Confidence, consensus and aggregation

Brian Hill

hill@hec.fr www.hec.fr/hill

CNRS & HEC Paris

TUS XI 2025

Dedicated to the memory of Philippe Mongin

i (honest, well-intentioned) 'experts'; 0 group.

i (honest, well-intentioned) 'experts'; 0 group.

Probability aggregation

- ► Input: pⁱ (probabilities)
- Output belief: p⁰ (group probability)
- Output decision(s) SEU with p⁰

i (honest, well-intentioned) 'experts'; 0 group.

Probability aggregation

- ► Input: pⁱ (probabilities)
- Output belief: p⁰ (group probability)
- Output decision(s) SEU with p⁰

E.g. Linear opinion pooling:

$$p^0(E) = \sum_{i=1}^n w^i p^i(E)$$

Pareto (Mongin, 1995)

i (honest, well-intentioned) 'experts'; 0 group.

Probability aggregation

- ▶ **Input**: pⁱ (probabilities)
- Output belief: p⁰ (group probability)
- Output decision(s) SEU with p⁰

Model misspecification

- **Input**: p^i (probabilities)
- Output belief: ?
- Output decision(s): E.g.

$$\min_{p \in \Delta} \left\{ \mathbb{E}_p u(f) + \lambda \min_{p^i} R(p || p^i) \right\}$$

E.g. Linear opinion pooling:

$$p^0(E) = \sum_{i=1}^n w^i p^i(E)$$

(Hansen and Sargent, 2022; Cerreia–Vioglio et al., 2025)

Pareto (Mongin, 1995)

i (honest, well-intentioned) 'experts'; 0 group.

Probability aggregation

Model misspecification

- ► Input: pⁱ (probabilities)
- Output belief: p⁰ (group probability)
- Output decision(s) SEU with p⁰

- **Input**: p^i (probabilities)
- Output belief: ?
- Output decision(s): E.g.

$$\min_{p \in \Delta} \left\{ \mathbb{E}_p u(f) + \lambda \min_{p^i} R(p || p^i) \right\}$$

E.g. Linear opinion pooling:

$$\rho^0(E) = \sum_{i=1}^n w^i \rho^i(E)$$

(Hansen and Sargent, 2022; Cerreia–Vioglio et al., 2025)

Pareto (Mongin, 1995)

Example

Example

Probability certain interest rate rise has limited effect on:

	Labour	Real estate	Both
Laura	0.9	0.1	0.09
Ray	0.1	0.9	0.09
Lin. pool.	$0.1 + 0.8w^L$	$0.9 - 0.8w^{L}$	0.09

$$p^{0}(E) = w^{L}p^{L}(E) + (1 - w^{L})p^{R}(E)$$

Example

Probability certain interest rate rise has limited effect on:

	Labour	Real estate	Both
Laura	0.9	0.1	0.09
Ray	0.1	0.9	0.09
Lin. pool.	$0.1 + 0.8w^L$	$0.9 - 0.8w^L$	0.09

$$p^{0}(E) = w^{L}p^{L}(E) + (1 - w^{L})p^{R}(E)$$

Example

Probability certain interest rate rise has limited effect on:

	Labour	Real estate	Both
Laura	0.9	0.1	0.09
Ray	0.1	0.9	0.09
Lin. pool.	$0.1 + 0.8w^L$	$0.9 - 0.8w^L$	0.09

$$p^{0}(E) = w^{L}p^{L}(E) + (1 - w^{L})p^{R}(E)$$

Spurious Unanimity

Why respect spurious consensus?

(Mongin, 2016; Bradley, 2017b; Mongin and Pivato, 2020; Dietrich, 2021; Bommier et al., 2021)

Example

Probability certain interest rate rise has limited effect on:

	Labour	Real estate	Both
Laura	0.9	0.1	0.09
Ray	0.1	0.9	0.09
Lin. pool.	$0.1 + 0.8w^{L}$	$0.9 - 0.8w^{L}$	0.09

$$p^{0}(E) = w^{L}p^{L}(E) + (1 - w^{L})p^{R}(E)$$

Spurious Unanimity

Why respect spurious consensus?

Diverse (intra-agent) expertise

Why is Laura's judgement on Labour treated the same as her judgement on Real-estate?

(Genest and Zidek, 1986; French, 1985)

Example

Probability certain interest rate rise has limited effect on:

	Labour	Real estate	Both
Laura	0.9	0.1	0.09
Ray	0.1	0.9	0.09
Lin. pool.	$0.1 + 0.8w^{L}$	$0.9 - 0.8w^{L}$	0.09

$$\min_{p \in \Delta} \left\{ \mathbb{E}_p u(f) + \lambda \min_{p^i} \frac{R}{P}(p || p^i) \right\}$$

Spurious Unanimity

Why respect spurious consensus?

Diverse (intra-agent) expertise

Why is Laura's judgement on Labour treated the same as her judgement on Real-estate?

Summary

Probability aggregation

- ► Input: pⁱ (probabilities)
- Output belief: p⁰ (group probability)
- Output decision(s) SEU with p⁰

Model misspecification

- ► Input: pⁱ (probabilities)
- Output belief: ?
- ▶ Output decision(s): E.g.

$$\min_{p \in \Delta} \left\{ \mathbb{E}_p u(f) + \lambda \min_{p^i} R(p|p^i) \right\}$$

Desiderata A belief aggregation for decision procedure that:

- 0. generalises and situates these
- 1. respects the right consensuses
 - avoiding spurious unanimities
- 2. can do justice to varying expertise

Summary

Probability aggregation

- ► Input: pⁱ (probabilities)
- Output belief: p⁰ (group probability)
- Output decision(s) SEU with p⁰

Model misspecification

- ► Input: pⁱ (probabilities)
- Output belief: ?
- Output decision(s): E.g.

$$\min_{p \in \Delta} \left\{ \mathbb{E}_p u(f) + \lambda \min_{p^i} R(p|p^i) \right\}$$

Insight

- New aggregation rule for confidence in beliefs
- (+ known approach to confidence in decision)

Plan

Introduction Challenges Insights

Confidence Aggregation

Probablity aggregation & Expertise

Deciding (with models)

Characterisation

Dynamic Rationality

Conclusion

Proposal Insights

Issue-level consensus

Spuriousness

Desideratum A belief aggregation procedure that:

- 1. respects the right consensus(es)
 - avoiding spurious unanimities

Insights

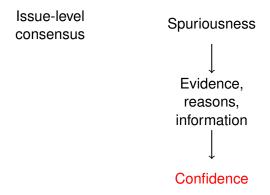
Issue-level consensus

Spuriousness

Evidence, reasons, information

 $p^{i}(E)$ does not exhaust the elements of belief states pertaining to event E relevant for aggregation . . .

