prob-8

ability elicitation methods often lead to limited performance loss compared to choice-based9

approaches provide a principled foundation for their use in large-scale field studies (Trautmann10

and Kuilen, 2015).11

Elicitation of subjective probabilities plays a significant role in areas such as12

macroeconomics—with interest in beliefs concerning future demand or inflation (Guiso and13

Parigi, 1999; Engelberg et al., 2011)—as well as development and agricultural economics—14

where important factors include agents’ beliefs about future weather, market factors or out-15

comes of crop, technological or entrepreneurial choices (Delavande et al., 2011; Cerroni, 2020).16

Such future events often involve significant uncertainties, especially in times of crisis, change17

or innovation. Uncertainties of this scale, and behavioural evidence concerning them, have mo-18

tivated the development of multiple prior decision models (Gilboa and Schmeidler, 1989; Ghir-19

ardato et al., 2004), which replace the Bayesian single-prior representation of beliefs by a set20

of priors, generating a probability interval for each event. A rich theoretical literature has docu-21

mented characteristic differences in insurance and investment decisions taken by multiple prior22

agents as compared to Bayesian ones (Dow and da Costa Werlang, 1992), with qualitatively23

distinct consequences in macroeconomics (Ilut and Schneider, 2014), asset pricing (Garlappi24

et al., 2007; Epstein and Schneider, 2010), mechanism design (Bose and Renou, 2014), health25

economics (Giustinelli et al., 2022) and climate economics (Hill, 2024). However, despite this26

evidence that multiple-prior-generated imprecision is a potential driver of various economic27

phenomena—and indeed, despite its use for communication by several institutions, e.g. the In-28

tergovernmental Panel on Climate Change and central banks (Mastrandrea et al., 2010; Carney29

et al., 2019)—probability elicitation methods rule it out. They thus cannot allow us to properly30

ascertain its role and leverage its potential. Elicitation of multiple prior beliefs is needed.31

The situation concerning multiple prior elicitation is markedly different from that for Bayesian32
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probability, with almost all attempts to date focusing on subjects’ stated probability intervals1

(Giustinelli et al., 2022; Kriegler et al., 2009). In particular, the absence of bona fide theoret-2

ically well-founded, choice-based and incentive-compatible multiple-prior elicitation methods3

deprives stated intervals of a firm grounding, hence raising potential questions about the find-4

ings based on them. This paper proposes such an elicitation method for multiple-prior prob-5

ability intervals, implements it in a series of laboratory experiments and compares it to stated6

intervals.7

An impossibility result from the statistics literature (Seidenfeld et al., 2012, Prop 5) provides8

a flavour of the challenge posed by incentive-compatible elicitation of multiple priors: there ex-9

ist no real-valued continuous strictly proper scoring rule for multiple-prior probability intervals.10

Related issues affect the matching probability method (Borel, 1939; Anscombe and Aumann,11

1963). It elicits the matching probability (MP)—that is, the proportion of red balls in an unam-12

biguous red-and-blue-balled urn at which the subject is indifferent between betting on red from13

the urn and betting on a target event E. Under Subjective Expected Utility (SEU), the MP of14

E coincides with the subject’s probability of it. For multiple-prior preferences, however, this is15

no longer the case. For instance, under the popular (Hurwicz) α-maxmin EU model, the MP16

reflects the bounds of the subject’s probability interval for the event, but also her attitude to17

uncertainty or ambiguity. Indeed, even eliciting the MPs of E and its complement Ec (which,18

beyond SEU, need not add to one) does not allow identification of the subject’s probability19

interval in general, due to the confounding ambiguity attitude factor.1 Existing theoretical and20

experimental approaches to this well-known issue (e.g. Ghirardato et al. 2004; Eichberger et al.21

2011; Section 5) assume that the subject’s set of priors is generated by precise probabilistic22

beliefs, i.e. preferences are probabilistically sophisticated (Chateauneuf et al. 2007; Baillon23

et al. 2018b, 2021; Gul and Pesendorfer 2015; Section 5). However, such assumptions are24

least warranted in situations where multiple priors are most relevant—and hence undermine25

the suitability of such precision-laden methods for multiple-prior probability-interval elicita-26

tion. Indeed, to meet the challenge of multiple-prior elicitation, an incentive-compatible, fully27

general and hence precision-free method is required.28

1For instance, under the Hurwicz α-maxmin EU model, the MP of an event E, MP(E), satisfies:

MP(E) = α p(E)+(1−α)p(E)

where the subject’s probability interval for E is [p(E), p(E)] and α is typically interpreted as a reflection of
the subject’s ambiguity attitude (Section 2.3). Since the probability interval for the complement event Ec is
[1− p(E),1− p(E)], eliciting the MPs for the event and its complement yields two equations in three unknowns—
and hence does not allow identification of the subject’s probability interval. See Section 2.4.
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Drawing on theoretical results that provide a solution to the identification problem for α-1

maxmin EU and a wide range of generalisations (Hill, 2023), we develop an MP-like elicitation2

method that uses extraneous random devices with interval-valued rather than precise probabil-3

ities. To illustrate, consider an urn containing only red and blue balls, where all that is known4

is that at least proportion r of the balls in the urn are red, and at least proportion b are blue5

(with r+ b ≤ 1). Here, the probabilities of getting red or blue on the next draw from the urn6

are summarized by the intervals [r,1− b] and [b,1− r], respectively. To identify the bounds7

of the subject’s probability interval for E, it suffices to find such an urn where the subject is8

indifferent between betting on E and betting on red from the urn, and between betting against9

E and betting against red (i.e. on blue). As we show in Section 2.4, under α-maxmin EU and10

a range of generalisations, the subject’s probability interval is given by the interval [r,1− b]11

corresponding to this urn. Moreover, this identification holds independently of the subject’s12

ambiguity attitudes.2 This thus yields a choice-based association of an ‘interval-valued’ urn to13

each event, which identifies the subject’s probability interval for it. This matching probability14

interval (MPI) notion resolves the problem of choice-based incentive-compatible probability-15

interval elicitation in theory.16

Our approach resolves the aforementioned foundational challenges. First of all, it is the-17

oretically robust, insofar as it operates under Hurwicz α-maxmin expected utility as well as18

an array of generalisations—and hence without assumptions on subjects’ ambiguity attitudes.19

Moreover, it is precision free, requiring no assumption of precise probabilities underpinning20

subjects’ probability intervals. As discussed in Section 5, beyond distinguishing our approach21

from those mentioned above, this also differentiates it from scoring rules for most-likely inter-22

vals for the value of an unknown parameter (Winkler and Murphy, 1979; Schlag, 2015).23

To operationalize elicitation of matching probability intervals, we develop an MPI version24

of the two-step MP elicitation method adopted by Abdellaoui et al. (2021, 2023). Under their25

method, a subject undergoes a ‘bisection’ binary-choice procedure followed by a ‘confirmation’26

choice list; we develop an analogue binary choice procedure and ‘two-dimensional’ choice list,27

tailored for eliciting (two-dimensional) probability intervals instead of (one-dimensional) prob-28

ability values. We implement our method in three laboratory studies. EXP A involves an artifi-29

cial source of uncertainty—the colour of the next chip drawn from a bag—where prior inform-30

ation was provided through sampling. This controlled environment allows validation testing31

of the method, via the observed relationship between the elicited intervals and the exogenous32

2Technically, under α-maxmin EU, these indifferences yield a pair of equations where the ambiguity attitude
factor α cancels out, hence leading to a unique solution for the subject’s probability interval; see Section 2.4.
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information. Moreover, by eliciting stated probability intervals as well, it permits a comparison1

of the two elicitation approaches. EXP N1 and EXP N2 focus on natural sources of uncertainty,2

based on continuous variables. There, the method is used to elicit the interval-valued cumu-3

lative distribution functions (CDFs) generated by subjects’ multiple priors.3 Interval-valued4

CDFs are commonly used in applications to go beyond the assumption of precise subjective5

probabilities (Karanki et al., 2009); our elicitation of CDFs provides a test of our approach,6

showing that it can operate in such contexts.7

Our method passes the validation tests in EXP A, providing intervals that are sensitive to8

both the direction (e.g. sample frequency) and quantity (e.g. sample size) of information, and9

that are typically consistent with ‘objective’ probabilities. On natural sources (EXP N1 and10

EXP N2), it elicits, for the vast majority of subjects, non-degenerate interval-valued CDFs. All11

experiments suggest that imprecise beliefs—i.e. intervals of non-zero width—are widespread,12

providing a choice-based confirmation of the finding of Giustinelli et al. (2022) using stated13

probability intervals. We also find that the width of elicited intervals decreases when there is14

more information, familiarity or predictability—a correlation that could be taken to corroborate15

the solidity of our method. On aggregate, the intervals elicited by our incentive-compatible16

method in EXP A are generally similar to stated intervals, suggesting that our method provides17

foundations for some uses of the latter methods in large-scale field studies. Some interesting18

differences do however emerge, with stated intervals tending to be larger than choice-based19

ones in information-rich contexts.20

The paper is structured as follows. Section 2 sets out the theoretical background and21

presents the central planks of our approach (the ‘matching probability interval’ notion and the22

elicitation method), with the relevant theoretical results. Section 3 describes our experimental23

implementations, in the form of three studies. Section 4 contains our results and supporting24

analyses, whereas in Section 5 we discuss connected issues, related literature and future dir-25

ections. Proofs, further details, data analyses and experimental details are contained in the26

Appendices.27

3Many elicitation applications in economics and beyond require subjects’ probability distributions or CDFs
over a continuous variable of interest (e.g. US inflation in 2025, Eurozone GDP in 2024, average global temperat-
ure in 2030).
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2. Theoretical Background1

In this section, we first set out the general setup, the objects of elicitation and the underlying2

decision model (Sections 2.1–2.3). Then we present the elements of our method. First, we3

propose an analogue of MPs for probability intervals and show that they are sufficient to yield4

the subject’s probability interval for an event, in theory (Section 2.4). Then we turn to imple-5

mentation, presenting, in Section 2.5, an MPI analogue of the two-step of the MP elicitation6

method developed by Abdellaoui et al. (2021, 2023).7

2.1. Bets on events and interval-valued urns8

We consider decision-making situations where the objects of choice are two-outcome prospects9

that pay a fixed monetary outcome z if an event occurs, and nothing otherwise. Prospects with10

general winning event E and winning amount z are denoted (z,E,0) and called bets. The com-11

plementary bet, which pays out when the event E does not occur, is denoted (0,E,z). Prospects12

where the probability of winning is exogenously provided in the form of an interval [p, p] are13

denoted (z, [p, p],0), and are called interval lotteries (IL).4 As for bets, the complementary IL,14

where the probability of losing is an objectively given interval [p, p], is denoted (0, [p, p],z).15

As mentioned previously, interval lotteries are operationalized by urns containing red and16

blue balls with partial information about the composition. For instance, consider a red-and-17

blue-balled urn with at least a proportion r of red balls, at least a proportion b of blue balls (with18

r + b ≤ 1), but where there is no information about the colour composition of the remaining19

balls. For such an urn, the information only allows assignment of the interval [r,1− b] for20

the probability of the next ball drawn from the urn being red; similarly, there is the interval21

[b,1− r] for the next ball being blue. For the sake of simplicity, we denote the urn with at least22

proportion r of red balls and at least proportion b of blue balls by [r,1−b]. We refer to the set23

of such interval-valued urns by I .524

Each urn [r,1− b] in I can be related to two (sorts of) prospects. One is the prospect25

that pays z if the next ball drawn from the urn is red, and nothing otherwise. For such a26

prospect, the probability of winning is characterized by the interval [r,1−b]; this thus realises27

4Our notion of interval lottery is distinct from that used by Gul and Pesendorfer (2014). They use ‘interval
lottery’ to denote (precise) probability measures over the set of intervals of (monetary) prizes; here, ‘interval
lottery’ denotes assignments of probability intervals to (fully determined, precise) outcomes. In particular, the
interval lotteries (z, [r,1−b],0) used here clearly do not belong to the concept used by Gul and Pesendorfer (zero
probability is assigned to each outcome in the interior of the interval [0,z]).

5Formally: I = {[x,y] : (x,y) ∈ [0,1]2, 0 ≤ x ≤ y ≤ 1}.
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the interval lottery (z, [r,1−b],0). The other prospect involves the complementary bet on this1

urn—that is, the bet on the next ball drawn from it being blue. Note that the probability of2

losing here is characterised by the interval [r,1− b], so the probability of winning is given by3

[b,1− r]. Hence this prospect realises the complementary IL (0, [r,1− b],z) or equivalently,4

(z, [b,1− r],0). Standard lotteries correspond to the special case where the composition of the5

urn is fully known—i.e. r = 1−b. So, for instance, the matching probability (MP) of an event6

E can be defined in this setup as the r such that (z, [r,r],0)∼ (z,E,0).7

2.2. Probability intervals and interval-valued CDFs8

Multiple prior belief representations involve a convex, closed set C of probability measures.9

For each event E, the set of priors generates a probability interval {p(E) : p ∈ C }= [p(E), p(E)],10

where p(E) = min{p(E) : p ∈ C } and p(E) = max{p(E) : p ∈ C } are the lower and upper11

probabilities for E respectively. In our experiment on artificial sources of uncertainty, the aim12

is to elicit probability intervals of the relevant events.13

The natural sources of uncertainty in our other experiments are real-valued variables, e.g.14

the daily minimum temperature in Paris between November and March. In the precise prob-15

ability case, elicitation aims at revealing the subjective probability over the variable, which16

can be represented as a subjective cumulative distribution function (CDF). One common way17

of doing so, for a variable taking values in a real interval T , is by eliciting subjective prob-18

abilities of events of the form Et = {t ′ ∈ T : t ′ ≤ t}, i.e. corresponding to the variable lying19

below certain fixed values. Indeed, for a probability measure p ∈ ∆(T ), the CDF is defined20

as Fp(t) = p(Et). Analogously, a set of priors C ⊆ ∆(T ) generates the interval-valued CDF21

FC (t) = {p(Et) : p ∈ C }, which takes the probability interval corresponding to Et as value, for22

each t. This can be visually represented in terms of two (real-valued) functions: the lower CDF,23

FC (t) = min{p(Et) : p ∈ C } = p(Et), and the upper CDF, FC (t) = max{p(Et) : p ∈ C } =24

p(Et). In these experiments, the aim is to elicit subjects’ interval-valued CDFs. Although prob-25

ability intervals and interval-valued CDFs involve an information loss as compared to sets of26

priors, they are often sufficient for applications, and sometimes preferable insofar as they are27

easier to communicate. Indeed, interval-valued CDFs are widely used for representing, com-28

municating and studying sets of priors over continuous variables, where they often go under the29

name of distribution bands or p-boxes (Berger et al., 2000; Karanki et al., 2009).30
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2.3. Decision model1

We only assume that subjects have preferences over bets and interval lotteries. Large parts of2

our method hold under the representation where a bet (z,E,0) or interval lottery (z, [r,1−b],0)3

is evaluated according to:4

W ([p, p])u(z) (1)

where [p, p] = [p(E), p(E)] (the probability interval for E generated by the subjects’ set of5

priors; Section 2.2) in the case of the bet, and [p, p] = [r,1− b] in the case of the IL. In (1), u6

is a utility function normalized so that u(0) = 0, and W is a (real-valued) ‘willingness-to-bet7

function’ that is continuous and increasing in both bounds, normalised (i.e. W ([x,x]) = x for all8

x) and strictly increasing in the lower bound. For presentation purposes, we will focus on the9

special case where W is linear, i.e. where (1) reduces to the Hurwicz α-maxmin EU evaluation10

of bets and ILs according to:11

α pu(z)+(1−α)pu(z) (2)

with p, p and u as above. The mixture coefficient 0 < α ≤ 1 reflects ambiguity attitude in this12

model, with higher values being associated with more aversion.6 For instance, α = 1 yields the13

‘maximally ambiguity averse’ Gilboa-Schmeidler (1989) maxmin-EU model. For 1 > α > 1
2 ,14

(1) accommodates the standard Ellsberg (1961) ambiguity averse preference for a bet on the15

color of a ball drawn from an urn of known 50-50 composition over a bet on the color of a ball16

drawn from a 2-color urn of unknown composition, as well as ambiguity seeking behavior at17

low probabilities.7 By contrast, such behavior cannot be accommodated when α < 1
2 . Since18

typical findings suggest some ambiguity seeking behavior at low probabilities, but ambiguity19

aversion at larger ones (Abdellaoui et al., 2011; Kocher et al., 2018), we take α > 1
2 to be20

typical; at a certain point in the presentation, we shall assume that preferences are represented21

according to (2) with α > 1
2 (see Sections 2.5 and 5).22

Note that the general form (1), which underpins most of the method developed here, can ac-23

commodate non-linear, Prospect-Theory-style weighting of the lower and upper probabilities,24

for instance taking W ([p, p]) = αw(p)+ (1−α)w(p), where w is a weighting function and α25

6The assumption that W is strictly increasing in the lower bound—i.e. decision makers are sensitive to the
lower winning probability—rules out the α = 0 case of this model, maxmax-EU. However, there is basically no
evidence for such preferences in the population.

7For instance, when the probability of red from the 2-color red-and-blue unknown urn is characterized by the
interval [0,1], a bet on red from this urn is evaluated as (1−α)u(z) under (2), which is less than the evaluation of
a bet on red from the known urn, 1

2 u(z), when α > 1
2 . However, the evaluation of a bet on the color of a ball drawn

from a 10-color urn of unknown composition, (1−α)u(z), is higher than that of a bet on the color of a ball drawn
from a 10-equiprobable-color known urn, 0.1u(z), whenever α < 0.9.
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is as in the α-maxmin EU model (2). It can also accommodate transformations of the probab-1

ility interval [p, p], taking W ([p, p]) = αϕ([p, p])+ (1−α)ϕ([p, p]) for α as above and some2

transformation ϕ taking probability intervals to probability intervals. Hence it covers cases3

where the subject’s ‘real’ probability interval is transformed, for instance to incorporate certain4

ambiguity attitudes, before being used for decision, as in Gajdos et al. (2008). As discussed5

in detail in Section 5 and Appendix B, the heart of the method applies canonically under such6

weightings or transformations.7

Hill (2023) sets out a formal framework that allows for axiomatic foundations for (2), as8

well as a range of generalizations.8 In particular, he shows that introducing ILs allows one9

to overcome the well-known problem of separating the α factor from the set of priors under10

α-maxmin EU (Ghirardato et al., 2004; Eichberger et al., 2011), and obtain complete identi-11

fication of the model. As discussed in more detail there (see notably Hill, 2023, Section 3.3),12

to the extent that the mixture coefficient reflects a taste (for ambiguity), the use of a single α13

(or W under (1)) in the evaluation of bets and ILs is consistent with the common practice of14

using a single utility function for the evaluation of both risky and uncertain prospects, or with15

the insistence in some parts of the ambiguity literature on the ‘portability’ of the parameters16

representing ambiguity attitudes across decision situations (see e.g. Marinacci, 2015, p 1051).17

2.4. Matching Probability Intervals18

To illustrate our approach, take, as in our EXP A, a bag containing 100 green and yellow chips,19

where the only information available about its composition comes in the form of four prior20

draws with replacement, one of which was green. Consider the event E: “the next randomly21

drawn chip will be yellow”. Concerning this event, a multiple-prior decision maker will form a22

probability interval [p(E), p(E)] on the basis of the information provided and her beliefs about23

the proportion of yellow chips in the bag; for instance, it might be [0.5,0.9]. The corresponding24

interval for the complementary event—which tracks the proportion of green chips in the bag—is25

[1− p(E),1− p(E)], i.e. [0.1,0.5] in this example. Our aim is to elicit the interval [p(E), p(E)]26

for event E.27

Standard matching probabilities do not suffice to reveal this subjective probability interval.28

Indeed, under α-maxmin EU, eliciting matching probabilities for the bets on yellow (E) and29

green (EC), MP(E) and MP(Ec), results in the following two equations30

8See Grant et al. (2019) for an axiomatisation of a special case of (1).
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MP(E) = α p(E)+(1−α)p(E),

MP(Ec) = α(1− p(E))+(1−α)(1− p(E)).
(3)

in three unknowns. Suppose, for instance, that the elicited matching probabilities for yellow1

and green were 0.66 and 0.26 respectively. Simple calculation reveals that this is consistent2

with the DM’s actual interval for yellow (E) being [0.5,0.9] if α = 0.6, but it would yield3

the interval [0.65,0.75] under α = 0.9. Since α is unknown, the probability interval for the4

target event is not uniquely determined by matching probabilities. To solve this identification5

problem, Hill (2023) supplements the formal setup of the original α-maxmin EU model with6

the possibility to calibrate subjective probability intervals against objective interval lotteries. As7

noted previously, in the current paper, the latter are operationalized through red-and-blue-balled8

urns with partially known composition.9

The decision maker’s probability interval for E can be mapped to a unique (objective) in-10

terval by finding the interval-valued urn [r,1− b] such that she is indifferent between betting11

on the yellow chip from the bag (E) and the red ball from the urn, and between betting on the12

green chip from the bag and the blue ball from the urn. Formally, this yields:13

(z, [r,1−b],0)∼(z,E,0), (4)

(0, [r,1−b],z)∼(0,E,z). (5)

We call [r,1−b] ∈ I such that indifferences (4) and (5) hold the matching probability interval14

(MPI) of the event E.15

Plugging these indifferences into (1) yields a pair of equations that are clearly satisfied by16

r = p(E), 1− b = p(E). Under the α-maxmin EU model (2) with α ̸= 1
2 , this is the unique17

solution (Proposition A.2, Appendix A): hence there is a unique MPI, which identifies the18

subjective probability interval [p(E), p(E)].9 As noted in Appendix B, under generic cases of19

the weighting or probability-interval transformation generalizations of α-maxmin EU discussed20

in Section 2.3, the MPI is also unique. So to elicit a subject’s probability interval for the event21

9More precisely, under (2) with α ̸= 1
2 , the indifferences yield the equations:

αr+(1−α)(1−b) = α p(E)+(1−α)p(E),

α(1− (1−b))+(1−α)(1− r) = α(1− p(E))+(1−α)(1− p(E)).
(6)

from which α drops out, yielding a unique solution for p, p.