Insights



 $p^{i}(E)$ does not exhaust the elements of belief states pertaining to event E relevant for aggregation ...

Confidence in beliefs

Hill, 2013, 2019b,a; Bradley, 2017a ... Klibanoff et al., 2005; Maccheroni et al., 2006; Hansen and Sargent, 2008; Chateauneuf and Faro, 2009

Insights

Issue-level Spuriousness

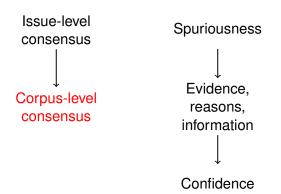
Evidence, reasons, information

Confidence

Desideratum A belief aggregation procedure that:

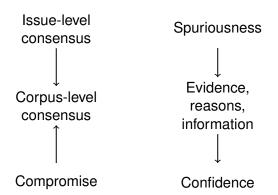
- 1. respects the right consensus(es)
 - avoiding spurious unanimities

Insights



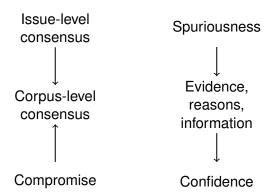
Corpus: (coherent) set of probability judgements \equiv set of priors.

Insights



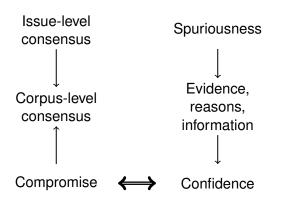
Corpus-level consensus: Everyone is willing to 'leave off the table' or compromise any potential disagreement.

Insights



What compromises are agents willing to make?

Insights



Confidence and Compromise

The more confident an individual is in a belief, the less willing she is to compromise on it.

Proposal Insights

In aggregation:

Respect corpus-level consensus

where

The more confident an individual is in a belief, the less willing she is to compromise on it.

Plan

Introduction

Confidence Aggregation

Probablity aggregation & Expertise

Deciding (with models)

Characterisation

Dynamic Rationality

Conclusion

Plan

Introduction

Confidence Aggregation

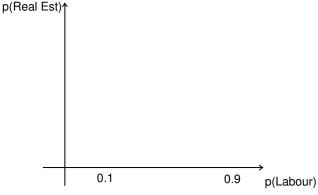
Probablity aggregation & Expertise

Deciding (with models)

Characterisation

Dynamic Rationality

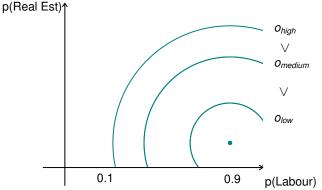
Conclusion



Preliminaries

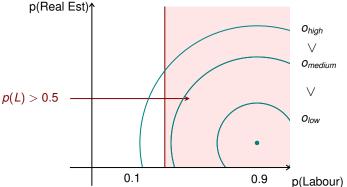
 \triangle probability measures (over states Ω)

(O, >) confidence levels



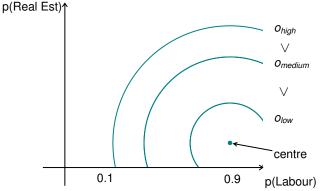
Confidence ranking: Increasing $c^i: O \to 2^{\Delta} \setminus \emptyset$.

(Hill, 2013, 2019b; Manski, 2013; Bradley, 2017a)



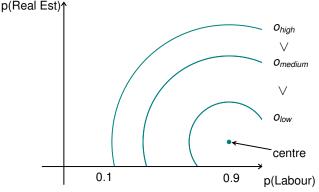
Confidence ranking: Increasing $c^i: O \to 2^{\Delta} \setminus \emptyset$.

(Hill, 2013, 2019b; Manski, 2013; Bradley, 2017a)



Confidence ranking: Increasing $c^i: O \to 2^{\Delta} \setminus \emptyset$.

(Hill, 2013, 2019b; Manski, 2013; Bradley, 2017a)



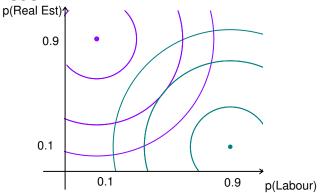
Confidence ranking: Increasing $c^i: O \to 2^{\Delta} \setminus \emptyset$.

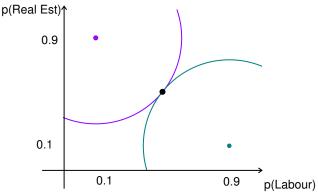
Implausibility fn $\iota_{c^i}: \Delta \to O \cup \emptyset$

(Hill, 2013, 2019b; Manski, 2013; Bradley, 2017a)^a

10/35

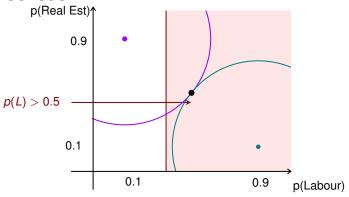
 $[^]a\iota_{c'}(p)=\min\left\{o:p\in c^i(o)
ight\};$ Reduced form for Klibanoff et al., 2005; Maccheroni et al., 2006; Hansen and Sargent, 2008; Chateauneuf and Faro, 2009 . . . \blacksquare





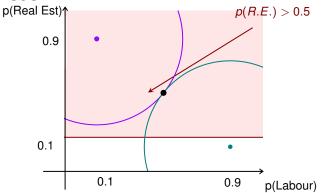
Consensus: a coherent set of probability judgements rejected by no-one (at the relevant confidence levels).

$$\bigcap_{i} c^{i}(o)$$



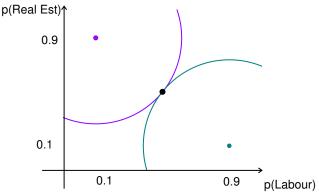
Consensus: a coherent set of probability judgements rejected by no-one (at the relevant confidence levels).

$$\bigcap_{i} c^{i}(o$$



Consensus: a coherent set of probability judgements rejected by no-one (at the relevant confidence levels).

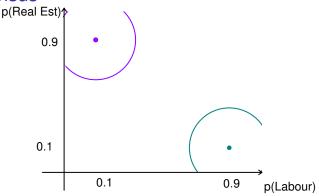
$$\bigcap_{i} c^{i}(o)$$



Consensus: a coherent set of probability judgements rejected by no-one (at the relevant confidence levels).

Maxim If more confident in a belief, less willing to compromise it.

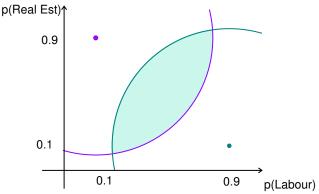
Consensus



Consensus: a coherent set of probability judgements rejected by no-one (at the relevant confidence levels).

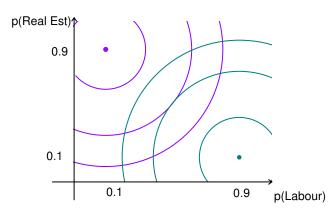
Maxim If more confident in a belief, less willing to compromise it.

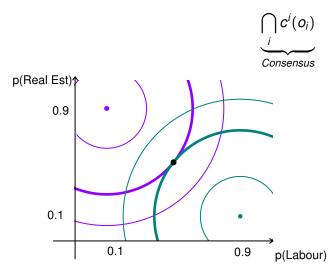
Consensus

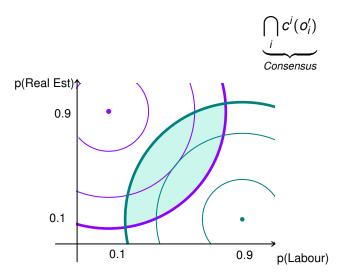


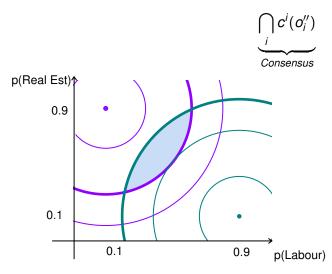
Consensus: a coherent set of probability judgements rejected by no-one (at the relevant confidence levels).

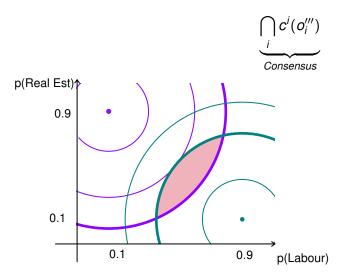
Maxim If more confident in a belief, less willing to compromise it.











$$\bigcap_{i} c^{i}(o_{i})$$
Consensus

- $\otimes: O^n \to O$: confidence level aggregator.
 - ▶ ⊗o: group confidence in consensus judgements in o
 - monotonic

$$\bigcap_{i} c^{i}(o_{i})$$
Consensus

- $\otimes: O^n \to O$: confidence level aggregator.
 - ▶ ⊗o: group confidence in consensus judgements in o
 - monotonic

E.g.

Maximum agg. $\otimes \mathbf{o} = \max\{o_i\}$

Minimum agg. $\otimes \mathbf{o} = \min \{o_i\}$

Average agg. $\otimes \mathbf{o} = \sum_{n=1}^{\infty} o_i + \chi$

$$F_{\otimes}(c^1,\ldots,c^n)(o) = \bigcup_{\mathbf{o}:\otimes\mathbf{o}\leq o} \bigcap_{\substack{i \ Consensus}} c^i(o_i)$$

for **o** with $\bigcap_i c^i(o_i) \neq \emptyset$

Group judgement: held in all consensuses with that level of confidence.

Consensus-preserving confidence aggregation:

$$F_{\otimes}(c^1,\ldots,c^n)(o) = \bigcup_{\mathbf{o}:\otimes\mathbf{o}\leq o}\bigcap_i c^i(o_i)$$

The more individual confidence there is in a consensus judgement, the more confidence the group has in it.

Consensus-preserving confidence aggregation:

$$F_{\otimes}(c^1,\ldots,c^n)(o) = \bigcup_{\mathbf{o}:\otimes\mathbf{o}\leq o}\bigcap_i c^i(o_i)$$

Equivalently:

$$F_{\otimes}(\iota^{1},\ldots,\iota^{n})(p)=\otimes(\iota^{1}(p),\ldots,\iota^{n}(p))$$

So

$$\begin{aligned} \operatorname{Centre}_{F_{\otimes}(c^1,\dots,c^n)} &= \arg\min_{p \in \Delta} \otimes (\iota^1(p),\dots,\iota^n(p)) \\ &\stackrel{avge \ \otimes}{=} \arg\min_{p \in \Delta} \sum_{i=1}^n \iota^i(p) \end{aligned}$$

Plan

Introduction

Confidence Aggregation

Probablity aggregation & Expertise

Deciding (with models)

Characterisation

Dynamic Rationality

Conclusion

Probabilities pⁱ

Probabilities p^i : stipulate confidence rankings centred on p^i

$$c^i(o) = \left\{ q \in \Delta : w^i d(q, p^i) \le o \right\}$$
 $\iota_{c^i}(q) = w^i d(q, p^i)$

d: (classical) statistical distance^a

E.g.