10



[1, 1][0, 1]

[0, 0]

(0, [x, y], z) � (0, E, z)
(z, [x, y], 0) � (z, E, 0)

(z, [x, y], 0) ∼ (z, E, 0)
(0, [x, y], z) ∼ (0, E, z)

MPI

r

1− b

Figure 1: Matching Probability Interval in the space I of interval-valued urns, for an event E.

E under the main cases of (1), it suffices to find the MPI of E.1

The MPI can be conceptually illustrated on Figure 1. A point in the black-edged triangle,2

(x,y), represents the urn [x,y]—i.e. with at least proportion x of red balls and at least proportion3

1− y of blue ones. As such, it represents two interval lotteries: (z, [x,y],0), the bet on red from4

the urn, and (0, [x,y],z), the bet on blue. The red hatched area represents the upper contour set5

(under (2)) of the bet (z,E,0) in the space of interval lotteries corresponding to bets on red:6

i.e., the set of (x,y) such that (z, [x,y],0)⪰ (z,E,0). The blue hatched area is the upper contour7

set of the complementary bet (0,E,z) in the space of complementary ILs (corresponding to8

bets on blue): it is the set of (x,y) such that (0, [x,y],z)⪰ (0,E,z). The boundaries of these sets9

(the diagonal red and blue lines respectively) represent the indifference curves of (z,E,0) (resp.10

(0,E,z)), in the space of ‘red’ (resp. ‘blue’) ILs. The matching probability interval corresponds11

to the black point at the intersection of these two lines.12

Note that standard lotteries and urns with fully known composition correspond to the points13

on the diagonal (x= y) in Figure 1. So the MP of the bet on E is given by the point where the red14

indifference curve meets the diagonal; and similarly for the MP of Ec and the blue curve. It clear15

from the Figure that one cannot derive the subject’s probability interval from these MPs without16

knowing the slope of the indifference curves, and this is determined by the ambiguity attitude17

coefficient α in (2). This is a graphical representation of the previously discussed identification18

difficulty with MPs. By contrast, the MPI will coincide with the subjective probability interval,19

independently of the coefficient α .20
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Name Preferences Colour (in Figure 1)
R-B (z, [x,y],0)⪰ (z,E,0) & (0, [x,y],z)⪰ (0,E,z) Red & Blue
Wh (z, [x,y],0)⪯ (z,E,0) & (0, [x,y],z)⪯ (0,E,z) White (neither Red nor Blue)
R (z, [x,y],0)⪰ (z,E,0) & (0, [x,y],z)⪯ (0,E,z) Red
B (z, [x,y],0)⪯ (z,E,0) & (0, [x,y],z)⪰ (0,E,z) Blue

Table 1: Preference-based division of I

2.5. Elicitation of Matching Probability Intervals1

Our strategy for eliciting MPIs is based on an extension of the two-step MP method adopted by2

Abdellaoui et al. (2021, 2023), where a subject undergoes a ‘bisection’ binary-choice procedure3

followed by a ‘confirm-or-correct’ choice list. Whilst subjects’ payments depend solely on the4

choice list, the binary choice part serves as an aid to filling it in. Here, we develop an analogous5

two-step procedure that consists in a sequence of binary-choice questions followed by a ‘two-6

dimensional’ choice list, tailored for eliciting (two-dimensional) probability intervals instead7

of (one-dimensional) probability values.8

Binary-Choice Procedure. For each event, our subjects first undertake a chained sequence9

of binary-choice tasks (Section 3.2). Here we set out the general principles of this procedure,10

leaving full details for Appendix D.1. The logic can be illustrated on Figure 1, notably by11

dividing the space of interval-valued urns into four preference-defined areas, summarised in12

Table 1. The procedure is based on the following observation.13

Proposition 1. Suppose preferences are represented according to (2) with α > 1
2 , and let E be14

an event.15

a. For any [x,y] in the R-B region (i.e. such that the corresponding preferences in Table 116

hold, for E), p(E)≤ x and p(E)≥ y. Moreover, for any [x,y] in the Wh region, p(E)≥ x17

and p(E)≤ y.18

b. For any [x,y] in the R region (i.e. such that the corresponding preferences in Table 1 hold,19

for E), every [x′,y′] with x′ ≥ x and y′ ≥ y is also in R. Moreover, for any [x,y] in the B20

region, every [x′,y′] with x′ ≤ x and y′ ≤ y is also in B.21

It follows from part a. that if the experimenter has found an interval-valued urn [xRB,yRB]22

in the R-B region (i.e. with the preference pattern in Table 1, row 1), and a [xWh,yWh] in the23

Wh region, then the MPI is contained in the ‘box generated’ by these points, i.e. it is in the set24

{[x,y] : xWh ≤ x ≤ xRB,yRB ≤ y ≤ yWh}. The procedure works by searching the smallest such25

12



generated box for further points in R-B or Wh, in order to ‘reduce’ the size of the boxes and1

hence ‘home into’ the MPI. In this sense, it is analogous to the bisection procedure for MPs,2

where preferences indicate that the MP is in a particular interval, and the procedure searches to3

reduce the width of that interval.4

Note that a similar result to Proposition 1 a. does not hold for the R and B regions. However,5

by part b. it can be concluded, for any interval-valued urn [x,y] in R, that every point North-6

East of [x,y] is also in R; and similarly for an interval-valued urn in B. So, if the experimenter7

has just discovered an urn in R (i.e. the elicited preferences for that urn are as specified in8

Table 1, row 3), then, to seek a point in R-B or Wh, she need not look North-East of this point;9

and analogously for urns in B. The procedure works, after eliciting preferences for an urn in10

R and B, by performing a bisection along one-dimensional cuts of the space I guided by this11

observation, until an urn in R-B or Wh is found, whence the procedure in the previous paragraph12

applies again. Details are provided in Appendix D.1. In particular, as shown there (Proposition13

D.1), the procedure canonically converges to the subject’s probability interval for the event, not14

only under the α-maxmin EU model (2) but also under the generalizations discussed above (see15

also Section 5 and Appendices A and B.2).16

Note finally that the procedure used has an in-built ‘precision bias’. Whenever no urn in17

the R-B or Wh regions has been found, the procedure deliberately moves closer to the space of18

precise urns (see Appendix D.1). In this way, if there is any misclassification of subjects due19

to no urns being found in the R-B or Wh regions, the tendency would be for the procedure to20

represent them as more precise than they actually are.21

Two-dimensional Choice List Procedure. For each event, after the binary-choice questions,22

subjects face a two-dimensional choice list, already filled in according to their responses on23

the previous procedure. They may modify the preferences encoded on this choice list before24

confirming. Only the confirmed preferences qualify for payment: so it is essential that the25

mechanism realized by such choice lists is incentive compatible. We now set out the theory26

underlying the two-dimensional choice lists. It relies on the following Proposition.27

Proposition 2. Suppose preferences are represented according to (1). For any event E, and28

any [r,1−b] ∈ I , [r,1−b] is a matching probability interval of E if and only if29
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(z, [q,1−b],0)≻ (z,E,0) for all q > r,

(z, [q,1−b],0)≺ (z,E,0) for all q < r,
(7)

and1

(0, [r,q],z)≺(0,E,z) for all q > 1−b,

(0, [r,q],z)≻(0,E,z) for all q < 1−b.
(8)

To illustrate, consider any MPI [r,1−b] of an event E, so that the indifference (4) is satis-2

fied. Clearly, under (1), it follows that (7) holds. On Figure 1, this determines the preferences3

involving the ‘red’ ILs corresponding to the bold red (horizontal) line. To the left of the MPI,4

the bet on E is preferred to the IL corresponding to the bet on red from the urn [q,1− b] (i.e.5

with probability [q,1− b] of winning); to the right of the MPI, the IL is preferred to the bet;6

and at the MPI, the two are indifferent. Likewise, the indifference (5) concerning the com-7

plementary bet determines preferences involving the ‘blue’ ILs corresponding to the bold blue8

(vertical) line, with the MPI being the point on that line where preferences ‘switch’ from the9

bet concerning E to the IL. The red (horizontal) and blue (vertical) bold lines in Figure 1 are10

thus analogous to a pair of choice lists, and the MPI is the switching point on each of them. We11

henceforth refer to the combination of the two as a 2D choice list. By Proposition 2, we know12

that any urn that is a switching point on both branches of a 2D choice list is an MPI.13

Inspired by this observation, consider an incentivization mechanism in which a subject who14

confirms the interval-valued urn [r,1−b] for event E is remunerated as follows. Each urn [x,y]15

in the 2D choice list—i.e. each [x,y]∈{[x,y]∈I : y= 1−b}∪{[x,y]∈I : x= r}—determines16

a binary choice Φ[r,1−b],E([x,y]), defined as follows:17

Φ[r,1−b],E([x,y]) =


{(z,E,0),(z, [x,y],0)} if y = 1−b

{(0,E,z),(0, [x,y],z)} if x = r,y ̸= 1−b

(9)

In terms of Figure 1, if the urn is on the horizontal line going through [r,1−b] (e.g. the bold red18

horizontal line in the Figure, if [r,1−b] is the MPI), the choice is between the bet on the event19

and the bet on red from the urn; if it is on the vertical line going through [r,1− b], the choice20

is between the complementary bet and the complementary IL. The incentive scheme selects an21
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option for each of these possible choices: for the choice corresponding to urn [x,y] it selects1

φ[r,1−b],E([x,y]), defined by:2

φ[r,1−b],E([x,y]) =



(z,E,0) if y = 1−b, x < r

(z, [x,y],0) if y = 1−b, x ≥ r

(0, [x,y],z) if x = r,y < 1−b

(0,E,z) if x = r,y > 1−b

(10)

I.e. if the urn [x,y] has y = 1− b, x < r, then this selects the option (z,E,0)—the subject3

‘plays’ the bet on E—and similarly for the other cases. The incentive mechanism first draws an4

urn [x,y] at random from {[x,y] ∈ I : y = 1− b}∪{[x,y] ∈ I : x = r}, and hence the choice5

Φ[r,1−b],E([x,y]); it then pays the subject according to the outcome of the selected bet or IL,6

φ[r,1−b],E([x,y]). It follows immediately from Proposition 2 that this mechanism is incentive7

compatible in the sense of weak dominance.8

Corollary 1. Suppose preferences are represented according to (1), and let [r,1− b] be such9

that, for every urn [x,y] ∈ {[x,y] ∈ I : y = 1− b}∪{[x,y] ∈ I : x = r}, φ[r,1−b],E([x,y]) is a10

weakly dominant option in Φ[r,1−b],E([x,y]). Then [r,1−b] is a matching probability interval of11

E.12

In other words, among all probability intervals that the subject could report, only matching13

probability intervals are such that the option selected by the mechanism is (weakly) preferred,14

no matter the choice in the 2D choice list that is played ‘for real’. Hence implementing this15

incentive scheme on a subject’s confirmed 2D choice list incentivizes reporting her MPI for the16

event. Since precise probabilities (and SEU) are a special case of multiple priors (respectively,17

Eq. (1)), this mechanism functions equally for Bayesian decision makers, who are incentivized18

to report their precise probabilities. We set out the experimental implementation of 2D choice19

lists in Section 3.2.20

Note finally the depth of the analogy with choice lists for MPs. There, MPs are determined21

by the switching point, i.e. the maximum probability for which the subject prefers the bet22

on the target event over the lottery with that probability of winning. Similarly, the proposed23

probability-interval incentive mechanism elicits a single point, which is the switching point on24

each branch of the 2D choice list. Moreover, in standard MP choice lists, the switching point25

determines the preferences in the rest of the choice list by stochastic dominance. Similarly,26
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(Frequency, Sample size)
Group A Group B

Choice-based MPI (0.50, 4) (0.25, 20) (0.50, 100) (0.25, 4) (0.50, 20) (0.25, 100)
Stated probability interval (0.25, 4) (0.50, 20) (0.25, 100) (0.50, 4) (0.25, 20) (0.50, 100)

Table 2: Prior information faced by subjects in EXP A: frequency of green chips in the previous
sample, and sample size.

Proposition 2 guarantees that the elicited point determines the other preferences in the 2D1

choice list according to a probability-interval analogue of stochastic dominance, which states2

that, between ILs (z, [r,1−b],0) and (z, [r′,1−b],0), decision makers prefer the prospect with3

higher lower probability.10 Finally, in standard MP choice lists, this property underlies the4

incentive compatibility: it ensures that only the MP is such that, no matter the choice played5

‘for real’ from the choice list, the selected option is preferred by the subject. Corollary 16

establishes an analogous result for MPIs and the proposed incentive mechanism.7

3. Experimental Methods8

We applied our probability-interval elicitation method in three experiments. One, EXP A, eval-9

uated the effectiveness of our method in a simple setup using artificial sources of uncertainty.10

The target events were the color of the next chip randomly drawn from bags filled with 10011

yellow and green chips, where the only information about each bag’s content came from earlier12

draws conducted with replacement. The other two experiments, EXP N1 and EXP N2, involved13

uncertain events stemming from natural sources: the minimum winter temperatures in Paris and14

Sydney in EXP N1, and the test scores for two admission pathways at a French Business School15

in EXP N2.16

3.1. Subjects17

233 students completed the experiment: 101 from the INSEAD-Sorbonne Behavioral Lab18

(Paris, France) for experiment EXP A, 80 from university of Paris 1 for EXP N1 and 52 from19

HEC Paris Business School for EXP N2. Subjects’ choices were collected through computer-20

based individual interviews that lasted about one hour in each study. Each individual interview21

started with a video presentation of the experimental instructions, followed by comprehension22

10This ‘Lower Stochastic Dominance’ property, which is equivalent to the assumption (Section 2.3) that W is
strictly increasing in the lower bound, is behind the preference patterns in Proposition 2; see Appendix A.
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questions and one training MPI elicitation task (on an event not involved in the ensuing ex-1

periment). Appendix D.2 contains screenshots and a link to the video instructions for EXP2

A.11 In all experiments, subjects were told that there were no right or wrong answers, and that3

they could ask any question regarding the experiment. Differences in experimental instructions4

between the experiments are explained in the sequel.5

3.2. Artificial sources of uncertainty6

Sources and choice tasks. The sources of uncertainty in EXP A were physical, opaque,7

labeled bags containing 100 green or yellow chips, with prior information about the compos-8

ition coming in the form of prior draws with replacement (Appendix D.2). Different bags9

corresponded to different prior information, i.e., different sample size and frequency of green10

in the preceding draws.11

Subjects were randomly allocated to one of two groups. The tasks for each group are12

specified in Table 2. Each group carried out two blocks of tasks. Each block involved three13

different bags. For a given group of subjects and a given bag in the choice-based elicitation14

block, subjects’ probability intervals for the event that the next chip drawn from the bag was15

green were elicited using the proposed method. Then the subjects were asked to state their16

(precise) probability that the next chip was green (on a one-cursor slider). In the stated block,17

for each bag, subject were asked to state their probability interval for the next chip being green18

(on a standard, two-cursor slider), and then, as for the choice-based task, give their (precise)19

probability. The order of the bags within blocks was randomized, as was the order of the blocks20

in each group. As is clear from Table 2, all subjects provided probability intervals for each bag:21

for one group, these were elicited using our method; for the other they were stated directly.22

Elicitation procedure. As noted in Section 2.5, our choice-based method for eliciting prob-23

ability intervals follows the general two-step structure adopted by Abdellaoui et al. (2021, 2023)24

for MP elicitation: a binary-choice procedure is first used to aid subjects to fill in responses on25

a choice list, which they then confirm or modify.26

More specifically, for each event E (e.g. drawing green from a specific bag), we first ap-27

plied the binary-choice procedure set out in Section 2.5 and Appendix D.1. Each stage of the28

procedure consisted of two binary choices involving bets concerning E and bets on the color29

11Beyond those who completed the experiment, 19 subjects in EXP A, 12 in EXP N1 and 0 in EXP N2 did not
pass the comprehension check. They received a flat payment but were not given the possibility to continue the
experiment.