Euclidean
$$d(q, p) = \sum_{\omega \in \Omega} (q(\omega) - p(\omega))^2$$

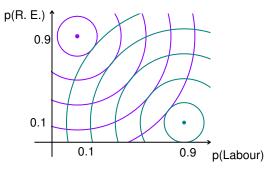
Relative Entr. d(q, p) = R(q||p)

Reverse Rel. Entr. d(q, p) = R(p||q)

alower semicts; $\rho(q, p) = 0 \Leftrightarrow p = q$.

Probabilities p^i : stipulate confidence rankings centred on p^i

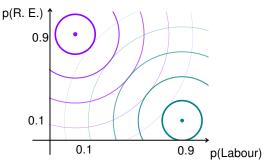
$$c^i(o) = \left\{ q \in \Delta : w^i d(q, p^i) \leq o \right\}$$



d: Euclidean

Probabilities p^i : stipulate confidence rankings centred on p^i

$$c^i(o) = \left\{ q \in \Delta : \frac{w^i}{o}d(q, p^i) \leq o
ight\}$$

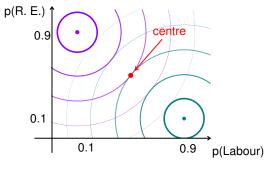


 $\mathbf{w}^L = \mathbf{w}^R$

d: Euclidean

Probabilities p^i : stipulate confidence rankings centred on p^i

$$c^i(o) = \left\{ q \in \Delta : w^i d(q, p^i) \leq o
ight\}$$



Confidence aggregation

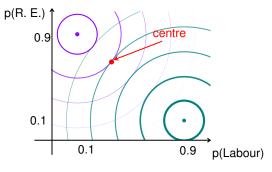
 $w^L = w^R$

d: Euclidean

Average ⊗

Probabilities p^i : stipulate confidence rankings centred on p^i

$$c^i(o) = \left\{ q \in \Delta : \frac{w^i}{o}d(q, p^i) \leq o
ight\}$$



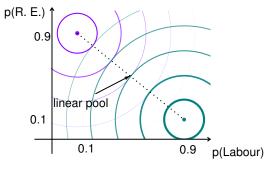
Confidence aggregation $w^L < w^R$

d: Euclidean

Average ⊗

Probabilities p^i : stipulate confidence rankings centred on p^i

$$c^i(o) = \left\{ q \in \Delta : w^i d(q, p^i) \leq o
ight\}$$



Confidence aggregation $w^L < w^R$

d: Euclidean

Average ⊗

Probabilities p^i : stipulate confidence rankings centred on p^i

$$c^i(o) = \left\{ q \in \Delta : \mathbf{w}^i d(q, p^i) \leq o
ight\}$$

Theorem

Centre of confidence aggregation = result of pooling rule

Generating distance	Pooling rule
Euclidean	Linear
Relative Entropy	Geometric
Reverse Rel. Entr.	Linear

with weights $\frac{w^i}{\sum_{i=1}^n w^i}$.

Probabilities p^i : stipulate confidence rankings centred on p^i

$$c^i(o) = \left\{ q \in \Delta : w^i d(q, p^i) \leq o \right\}$$

Theorem

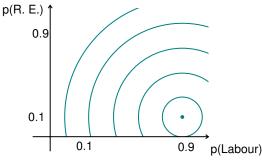
Centre of confidence aggregation = result of pooling rule

Moral Linear pooling =

- special case of confidence aggregation
- corresponding to assumptions on individuals' confidence.

Euclidean generated confidence ranking:

$$c^L(o) = \left\{ q \in \Delta : w^L \sum_{s \in S'} (q(s) - p^L(s))^2 \leq o
ight\}$$

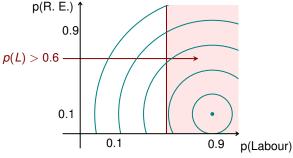


Euclidean generated confidence ranking:

$$c^L(o) = \left\{ q \in \Delta : w^L \sum_{s \in S'} (q(s) - p^L(s))^2 \leq o
ight\}$$

Fact Euclidean: assumes

▶ divergence from p^i on Labour \equiv divergence on R. E.

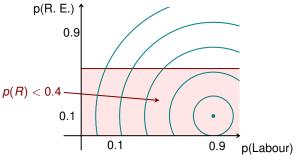


Euclidean generated confidence ranking:

$$c^L(o) = \left\{ q \in \Delta : w^L \sum_{s \in S'} (q(s) - p^L(s))^2 \leq o
ight\}$$

Fact Euclidean: assumes

▶ divergence from p^i on Labour \equiv divergence on R. E.

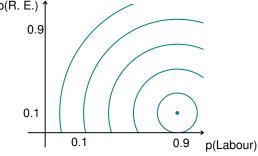


Euclidean generated confidence ranking:

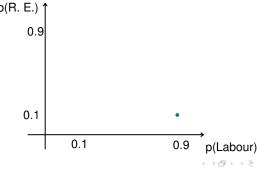
$$c^L(o) = \left\{ q \in \Delta : w^L \sum_{s \in S'} (q(s) - p^L(s))^2 \leq o
ight\}$$

Fact Euclidean: assumes

- ▶ divergence from p^i on Labour \equiv divergence on R. E.
- → same confidence on all issues!

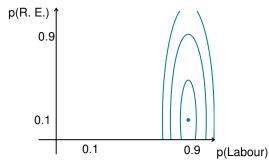


$$c^L(o) = \left\{q \in \Delta: egin{array}{ll} w_L^L(q(L)-p^L(L))^2 \ + w_R^L(q(R)-p^L(R))^2 \end{array}
ight. \le o
ight\}$$



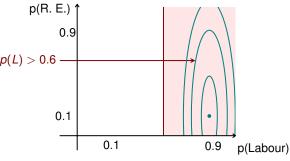
$$c^L(o) = \left\{q \in \Delta: egin{array}{l} w_L^L(q(L) - p^L(L))^2 \ + w_R^L(q(R) - p^L(R))^2 \end{array} \le o
ight\}$$

 $W_L^L > W_R^L$



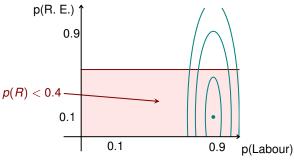
$$c^L(o) = \left\{ q \in \Delta : \begin{array}{l} w_L^L(q(L) - p^L(L))^2 \\ + w_R^L(q(R) - p^L(R))^2 \end{array} \right. \le o \right\}$$

Fact $w_I^L > w_R^L$: more confident in Labour judgements



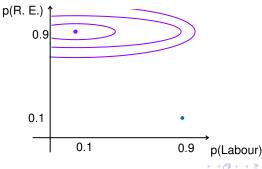
$$c^L(o) = \left\{q \in \Delta: egin{array}{l} w_L^L(q(L) - p^L(L))^2 \ + w_R^L(q(R) - p^L(R))^2 \end{array} \le o
ight\}$$

Fact $w_I^L > w_R^L$: more confident in Labour judgements



$$c^R(o) = \left\{q \in \Delta: egin{array}{l} oldsymbol{w}_L^R(q(L) - p^L(L))^2 \ + oldsymbol{w}_R^R(q(R) - p^L(R))^2 \end{array} \le o
ight\}$$

 $w_L^R < w_R^R$: more confident in Real-Estate judgements



Confidence: rich enough to capture diverse expertise.

A family: (\mathbf{w}^i, d, p) -generated confidence ranking:

$$c^{i}(o) = \left\{ q \in \Delta : \sum_{j=1}^{m} w_{j}^{i} d(q|_{\mathcal{P}_{j}}, p|_{\mathcal{P}_{j}}) \leq o
ight\}$$

where:

 \mathcal{P}_j Issues: partitions of Ω

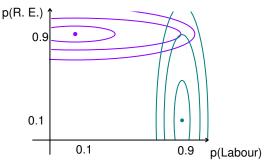
w' vector of weights

d distance, for each partition

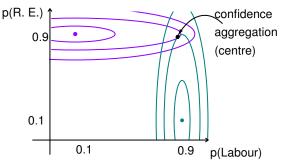
Often, can rewrite e.g.

$$c^i(o) = \left\{ q \in \Delta : (\mathbf{q} - \mathbf{p^i})^T \mathbf{D}^i (\mathbf{q} - \mathbf{p^i}) \leq o
ight\}$$

Confidence: rich enough to capture diverse expertise.



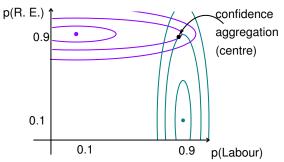
Confidence: rich enough to capture diverse expertise.



Confidence: rich enough to capture diverse expertise.

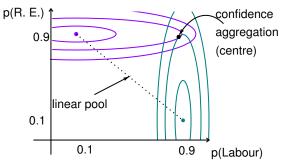
Confidence aggregation:

► Does justice to varying expertise (Desideratum 2)



Confidence: rich enough to capture diverse expertise.

- Does justice to varying expertise (Desideratum 2)
- Does not necessarily respect spurious unanimities (Desideratum 1)



More generally:

Theorem

Confidence aggregation of (\mathbf{w}^i, d, p^i) -generated confidence rankings:

Centre =
$$\underset{p \in \Delta}{\operatorname{arg min}} \sum_{i=1}^{n} \sum_{j=1}^{m} w_{j}^{i} d(p|_{\mathcal{P}_{j}}, p^{i}|_{\mathcal{P}_{j}})$$

- Within-person expertise diversity & spurious unanimity
- Some cases: $\arg \min_{\mathbf{Aq} < \mathbf{r}} \sum_{i=L,R} (\mathbf{q} \mathbf{p^i})^T \mathbf{D^i} (\mathbf{q} \mathbf{p^i})$
- Always non-empty (even when issue-dependency)

More generally:

Theorem

Confidence aggregation of (\mathbf{w}^i, d, p^i) -generated confidence rankings:

Centre =
$$\underset{p \in \Delta}{\operatorname{arg min}} \sum_{j=1}^{n} \sum_{j=1}^{m} w_{j}^{i} d(p|_{\mathcal{P}_{j}}, p^{i}|_{\mathcal{P}_{j}})$$

When d convex and the issues sufficiently rich: single probability.

- Within-person expertise diversity & spurious unanimity
- ► Some cases: $\arg \min_{\mathbf{Aq} \leq \mathbf{r}} \sum_{i=L,R} (\mathbf{q} \mathbf{p^i})^T \mathbf{D^i} (\mathbf{q} \mathbf{p^i})$
- Always non-empty (even when issue-dependency)

Corollary Generates a new probability aggregation rule:

Expertise-sensitive pooling

$$F^d_{\mathcal{P}_1,\ldots,\mathcal{P}_m}(p^1,\ldots,p^n) = \operatorname*{arg\,min}_{p \in \Delta} \sum_{i=1}^m \sum_{j=1}^m w^i_j d(p|_{\mathcal{P}_j},p^i|_{\mathcal{P}_j})$$

for convex d and rich $\{P_j\}$.

- Within-person expertise diversity & spurious unanimity
- Tractable cases
- Well-defined

Corollary Generates a new probability aggregation rule:

Expertise-sensitive pooling

$$F^d_{\mathcal{P}_1,\ldots,\mathcal{P}_m}(p^1,\ldots,p^n) = \operatorname*{arg\,min}_{p \in \Delta} \sum_{i=1}^m \sum_{j=1}^m w^i_j d(p|_{\mathcal{P}_j},p^i|_{\mathcal{P}_j})$$

for convex d and rich $\{P_j\}$.

- Within-person expertise diversity & spurious unanimity
- Tractable cases
- Well-defined
- Resolves a long-standing challenge (Genest and Zidek, 1986; French, 1985).