17



(a) Initial setting

(b) After having moved red cursor (c) After having clicked on left option

Figure 2: 2D confirmation choice list: displays.

of a ball drawn from a partially known 100-ball urn with a specified minimum proportions b1

and r ≤ 1− b of blue and red balls, respectively. All bets involved the same winning and los-2

ing outcomes. For each event and urn used, we collected the subject’s choice in the decision3

between the bet on the event E and the bet on the next ball drawn from the urn being blue;4

in the subsequent choice question, we elicited their choice in the decision between the bet on5

Ec (or against E) and the bet on the next ball drawn from the same urn being red. (See Fig-6

ure D.6, Appendix D.2 for illustrative examples of binary choices in our experiments.) These7

elicitations situated the urn in one of the areas in Table 1. The urn proposed in the next stage8

depended on the preferences elicited in the previous choices according to the binary-choice9

procedure (Section 2.5 and Appendix D.1). The subjective probability interval for E elicited10

at the end of the procedure is deduced from the preferences over such bets, as specified in the11

cited sections. The procedure continued until the interval was estimated to a precision of 0.1512

if it was not degenerate, 0.05 if it was degenerate (i.e. corresponded to a precise probability), or13

up to 12 stages, whichever came first. The probability interval produced was fed into the next,14

two-dimensional choice-list ‘confirmation’ step of the elicitation procedure.15

To illustrate the ‘confirmation’ procedure, Figure 2a shows the screen that a subject would16

see after the binary-choice procedure returns an interval [0.25,0.75] for the draw of a green ball17

from the specified bag. The corresponding 2D choice list is materialized by means of a two-18

cursor scrollbar. The red and blue cursors in the scrollbar determine minimum number of red19
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Sources Events Eti = {t ′ ∈ T : t ′ ≤ ti} for ti:

EXP N1 Paris −2,2,5,8
Sydney 15,18,20,22

EXP N2 Maths 7,10,12,15,17
Contraction 7,10,12,15,17

Table 3: Natural sources of uncertainty and events in EXP N1 and EXP N2

and blue balls respectively, hence specifying the urn on the right. The chosen option between1

the bet on the bag (on the left) and the bet on the specified urn is highlighted. By moving the2

cursors, the subject can scan the choices associated to different urns. In particular, when moving3

the red cursor, the blue cursor remains fixed at the pre-specified value: so the subject scans all4

the urns with the same minimum number of blue balls but differing minimum numbers of red5

balls. In terms of Figure 1, this corresponds to the choices represented by the horizontal line6

through [0.25,0.75]. When the red cursor is set far to the left, the minimum number of winning7

red balls in the urn is low, and the bet on the urn is less attractive (this corresponds to urns on8

the left of the horizontal line). As the red cursor is shifted further to the right, the minimum9

number of winning red balls increases, and the bet on the urn becomes more attractive: as10

indicated on Figure 1, the preference switches in favour of the bet on the urn at some point.11

Figure 2b illustrates the state of the scrollbar when the red cursor is moved to 52. The subject12

can modify her choices, for any setting of the red cursor, by clicking on the preferred bet. As13

illustrated in Figure 2c, which shows the result of clicking on the bag for the previous cursor14

setting, this updates the slider. Note in particular that the horizontal lines above and below the15

slider, which indicate the preferred options for each choice, are updated. Similarly, the subject16

can scan and modify choices involving urns with different minimum number of blue balls (for17

a fixed minimum number of red balls) by moving the blue cursor. See Appendix D.2 for further18

details, as well as a link to an online version of EXP A.19

After any modifications, subjects had to reconfirm all of the associated choices, by mov-20

ing one cursor then the other, before continuing on to the next phase of the experiment. The21

precision of the scrollbar, and hence subject responses, was to the nearest 0.01 (to the precise22

minimum number of red and blue balls out of 100 respectively).23

3.3. Natural sources of uncertainty24

Sources. Each of EXP N1 and EXP N2 involved two comparable natural sources of uncer-25

tainty. The type of source in EXP N1 was the minimum daily temperature over the previous26
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November–March period; the sources differed in the city whose temperature was of interest—1

Paris, where the experiment was carried out, and Sydney. The typical winning event Eti in this2

case was of the form: “the minimum temperature on day D in Paris (or Sydney) was less than3

or equal to ti”, where D was a randomly chosen day in the specified period (see Section 3.4).4

For each source in EXP N1, we chose temperature value ti’s close to the 10%, 33%, 66% and5

90% percentiles of the true distribution (Table 3).6

EXP N2 involved marks in two of the previous year’s entrance exams for admission at un-7

dergraduate level to a prominent French business school, HEC Paris.12 The subjects in the8

experiment had sat these exams either in the previous Spring or in the one before. The sources9

differed in the exam considered: a Maths exam, which is generally considered to be ‘objectively10

marked’, and the ‘Contraction’ exam—a summary of a philosophical or literary text—whose11

marking is considered more ‘unpredictable’ by candidates and students. Indeed, the marks12

in the latter exam have higher variance.13 The typical winning event Eti here corresponds to:13

“candidate C obtained a mark less than or equal to ti in the Maths (or Contraction) exam” for a14

randomly drawn candidate C. We used the same values for both sources (Maths and Contrac-15

tion), picked so they would seem to reasonably scan the range and correspond to comparable16

points in the true distribution over Contraction scores, where they were at the 3%, 15%, 33%,17

68% and 86% percentiles (Table 3).14
18

Choice tasks in EXP N1. Each subject undertook three blocks of tasks. Each of the first19

two blocks concerned a single source (Paris or Sydney), and involved the elicitation of the20

probability intervals for each of the events in the source (Table 3). The order of these two blocks21

was randomized. In each block, the subject first declared, in an non-incentivized manner and22

using a scrollbar, her estimated maximum and minimum values for the minimum temperature23

on the unidentified day D (see Section 3.4). This is standard procedure in expert elicitation for24

unbounded sources, aimed at combating anchoring bias (Morgan, 2014), and played no role in25

our elicitation. Then the elicitation procedure set out in Section 2.5 and implemented as in EXP26

A (Section 3.2) was applied for each event in the source. Within each block, the two extreme27

events (i.e. lowest and highest temperature points) were asked first, in a random order, followed28

by the other two events, in a random order.29

12All candidates to this school at undergraduate level must apply in an entrance stream, each of which involves
a different set of exams. The exams whose marks were involved in this experiment were sat by all candidates in
both the ‘ECS’ (scientific) and ‘ECE’ (economics) streams. All subjects in this experiment were students admitted
to the school through one of these streams.

13The variance of marks for Maths is 3.77, where it is 9.92 for Contraction.
14They were at the 0%, 0%, 2%, 21% and 60% of the true distribution of Maths scores.
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The final block involved the elicitation of MPs for the events in Paris treatment, using the1

two-step bisection-then-choice-list procedure from Abdellaoui et al. (2021) (see Appendix D.22

for details). MPs were elicited for each event Eti in this source and its complement Ec
ti (Table3

3). The order of elicitations was randomized in this block.4

Choice tasks in EXP N2. Each subject undertook two blocks of tasks. Each of the blocks5

concerned a single source (Maths or Contraction), and involved the elicitation of the probability6

intervals for each of the events in the source (Table 3). The order of the blocks was randomized,7

as was the order of the events in each block. In each block, the elicitation procedure set out in8

Section 2.5 and implemented as in EXPs A and N1 was applied for each event in the source.9

Each block ended with an omnibus confirmation screen, in which the interval-valued urns eli-10

cited for each of the events in the source were displayed in graphical form (see Appendix D.211

for details). The subject was given the opportunity to select and modify any of her responses12

for the events in the source. This screen, the sources and the larger number of events elicited13

per source (see Table 3) were the central differences with respect to EXP N1.14

3.4. Incentivizing Subjects15

Participants in all studies received a flat payment of AC10. Additionally, a random incentive16

system was implemented, which was entirely analogous to those standardly used to implement17

elicitation of MPs. In EXPs N1 and N2, after the presentation of the instructions and before the18

beginning of the experiment, the subject chose a number from a given range, which identified an19

individual case of the variable of interest (the day D, if the source was minimum temperature;20

the candidate C, if the source was the mark). The exact case identified was specified according21

to a spreadsheet that would only be revealed to the subject at the end of the experiment. At22

the end of each of the three experiments, a choice list (a 2D choice list in EXPs A and N2; a23

2D choice list or MP-choice list in EXP N1) and choice on it were selected at random by the24

computer.15 The subject was then paid according to the decision she had made on that choice.25

If she had chosen, say, the bet on the event that the minimum temperature in Paris is less than26

or equal to 2◦C, then the day which she chose was revealed, as well as daily temperature data27

for the November–March period, and she won if the minimum temperature on that day was28

indeed 2◦C or less; if not, she lost. Or, in EXP A, if she had chosen the bet that the next29

15More precisely, for the selected choice list, a color—red or blue—was selected at random, and then an urn on
the branch of the 2D choice list corresponding to that color was selected at random.
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chip in a certain bag was green, then a chip was drawn randomly from that bag and she won1

according to its color. If she had chosen the urn, then she composed the appropriate urn—she2

counted the specified minimum numbers of red and blue balls, with the remaining balls coming3

from pre-constructed Ellsberg urns (of unknown composition). Then a ball was drawn from the4

constructed urn, and she was paid according to whether she bet on the color of that ball or not.5

All bets yielded AC20 if won, and nothing otherwise.6

4. Results7

4.1. Performance and Validation8

Figure 3 plots the 25%, 50% and 75% quantiles (Interquartile Ranges, i.e. IQRs) of the upper9

and lower probabilities and CDFs for all events elicited used our method and all experiments10

(see Table C.1 in Appendix C.1 for basic descriptive statistics). This Figure already gives some11

early indications about our results, and the performance of our elicitation method.12

EXP A. First of all, Panel (a) of Figure 3 shows how the ‘balance’ of evidence, as repres-13

ented by the observed frequency of green chips in EXP A, affects the position of the elicited14

probability intervals: they are higher when the observed frequency is larger. For each sample15

size, unpaired t-tests and Mann-Whitney tests reject the null hypothesis of equal midpoints16

of the elicited interval for different observed frequencies in the previous draws (p < 0.001 in17

all cases), with the means being higher for higher frequencies. Since one would expect such18

sensitivity of posterior beliefs, the method passes this first ‘validation’ check.19

Another possible test for the method, that can be applied under the artificial source of uncer-20

tainty, is the comparison with the posterior probabilities of a Bayesian who updates a uniform21

prior with the same information by Bayes rule. For 80% of events, across all subjects, this22

‘objective Bayesian’ probability was contained in the elicited probability interval, suggesting23

that in the vast majority of cases, subjects did not rule out the Bayesian probability in forming24

their posterior probability intervals. Moreover, even in the cases where the Bayesian probability25

was not in the interval, it was not far, with the average minimal distance to the interval among26

instances where the Bayesian probability was not contained in it being less than 0.06. Unsur-27

prisingly, the midpoints of the elicited intervals were substantially correlated with the Bayesian28

probability: the Spearman correlation was 0.65.29
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Figure 3: IQRs of upper and lower probabilities and CDFs

EXPs N1 & N2. The experiments eliciting interval-valued CDFs for natural sources of un-1

certainty suggest that the general message of validity extends to such contexts. Echoing the2

sensitivity to frequencies found in EXP A, the upper and lower CDFs in the other experiments3

differ across subjects and events—thus suggesting the consistency of the method. A validity4
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(a) EXP N1 (Beta distribution: Min temperature)

00 7 10 12 15 17 20
Grade in Maths

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ob

ab
ili

ty

00 7 10 12 15 17 20
Grade in Contraction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ob

ab
ili

ty

(b) EXP N2 (Truncated Normal distribution: Grade)

Figure 4: Bayesian estimation of lower and upper CDFs: plots of 1000 samples from MCMC.

test in this context would examine whether the upper and lower CDFs are increasing—an issue1

that can be investigated using the Kendall rank.16 As reported in Table C.5, Appendix C.1, the2

median Kendall τb is far greater than 0 for all sources, pointing to increasing upper and lower3

CDFs. In EXP N2, where subjects were given the opportunity to confirm their replies on all the4

2D choice lists for a source (Section 3.3), CDFs were strictly increasing (Kendall rank of 1) for5

the vast majority of subjects. In EXP N1, there were more violations of monotonicity; however,6

the median Kendall ranks for upper and lower CDFs in the Paris treatment were similar those7

obtained under the more standard MP elicitation (Table C.5). This suggests that violations were8

not unique to the probability-interval elicitation method proposed here.9

Finally, we re-analyse the data from these experiments under a standard Bayesian approach,10

estimating hyperparameters for upper and lower CDFs using a MCMC procedure. Figure 411

plots 1000 MCMC samples for each of the upper and lower distributions, for each source,12

under the parametric distributions for upper and lower CDFs that offer the best fit (see Tables13

16The Kendall τb is an indicator of ordinal association: the value 1 indicates that the CDFs or MPs are strictly
increasing; 0 suggests that there is no association between the elicited probability and the size of the event; −1
indicates a strictly decreasing relationship between the two.
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C.16, C.15 and C.17; Appendix C.2). They suggest that the proposed elicitation technique1

supports parametric estimation of subjective probability intervals in the population, insofar as2

they chime with expectations given the nature of the events. For instance, they suggest that3

the dispersion of subjective upper and lower probabilities is larger for the temperature source4

(EXP N1) than the grade source (EXP N2), which could be related to the fact that all subjects5

in EXP N2 had sat both exams, and were very interested in the marking, several months before.6

Also, within EXP N1, there is more dispersion in the estimated distributions for Sydney than7

for Paris, as would be expected given the less familiar nature of the former source for Paris8

subjects.17
9

4.2. Imprecision10

Overall Imprecision. Our raw data (Figure 3) suggest that subjects’ beliefs are often impre-11

cise: i.e. there is a gap between their upper and lower probabilities, as indicated in Figure 3a12

by the arrows connecting the median upper and lower probabilities for each bag. For further13

analysis, we define a subject’s Imprecision concerning an event E to be the width of her eli-14

cited probability interval for E, i.e. p(E)− p(E). A subject’s Average Imprecision across all15

elicited events in EXP A, or across all elicited events in a source in EXPs N1 and N2, gives16

an indication of how imprecise the subject’s beliefs are, on average, across the relevant events.17

Naturally, an SEU decision maker will assign precise probabilities to all events, and hence have18

imprecision 0 (for all events and sources).19

Figure 5 displays the 25%, 50% and 75% quantiles, and max and min subject-level Average20

Imprecision across all sources in all experiments (see also Table C.7, Appendix C.1). It clearly21

suggests a prevalence of imprecision, with mean and median Average Imprecision greater than22

0.1 for most sources and experiments. Binomial tests reject the hypothesis of equal probability23

for the Average Imprecision to be equal to vs. greater than 0 for each source (p < 0.001 in all24

cases), with a clear majority of subjects—99 out of 101 in EXP A, 79 out of 80 in EXP N1,25

and 52 out of 52 in EXP N2—having strictly positive Imprecision on average. The data on the26

number of precise events—events for which the subject’s probability interval has zero width—27

tells a similar story, with not more than around 5% of subjects giving precise probabilities for28

all events in a single source (Table C.8, Appendix C.1).18
29

17More precisely, it is clear from Tables C.17a and C.17b that the standard deviations of the parameters for the
Paris source are lower than for Sydney.

18Further analysis, reported in Appendix C.1, confirms that the observed imprecision in elicited probability
intervals cannot be explained by imprecision in the elicitation procedure.
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Figure 6: IQRs of Imprecision at varying frequencies and sample sizes, EXP A

Information and familiarity. A reasonable hypothesis is that, ceteris paribus, subjects’ be-1

liefs are more imprecise concerning events with which they are less familiar, or about which2

they feel as if they have less knowledge or information. In terms of multiple priors models, this3

corresponds to wider probability intervals for events for which there is less information. Given4

the explicit control on the information available via the observed sample size, EXP A allows5

for a particularly clear examination of the effect of information on imprecision.6

As is clear from Figure 6, which displays the 25%, 50% and 75% quantiles, and max and7

min Imprecision across subjects for each frequency and sample size observed, Imprecision de-8

creases with sample size. Recall (Table 2, Section 3.2) that every subject’s interval was elicited,9

for a given frequency, at sample sizes 4 and 100, so the relationship between Imprecision and10
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(a) EXP N1 (b) EXP N2

Figure 7: CDFs of Average Imprecision per source across subjects

information can be tested at a within-subject level. Paired t-tests reject the null hypothesis of1

equal Imprecision across these sample sizes, for both frequencies explored (p < 0.001 in both2

cases). Binomial tests of the null hypothesis of equal chance of one Imprecision being higher3

come to the same conclusion (p < 0.001 in both cases), with 49 out of 51 subjects (respectively4

45 out of 50 subjects) having a more imprecise interval for the smaller sample size at observed5

frequency 0.5 (resp. 0.25). That the proposed elicitation method captures an expected relation-6

ship between imprecision and information in the carefully controlled environment of EXP A7

further bolsters its credentials.8

Whilst allowing for less control, the natural sources of uncertainty used in EXPs N1 and9

N2 also support differences in perceived information, with (Paris-based) subjects likely to be10

less familiar with the weather in Sydney than that in Paris, and the Contraction exam in EXP11

N2 generally being considered to be ‘less predictable’ than the Maths one (Section 3.2). The12

CDFs of the Average Imprecision per source across subjects, plotted in Figure 7, suggest a13

relationship between imprecision and familiarity or predictability of the source. The CDF for14

Contraction—known as the less predictable exam—is entirely to the right of that for Math,15

indicating a larger Average Imprecision at the subject level. Similarly, the CDFs for Sydney—16

the less familiar source—is to the right of that for Paris for a large range of values, suggesting17

that more imprecision for this source. A paired t-test barely fails to reject the null hypothesis18

of identical Average Imprecision across the sources in EXP N1 (p = 0.0895), whilst it rejects19

it for EXP N2 (p = 0.0016). A Binomial test comes to similar conclusions (p = 0.576 for EXP20

N1; p = 0.017 for EXP N2), with 45 out of 80 (resp. 35 out of 52) subjects having a more21

imprecise interval on average for Sydney in EXP N1 (resp. Contraction in EXP N2).22
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Event-level Imprecision. We also investigate imprecision at the event level within sources in1

EXPs N1 and N2. One-way ANOVAs of the Imprecision (dependent variable) against the event2

(factor) reject the null hypothesis of identical imprecision across all events for the sources in3

EXP N2 (p < 0.001 for Maths; p = 0.003 for Contraction), whilst failing to reject it for the4

sources in EXP N1 (Table C.9, Appendix C.1). These conclusions are also illustrated in CDFs5

of the Imprecision for each elicited event in each source, across subjects (Figure C.1, Appendix6

C.1). This suggests not only that imprecision is widespread, but that imprecision may be event7

dependent within sources, as one would expect if some events are intuitively more uncertain8

than others. For instance, the least imprecise event in EXP N2 involves, for both sources, the9

lowest grade, where many subjects are presumably more sure of their judgements.10

In summary, our method reveals that, when beliefs are elicited with a method allowing for11

(non-degenerate) probability intervals, imprecision is widespread, at least for the events con-12

sidered here. Crucially, we recover an expected relationship between imprecision and perceived13

information in both controlled artificial sources and natural ones. This can be seen as providing14

further indirect evidence for the solidity of the proposed elicitation method. Finally, at least15

within some sources, the extent of imprecision may depend on the event.16

4.3. Matching versus Stated Probability Intervals17

Recall that in EXP A, the same events (concerning bags as characterised by frequencies and18

sample sizes) were elicited across different subjects using different methods: some subjects19

underwent the proposed incentive-compatible method, while others were asked for stated prob-20

ability intervals, as in Giustinelli et al. (2022). This permits between-subject comparison of the21

results of interval elicitation under the two methods.22

Figure 8 displays the 25%, 50% and 75% quantiles, and min and max of the distribution23

of the interval midpoints and Imprecision across subjects, for each event (concerning a bag24

characterised by frequency and sample size) and elicitation method. In the aggregate, the stated25

intervals are roughly comparable to those elicited under the proposed incentive-compatible26

method for most events, though the dispersion across subjects may differ at some points. Given27

the theoretical well-foundedness of the method developed here, this could be understood as28

providing validation for the use of stated intervals in large-scale field studies aimed at eliciting29

aggregate characteristics.30

The Figure does however suggest some interesting differences between the intervals elicited31

by our method and stated intervals. For one, there is a greater dispersion in the position of inter-32
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Figure 8: IQRs of probability interval midpoints and Imprecision across frequencies and sample
sizes in EXP A, for the proposed choice-based elicitation method and stated intervals.

vals, as is clearly visible on the plots of the midpoints in Figure 8a. This is particularly notable1

for the ‘symmetric’ case of frequency 0.5, which are more tightly centred on the midpoint of2

0.5 under the choice-based elicitation method. More importantly, the imprecision tends to be3

lower under incentive-compatible elicitation as compared to stated intervals, especially when4

there is lots of information (Figure 8b). For instance, both unpaired t-tests and Mann-Whitney5

tests reject the null hypothesis of equal imprecision for both frequencies under sample size 1006