Plan

Introduction

Confidence Aggregation

Probablity aggregation & Expertise

Deciding (with models)

Characterisation

Dynamic Rationality

Conclusion

Experts pⁱ

Aggregation Confidence aggregation with ρ_i and \otimes :

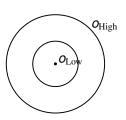
$$c(o) = \left\{q : \otimes \rho_i(q, p^i) \leq o\right\}$$

E.g.
$$\rho_i = \mathbf{w}^i \mathbf{d}$$

Experts p^i

Aggregation Confidence aggregation with ρ_i and \otimes :

$$c(o) = \left\{ q : \otimes \rho_i(q, p^i) \leq o \right\}$$



Experts pⁱ

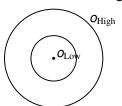
Aggregation Confidence aggregation with ρ_i and \otimes :

$$c(o) = \left\{ q : \otimes \rho_i(q, p^i) \leq o \right\}$$

Decision E.g.*

$$\min_{q \in c(D(f))} \mathbb{E}_q u(f)$$

Confidence ranking



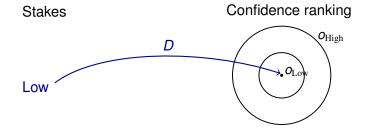
Experts pⁱ

Aggregation Confidence aggregation with ρ_i and \otimes :

$$c(o) = \left\{ q : \otimes \rho_i(q, p^i) \leq o \right\}$$

Decision E.g.*

$$\min_{q \in c(D(f))} \mathbb{E}_q u(f)$$



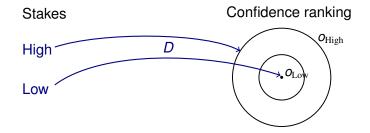
Experts pⁱ

Aggregation Confidence aggregation with ρ_i and \otimes :

$$c(o) = \left\{ q : \otimes \rho_i(q, p^i) \leq o \right\}$$

Decision E.g.*

$$\min_{q \in {\color{red} c(D(f))}} \mathbb{E}_q u(f)$$



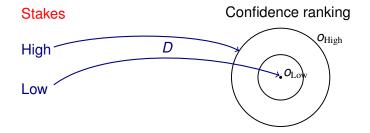
Experts pⁱ

Aggregation Confidence aggregation with ρ_i and \otimes :

$$c(o) = \left\{q : \bigotimes_{\rho_i}(q, \rho^i) \leq o\right\}$$

Decision E.g.

$$\min_{q \in c(D(f))} \mathbb{E}_q u(f)$$

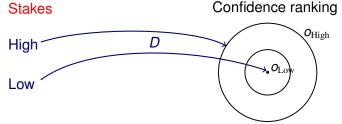


Models \mathcal{M}

Aggregation Confidence aggregation with ρ_m and \otimes :

$$c(o) = \{q : \bigotimes_{m \in \mathcal{M}} \rho_m(q, m) \leq o\}$$

E.g.
$$\rho_m = w(m)d$$
 $\min_{q \in c(D(f))} \mathbb{E}_q u(f)$



ρ	\otimes	Stakes	'Overall'
Rev. RE	Average		

ρ	\otimes	Stakes	'Overall'
Rev. RE	Average		

Centre = linear pool

ρ	\otimes	Stakes	'Overall'
Rev. RE	Average	Low	ID(4)
			$\mathbb{E}_{\sum_{\mathcal{M}} rac{w(m)}{\sum_{m \in \mathcal{M}} w(m)} m} u(f)$

► SEU

ρ	\otimes	Stakes	'Overall'
Rev. RE	Average	Low	Bayesian Model Averaging & SEU a $\mathbb{E}_{\sum_{\mathcal{M}} \frac{w(m)}{\sum_{m \in \mathcal{M}} w(m)} m} u(f)$
a(Steel,	2020)		

ρ	\otimes	Stakes	'Overall'
Rev. RE	Average	Low	Bayesian Model Averaging
RE	Average	Low	

ρ	\otimes	Stakes	'Overall'
Rev. RE	Average	Low	Bayesian Model Averaging
RE	Average	Low	Geometric pooling & SEU ^a $\mathbb{E}_{\substack{\chi \prod_{\mathcal{M}} m^{\sum_{\mathcal{M}} w(m)}}} u(f)$

^a(Dietrich, 2021)

ρ	\otimes	Stakes	'Overall'
Rev. RE	Average	Low	Bayesian Model Averaging
RE	Average	Low	Geometric pooling & SEU
RE	Average	High	$\min_{\substack{q \in \Delta: \\ \sum_{\mathcal{M}} w(m)R(q m) \leq \eta}} \mathbb{E}_q u(f)$

ρ	\otimes	Stakes	'Overall'
Rev. RE	Average	Low	Bayesian Model Averaging
RE	Average	Low	Geometric pooling & SEU
RE	Average	High	'Average' robust control min $q \in \Delta$: $\sum_{M} w(m) R(q m) \leq \eta$

Variational form

$$\min_{q \in \Delta} \left(\mathbb{E}_q u(f) + \lambda \sum_{\mathcal{M}} w(m) R(q \| m) \right)$$

ρ	\otimes	Stakes	'Overall'
Rev. RE	Average	Low	Bayesian Model Averaging
RE	Average	Low	Geometric pooling & SEU
RE	Average	High	'Average' robust control $\min_{\substack{q \in \Delta: \\ \sum_{\mathcal{M}} w(m) \mathcal{B}(q \parallel m) \leq \eta}} \mathbb{E}_q u(f)$

Variational form

$$\min_{q \in \Delta} \left(\mathbb{E}_q u(f) + \lambda \sum_{\mathcal{M}} w(m) R(q || m) \right)$$

ρ	\otimes	Stakes	'Overall'
Rev. RE	Average	Low	Bayesian Model Averaging
RE	Average	Low	Geometric pooling & SEU
RE	Average	High	'Average' robust control
RE	Min	High	$min \ _{q \in \Delta :} \qquad \mathbb{E}_q u(f)$
			$\min_{m\in\mathcal{M}} R(q m) \leq \eta$

ρ	\otimes	Stakes	'Overall'
Rev. RE	Average Average	Low Low	Bayesian Model Averaging Geometric pooling & SEU
RE	Average	High	'Average' robust control
RE	Min	High	'Minimum' robust control $\min_{\substack{q \in \Delta: \\ \min_{m \in \mathcal{M}} B(q \parallel m) \leq \eta}} \mathbb{E}_q u(f)$