(p < 0.001 in all cases), though this is not the case for smaller sample sizes. This suggests that7

the expected link between information and imprecision is tighter for intervals elicited under our8

method. Moreover, it hints that the use of stated interval elicitation may tend to overestimate9

imprecision, especially in information-rich environments.10

Moreover, we can undertake analysis at the individual subject level, using the Average11

Imprecision, defined in Section 4.2, for each subject and each elicitation method. The Spear-12

man correlation between subjects’ Average Imprecision under our elicitation method vs stated13

probabilities intervals is 0.23 (p < 0.05), suggesting that the stated method does fairly well at14

identifying subjects whose intervals are wider on average.15

4.4. Stated probabilities, matching probabilities and the α-maxmin EU16

mixture coefficient17

Recall that, in EXP A, subjects provided their stated (precise) probabilities for the events;18

comparison with the elicited probability intervals may provide another ‘sanity check’ for the19

method. For 77% of events, across all subjects, the stated probabilities were contained in the20

intervals elicited by our method; this figure rose to 81% if one removes stated probabilities21
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suggesting limited effort on the part of subjects.19 Across such responses, stated probabilities1

were strongly correlated with the midpoints of the elicited intervals (Spearman correlation of2

0.49).20
3

Further insight can be gleaned from EXP N1, which contained a choice-based elicitation of4

MPs for the events in the Paris source (Section 3.3). As noted in the Introduction and Section5

2.4, under the α-maxmin EU model (2), MPs for an event and its complement generate a pair6

of equations (Eq. (3)) that cannot be solved for α and the upper and lower probabilities of the7

event in general. However, drawing on the elicited MPs and our elicitations of upper and lower8

probabilities, they can be used to elicit the mixture coefficient α . Under analysis using the raw9

data, the median α across subjects is 0.80 (Table C.19, Appendix C.3); a Bayesian estimation10

of the α in tandem with the lower and upper CDFs (see Appendix C.2, Table C.17a) yields11

mean value 0.81. As discussed at more length in Section 5, this is, to our knowledge, the first12

direct choice-based elicitation of the α in the α-maxmin EU model that fully controls for the13

set of priors by eliciting the relevant information about them without invoking supplementary14

assumptions. Moreover, it is consistent with the findings for stated probabilities in EXP A: for15

α > 0.5, the MP of an event is below the midpoint of the corresponding probability interval.16

5. Discussion17

Several general conclusions emerge from our implementation of the proposed multiple-prior18

elicitation method over a range of different sources of uncertainty. The first concerns its feasib-19

ility and validity. The method produces probability intervals that are reasonable: they are sens-20

itive to the aspects of available information (in experimental contexts where that is controlled),21

and in general consistent with ‘objective’ (Bayesian update) probabilities where available. The22

second concerns the extent and determinants of imprecision. Although precise probabilities23

are permitted by our procedure, many subjects’ elicited probability intervals are imprecise –24

they do not reduce to a single probability value – for the events considered here. Crucially,25

we recover an expected relationship between imprecision and perceived information in both26

controlled artificial sources and natural ones. This can be seen as providing further indirect27

19More precisely, recalling that the stated probability task was not incentivised, and that it was completed on a
one-cursor slider (Section 3.2), in just under 10% of cases, subjects provided stated probabilities that were very
close to the default slider setting of 0. The reported proportion removes all responses below 0.1 (noting that the
lowest observed frequency is 0.25).

20Moreover, stated probabilities were typically close to, yet below, the midpoints of the corresponding elicited
intervals: in the mean, stated probabilities were 0.05 less than the midpoints.
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evidence for the solidity of the proposed elicitation method.1

Our third general conclusion concerns the comparison of our method with probability in-2

tervals stated directly by subjects. Several studies have compared different methods for precise3

probability elicitation in laboratory settings (e.g. Trautmann and Kuilen, 2015; Hollard et al.,4

2016). These could be used to ground and improve belief elicitation beyond the lab. After all, if5

a simpler method yields similar results to a more complex one with better properties – in terms6

of incentive compatibility, for instance – then such comparisons can bolster confidence in the7

use of the former method in the field. Our between-subject comparison in EXP A between8

the proposed elicitation method and stated probability intervals is the first such exercise for9

multiple prior or imprecise probability beliefs, to our knowledge (see also the related literat-10

ure discussion below). It suggests that, in aggregate, stated probability-interval methods give a11

fairly good approximation to the intervals provided by our choice-based method, though they12

may overestimate the extent of imprecision in information-rich environments. Whilst this is a13

first study, and others are doubtless required, this bodes well for the use of stated probability-14

interval methods in the field (e.g. Giustinelli et al., 2022), as well as for the solidity of their15

conclusions.16

Finally, as concerns the well-known identification problem for the α-maxmin EU model,17

we draw on our probability-interval elicitation to perform the first elicitation of the model’s18

mixture coefficient that is fully general and controls for beliefs (see discussion below).19

We now discuss the robustness of our procedure, related literature, and some directions for20

future development.21

Robustness. Although Hurwicz α-maxmin EU is one of most general decision models in the22

literature taking as belief component a set of priors, the core of our method applies beyond this23

model. As set out in Sections 2.3–2.5, it operates on a general model (Eq. (1)) that can incor-24

porate probability weighting in the style of Prospect Theory (Wakker, 2010) or transformations25

of probability intervals in the style of Gajdos et al. (2008). More precisely, the notion of MPI26

remains well-defined for all such extensions, and the decision maker’s subjective probability27

interval is always a MPI (Section 2.4). Moreover, MPIs are essentially unique for generic cases28

of such extensions (Appendix B). The incentivization mechanism, which is implemented in the29

2D choice list part of the method, is incentive compatible under the most general form of model30

(1), as evidenced by Proposition 2 and the accompanying discussion in Section 2.5. So it applies31

not only under α-maxmin EU, but also under the probability weighting or probability-interval32

transformation generalizations just mentioned. As concerns the first, binary-choice part of our33
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method, although Proposition 1 underlying it is stated under α-maxmin EU with α > 1
2 , it is1

actually a corollary of a stronger result (Proposition A.1, Appendix A). This result covers the2

aforementioned generalizations under conditions analogous to α > 1
2 (Appendix B). Moreover,3

as discussed in Appendix B, there is independent evidence that such conditions hold for most4

of our subjects. Note that the generality of the second, 2D choice list part of the procedure is5

more important, for this is the part that counts for incentivizing subjects’ responses (Sections6

2.5 and 3.4). Finally, the method also applies under decision models that do not belong to the7

family (1), such as the multiple-prior minimax expected regret model (Appendix B, footnote8

1).9

The 2D choice list mechanism is incentive compatible in the sense of weak dominance10

(Corollary 1, Section 2.5). This demands, for the reported interval-valued urn [r,1−b], that, for11

every choice between the bet on red from an urn [x,1−b] and the bet on the event E, the subject12

prefers the option selected by the incentive mechanism; and similarly for choices between bets13

on blue from urns [r,y], for varying y, and the bet against E. The set of choices between the14

bet on the event and bets on urns with varying minimal numbers of red balls forms a branch15

of the 2D choice list, and can itself be thought of as a (standard one-dimensional) choice list.16

The weak-dominance notion of incentive compatibility focuses on the choices in this list in17

isolation from the way the number of blue balls b is set; and similarly for the other branch. Our18

implementation was designed to favor such isolation, notably via the realization of 2D choice19

lists by a single scrollbar with two cursors (Figure 2, Section 3.2 and Appendix D.2). Visually20

very different from Figure 1, this presentation is less suggestive of opportunities for strategically21

reporting the interval to influence the set of choices used for remuneration. Notwithstanding22

this, the extent to which such strategic reasoning has been employed by the subjects in our23

experiments is ultimately an empirical question, and we treat it as such. On this front, our24

elicitation method has the advantage that such reasoning leads to easily recognizable choice25

patterns. As discussed in Appendix B.2, for a subject represented by (2) with α ∈ (0,1) and26

any set of priors, her optimal response to the 2D choice list task when reasoning strategically21
27

is one of the intervals [0,0], [0,1], [1,1]. However, no subjects gave such responses for all events28

elicited, with only one subject across all three experiments giving such an interval for more than29

half of the elicited events (Table C.6, Appendix C.1; see Appendix B.2 for further details). This30

suggests that strategic reasoning is extremely infrequent among our subjects.31

21As set out in the cited Appendix, under strategic reasoning, the subject considers the choice of MPI as a choice
of a (second-order) lottery over ILs and particular bets for or against E.
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Related literature. Our elicitation method relates to existing experimental and theoretical1

literature on multiple prior models, and the α-maxmin EU model in particular. Part of this2

literature is concerned with testing or comparing such models (e.g. Hey et al., 2010; Baillon3

and Bleichrodt, 2015); by contrast, the aim here is to elicit probability intervals in the context4

of a general multiple prior model. Likewise, there is a literature using matching probabilities or5

certainty equivalents to study willingness to bet on objectively-given probability intervals (e.g.6

Baillon et al., 2012; Chew et al., 2017) . The present paper, by contrast, uses such interval-7

valued urns with the distinct aim of eliciting subjective probability intervals.8

Multiple prior beliefs are most relevant in situations where agents typically do not hold pre-9

cise probability distributions determining preferences, so to be generally applicable, a multiple-10

prior elicitation method should avoid assuming underlying precise probabilities. The assump-11

tion that subjects have precise probabilistic beliefs which completely determine the contri-12

butions of events to their (potentially non-expected utility) preferences is called probabilistic13

sophistication (Machina and Schmeidler, 1992; Chew and Sagi, 2006). As emphasized in the14

Introduction, our method avoids all assumptions of this sort. This arguably sets it apart from15

much of the theoretical literature and virtually all of the experimental literature on multiple16

prior models.17

On the theory side, the challenge of incentive-compatible elicitation under α-maxmin EU18

(2) is compounded by identification issues, arising from the fact that different pairs of mixture19

coefficient α and sets of priors can represent the same preferences (see Introduction and Section20

2.4). Proposed approaches include pinning down the set of priors using ‘unambiguous prefer-21

ences’ (Ghirardato et al., 2004), though this has problems in finite state spaces (Eichberger22

et al., 2011), or enrichening the state space to include an infinite product structure and invoking23

symmetry axioms (Klibanoff et al., 2021). Another line of attack concentrates on special cases24

where the set of priors is generated by a precise probability distribution. For instance, Gul and25

Pesendorfer (2014, 2015) and Chateauneuf et al. (2007) obtain a unique identification of α and26

the set of priors: the former when the set is generated as extensions of a precise probability27

measure on a subalgebra of events; the latter when it is generated from a precise probabil-28

ity measure via ε-contamination, i.e. the mixture with the set of all probability measures.22
29

Since in both cases, preferences and sets of priors are generated from precise probabilities,30

they assume some form of probabilistic sophistication. Our approach, by contrast, deliberately31

eschews such assumptions as inadmissible in many situations of interest. Rather, it follows32

22Formally, the assumption is that the set of priors C = {(1− ε)p+ εq : q ∈ ∆}, where ∆ is the space of all
probability measures, p is an element of ∆ and ε ∈ [0,1].

33



the theoretical approach developed by Hill (2023), who resolves the identification issue for1

α-maxmin EU and a range of extensions by using interval lotteries, with no need for specific2

richness assumptions on the state space, probabilistic sophistication, or any other non-standard3

assumptions on the set of priors.4

On the experimental front, there is a small literature dedicated to incentive-compatible eli-5

citation of multiple priors. One family of approaches purports to elicit them as the support of6

second-order beliefs, represented as a probability measure over the space of probability meas-7

ures. Beyond the assumption of second-order probabilities, which is foreign to the original8

multiple prior models (Gilboa and Schmeidler, 1989; Bewley, 2002; Ghirardato et al., 2004),9

and the fact that they import an assumption of probabilistic sophistication, albeit at the second-10

order level, these often make further assumptions about the role of these second-order beliefs11

in choice. For instance, Qiu and Weitzel (2016) propose a method that relies on the assump-12

tion that a subject’s opinions about others subjects’ matching probabilities coincides with the13

uncertainty surrounding her own assessment.14

Another family of approaches draws on the probabilistically-sophisticated special case of α-15

maxmin EU studied by Chateauneuf et al. (2007), where the subject’s set of priors is generated16

as the ε-contamination of a single probability measure. Dimmock et al. (2015); Baillon et al.17

(2018b,a) use elicitation of MPs or certainty equivalents to estimate ‘ambiguity indices’, which18

they claim can be used to back out the mixture coefficient α and the set of priors. However,19

as shown by Baillon et al. (2021, Theorem 16 & Section 7.3, Eq. (20)), these indices are only20

guaranteed to yield the subject’s set of priors if they are generated from a precise probability21

measure by ε-contamination, in which case preferences are represented by the Chateauneuf22

et al. (2007) model. So, though unwarranted in situations where multiple prior decision models23

come to the fore, this elicitation technique assumes probabilistic sophistication. In fact, our24

data provides empirical insight into the relevance of their assumption. Whilst Chateauneuf et al.25

(2007) implies that the imprecision (in the sense of Section 4.2) is the same for all events,23
26

our observations reject this equality for the sources in EXP N2 (Section 4.2; see also Table C.927

and Figure C.1, Appendix C.1): these are thus sources for which their method’s underlying28

assumption does not hold. Of course, this does not bode well for the general applicability of29

their method. It does not follow that it is never viable; indeed, our data indicate that the Paris30

source in EXP N1 may satisfy their assumptions. Moreover, we can estimate the ambiguity31

indices used in the aforementioned papers on the basis of the data from our study (EXP N1,32

23If the set of priors is as defined in footnote 22, then, for any E, (1− ε)p(E) ∈ [0,1− ε], so the probability
interval for event E is [(1− ε)p(E),(1− ε)p(E)+ ε], and hence the event has imprecision ε .
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Paris treatment) and under their assumption about the set of priors;24 doing so, we find, for1

instance, that they yield the value 0.82 for the mixture coefficient α—which, reassuringly, is2

close to the Bayesian and raw estimates reported in Section 4.4. So our elicitation method3

is not only more general and robust, insofar as it applies in situations where the assumptions4

underlying their approach do not hold; moreover, it can evaluate precisely in which cases they5

do hold. In those cases, their approach, implemented on our data, gives the same result as our6

‘direct’ elicitation.7

Another related branch of literature focuses on scoring rules. Hossain and Okui (2013)8

provides a scoring rule in the absence of expected utility preferences: since it elicits precise9

probabilities under probabilistic sophistication, it does not tackle the issue of multiple-prior10

elicitation. Scoring rules have also been proposed for most-likely intervals for the value of an11

unknown parameter (Winkler and Murphy, 1979; Schlag, 2015). Typically, they are incentive12

compatible under the assumption that the subject is a Subjective Expected Utility maximiser13

with a precise probability distribution (Schlag, 2015, Section 5), and hence under an assumption14

stronger than probabilistic sophistication. By applying them where the unknown parameter15

at issue is itself a probability, such scoring rules could conceivably be repurposed to elicit16

probability intervals. However, given that they rely on the assumption of expected utility—17

here at the second-order level—they would need to suppose precise probabilities in order to18

elicit imprecise ones; as noted, this seems inappropriate for situations where multiple priors are19

relevant. As mentioned in the Introduction, the difficulty of developing scoring rules that avoid20

such probabilistic assumptions is further underlined by an impossibility result showing that21

there are no real-valued continuous strictly proper scoring rules for multiple-prior probability22

intervals (Seidenfeld et al., 2012, Prop 5).23

Going beyond the lab, there is a large and growing literature on elicitation of multiple pri-24

ors or imprecise probabilities in a range of disciplines, from economics to climate science. All25

such elicitation exercises of which we are aware use stated probability intervals, and as such are26

not incentive compatible. For instance, Giustinelli et al. (2022) elicit beliefs on dementia and27

long-term care decisions in a large-scale representative survey (over 1000 subjects), allowing28

stated probabilities to be interval-valued. Consistently with our results (Section 4.2), they find29

24Specifically, Baillon et al. (2018b) propose the average of 1−MP(E)−MP(Ec) over a selection of events
as their measure of the ‘ambiguity aversion index’ b. The average for the events elicited here can be deduced
directly from Table C.20 (Appendix C.4), as around 0.16. On the other hand, under (2) with the specified form
for the set of priors (see footnote 22), their ‘a-insensitivity index’ a = ε . Under such sets of priors, as noted in
footnote 23, every E has imprecision ε . The Average Imprecision measured by our method (Section 4.2 and Table
C.7) thus gives an estimate of their a: it is around 0.25. The mixture coefficient α is related to these indices by
α = 1

2

( b
a +1

)
(Baillon et al., 2021), yielding the value in the text.
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widespread imprecision. They argue forcefully for the importance of probability-interval elicit-1

ation for reducing survey bias and understanding attitudes to and behavior in the face of high-2

uncertainty events, such as whether one will develop dementia and whether to insure against3

it. In another approach, in different domain, Kriegler et al. (2009) elicit beliefs of selected4

scientists (around 50 subjects) concerning climate tipping points, allowing participants to state5

probability intervals for these (notoriously uncertain) events. Such expert elicitations, which6

involve often time-consuming and individualised sessions with selected experts, have emerged7

as a central tool for managing complex uncertainties (Morgan, 2014). Though they have tradi-8

tionally aimed at eliciting precise probabilities, Kriegler et al. (2009) shows that imprecision is9

widespread for some events, which once again argues for the relevance of probability-interval10

elicitation.11

Future Directions Our method can shed some much-needed light on the criticisms of stated12

approaches centred on their lack of incentive compatibility and theoretical grounding. The13

preliminary comparison from EXP A shows that, in the aggregate, the stated approach yields14

similar results to our incentive-compatible decision-theoretically-well-founded method. As re-15

ported in Section 4.3, beyond this general match, there is a significant correlation in the Aver-16

age Imprecision between the two methods across subjects. This suggests that, roughly, subjects17

with larger intervals as elicited by our method will tend to provide larger intervals in the stated18

task. Our comparison thus arguably provides justification for certain uses of stated elicita-19

tion: results found using stated methods that bear on mean imprecision or on tendencies across20

subjects promise to hold up under our more theoretically rigorous method. Other results con-21

cerning the comparison—for instance, the fact that stated intervals are considerably wider than22

those elicited by our method in information-rich situations (Section 4.3)—flag potential lim-23

its. If the aim is to study absolute amounts of imprecision in contexts where there is plenty of24

information, perhaps stated probability intervals are not a sufficiently robust tool.25

This suggests one direction for future research. As noted, stated probability intervals are26

typically used in large-scale surveys (such as Giustinelli et al. 2022). The sorts of comparis-27

ons conducted in lab settings in EXP A shed light on their performance, and in particular the28

performance loss with respect to incentive-compatible methods for specific research questions.29

As such, they provide indications of expected performance in the field. Further research can30

expand our comparison, by identifying more precisely the sorts of characteristics of intervals31

where stated methods fair well, by extending the comparison to natural (as opposed to arti-32

ficial) sources of uncertainty, or by mapping the performance of different refinements of the33
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stated approach. A properly grounded probability-interval elicitation method, of the sort de-1

veloped in this paper, can serve as a tool for designing and evaluating simpler methods for use2

in large-scale studies.3

Moreover, although our method was developed with the aim of demonstrating the possibility4

and feasibility of choice-based incentive-compatible probability-interval elicitation and invest-5

igating some basic characteristics of subjective probability intervals, future research could op-6

erationalise simpler, parametrised versions, with fewer choice questions. Such versions could7

be more implementable, for instance in field studies. Some large-scale surveys use choice tasks8

without necessarily incentivising them (e.g. Falk et al., 2018), and questions formulated in9

terms of bets may trigger different cognitive mechanisms to those formulated in terms of stated10

judgements. Our method could thus lay the foundations of a bet-based approach to add to the11

arsenal of probability-interval elicitation procedures used in practice.12

Finally, analogous possibilities exist for expert elicitation exercises (Kriegler et al., 2009;13

Morgan, 2014). Compared to survey studies, these typically involve fewer subjects (experts),14

with each spending more time; accordingly, more precision is desired of the elicitation at the15

individual level. Aggregate-level performance of an elicitation method—of the sort suggested16

for stated methods by the results in Section 4.3—is less relevant for such exercises. Our experi-17

ments suggest the promise of our method to provide individual-level probability-interval elicit-18

ation with theoretically well-founded incentive-compatibility properties. Probability elicitation19

exercises in decision analysis often use bet-based choice tasks without necessarily incentivising20

them (e.g. Clemen and Reilly, 2013); again, our method, applied in this context, complements21

existing stated approaches to eliciting probability intervals.22

6. Conclusion23

This paper proposes and implements a solution to the open problem of choice-based incentive-24

compatible elicitation of multiple prior beliefs. It comprises a new preference-based notion—25

Matching Probability Intervals—and a probability-interval analogue of a state-of-the-art eli-26

citation procedure for matching probabilities. Our elicitation operates under the Hurwicz α-27

maxmin EU model as well as a range of generalizations, and in the absence of strong assump-28

tions about subjects’ sets of priors, most notably any form of probabilistic sophistication.29

Our implementation of the elicitation method, in three experiments to elicit subjective prob-30

ability intervals and upper and lower CDFs over artificial and natural sources of uncertainty,31
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testifies to its validity and feasibility. It finds a predominance of imprecision—intervals of1

non-zero width—across our subjects, for all explored sources, showing it to be related to in-2

formation, familiarity or predictability. It also compares our choice-based elicitation with stated3

probability-interval methods, showing that they yield similar results in aggregate. Our method4

also allows us to perform what, to our knowledge, is the first elicitation of the mixture coeffi-5

cient in the α-maxmin EU model that fully controls for beliefs.6
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A. Proofs26

For differentiable W as in representation (1), let ∂1W ([x,y]) denote the partial derivative of W27

with respect to the first coordinate, x, at [x,y], and similarly for ∂2W ([x,y]) and the second28

coordinate.29

Proposition 1 is a corollary of the following Proposition, the uniqueness of the MPI (Pro-30

position A.2 below), and the fact that (2) corresponds to a case of (1) where W is differentiable,31

∂1W ([x,y]) = α and ∂2W ([x,y]) = 1−α .32
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Proposition A.1. Let E be an event, and suppose preferences are represented according to (1)1

with a unique MPI for E and W differentiable with ∂1W ([p(E), p(E)])> ∂2W ([p(E), p(E)]).2

a. For any [x,y] in the R-B region (i.e. such that the corresponding preferences in Table 13

hold, for E), p(E)≤ x and p(E)≥ y. Moreover, for any [x,y] in the Wh region, p(E)≥ x4

and p(E)≤ y.5

b. For any [x,y] in the R region (i.e. such that the corresponding preferences in Table 1 hold,6

for E), every [x′,y′] with x′ ≥ x and y′ ≥ y is also in R. Moreover, for any [x,y] in the B7

region, every [x′,y′] with x′ ≤ x and y′ ≤ y is also in B.8

Proof. Part b. follows directly from the fact that, under (1), given that W is increasing in9

both bounds, whenever x ≤ x′ and y ≤ y′, then (z, [x,y],0) ⪯ (z, [x′,y′],0) and (0, [x,y],z) ⪰10

(0, [x′,y′],z).11

As concerns part a., since W is increasing in both bounds, if [x,y] is such that x < p(E)12

and y < p(E), then (z, [x,y],0)⪯ (z,E,0) and (0, [x,y],z)⪰ (0,E,z), so [x,y] is in the B region.13

Similarly, for [x,y] such that x > p(E) and y > p(E), [x,y] is in the R region.14

For each x such that there exists y with (0, [x,y],z) ∼ (0,E,z), let J(x) be y such that this15

indifference holds. By Lower Stochastic Dominance, i.e. the fact that W is strictly increasing16

in the first coordinate (footnote 10), there is a unique J(x) for all such x. By construction17

{[x,y] : (0, [x,y],z) ∼ (0,E,z)} = {[x,J(x)]}. This set, which we call IndB, is the indifference18

curve for [p(E), p(E)] in the space of bets on blue. Note that, since W is differentiable, so is J19

with dJ
dx (x) =−∂2W ([x,J(x)])

∂1W ([x,J(x)]) on its domain.20

For each y such that there exists x with (z, [x,y],0) ∼ (z,E,0), let I(y) be x such that this21

indifference holds. By Lower Stochastic Dominance, i.e. the fact that W is strictly increasing22

in the first coordinate (footnote 10), there is a unique I(y) for all such y. By construction23

{[x,y] : (z, [x,y],0) ∼ (z,E,0)} = {[I(y),y]}. This set, which we call IndR, is the indifference24

curve for [p(E), p(E)] in the space of bets on red. Note that, since W is differentiable, so is I25

with dI
dy(y) =−∂2W ([I(y),y])

∂1W ([I(y),y]) on its domain.26

Since there is a unique MPI, there exists a unique [x,y] at the intersection of the two in-27

difference curves; i.e. a unique [x,y] with y = J(x) and x = I(J(x)). For any sufficiently28

small dx > 0, [x+ dx,J(x)+ J′(x)dx] belongs to the blue indifference curve IndB. Similarly,29

[x + I′(J(x))J′(x)dx,J(x) + J′(x)dx] belongs to the red indifference curve IndR. Hence, for30

x+dx with small dx > 0, the blue indifference curve IndB is ‘above’ the red indifference curve31

IndR (as in Figure 1) if and only if I′(J(x))J′(x)< 1. Substituting in the derivatives of I and J,32

this holds if and only if ∂1W ([x,y]) > ∂2W ([x,y]). Since the MPI is unique, it follows that the33

blue indifference curve is ‘above’ the red indifference curve for all x′ > x. By similar reasoning,34

the blue indifference curve is ‘below’ the red one for all x′ < x. The result follows from the35

fact that [p(E), p(E)] is the MPI, the previously noted fact about points to the South-West and36
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North-East of [p(E), p(E)], and the definition of the R-B region (respectively Wh region) in1

Table 1 as those urns ‘below’ the blue indifference curve and ‘above’ the red (resp. ‘above’ the2

blue one and ‘below’ the red one).3

4

Proof of Proposition 2. Under (1), it follows from the first preference pattern in Proposition5

2 that W ([q,1− b]) > W ([p(E), p(E)]) for all q > r and W ([q,1− b]) < W ([p(E), p(E)]) for6

all q < r, and similarly for the others. By the continuity of W , it thus follows from the first7

two preferences that W ([r,1− b) = W ([p(E), p(E)]), and from the second pair of preferences8

that W ([b,1− r]) =W ([1− p(E),1− p(E)]). It thus follows that (z, [r,1−b],0)∼ (z,E,0) and9

(0, [r,1−b],z)∼ (0,E,z), so [r,1−b] is a MPI for E, as required. The converse direction is an10

immediate consequence of the fact that W is strictly increasing in the lower bound.11

Finally, we state for completeness the result on the uniqueness of the MPI.12

Proposition A.2. For any decision maker represented according to (2) with α ̸= 1
2 , and for any13

event E, there is a unique MPI for E.14

Proof. Existence is immediate from Eqs. (4) and (5). Uniqueness is immediate from the lin-15

earity of the indifference curves in I -space (see Figure 1).16
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Online Appendix1

B. Theoretical Appendix: Robustness of the method2

In this Appendix, we discuss the robustness of the central elements of our proposal. Whilst we3

concentrate below on models of the general form (1), note that the method also applies under4

other multiple-prior decision models, most notably multiple-prior minimax (expected) regret.15

We begin by discussing the robustness of the notion of MPI, before turning to the method for6

eliciting them.7

B.1. Matching Probability Intervals8

As noted in Section 2.4, under general preferences of the form (1), the notion of MPI is well9

defined, and the subjective probability interval is a MPI. However, uniqueness of the MPI is10

guaranteed only if there is a unique solution to the equations corresponding to the preferences11

(4) and (5), and this only occurs if W satisfies the following ‘single-crossing property’: every12

pair of red-and-blue indifference curves in Figure 1 cross at most once.2 Whether this is the13

case, and how often it is not, will depend on the functional form of W . We thus consider what14

form of uniqueness holds for reasonable W .15

For instance, the MPI is clearly unique when W is linear and non-symmetric3—and hence16

for α-maxmin EU whenever α ̸= 1
2 (Proposition A.2). In Section 2.3, we mentioned two other17

more general interesting cases. One is when W incorporates probability weighting, e.g. is of18

the form W ([x,y]) = αw(x)+ (1−α)w(y) for a (probability) weighting function w. As noted19

previously, this form can incorporate findings on probability weighting for (two-outcome) lot-20

teries, via w. For such W , if w takes the neo-additive form often used in literature (Chateauneuf21

et al., 2007; Wakker, 2010; Baillon et al., 2021), then w is linear except at 0 and 1, so the22

previous observation implies that MPIs are unique. Moreover, even for non-linear weighting23

functions, calculation of relevant cases suggests that MPIs are typically unique. As an example,24

Figure B.1 plots red and blue indifference curves for the specified form of W with w being the25

popular Prelec weighting function with the parameters found by Abdellaoui et al. (2011) for a26

Paris temperature source (i.e. one that is similar to the source we used in EXP N1) and an α27

1This model evaluates the choice of act f from a menu M according to
−maxp∈C Ep (maxg∈M u(g(s))−u( f (s))), where Ep is the expectation with respect to probability measure
p and C is the set of priors (e.g. Berger, 1985; Stoye, 2011). It is straightforward to show that for the choices
used by our method—namely binary choices between bets on independent events, in the sense that the joint
(multi-prior) distribution over the pair of relevant events is a ‘type-1 product’ (Walley, 1991, Sect. 9.3.5) of the
multiple priors beliefs about each—preferences under this rule correspond to preferences under maxmin-EU (i.e.
(2) with α = 1) with the same set of priors.

2Technically, for every A,B ∈ R, |{[x,y] ∈ I : W ([x,y]) = A,W ([1− y,1− x]) = B}| ≤ 1.
3I.e. it is not the case that W ([x,y]) =W ([y,x]) for all [x,y].
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of 0.8 (i.e. close to the value we found for α; Section 4.4). Clearly, red and blue indifference1

curves typically only cross (at most) once, as required for uniqueness of MPI. Even in the cases2

where there are multiple MPIs, there will be at most two, with one close to the boundary.3

Another interesting case is when W incorporates a transformation of probability in-4

tervals, i.e. W ([p, p]) = αϕ([p, p]) + (1 − α)ϕ([p, p]) where α is as in (2) and ϕ :5

I → I , with I the space of probability intervals, is a probability-interval transform-6

ation function. A canonical transformation ϕ would take a ‘central point’ of the in-7

terval and contract the interval around it, i.e. it would be of the form ϕ([p, p]) =8 [
ε(β p+(1−β )p)+(1− ε)p,ε(β p+(1−β )p)+(1− ε)p

]
, where β determines the ‘central9

point’ and ε encodes the extent of the contraction.4 This is a generalisation of the contraction10

representation in Gajdos et al. (2008), in which ‘contractions’ of objectively provided sets of11

priors feature in a maxmin-EU decision rule. Such W is clearly linear and, for canonical α , ε12

and β , non-symmetric,5 so the previous observation implies that MPIs are unique under such13

probability-interval transformation preferences.14

In summary, for all generalisations of α-maxmin EU belonging to the general class defined15

in Section 2.3, MPIs are well-defined, and the subject’s probability interval is always a MPI.16

Moreover, for reasonable extensions of various sorts, MPIs continue to be unique.17

B.2. MPI Elicitation18

Recall (Sections 2.5 and 3.2) that, following techniques developed for eliciting matching prob-19

abilities (Abdellaoui et al., 2021, 2023), we develop a two-step elicitation method for MPI20

elicitation. We discuss the robustness of the two steps in turn.21

Binary-choice procedure The binary-choice step (Section 2.5 and Appendix D.1) is based22

on the division of space of probability intervals I into regions (Table 1) and Proposition 123

dictating ‘where’ the MPI is relative to points in the various regions. For decision makers24

represented according to the α-maxmin EU model (2), Proposition 1 a. only holds if α > 1
2 .25

Proposition A.1 applies for the general decision model (1); in this sense, the binary-choice step26

of our elicitation method is robust to the decision model, but requires the equivalent of α > 1
2 ,27

as specified in the Proposition. Under the notable generalisations of α-maxmin EU discussed28

in Sections 2.3 and B.1—i.e. involving neo-additive probability weighting or a probability-29

interval transformation contracting the interval around the midpoint—it is straightforward to30

check that this condition reduces to α > 1
2 . Hence, we can focus on this assumption underlying31

4For instance, β = 1
2 yields a contraction around the midpoint of the interval.

5More precisely, by basic algebra, W is non-symmetric whenever α ̸= 1−2εβ

2(1−ε) , so for the ‘contraction around

the midpoint’ case discussed in the previous footnote (β = 1
2 ), W is unique whenever α ̸= 1

2 . The condition for
uniqueness of MPI under this generalisation is thus the same as that under α-maxmin EU (Proposition A.2).

2



Figure B.1: Indifference curves in probability interval space I under (1) with W (x,y) =
αw(x)+(1−α)w(y).
Red lines: indifference curves for IL (z, [p,q],0): i.e. curves of the form αw(x)+(1−α)w(y) =C. Blue
lines: indifference curves for IL (0, [p,q],z): i.e. curves of the form αw(1− y)+(1−α)w(1− x) = D.

Parametrisation: Prelec weighting function w(x) =
(
e−(−ln(x))α )

)β
with α = 0.54 and β = 0.85 (Abdel-

laoui et al., 2011); α = 0.8.

the binary-choice procedure, in the knowledge that it is common to most decision models of1

interest.2

Proposition 1 a. guarantees that if the elicited point (on Figure 1) is in the R-B region3

(respectively, Wh region), then the MPI is North-West (resp., South-East) of it. When α < 1
2 ,4

the opposite holds: e.g. the MPI is North-West of the elicited point not when it is in R-B, but5

when it is in Wh. So the procedure applied to such decision makers would ‘move’ in the wrong6

direction: e.g. instead of looking South-East for the MPI after finding a point in R-B, it would7

look North-West. When α = 1
2 , the red and blue indifference curves in Figure 1 are parallel, so8

there will canonically be no points in the R-B and Wh regions. We now review evidence on the9

value of α for our subjects, as well as on the functioning of the procedure.10

We find little evidence for widespread α ≤ 1
2 among our subjects. First of all, the elicitation11

of α reported in Section 4.4 finds median and 25 percentile values significantly above 1
2 (Table12

C.19), indicating that less than 25% of subjects have α ≤ 1
2 . Moreover, under the α-maxmin13

EU model, the sum of the MP of an event and that of its complement is less than (respectively,14

greater than) one precisely when α > 1
2 (resp. α < 1

2 ; see Appendix C.4); so we can use our15

matching probability data to check for the sign of α − 1
2 . Table C.20 (Appendix C.4) displays16

the descriptive statistics on this sum for the Paris treatment where MPs were elicited, confirming17

again that α > 1
2 for over 75% of subjects.18

As concerns the functioning of the procedure, since it ‘moves’ in the wrong direction for19

3



subjects with α < 1
2 , no such subjects will pass through both points in Wh and in R-B. However,1

383 applications of the procedure out of 704 in EXP N1 (300 out of 606 in EXP N2; 1552

out of 299 in EXP A) passed through points in Wh and R-B. Whilst there were nevertheless3

applications which passed through points in R-B but not Wh (152 in EXP N1, 77 in EXP N2,4

69 in EXP A) and in Wh but not R-B (114 in EXP N1, 105 in EXP N2, 72 in EXP A), these5

would be expected if the procedure functioned correctly and the probability intervals were large6

(respectively small). Moreover, for all subjects in all experiments, there was at least one event7

with a point in R-B or Wh, which is inconsistent with widespread α = 1
2 among subjects. The8

evidence thus does not support misfunctioning of the procedure.9

The binary-choice procedure is only the first step of the elicitation method. Even if it10

does not work properly for some decision makers, they have the opportunity to correct their11

responses in the second, 2D choice list step. So the ultimate performance of the whole method12

depends more centrally on the validity of this step—an issue to which we now turn.13

2D Choice List Procedure As described in Sections 2 and 3, the incentive compatibility14

of our elicitation method depends on the incentive compatibility of its second, 2D choice-list15

confirmation step. As set out in Section 2.5, this is guaranteed by Proposition 2, which applies16

under the fully general decision model (1), and not just under the α-maxmin EU special case.17

Hence the incentive compatibility of our method is robust across a range of multiple-prior18

decision models, including all those mentioned previously.19

As discussed in Sections 2.5 and 5, this stage of the method is incentive compatible whenever20

subjects treat the two branches of the 2D choice list in isolation from each other. If, by contrast,21

a subject reasons strategically across the two branches of the 2D choice list, then the choice of22

MPI is conceptualised as the choice of a (second-order) lottery assigning a probability to play-23

ing a bet for or against E or to playing specific ILs according to the mechanism. Assuming the24

α-maximin EU model (2) at both levels, the subject evaluates each such second-order lottery25

using the expectation over the values of the bets and ILs. For any reported interval [q,q] in this26

task, the incentive mechanism defined in Section 2.5 determines the probability of the bet or27

IL ‘received’,6 which determines in turn the utility of reporting [q,q] when the true beliefs are28

[p(E), p(E)] = [p, p]. Finding the optimum numerically for a grid of values of p, p,α ∈ [0,1]29

using Matlab, we find that, for every (p, p,α) (with p ≥ p) except for p = 0, p = 1, α = 0, and30

those with p= 0.5, α = 1 or p= 0.5, α = 1, the optimal response under this strategic reasoning31

is situated at one or several of the ‘vertices’ of the space of probability intervals in Figure 1, i.e.32

[0,0], [0,1], [1,1]. For p= 0, p= 1, α = 0 and p= 0.5 ,α = 1 or p= 0.5 ,α = 1 with p ̸= p, the33

optimum is situated at all points on one of the boundaries of the probability-interval space, i.e.34

6Specifically, the probabilities of receiving the bet on E, the IL on red, the bet on Ec, the IL on blue are
q

q+1−q ,
q−q

q+1−q , 1−q
q+1−q ,

q−q
q+1−q , respectively.
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{[0,y] : y ∈ [0,1]} ,{[x,1] : x ∈ [0,1]} ,{[x,y] : x ∈ [0,1],y = x}. When p = 0.5, p = 0.5,α = 1,1

the utility above is constant, so all points maximise it.2

It follows that, for any subject with α ∈ (0,1) who responds strategically in this manner,3

all her responses will be at a vertex of the space I . Our elicitation of α suggests however4

that the vast majority of subjects have α in this range. Even for subjects with α = 0 or 15

reasoning strategically, they will have more than one response in the interior of I only if6

α = 1 and they assign precise probability of 0.5 to several elicited events. In EXPs N1 and N2,7

involving nested events, this would correspond to a peculiar (e.g. bimodal) distribution on the8

variable of interest (temperature, marks); in EXP A, involving events related to varying types9

of information (frequencies and samples sizes), it would indicate complete insensitivity to prior10

information, which contradicts the findings reported in Sections 4.1 and 4.2. As is clear from11

Table C.6 (Appendix C.1), no subjects give vertex responses for all elicited events, with only12

one subject (across all experiments) giving vertex responses for over half of the elicited events.13

Moreover, the vast majority of subjects (73 out of 80 in EXP N1; 51 out of 52 in EXP N2; 9714

out of 101 in EXP A) gave more than one response in the interior of I . The data thus clearly15

suggests that strategic reasoning is extremely infrequent in our sample.16

C. Supplementary Statistics17

Data and code for its analysis are available online here.718

C.1. Descriptive Statistics19

Table C.1 reports the basic descriptive statistics on the upper (U) and lower (L) bounds of20

the elicited probability intervals, over the three experiments. Table C.2 reports the descriptive21

statistics of the upper and lower bounds of the stated probability intervals, for EXP A.22