Variational form*

$$\min_{q \in \Delta} \left(\mathbb{E}_q u(f) + \lambda \min_{\mathcal{M}} R(q || m) \right)$$

^{*(}Hansen and Sargent, 2022; Cerreia-Vioglio et al., 2025) - (2) - (2)

ρ	\otimes	Stakes	'Overall'
Rev. RE	Average Average	Low	Bayesian Model Averaging Geometric pooling & SEU
RE	Average Min	High	Model misspecification

Separate aggregation & decision

ρ	\otimes	Stakes	'Overall'
Rev. RE	Average Average	Low	Bayesian Model Averaging Geometric pooling & SEU
RE	Average Min	High	Model misspecification

Models: not equally good on all issues

ρ	\otimes	Stakes	'Overall'
Rev. RE	Average	Low	Bayesian Model Averaging
RE	Average	Low	Geometric pooling & SEU
RE	Average Min	High	Model misspecification
Exp-S R. RE	Average	Low	Expertise-sensitive pooling & SEU $\mathbb{E}_{\arg\min_{q\in\Delta}\sum_{\mathcal{M}}\sum_{j=1}^{l}w(m,l)B(q _{\mathcal{P}_{j}}\ m _{\mathcal{P}_{j}})}u(f)$

Models: not equally good on all issues

ρ	\otimes	Stakes	'Overall'
Rev. RE	Average	Low	Bayesian Model Averaging
RE	Average	Low	Geometric pooling & SEU
RE	Average Min	High	Model misspecification
Exp-S R. RE	Average	Low	Expertise-sensitive pooling & SEU
Exp-S RE	Min	High	Expertise-sensitive 'min.' robust control
			$\min_{\substack{q \in \Delta: \\ \min_{\mathcal{M}} \sum_{j=1}^{l} w(m,l) R(q _{\mathcal{P}_{j}} m _{\mathcal{P}_{j}}) \leq \eta}} \mathbb{E}_{q} u(f)$

Models: not equally good on all issues

ρ	\otimes	Stakes	'Overall'
Rev. RE	Average	Low	Bayesian Model Averaging
RE	Average	Low	Geometric pooling & SEU
RE	Average Min	High	Model misspecification
Exp-S R. RE	Average	Low	Expertise-sensitive pooling & SEU
Exp-S RE	Min	High	Expertise-sensitive 'min.' robust control

Variational form

$$\min_{q \in \Delta} \left(\mathbb{E}_q u(f) + \lambda \min_{\mathcal{M}} \sum_{j=1}^{l} w(m, l) R(q|_{\mathcal{P}_j} || m|_{\mathcal{P}_j}) \right)$$

ρ	\otimes	Stakes	'Overall'
Rev. RE	Average	Low	Bayesian Model Averaging
RE	Average	Low	Geometric pooling & SEU
RE	Average Min	High	Model misspecification
Exp-S R. RE	Average	Low	Expertise-sensitive pooling & SEU
E-S RE	Average Min	High	Expertise-sensitive model misspecification

Confidence aggregation + decision:

- separates aggregation from decision
- recoups existing approaches to deciding with (multiple) models
- reveals hitherto unnoticed relationships
- resolves the expertise-diversity challenge for model misspecification

Plan

Introduction

Confidence Aggregation

Probablity aggregation & Expertise

Deciding (with models)

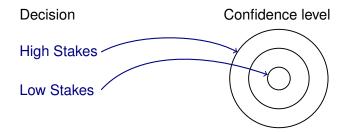
Characterisation

Dynamic Rationality

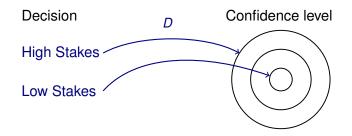
Conclusion

AA-like framework \mathcal{A} acts: $\Omega \to \mathcal{X}$ [f, g, \dots]

AA-like framework \mathcal{A} acts: $\Omega \to \mathcal{X}$ [f, g, \dots]



AA-like framework \mathcal{A} acts: $\Omega \to \mathcal{X}$ [f, g, \dots]



Cautiousness coefficient D:

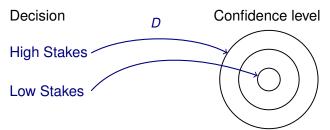
► Reflects uncertainty attitude

AA-like framework \mathcal{A} acts: $\Omega \to \mathcal{X}$ [f, g, \dots]

Assumption 1 (Confidence Preferences) For all agents: $f \succ g$ iff

$$\mathbb{E}_{p}u^{i}(f) > \mathbb{E}_{p}u^{i}(g)$$
 for all $p \in c(D^{i}(f,g))$

$$D^i: \mathcal{A}^2 \to O$$



Cautiousness coefficient D:

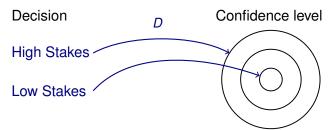
► Reflects uncertainty attitude

AA-like framework \mathcal{A} acts: $\Omega \to \mathcal{X}$ [f, g, \dots]

Assumption 1 (Confidence Preferences) For all agents: $f \succ g$ iff

$$\mathbb{E}_{m{
ho}} {m{u}}^i(f) > \mathbb{E}_{m{
ho}} {m{u}}^i(g) \qquad \qquad ext{for all } m{
ho} \in m{c}(D^i(f,g))$$

$$D^i: A^2 \rightarrow O$$



Cautiousness coefficient D:

► Reflects uncertainty attitude

Decision Setup

AA-like framework \mathcal{A} acts: $\Omega \to \mathcal{X}$ [f, g, \dots]

Assumption 1 (Confidence Preferences) For all agents: $f \succ g$ iff

$$\mathbb{E}_{p}u^{i}(f) > \mathbb{E}_{p}u^{i}(g)$$
 for all $p \in c(D^{i}(f,g))$

 $\textbf{D}^{i}:\mathcal{A}^{2}\rightarrow\textbf{O}$

Assumption 2 Identical tastes: same u^i , D^i .