Tests for EXP A Tables C.3 and C.4 report tests that the midpoints (respectively Impreci-23

sion) is the same across bags with the same sample size and different frequencies (respectively24

the same frequency and different sample sizes) in EXP A. Throughout this Appendix, unless25

specified, all tests are two-sided.26

Monotonicity in EXPs N1 and N2 Table C.5 reports the descriptive statistics for the indi-27

vidual level Kendall τb correlation coefficients between the size of events (i.e. the t for events28

Et , as specified in Table 3) and the upper (resp. lower) probabilities or MPs elicited for each29

7If the link does not work, the address is: https://osf.io/yvax4/.
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(Sample size,
frequency)

Mean Std Min 25% 50% 75% Max

L U L U L U L U L U L U L U

(4, 0.5) 0.22 0.77 0.14 0.15 0.02 0.43 0.08 0.65 0.18 0.80 0.35 0.92 0.50 0.98
(4, 0.25) 0.19 0.65 0.11 0.21 0.00 0.26 0.10 0.50 0.18 0.65 0.26 0.84 0.42 1.00
(20, 0.5) 0.28 0.73 0.16 0.14 0.08 0.48 0.12 0.58 0.26 0.74 0.42 0.88 0.58 0.92
(20, 0.25) 0.21 0.59 0.13 0.23 0.05 0.14 0.12 0.35 0.18 0.62 0.25 0.79 0.62 0.92
(100, 0.5) 0.42 0.57 0.07 0.06 0.26 0.44 0.36 0.55 0.45 0.55 0.45 0.59 0.55 0.74

(100, 0.25) 0.22 0.39 0.06 0.19 0.08 0.19 0.19 0.26 0.20 0.30 0.25 0.44 0.39 0.92

(a) Lower and upper probabilities, EXP A (Overall sample n = 101)

Et
Mean Std Min 25% 50% 75% Max

L U L U L U L U L U L U L U

t =−2 0.29 0.55 0.17 0.21 -0.01 0.09 0.15 0.40 0.29 0.55 0.40 0.67 0.7 1.0
t = 2 0.38 0.65 0.22 0.19 0.00 0.23 0.20 0.51 0.35 0.65 0.50 0.80 1.0 1.0
t = 5 0.48 0.74 0.23 0.17 0.00 0.25 0.35 0.62 0.46 0.76 0.66 0.88 1.0 1.0
t = 8 0.57 0.82 0.24 0.14 0.05 0.50 0.42 0.75 0.59 0.85 0.75 0.94 1.0 1.0

(b) Lower and upper probabilities Paris, EXP N1 (Overall sample n = 80)

Et
Mean Std Min 25% 50% 75% Max

L U L U L U L U L U L U L U

t = 15 0.31 0.58 0.22 0.27 0.00 0.01 0.14 0.37 0.26 0.56 0.45 0.45 0.95 0.99
t = 18 0.35 0.66 0.26 0.24 0.00 0.03 0.14 0.50 0.32 0.69 0.47 0.47 1.00 1.00
t = 20 0.41 0.71 0.27 0.23 -0.01 0.01 0.20 0.60 0.40 0.76 0.61 0.61 1.00 1.00
t = 22 0.43 0.73 0.26 0.23 -0.01 0.00 0.20 0.58 0.39 0.80 0.61 0.61 1.00 1.00

(c) Lower and upper probabilities Sydney, EXP N1 (Overall sample n = 80)

Et
Mean Std Min 25% 50% 75% Max

L U L U L U L U L U L U L U

t = 7 0.05 0.12 0.07 0.14 -0.01 0.00 0.00 0.02 0.04 0.08 0.08 0.16 0.35 0.16
t = 10 0.15 0.23 0.12 0.17 0.00 0.00 0.06 0.10 0.12 0.20 0.19 0.30 0.50 0.30
t = 12 0.24 0.35 0.15 0.18 0.00 0.04 0.14 0.22 0.20 0.32 0.31 0.48 0.63 0.48
t = 15 0.40 0.54 0.19 0.20 0.08 0.08 0.26 0.40 0.38 0.52 0.55 0.70 0.73 0.70
t = 17 0.60 0.75 0.16 0.15 0.18 0.22 0.54 0.65 0.64 0.78 0.71 0.86 0.86 0.86

(d) Lower and upper probabilities Maths, EXP N2 (Overall sample n = 52)

Et
Mean Std Min 25% 50% 75% Max

L U L U L U L U L U L U L U

t = 7 0.12 0.22 0.08 0.14 0.01 0.02 0.06 0.11 0.11 0.20 0.17 0.31 0.36 0.56
t = 10 0.22 0.37 0.12 0.14 0.02 0.06 0.14 0.30 0.20 0.34 0.29 0.46 0.50 0.65
t = 12 0.33 0.51 0.13 0.14 0.14 0.20 0.22 0.40 0.32 0.50 0.40 0.64 0.60 0.74
t = 15 0.54 0.74 0.14 0.11 0.19 0.40 0.46 0.67 0.56 0.77 0.65 0.82 0.83 0.90
t = 17 0.71 0.86 0.13 0.07 0.25 0.60 0.65 0.82 0.74 0.86 0.83 0.91 0.90 1.00

(e) Lower and upper probabilities Contraction, EXP N2 (Overall sample n = 52)

Table C.1: Descriptive Statistics: lower and upper bounds of the elicited probability intervals
in the three experiments

(Sample size,
frequency)

Mean Std Min 25% 50% 75% Max

L U L U L U L U L U L U L U

(4, 0.5) 0.26 0.78 0.21 0.22 0.00 0.40 0.02 0.54 0.25 0.80 0.50 1.00 0.66 1.00
(4, 0.25) 0.11 0.63 0.13 0.35 0.00 0.03 0.01 0.30 0.05 0.61 0.22 1.00 0.38 1.00
(20, 0.5) 0.26 0.75 0.21 0.24 0.00 0.10 0.10 0.60 0.30 0.73 0.40 1.00 0.80 1.00
(20, 0.25) 0.16 0.65 0.15 0.32 0.00 0.10 0.00 0.30 0.15 0.72 0.25 1.00 0.50 1.00
(100, 0.5) 0.36 0.70 0.21 0.24 0.00 0.30 0.36 0.50 0.49 0.55 0.50 1.00 0.52 1.00

(100, 0.25) 0.17 0.56 0.14 0.34 0.00 0.20 0.00 0.25 0.24 0.31 0.25 1.00 0.70 1.00

Table C.2: Lower and upper bounds of stated probability intervals, EXP A
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t-tests Mann-Whitney tests
sample size t-statistic p-value U-statistic p-value

20 -5.69 < 0.001 503 < 0.001
100 -13.09 < 0.001 193.5 < 0.001
4 -5.83 < 0.001 555.5 < 0.001

Table C.3: Unpaired t-tests and Mann-Whitney tests of the hypothesis that the midpoint is the
same for each pair of bags with the same sample size and frequencies 0.25 and 0.5, EXP A.

t-tests Binomial tests
frequency Deg. free. Statistic p-value Deg. free. Statistic p-value
0.5 50 9.87 < 0.001 51 2 < 0.001
0.25 49 6.71 < 0.001 50 5 < 0.001

Table C.4: Paired t-tests and binomial tests of the hypothesis that the Imprecision is the same
for each pair of bags with the same frequency of green and sample sizes 4 and 100, EXP A.

EXP N1: MP EXP N1: Paris EXP N1: Sydney EXP N2: Contraction EXP N2: Maths

L U L U L U L U L U

Count 74 78 79 78 78 78 52 52 52 52
Mean 0.62 0.66 0.56 0.56 0.27 0.41 0.99 0.99 0.98 1.00
Std 0.46 0.38 0.45 0.47 0.59 0.50 0.02 0.03 0.07 0.01
Min -0.91 -0.91 -0.91 -0.91 -1.00 -1.00 0.95 0.80 0.53 0.95
25% 0.55 0.55 0.33 0.33 -0.14 0.00 1.00 1.00 1.00 1.00
50% 0.71 0.69 0.67 0.67 0.33 0.55 1.00 1.00 1.00 1.00
75% 0.91 0.91 1.00 1.00 0.67 0.91 1.00 1.00 1.00 1.00
Max 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table C.5: Individual-level Kendall τb descriptive statistics for all sources and tasks in EXP N1
and N2
Note τb is not defined for some subjects in EXP N1 (because of too many ties), and they were dropped.

source in EXPs N1 and N2. As could have been expected, in EXP N1, the frequency of mono-1

tonicity violations appears to increase with the difficulty of the choice task, with the MP task2

being arguably easier than that for probability-interval elicitation, and the task for Paris, the3

more familiar source for our subjects, being easier than that for Sydney.4

Elicited points on a vertex Table C.6 reports counts of the number of subjects with a given5

number of elicited points on a vertex of the space I of interval-valued urns in Figure 1.6

EXP N1 EXP N2 EXP A
Paris Sydney Maths Contraction

Point # subjects # subjects # subjects # subjects # subjects
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3

[0,0], [0,1]
or [1,1]

79 0 0 1 0 78 1 0 1 0 46 5 1 0 0 0 52 0 0 0 0 0 95 6 0 0

Table C.6: Number of subjects with the specified number of elicited points being on a vertex of
I .
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EXP 1: Paris EXP 1: Sydney EXP 2: Maths EXP 2: Contraction EXP A

Count 80 80 52 52 101
Mean 0.26 0.30 0.11 0.15 0.36
Std 0.17 0.20 0.08 0.09 0.18
Min 0.00 0.00 0.00 0.01 0.00
25% 0.10 0.11 0.06 0.09 0.24
50% 0.23 0.28 0.09 0.14 0.35
75% 0.35 0.44 0.16 0.19 0.51
Max 0.83 0.76 0.36 0.43 0.77

Table C.7: Average Imprecision for each source in EXP N1 and N2, and across all events in
EXP A (Section 4.2): descriptive statistics.

# subjects EXP N1:
Paris

EXP N1:
Sydney

EXP N2:
Maths

EXP N2:
Contraction

EXP A

0 51 48 20 31 74
1 14 18 14 12 23
2 7 8 12 5 2
3 6 2 3 3 2
4 2 4 0 1 -
5 - - 3 0 -

Total 80 80 52 52 101

Table C.8: Number of subjects with given number of precise events, per source.

Source F p-value Source F p-value

EXP N1 Paris 0.1048 0.957 EXP N2 Contraction 4.0352 0.003
Sydney 0.4769 0.698 Maths 5.863 0.00015

Table C.9: ANOVAs of the Imprecision related to an event (dependent variable) on the event
(factor), for each source. (H0: the Imprecision is identical across all events in the source.)

Imprecision Table C.7 presents the descriptive statistics for the Average Imprecision, whereas1

Table C.8 displays counts of the number of subjects with various numbers of precise elicited2

points. Table C.9 presents the results of ANOVAs of the Imprecision concerning an event3

against the event, for each source in EXPs N1 and N2, where the null hypothesis is that Im-4

precision is invariant across events. Figure C.1 plots CDFs of the Imprecision for each elicited5

event in each of the sources in EXPs N1 and N2, across subjects.6

Matching versus Stated Probability Intervals Tables C.10 and C.11 present the descriptive7

statistics for the imprecision and midpoints of probability intervals, across subjects, for each8

bag (characterised by a sample size and frequency) and for the choice-based elicitation method9

and stated probability intervals respectively.10

Modifications in the 2D choice list step Tables C.12 and C.13 provide data on the number11

of subjects that modified their interval in the 2D choice list confirmation step of the elicita-12

tion procedure, and the total number of modifications, including those introducing precision or13

imprecision.14

8



0.0 0.2 0.4 0.6 0.8 1.0
Imprecision

0

0.2

0.4

0.6

0.8

1

Pr
op

or
ti

on
 o

f S
ub

je
ct

s

T< 2
T<2
T<5
T<8

(a) EXP N1: Paris source
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(b) EXP N1: Sydney source
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(d) EXP N2: Contraction source

Figure C.1: CDFs of Imprecision across subjects in EXPs N1 and N2, for each elicited event

sample
size

frequency mean std min 25% 50% 75% max

Imprecision

4 0.5 0.55 0.29 0.00 0.30 0.64 0.83 0.96
0.25 0.47 0.28 0.00 0.22 0.48 0.64 1.00

20 0.5 0.45 0.28 0.00 0.15 0.48 0.76 0.80
0.25 0.39 0.29 0.00 0.11 0.33 0.63 0.84

100 0.5 0.15 0.12 0.00 0.09 0.10 0.21 0.48
0.25 0.16 0.20 0.00 0.02 0.10 0.20 0.84

Midpoint

4 0.5 0.50 0.02 0.37 0.50 0.50 0.50 0.54
0.25 0.42 0.09 0.20 0.37 0.44 0.50 0.63

20 0.5 0.50 0.04 0.35 0.50 0.50 0.50 0.67
0.25 0.40 0.12 0.12 0.29 0.46 0.50 0.62

100 0.5 0.50 0.03 0.41 0.50 0.50 0.50 0.59
0.25 0.31 0.10 0.19 0.25 0.25 0.34 0.62

Table C.10: EXP A: Descriptive statistics for Imprecision and midpoints of elicited probability
intervals, for each bag (sample size and frequency).

The binary-choice procedure continued until the interval was estimated to a predetermined1

precision (Section 3.2 and Appendix D.1). To ascertain whether this imprecision in the estim-2

ate, combined with a reticence of subjects to modify their intervals in the 2D choice list step3

of our elicitation procedure, drives our findings about imprecision in beliefs, we repeat our4

analyses of overall imprecision in Section 4.2 under the assumption that in all such ‘possibly5
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sample
size

frequency mean std min 25% 50% 75% max

Imprecision

4 0.5 0.52 0.29 0.00 0.35 0.50 0.65 1.00
0.25 0.52 0.32 0.02 0.25 0.50 0.75 0.99

20 0.5 0.48 0.28 0.00 0.20 0.50 0.66 1.00
0.25 0.49 0.28 0.00 0.22 0.50 0.79 0.98

100 0.5 0.34 0.27 0.00 0.02 0.50 0.50 1.00
0.25 0.39 0.29 0.00 0.15 0.27 0.75 0.87

Midpoint

4 0.5 0.52 0.16 0.20 0.50 0.50 0.58 0.83
0.25 0.37 0.21 0.02 0.17 0.35 0.51 0.69

20 0.5 0.51 0.18 0.05 0.50 0.50 0.58 0.90
0.25 0.40 0.21 0.05 0.25 0.44 0.60 0.75

100 0.5 0.53 0.18 0.15 0.50 0.50 0.73 0.76
0.25 0.37 0.21 0.12 0.20 0.26 0.62 0.78

Table C.11: EXP A: Descriptive statistics for Imprecision and midpoints of stated probability
intervals, for each bag (sample size and frequency).

Number of
Modifications

EXP N1:
Paris

EXP N1:
Sydney

EXP N2:
Maths

EXP N2:
Contraction

EXP A

0 15 14 4 2 8
1 22 25 4 5 24
2 14 20 9 13 36
3 15 9 12 9 33
4 14 12 15 13 -
5 - - 8 10 -

Total 80 80 52 52 101

Table C.12: Number of subjects who modified the interval provided in the 2D choice list step
of the procedure for the given number events, per source.
For row n = 0, . . . ,5, the entry in each column reports the number of subjects for which the result of the binary-
choice procedure differed from interval confirmed in the 2D choice list for precisely n events in the specified
experiment and source.

precise’ cases, the imprecision is zero. More precisely, for every subject and event, we define1

the Possible Imprecision for that event and subject to be zero if: a. the binary-choice procedure2

halts due to the stopping rule but where, were it to continue, it could have arrived to a precise3

interval (i.e. an interval of zero width); and b. the subject did not modify the reported interval4

in the 2D choice list step of the elicitation procedure. For all other events, the Possible Im-5

precision coincides with the Imprecision. Table C.14 provides descriptive statistics for Average6

Possible Imprecision. As concerns the other results on Average Imprecision reported in Section7

4.2, binomial tests reject the hypothesis of equal probability for the Average Possible Impre-8

cision to be equal to vs. greater than 0 for each source (p < 0.001 in all cases), with a clear9

majority of subjects—99 out of 101 in EXP A, 79 out of 80 in EXP N1, and 52 out of 52 in EXP10

N2—having strictly positive Possible Imprecision on average. The similarity with the results11

concerning (uncorrected) Imprecision suggest that imprecision in our elicitation procedure is12

not a main driver of the imprecision in elicited beliefs.13
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Number of
Modifications

EXP N1:
Paris

EXP N1:
Sydney

EXP N2:
Maths

EXP N2:
Contraction

EXP A

Total 151 140 158 160 195
Introducing precision 13 16 7 2 33

Introducing imprecision 17 15 37 31 0

Table C.13: Number of modifications in the 2D choice list step of the elicitation procedure
across all subjects, per experiment and source.
Each entry reports the number of tasks in the specified experiment and source for which the result of the binary-
choice procedure differed from the interval confirmed in the 2D choice list, across all subjects. The second row
reports the number of such tasks where the result of the binary-choice procedure is imprecise (i.e. of strictly
positive Imprecision), whereas the interval confirmed in the 2D choice list is precise (i.e. of zero Imprecision); the
third row reports the number of such tasks where the result of the binary-choice procedure is precise, whereas the
interval confirmed in the 2D choice list is imprecise.

EXP 1: Paris EXP 1: Sydney EXP 2: Maths EXP 2: Contraction EXP A

Count 80 80 52 52 101
Mean 0.25 0.29 0.11 0.15 0.35
Std 0.18 0.20 0.08 0.09 0.18
Min 0 0 0 0.01 0.00
25% 0.09 0.11 0.05 0.09 0.22
50% 0.23 0.28 0.09 0.14 0.35
75% 0.35 0.44 0.16 0.19 0.51
Max 0.83 0.76 0.36 0.43 0.77

Table C.14: Average Possible Imprecision for each source in EXP N1 and N2, and across all
events in EXP A (Section C.1): descriptive statistics.

C.2. Bayesian estimation for EXPs N1 and N21

C.2.1. Statistical approach2

Estimation of upper and lower CDFs in EXP N1 and EXP N2 Recall that T denotes the3

space of possible values of the variables of interest (minimum temperatures in EXP N1, grades4

in EXP N2). For each source, we estimate general models of the form:5 p(E) = f (E)+ ε

p(E) = f (E)+ ε

(11)

where p(E) (resp. p(E)) are the elicited lower (resp. upper) probabilities of events E in Table 3,6

f and f are CDFs over T from specified two-parameter families (Table C.15), with parameters7

a,b (resp. a,b), and ε and ε are zero-mean normal distributions with variance σ2 and σ
2

8

respectively.9

For each equation, the parameter space is Θ ⊆ R3, with a typical point (a,b,σ) (resp.10

(a,b,σ)) specifying an f (resp. f ) and the variance of the relevant error term. We specify11

the following priors over the hyperparameters : a,b,σ are realisations from A ∼ N(µa,σ
2
a ),12

11



Temperature (EXP N1) Grade (EXP N2)
Family 1 Truncated Normal N (a,b) Truncated Normal N (a,b)
Family 2 Beta B(a,b) Beta B(a,b)

Support
[min of min stated

temperature, max of max
stated temperature]

[0,20]

Table C.15: Families of distributions over T (temperature; mark)
Note the minima and maxima in the first column are taken across all subjects’ responses (Section 3.3)

B ∼ N(µb,σ
2
b ) and Σ = σσ | Y | with Y ∼ N(0,1).1

We use a MCMC-like approach to estimate the posterior distributions of these distributions2

through the use of the Python package PyMC3, and more specifically, the No-U-Turn Sampler3

algorithm (NUTS) (Hoffman and Gelman, 2014).4

The likelihood of observations x1, ...,xn pertaining to t1, . . . , tn (e.g. elicited lower probabil-5

ities for cumulative events Eti = {t ∈ T : t ≤ ti}) given the point (a,b,σ) ∈ Θ is:6

L(a,b,σ |x1, . . . ,xn) = ∏
i∈{1,...,n}

ϕ

(
xi − f(a,b)({t ≤ ti})

σ

)

where f(a,b) is the CDF with parameters a,b and ϕ is the density of the normal distribution.7

Hence the likelihood of hyperparameters µa,σ
2
a ,µb,σ

2
b ,µσ ,σ

2
σ given observations x1 . . .xn is :8

L(µa,σ
2
a ,µb,σ

2
b ,µσ ,σ

2
σ |x1, . . . ,xn)

=
∫
(a,b,σ)∈Θ

L(a,b,σ |x1, . . . ,xn)d p(a,b,σ |µa,σ
2
a ,µb,σ

2
b ,µσ ,σ

2
σ )

L(µa,σ
2
a ,µb,σ

2
b ,µσ ,σ

2
σ |x1, . . . ,xn) and L(µa,σ

2
a ,µb,σ

2
b
,µσ ,σ

2
σ
|x1, . . . ,xn) are used by the NUTS9

algorithm to estimate the posterior distributions of A, B and Σ, where x1, . . . ,xn,x1, . . . ,xn are10

the elicited lower and upper probabilities respectively, under the parametric families for f given11

in Table C.15.12

Likelihood estimation of α in EXP N1 (Paris treatment) For the Bayesian estimation of13

the mixture coefficient α in the α-maxmin EU model, we supplement the general model (11)14

with the following equations15 MP(E) = α p(E)+(1−α)p(E)+ εα

1−MP(Ec) = α p(E)+(1−α)p(E)+ εα

(12)

which are discussed in Section 4.4. We assume that α follows a beta distribution B(aα ,bα),16

and the εα and εα are zero-mean normal distributions, with the hyperparameters independent17

12



Distribution EXP N1 EXP N2
Paris Sydney Mathematics Contraction

AIC Normal 706.65 700.79 411.22 385.52
Beta 648.26 684.36 416.18 390.64

BIC Normal 711.42 705.56 415.12 389.42
Beta 653.02 689.12 420.08 394.54

Table C.16: AIC and BIC under (truncated) normal and Beta specifications for CDFs (Table
C.15).
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(b) EXP N2

Figure C.2: Bayesian estimation of lower and upper CDFs: plots of 1000 samples from MCMC
(Truncated Normal distribution for EXP N1; Beta distribution for EXP N2)

and normally distributed, as above, with variances σ2
α

and σ2
α .1

The MPs have been elicited for the Paris treatment in EXP N1. The hyperparameters con-2

cerning the upper and lower CDFs discussed above and those for α were estimated under the3

model composed of (11) and (12) using the NUTS algorithm, with the procedure set out above.4

C.2.2. Analysis5

Table C.16 presents the AIC and BIC criteria of goodness of fit for the parametric forms in6

Table C.15, which justify the choice of forms to present in Figure 4. Figure C.2 displays the7

13



upper and lower distributions under the parametric families not shown in Figure 4. Table C.171

reports statistics on the distribution over parameters under the estimated hyperparameters.2

mean sd mc_error hpd_2.5 hpd_97.5 n_eff Rhat

N B N B N B N B N B N B N B

a 5.25 1.43 0.31 0.23 0.01 0.01 4.65 1.04 5.87 1.91 1009.11 569.30 1.0 1.0
a -2.57 1.64 0.37 0.29 0.01 0.01 -3.27 1.13 -1.87 2.24 542.99 571.99 1.0 1.0

aα 3.42 1.07 1.62 0.16 0.06 0.01 0.53 0.73 6.38 1.39 630.90 541.73 1.0 1.0
bα 1.80 2.46 1.04 0.35 0.05 0.01 0.10 1.76 3.80 3.17 429.61 522.49 1.0 1.0
b 11.35 4.32 0.75 1.76 0.02 0.06 9.71 1.06 12.66 7.87 1214.33 812.98 1.0 1.0
b 11.00 1.90 0.64 1.08 0.03 0.04 9.78 0.18 12.17 3.92 614.95 606.36 1.0 1.0
σ 0.22 0.22 0.01 0.01 0.00 0.00 0.20 0.20 0.23 0.23 1043.67 1163.74 1.0 1.0
σ 0.18 0.18 0.01 0.01 0.00 0.00 0.17 0.17 0.19 0.19 1055.83 1239.11 1.0 1.0
σα 0.21 0.21 0.01 0.01 0.00 0.00 0.20 0.20 0.23 0.23 930.43 1134.15 1.0 1.0
σα 0.19 0.19 0.01 0.01 0.00 0.00 0.17 0.17 0.20 0.20 909.78 1409.46 1.0 1.0

α 0.81 0.81 0.04 0.04 0.00 0.00 0.74 0.74 0.88 0.88 754.54 1079.99 1.0 1.0

(a) Paris (EXP N1)
mean sd mc_error hpd_2.5 hpd_97.5 n_eff Rhat

N B N B N B N B N B N B N B

a 22.03 1.12 0.45 0.55 0.01 0.04 21.11 0.31 22.80 2.21 1130.92 1.91 1.0 1.57
a 14.66 0.14 0.46 0.32 0.01 0.03 13.78 -0.27 15.48 0.67 876.71 1.07 1.0 4.19
b 9.62 1.32 0.95 0.48 0.03 0.02 7.88 0.49 11.67 2.24 1018.57 320.38 1.0 1.00
b 9.04 0.94 0.85 0.24 0.02 0.01 7.42 0.50 10.78 1.37 882.98 321.66 1.0 1.00
σ 0.26 0.25 0.01 0.01 0.00 0.00 0.23 0.23 0.28 0.27 933.24 522.03 1.0 1.00
σ 0.25 0.24 0.01 0.01 0.00 0.00 0.23 0.22 0.27 0.26 831.75 671.56 1.0 1.00

(b) Sydney (EXP N1)
mean sd mc_error hpd_2.5 hpd_97.5 n_eff Rhat

N B N B N B N B N B N B N B

a 15.88 3.76 0.17 0.09 0.01 0.0 15.57 3.58 16.22 3.93 788.64 978.44 1.0 1.0
a 5.40 1.46 0.28 0.05 0.01 0.0 4.86 1.36 5.95 1.55 955.04 900.67 1.0 1.0
b 13.97 2.27 0.17 0.09 0.00 0.0 13.65 2.10 14.33 2.43 1218.24 1049.31 1.0 1.0
b 5.03 1.22 0.25 0.05 0.01 0.0 4.58 1.12 5.53 1.32 928.02 1031.36 1.0 1.0
σ 0.14 0.16 0.01 0.01 0.00 0.0 0.13 0.14 0.16 0.17 1158.52 1311.22 1.0 1.0
σ 0.17 0.19 0.01 0.01 0.00 0.0 0.16 0.17 0.19 0.20 958.54 1247.27 1.0 1.0

(c) Maths (EXP N2)
mean sd mc_error hpd_2.5 hpd_97.5 n_eff Rhat

N B N B N B N B N B N B N B

a 14.17 3.06 0.13 0.09 0.00 0.0 13.93 2.90 14.42 3.23 1090.28 888.13 1.0 1.00
a 5.32 1.57 0.22 0.05 0.01 0.0 4.90 1.48 5.78 1.67 1068.01 937.24 1.0 1.00
b 11.61 1.96 0.13 0.07 0.00 0.0 11.37 1.82 11.87 2.11 1167.95 478.84 1.0 1.01
b 5.39 1.56 0.21 0.06 0.01 0.0 4.99 1.45 5.78 1.66 1209.38 460.19 1.0 1.00
σ 0.12 0.14 0.01 0.01 0.00 0.0 0.11 0.13 0.13 0.15 1501.55 966.76 1.0 1.00
σ 0.12 0.13 0.01 0.01 0.00 0.0 0.11 0.12 0.13 0.15 1144.85 894.44 1.0 1.00

(d) Contraction (EXP N2)

Table C.17: Statistics for parameters under Bayesian estimation; Normal (N) and Beta (B)
parametrisations
Note mc_error: Monte Carlo procedure standard error; hdp_2.5 / hdp_97.5: Highest posterior density
2.5 and 97.5 percentiles; n_eff : count of iteration in the MCMC procedure.

14



C.3. EXP N1: Matching Probability data and analysis of α1

Table C.18 provides descriptive statistics on the elicited MPs in EXP N1. Table C.19 provides2

descriptive statistics on the α estimated from the raw data (from Eqs. (3)). These equations3

cannot be applied to estimate α whenever the upper and lower probabilities of an event co-4

incide, i.e. p(E) = p(E); Table C.19 performs the estimates using all events for which the5

equations can be applied—and hence only removes the two subjects for which the upper and6

lower probabilities coincide for all events (Table C.8).7

t MP(Et) 1−MP(Ec
t )

count mean std min 25% 50% 75% max mean std min 25% 50% 75% max

−2 80 0.35 0.21 0.02 0.17 0.37 0.47 1.00 0.50 0.19 0.03 0.38 0.48 0.63 0.98
2 80 0.44 0.20 0.02 0.27 0.47 0.57 0.97 0.59 0.19 0.23 0.48 0.57 0.74 0.98
5 80 0.54 0.23 0.02 0.37 0.55 0.68 0.97 0.71 0.20 0.23 0.53 0.73 0.92 0.98
8 80 0.60 0.21 0.17 0.47 0.57 0.76 0.97 0.77 0.17 0.43 0.63 0.80 0.93 0.98

Table C.18: Descriptive statistics for MP(Ei) and 1−MP(Ec
i ) in Paris treatment, EXP N1

count mean std min 25% 50% 75% max
α 78 0.97 0.66 -0.32 0.62 0.80 1.17 3.84

Table C.19: Descriptive statistics for α , estimated from raw data according to Eqs. (3). Estim-
ation conducted across all subjects such that, for any least one event E, p(E) ̸= p(E).

C.4. Elicitation-free check of α > 1
28

Under the α-maxmin EU model (2), it follows from Eqs. (3) that9

MP(E)+MP(Ec) = 1+(p(E)− p(E)).(1−2α)

Since p(E)− p(E)≥ 0 by definition, it follows that, whenever there is imprecision, MP(E)+10

MP(Ec)< 1 if and only if α > 1
2 .11

Table C.20 displays the descriptive statistics for the sum MP(E)+MP(Ec) for the Paris12

source in EXP1. It is clear that the vast majority of subjects have a sum of MPs less than 113

indicating an α greater than 0.5. Indeed, over 80% of subjects have sum of MPs less than or14

equal to 1.15
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t count mean std min 25% 50% 75% max

−2 80 0.84 0.20 0.29 0.71 0.89 0.98 1.31
2 80 0.85 0.20 0.29 0.73 0.89 0.99 1.34
5 80 0.83 0.22 0.24 0.69 0.89 0.99 1.29
8 80 0.83 0.18 0.39 0.69 0.89 0.99 1.26

Table C.20: Empirical distribution of average MP(Et)+MP(Ec
t ) across all events for which

MPs were elicited (those concerning Paris temperature in EXP N1).

D. Experimental design and displays1

D.1. Binary-choice procedure2

D.1.1. Introduction and setup3

Our binary-choice procedure is fully described in Figures D.2–D.5; the algorithm, coded in Py-4

thon, is provided in the supplementary materials here. Figure D.2 sets out the general structure5

(and stopping rules). At each step of the procedure, preferences are elicited for a single prob-6

ability interval [pi, pi]: i.e. preferences between the bet on the event and the IL (z, [pi, pi],0),7

and between the bet on the complement event and the complementary IL (0, [pi, pi],z). The8

heart of the procedure, detailed in Figures D.3–D.5, involves specification of the next probab-9

ility interval proposed for elicitation on the basis of the preferences concerning the previous10

intervals. We first set out the notation used in the presentation of these parts of the procedure,11

before explaining informally its main steps. Throughout, we adopt the Euclidean topology on12

I ⊆ R2, and let d(•,•) be the Euclidean distance. Moreover, recall from Section 2.1 that an13

interval-valued urn [p,q], i.e. with a minimum proportion p of red balls and a minimum pro-14

portion 1−q of blue balls, corresponds to a probability interval; we shall present the procedure15

in terms of the latter here.16

The procedure draws on two formal elements. The first is the assignment of interval-valued17

urns—or equivalently probability intervals—to one of four preference-defined regions, as set18

out in Table 1 (Section 2.5). For instance, in Figure D.1, which we shall use to illustrate the19

procedure, the probability intervals already elicited are the dots coloured white, red, blue and20

red-blue according to the region they belong to.21

The second element is a ‘polar’-style coordinate system for the set of probability intervals22

I , under which, informally, (m,α) ∈ [0,0.5]× [0,1] is the probability interval that is α along23

the piecewise-linear line that goes through the probability intervals [0,0], [1,1], and [m,1−m]24

(corresponding to the urn with at least proportion m of red balls and at least proportion m of25

blue balls). The thick grey line in Figure D.1 is one such line. Formally, σ : I → [0,0.5]× [0,1]26

is defined by:27

16
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[pi+1, qi+1] when [pi, qi] = Y

[pi+1, qi+1] when [pi, qi] = X

m = const;
α ∈ [0, 1]

X

Y

r

1− b

[1, 1][0, 1]

[0, 0]

[0.5, 0.5]

Figure D.1: Binary Choice Procedure.

σ([p,q]) =



( p
p+q ,

p+q
2 ) p ≤ 1−q, p+q ∈ (0,2)

( 1−q
2−p−q ,

p+q
2 ) p > 1−q, p+q ∈ (0,2)

(0,0) p = q = 0

(0,1) p = q = 1

(13)

It is straightforward to check that σ is a well-defined function on I . Every point except for1

[0,0], [1,1] corresponds to a unique line (parametrised by m) and ‘distance’ along that line2

(parametrised by α). [0,0] (respectively [1,1]) corresponds to a single α , namely 0 (resp. 1),3

though it lies on all such lines; we set the corresponding m = 0 by convention. We write4

σ1([p,q]) (respectively σ2([p,q])) for the first (resp. second coordinate) of σ([p,q]). Since this5

is a simple change of coordinates, we shall write (m,α) ∈ B as short for σ−1(m,α) ∈ B, and6

similarly for other cases.7

D.1.2. Presentation of main steps8

As discussed in Section 2.5 (Proposition 1), elicited points in the R-B and Wh regions determ-9

ine an area in I ‘between the R-B and the Wh points’ to which the MPI must belong. The10

general aim of the procedure is thus to find progressively ‘closer’ points in R-B and Wh, hence11

reducing the size of this area. This motivates the two main steps in the determination of the next12
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Figure D.2: Binary choice procedure: structure

probability interval to be presented for elicitation, [pi+1,qi+1], on the basis of the previously1

elicited point [pi,qi].2

On the one hand, if [pi,qi] is in the R-B region (respectively, the Wh region), then by3

Proposition 1 a. (Section 2.5), the MPI will be North-West of [pi,qi] (resp. South-East of4

[pi,qi]) in Figure 1: i.e. p ≤ pi and p ≥ qi (resp. p ≥ pi and p ≤ qi), where the MPI is [p, p].5

In such cases, the procedure proposes a [pi+1,qi+1] North-West (resp. South-East) of [pi, pi].6

This exemplified by the [pi+1,qi+1] proposed for point X in Figure D.1. The precise proposal7

for [pi+1,qi+1] depends on whether there is a point in Wh (resp. R-B); technicalities aside, this8
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Figure D.3: Determination of Next Binary Choice: Part 1
Notation: σ defined in (13).

is the general strategy of the cases in lines 20-23 and 36-39 of the procedure (Figures D.4-D.5).1

If the point [pi+1,qi+1] turns out to be in R-B or Wh, this will further restrict the area where the2

MPI can lie.3

On the other hand, if [pi,qi] is in the R or B regions, then Proposition 1 a. does not apply;4

as discussed in Section 2.5, the aim in such cases is to find a point in the R-B or Wh regions, to5

continue reducing the area containing the MPI. The procedure draws on two observations. First,6

as mentioned above, any point [pi,qi] can be equivalently written in another coordinate system,7

specifying the line it sits on—parametrised by m = σ1([pi,qi])—and how ‘far’ along the line it8

is—parametrised by α = σ2([pi,qi]). Second, for [pi,qi] in R (respectively B), by Proposition 19

b., all points North-East (resp. South-West) of [pi,qi] are also in R (resp. B). So the only points10

in R-B and W on the line m = σ1([pi,qi]) corresponding to the point [pi,qi] must be South-West11

of [pi,qi], i.e. with lower α (resp. North-East, i.e. with higher α). Accordingly, the procedure12

proposes a point [pi+1,qi+1] on the line m = σ1([pi,qi]) but shifted in the appropriate direction,13

as illustrated by the [pi+1,qi+1] proposed for point Y (lying in the R region) in Figure D.1.14
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Technicalities aside, this is general strategy for Case 1 (lines 1-17) and the cases in lines 24-341

and lines 40-44 of the procedure (Figures D.3–D.5). Among these cases, all retain the same2

m (grey line in Figure D.1) except those considered in lines 12-17. These treat cases where3

no point in R-B or Wh has yet been found; the procedure in these cases increases m during the4

search, hence looking closer to the 45◦ line (ie. the line of [p,q] with p= q). We use a procedure5

with this in-built precision bias to favour Bayesian replies (i.e. precise probabilities); in the light6

of it, our finding of widespread imprecision (Section 4.2) is all the more remarkable.7

D.1.3. Convergence8

Except for extreme cases, the procedure tends to the MPI.9

Proposition D.1. Let E be an event, and suppose preferences are represented according to (1)10

with a unique MPI for E and W differentiable with ∂1W ([p(E), p(E)])> ∂2W ([p(E), p(E)])>11

0. Let [pn, pn] be the result of the procedure in Figures D.3–D.5 (with initial values set as12

in Figure D.2) applied for n steps. Then [pn, pn] → [p(E), p(E)] as n → ∞. Moreover, the13

procedure also converges in this sense when preferences are represented according to (1) with14

∂1W ([p(E), p(E)])> ∂2W ([p(E), p(E)]) = 0, p(E) ̸= 0 and p(E) ̸= 1.15

Proof. We provide the main steps of the proof here; they rely on technical Lemmas E.1–E.4,16

which are detailed in Appendix E. We adopt the notation and initial values from Figure D.2;17

in particular, let Eln be the set of elicited points after n steps. To simplify notation, we set18

Eln∩Wh = ElWh
n and Eln∩R−B = ElD

n . As discussed in Section 2.4, the MPI is [p(E), p(E)].19

Moreover, by Proposition A.1, at stage n, the MPI is contained in20

Φn =

{
[p,q] ∈ I : max

{
p′ : [p′,q′] ∈ ElWh

n
}
≤ p ≤ min

{
p′′ : [p′′,q′′] ∈ ElD

n
}
,

max
{

q′′ : [p′′,q′′] ∈ ElD
n
}
≤ q ≤ min

{
q′ : [p′,q′] ∈ ElWh

n
} }

(14)

where the maximum of an empty set is taken to be 0 and the minimum 1.21

We reason referring to the cases in the procedure (Figures D.3–D.5). At the beginning of the22

procedure, it is in Case 1 (ElWh
0 = ElD

0 = /0). By lines 13-16, if no point in Wh or R-B is found,23

the points elicited by the procedure will reach the space of precise probabilities (i.e. points [p,q]24

with p = q), where it will follow a standard bisection procedure. All such points have σ1-value25

of 0.5. It follows from Lemma E.1 that if the MPI is not precise, then a point will be found26

in R-B, so the procedure moves to Case 2. On the other hand, if the MPI is precise, then, by27

Lemma E.1 and the bisection character of the procedure on the space of precise probabilities,28

the points elicited in the procedure will converge to it as required.29

Now consider cases where the procedure arrives to Case 2 or 3, i.e. it finds a point in R-B30

or Wh. By Lemma E.3, σ1([pn,qn])→ σ1([p(E),p(E)]) as n → ∞. We distinguish three cases.31

• σ1([p(E),p(E)]) > 0 and σ1([pn,qn]) ̸= σ1([p(E),p(E)]) for all n. By Proposition A.132
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Figure D.4: Determination of Next Binary Choice: Part 2

and the definition of σ (and in particular the slopes of the lines σ1([p,q]) = m for m > 0),1

it follows that min[p,q]∈Eln d([p(E), p(E)], [p,q]) tends to 0 as n → 0, whence [pn, pn]→2
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Figure D.5: Determination of Next Binary Choice: Part 3

[p(E), p(E)] as required.1

• σ1([p(E),p(E)])> 0 and σ1([pi,qi]) = σ1([p(E),p(E)]) for some i. By Lemma E.1 and2

Case 2 (lines 24-33) and Case 3 (lines 40-43), the procedure will, from i onwards, only3

pass through points with same σ1-value σ1([p(E),p(E)]), where it will only find points4

in R and B. Moreover, it follows a bisection-style procedure on the line σ1([p,q]) =5

σ1([p(E),p(E)]). It follows from standard arguments, Lemma E.1 and representation (1)6

that this procedure converges to [p(E), p(E)] as required.7
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Figure D.6: Display for binary choices

• σ1([p(E),p(E)]) = 0 and ∂1W ([p(E), p(E)])> ∂2W ([p(E), p(E)])> 0. Suppose p(E) =1

0; the other case (p(E) ̸= 0 and so p(E) = 1) is treated similarly. By Lemma E.1,2

[pn,qn] contains a subsequence of points in R-B, with σ1-value tending to 0. Since3

∂1W ([p(E), p(E)])> ∂2W ([p(E), p(E)])> 0, by representation (1), for every q < p(E),4

there exists p > 0 such that (z, [p,q],0) ≺ (z,E,0), and hence such that [p,q] is not in5

R-B. Moreover, by the representation (and notably the fact that W is strictly increasing6

in the lower bound), for every q > p(E) and p ≥ 0, (0, [p,q],z)≺ (0,
[
p(E), p(E)

]
,z)∼7

(0,E,z), so such [p,q] are not in R-B. It follows that the subsequence of [pn,qn] consisting8

of points in R-B converges to
[
p(E), p(E)

]
, so [pn,qn]→

[
p(E), p(E)

]
as required.9

10

D.2. Elicitation method: displays and details11

Experimental material for the experiments is available here.8 The entire EXP A, which was con-12

ducted in English, is online at the following address: behavioralexpe.shinyapps.io/expe2023/.913

The instruction video for EXP A is available at the following address: youtu.be/dGlfpII8uBQ.14

MPI Elicitation Figure D.6 shows the display for a typical choice in the binary-choice step15

of our elicitation method, in EXP N1. The presentation of the options in EXP N2 is similar. In16

EXP A, choices are presented as in Figure D.6, with the options drawn as in Figure 2. Note17

that, in that experiment, both the bag’s label and the previous draws from it were presented on18

8In case of issues with the link, the address is: https://osf.io/yvax4/.
9Please be aware that, whilst an identical program, the version used for the actual experiment was hosted

on another server; there may thus be server issues with this version. Moreover, subject numbers were strictly
controlled during the actual experiment: conflicts in subject numbers entered by users in this open-access version
may cause you to skip parts of the study. We advise restarting with another subject number if this occurs.
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screen throughout all tasks involving each bag. The physical bags (labeled as on the screen)1

were also present throughout the experiment.10
2

The display for the 2D choice list in EXPs N1 and N2 was as presented in Figure 2, with the3

bets displayed as in Figure D.6. Note that the red and blue lines above and below the scrollbar4

encode the preferences between bets on the target event and bets on urns. For instance, the red5

lines below then above the bar in Figure 2a indicate that, for an urn with at least 25 blue balls6

and a minimum number of red balls greater than 25, the bet on red from the urn is preferred7

over the bet on yellow from bag #C, whereas when there are at least 25 blue urns and the8

minimum number of red balls is less than 25, the bet on the bag is preferred. Similarly for9

the blue lines and bets on blue from the urn and green from the bag. Readers wishing to enter10

their preferences using the proposed method can undertake EXP A at the following address:11

behavioralexpe.shinyapps.io/expe2023/.11
12

In EXP N2, after having undertaken the elicitation tasks for all events in a source, subjects13

were presented with a final confirmation screen, shown in Figure D.7. All interval-valued urns14

corresponding to the choices made and confirmed by the subject for the source are presented on15

the left. They are graphically depicted on the right: the red line shows the minimum number of16

red balls for each event (mark, in the case of this source), whereas the blue line plots 100 minus17

the minimum number of blue balls. To change a choice, a subject can either click on the choice18

on the right hand plot or on the corresponding urn in the sidebar on the left. By doing so, she19

returns to the corresponding two-cursor scrollbar confirmation screen, as described above and20

shown in Figure 2. She may modify her choices on this screen as described previously, and21

must reconfirm before proceeding.22

MP elicitation For the Paris treatment in EXP N1, the MP of the bet on a given event was23

elicited through a two-step procedure, as in Abdellaoui et al. (2021, 2023). First, a candid-24

ate MP was determined through a bisection process (Abdellaoui et al., 2008), consisting in a25

chained sequence of binary choices between the bet on the event and an urn whose composi-26

tion was fully known. Starting with a binary choice between (z, [1
2 ,

1
2 ],0) and (z,E,0), it then27

asks a binary choice with the midpoint of the lower (respectively upper) interval [0, 1
2 ] (resp.28

[1
2 ,1]) whenever the subject chooses the former (resp. latter) option, and so on. The displays29

used for these binary choices were similar to those used in the MPI elicitation (Figure D.6). In30

the second stage, the complete confirmation (one-dimensional, single cursor) scrollbar-based31

choice list, filled in according to the prior bisection choices, was displayed for verification.32

Figure D.8 presents the display for this part of the method. As for the MPI confirmation screen33

10In EXP A, before undertaking the tasks concerning each bag, subjects were informed of prior draws from it
on the screen. The (unknown) compositions of the physical bags were consistent with the reported draws.

11Following the instructions, which the reader can skip, the experiment begins with a practice task, involving
both steps of our elicitation method.
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Figure D.7: Omnibus confirmation screen in EXP N2

Figure D.8: MP confirmation choice list display in EXP N1

(Section 3.2), the subject may use the cursor to inspect and modify her choices, and must scan1

all choices before confirming. The precision of the elicited MP was to the nearest 0.05.2

E. Technical Appendix: Lemmas for the proof of Proposition3

D.14

In the following Lemmas, we suppose that preferences are represented according to (1) with5

a unique MPI for the event of interest E and W differentiable with ∂1W ([p(E), p(E)]) >6

∂2W ([p(E), p(E)]), where [p(E),p(E)] is the subjective probability interval for E. Throughout7

this section, we adopt the notation set out in Section D.1.3.8
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Lemma E.1. For every m ∈ [0,0.5]:1

• If σ1
([

p(E),p(E)
])

<m, there exists [p,q]∈R−B with σ1([p,q]) =m, but no [p,q]∈Wh2

with σ1([p,q]) = m;3

• If σ1
([

p(E),p(E)
])

>m, there exists [p,q]∈Wh with σ1([p,q]) =m, but no [p,q]∈R−B4

with σ1([p,q]) = m;5

• If σ1
([

p(E),p(E)
])

= m, each [p,q] with σ1([p,q]) = m and [p,q] ̸=
[
p(E),p(E)

]
be-6

longs to either R or B.7

Proof. Straightforward to check from the representation (1) and the definition of σ (13). (See8

also Figures 1 and D.1.)9

Lemma E.2. If p(E) = p(E) and Case 1 arrives at a point [pi,qi] with pi = qi, then the pro-10

cedure remains in Case 1, and [pn, pn]→ [p(E), p(E)] as n → ∞.11

Proof. Once the procedure reaches the subspace of precise probabilities, it executes a standard12

bisection procedure (lines 13–16, Figure D.3).13

Lemma E.3. Suppose that the procedure reaches a point [pi,qi] in R-B or Wh. Then the se-14

quence σ1([pn,qn])→ σ1(
[
p(E),p(E)

]
) as n → ∞.15

Proof. Consider a stage i in the procedure where a point has just been found in R-B or Wh. So16

the area containing the MPI is Φi (Eq. (14)). For the sake of readability, we set Ip,q = [p,q].17

Let18

mWh
i =minσ1(Φi)

=σ1

(
[max

{
p′ : Ip′,q′ ∈ ElWh

n

}
,min

{
q′ : Ip′,q′ ∈ ElWh

n

}
]
)

mRB
i =maxσ1(Φi)

=

σ1
(
[min

{
p′′ : Ip′′,q′′ ∈ ElD

n
}
,max

{
q′′ : Ip′′,q′′ ∈ ElD

n
}
]
)

if ElD
n ̸= /0

0.5 otherwise

and |Φi| = mRB
i −mWh

i . The latter is the maximum difference in σ1 values across all pairs of19

points in Φi. In the first two subcases of Case 3 (lines 35-39), the next probability interval20

elicited is21

Ipi+1qi+1 =
1
2
[max

{
p′ : Ip′,q′ ∈ ElWh

n

}
,min

{
q′ : Ip′,q′ ∈ ElWh

n

}
]

+
1
2
[min

{
p′′ : Ip′′,q′′ ∈ ElD

n
}
,max

{
q′′ : Ip′′,q′′ ∈ ElD

n
}
]
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In the second subcase of Case 2 (lines 22-23), where a point in Wh has been found, but no point1

in R-B, the next probability interval elicited is2

Ipi+1qi+1 =
1
2

[
1
2

(
min

{
p′′ : Ip′′,q′′ ∈ ElWh

n
}
+

max
{

q′′ : Ip′′,q′′ ∈ ElWh
n

} )
,
1
2

(
min

{
p′′ : Ip′′,q′′ ∈ ElWh

n
}
+

max
{

q′′ : Ip′′,q′′ ∈ ElWh
n

} )]
+

1
2

[
min

{
p′′ : Ip′′,q′′ ∈ ElWh

n

}
,max

{
q′′ : Ip′′,q′′ ∈ ElWh

n

}]
where [1

2

(
min

{
p′′ : Ip′′,q′′ ∈ ElWh

n
}
+max

{
q′′ : Ip′′,q′′ ∈ ElWh

n
})

, 1
2

(
min

{
p′′ : Ip′′,q′′ ∈ ElWh

n
})

3

+max
{

q′′ : Ip′′,q′′ ∈ ElWh
n

}
] is the point on the diagonal of precise4

probabilities (i.e. degenerate probability intervals) that is closest to5

[min
{

p′′ : Ip′′,q′′ ∈ ElWh
n

}
,max

{
q′′ : Ip′′,q′′ ∈ ElWh

n
}
] (it is on the downwards sloping 45◦6

line from [min
{

p′′ : Ip′′,q′′ ∈ ElWh
n

}
,max

{
q′′ : Ip′′,q′′ ∈ ElWh

n
}
]). So this point has σ1-value 0.5.7

In first subcase of Case 2 (lines 20-21), where a point in R-B has been found,8

but no point in Wh, the next probability interval elicited, Ipi+1qi+1 , is a 1
2 − 1

2 mix of9

[min
{

p′′ : Ip′′,q′′ ∈ ElD
n
}
,max

{
q′′ : Ip′′,q′′ ∈ ElD

n
}
] with10 

 min
{

p′′ : Ip′′,q′′ ∈ ElD
n
}
+

max
{

q′′ : Ip′′,q′′ ∈ ElD
n
}
−1

,1

 if
min

{
p′′ : Ip′′,q′′ ∈ ElD

n
}

+max
{

q′′ : Ip′′,q′′ ∈ ElD
n
} > 1

0,
min

{
p′′ : Ip′′,q′′ ∈ ElD

n
}
+

max
{

q′′ : Ip′′,q′′ ∈ ElD
n
}

 if
min

{
p′′ : Ip′′,q′′ ∈ ElD

n
}

+max
{

q′′ : Ip′′,q′′ ∈ ElD
n
} ≤ 1

which is the point on the upper boundary (with either lower bound for the probab-11

ility interval 0 or upper bound 1) that is on the downwards sloping 45◦ line from12

[min
{

p′′ : Ip′′,q′′ ∈ ElD
n
}
,max

{
q′′ : Ip′′,q′′ ∈ ElD

n
}
]. This point has σ1-value 0.13

Clearly, in all cases, mWh
i < σ1(Ipi+1qi+1) < mRB

i . Moreover, by the rest of the subcases in14

Cases 2 & 3, if this point is not in R-B or Wh, all the subsequent points elicited will have the15

same σ1-value as Ipi+1qi+1 . And whenever a point in R-B is found, the next area containing the16

MPI, Φi+1, will have the same minimum σ1-value mWh
i , but its maximum value will be replaced17

by σ1(Ipi+1qi+1). By Lemma E.4, it follows that18

|Φi|.
mWh

i

mRB
i +mWh

i
≤ |Φi+1|

≤ |Φi|.
1−mWh

i

(1−mRB
i )+(1−mWh

i )

Similarly, whenever a point in Wh is found, the next area containing the MPI, Φi+1, will have19
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the same maximum σ1 value mRB
i , but its minimum value will be replaced by σ1(Ipi+1qi+1),1

whence2

|Φi|.
1−mRB

i

(1−mRB
i )+(1−mWh

i )
≤ |Φi+1|

≤ |Φi|.
mRB

i

mRB
i +mWh

i

Since, for any j > i, mRB
j ≤ mRB

i and mWh
j ≥ mWh

i , for any such j,
1−mWh

j

(1−mRB
j )+(1−mWh

j )
≤3

1−mWh
i

(1−mRB
i )+(1−mWh

i )
and

mRB
j

mRB
j +mWh

j
≤ mRB

i
mRB

i +mWh
i

. So, for any j = i + k with k ∈ N, k ≥ 1,4

|Φ j| ≤
(

max
{

1−mWh
i

(1−mRB
i )+(1−mWh

i )
,

mRB
i

mRB
i +mWh

i

})k
.|Φi|. So the sequence [mWh

n ,mRB
n ] is a bisection-5

like sequence of decreasing intervals (in the sense of containment), each of which contains6

σ1([p(E),p(E)]). Moreover, by the previous observation, whenever a point Ip,q is found in7

Wh with σ1(Ip,q) > 0, then the sequence |Φn| = mRB
n −mWh

n → 0 as n → ∞, so σ1(Ipnqn) →8

σ1([p(E),p(E)]) as required. (Recall that 0.5 ≥ mRB
n ≥ mWh

n ≥ 0 for all n.)9

We now separate two cases, according to whether σ1
([

p(E), p(E)
])

= 0 or not. Suppose10

first that σ1
([

p(E), p(E)
])

= δ > 0 . We show that the procedure will either arrive at a point11

with σ1-value δ , or a point in Wh. At a stage i in the procedure where no points in Wh have12

been found, but a point in R-B has, mWh
i = 0 and 0.5 ≥ mR−B

i > 0. At each subsequent stage,13

by Lemma E.1, either i. no point is found in Wh or R-B; ii. a point is found in Wh or R-14

B, and the next such point is in Wh; iii. a point is found in Wh or R-B, and the next such15

point is in R-B. In case ii., the claim is established; in case i., by Lemma E.1, the procedure is16

examining points with σ1-value δ , and the claim is established. Assume for reductio that at all17

such stages, the σ1-value of the explored points is not δ , but no point in Wh is found—i.e. we18

are always in case iii. Then, by the previous observations, for every j = i+k with k ∈N, k ≥ 1,19

|Φ j| ≤
(

1−mWh
i

(1−mRB
i )+(1−mWh

i )

)k
.|Φi| =

(
1

2−mRB
i

)k
.mRB

i . Hence |Φ j| = mRB
j → 0, contradicting the20

fact that there are no points with σ1-value less that δ in R-B. Hence the procedure eventually21

finds a point in Wh. By the previous observation it follows that σ1([pn,qn])→ σ1([p(E),p(E)])22

as required.23

Now consider the case where σ1
([

p(E), p(E)
])

= 0. By Lemma E.1, whenever the pro-24

cedure searches for a point on a line σ1(Ip,q) = m > 0, it will find a point in R-B. Hence, by the25

previous argument, it produces a sequence of points Ipnqn in R-B, defining Φn and associated26

[mWh
n ,mRB

n ], with mWh
n = 0 and mRB

j → 0, as required.27

28

Lemma E.4. Let [pWh,qWh] be a point in Wh, with σ1([pWh,qWh]) = mWh and suppose that the29

28



line σ1 ([p,q]) =mR−B contains a point in R-B but not in Wh. Then, for any point [pR−B,qR−B]∈1

R−B with σ1 ([pR−B,qR−B]) = mR−B2

σ1([
pWh+pR−B

2
,
qWh +qR−B

2
]) ∈

[
2mWh.mR−B

mWh +mR−B
,
mWh(1−mR−B)+mR−B(1−mw)

(1−mR−B)+(1−mw)

]
Moreover, the same holds for a given point [pR−B,qR−B]∈R−B and any point [pWh,qWh]∈Wh3

on the line σ1 ([p,q]) = mWh.4

Proof. We begin by noting for reference that the inverse map of σ is given by:5

σ
−1(m,α) =

[2αm,2α(1−m)] α ≤ 1
2

[(2−2α)m+(2α −1),(2−2α)(1−m)+(2α −1)] α > 1
2

(15)

We first restrict attention to points [p,q] with p < 1− q (or, in the polar-style coordinate sys-6

tem, α < 1
2 ). For any points [p1,q1] and [p2,q2], written in polar-style coordinate system as7

(m1,α1) and (m2,α2), by (13) and (15), the midpoint (in Cartesian coordinates), 1
2 [p1,q1] +8

1
2 [p2,q2] is

(
α1m1+α2m2

α1+α2
, α1+α2

2

)
in the polar system. Written in the polar coordinate system,9

let [pWh,qWh] be (mWh,αWh); the points on the line σ1 ([p,q]) = mR−B are (mR−B,α), for10

varying α . Note that, by Proposition 1, mR−B > mWh. It follows from representation 1 that11

(z, [p′,q′],0) ≺ (z, [p,q],0) whenever q′ < q and p′ < p, whence, since [pWh,qWh] ∈ Wh, we12

have that (z, [p′,q′],0) ≺ (z,E,0) for all q′ < qWh and p′ < pWh, so such points are not in13

R-B. So any point [p,q] on σ1 ([p,q]) = mR−B which is in R-B is such that p ≥ pWh. By a14

similar argument (using the fact that (0, [p′,q′],z) ≺ (0,E,z) for all q′ > qWh and p′ > pWh),15

any point [p,q] on σ1 ([p,q]) = mR−B which is in R-B is such that q ≤ qWh. So any point16

[p,q] on σ1 ([p,q]) = mR−B which is in R-B has α >
αWhmWh

mR−B
(where, by (15), this is in the α17

of the point on σ1 ([p,q]) = mR−B with p = pWh = 2αWhmWh); similarly, any such point has18

α < αWh(1−mWh)
(1−mRB)

. Plugging these bounds into the expression for the midpoint yields the result.19

Similar calculations yield the same result for the cases of p > 1−q for some or all of the point20

considered. Finally, analogous arguments establish the conclusion for [pR−B,qR−B] ∈ R−B21

fixed and [pWh,qWh] ∈Wh on the line σ1 ([p,q]) = mWh.22
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