Decision Setup

AA-like framework \mathcal{A} acts: $\Omega \to \mathcal{X}$ [f, g, \dots]

Assumption 1 (Confidence Preferences) For all agents: $f \succ g$ iff

$$\mathbb{E}_{p}u^{i}(f) > \mathbb{E}_{p}u^{i}(g)$$
 for all $p \in c(D^{i}(f,g))$

$$D^i: \mathcal{A}^2 \to O$$

Assumption 2 Identical tastes: same u^i, D^i .

Facts Can define

- ▶ stakes levels $S[s_1, s_2...]$
- ▶ preferences \succ_s at stakes level s
 - ▶ $f \succ_s g$: f preferred when evaluated 'as if' stakes s

Main axiom

Definition For stakes levels $\mathbf{s} = (s_1, \dots s_n)$:

- **s** exhibits consensus if $\succ_{\mathbf{s}} = \bigcup_{i=1}^{n} \succ_{s_i}^{i}$ non-contradictory.
- ▶ \succ^0 respects the consensus \succ_s at s if s exhibits consensus and $\succ^0_s \subseteq \succ_s$.

Main axiom

Definition For stakes levels $\mathbf{s} = (s_1, \dots s_n)$:

- ▶ **s** exhibits consensus if $\succ_{\mathbf{s}} = \bigcup_{i=1}^{n} \succ_{s_i}^{i}$ non-contradictory.
- ▶ \succ^0 respects the consensus \succ_s at s if s exhibits consensus and $\succ_s^0 \subseteq \succ_s$.

Axiom (Issue-wise Pareto)

$$f \succ^i g$$
 for all i

$$\Rightarrow$$
 $f \succ^0 g$

Main axiom

Definition For stakes levels $\mathbf{s} = (s_1, \dots s_n)$:

- ▶ **s** exhibits consensus if $\succ_{\mathbf{s}} = \bigcup_{i=1}^{n} \succ_{\mathbf{s}_{i}}^{i}$ non-contradictory.
- ▶ \succ^0 respects the consensus \succ_s at s if s exhibits consensus and $\succ^0_s \subseteq \succ_s$.

Axiom (Issue-wise Pareto)

$$f \succ^i g$$
 for all i

$$\Rightarrow f \succ^0 g$$

Axiom (Corpus-wise Pareto)

 $f \succ_{\mathbf{s}} g$ for all \mathbf{s} such that \succ^0 respects the $\Rightarrow f \succ^0_{\mathbf{s}} g$ consensus at \mathbf{s}

Preference held under all respected consensuses \Rightarrow held by the group.

Result

Theorem

Corpus-wise Pareto Technical ax.

There exists ⊗ such that Confidence aggregation up to convex closure

Furthermore, unique minimal \otimes .

→ Confidence aggregation respects the right consensuses (Desideratum 1)

Plan

Introduction

Confidence Aggregation

Probablity aggregation & Expertise

Deciding (with models)

Characterisation

Dynamic Rationality

Conclusion

Dynamic Rationality

Another desideratum for aggregation:

Dynamic Rationality Aggregation commutes with update (Genest and Zidek, 1986; Dietrich, 2021)

^{*}Generalises Rényi, 1955; Blume et al., 1991; Ortoleva, 2012. 🗗 > 😩 > 😩 > 🖎

Dynamic Rationality

Another desideratum for aggregation:

Dynamic Rationality Aggregation commutes with update (Genest and Zidek, 1986; Dietrich, 2021)

Here: confidence update (Hill, 2022)*

 $ightharpoonup c|_{\rho_E}$: update of c by E.

Theorem

$$F_{\otimes}(c_1|\rho_E,\ldots,c_1|\rho_E)=F_{\otimes}(c_1,\ldots,c_n)|\rho_E$$

→ Dynamic rationality satisfied by confidence aggregation.

^{*}Generalises Rényi, 1955; Blume et al., 1991; Ortoleva, 2012. 🗇 🔻 😩 🔻 😩

Summing up

Confidence aggregation:

- respects the right consensuses (Corpus-wise Pareto)
- avoids respecting spurious unanimities
- can integrate within-person expertise diversity
- generates a new pooling rule accounting for expertise diversity
- recoups model misspecification approaches
- suggests more refined ones
- satisfies dynamic rationality
- outperforms linear pooling in a Cog Psy-inspired situations

Thank you.

hill@hec.fr www.hec.fr/hill

Further details on confidence:

- Confidence in Beliefs and Rational Decision Making, Economics and Philosophy, 32, 2019.
- Confidence and Decision, Games and Economic Behavior, 82, 2013.
- Incomplete Preferences and Confidence, Journal of Mathematical Economics, 65, 2016.
- Climate Change Assessments: Confidence, Probability and Decision, Philosophy of Science, 84, 2017 (with R. Bradley, C. Helgeson).
- Combining probability with qualitative degree-of-certainty metrics in assessment, Climatic Change 149, 2018 (with R. Bradley, C. Helgeson)
- Confidence in belief, weight of evidence and uncertainty reporting. Proceedings of Machine Learning Research, 103, 2019.
- Updating Confidence in Beliefs, Journal of Economic Theory, 2022.

Confidence Elicitation Web Tool http://confidence.hec.fr/app/

Confidence, consensus and aggregation

Brian Hill

hill@hec.fr www.hec.fr/hill

CNRS & HFC Paris

TUS XI 2025

Dedicated to the memory of Philippe Mongin

References I

- Blume, L., Brandenburger, A., and Dekel, E. (1991). Lexicographic probabilities and equilibrium refinements. *Econometrica: Journal of the Econometric Society*, pages 81–98.
- Bommier, A., Fabre, A., Goussebaïle, A., and Heyen, D. (2021). Disagreement aversion. *Available at SSRN 3964182*.
- Bradley, R. (2017a). *Decision theory with a human face*. Cambridge University Press.
- Bradley, R. (2017b). Learning from others: conditioning versus averaging. *Theory and Decision*, pages 1–16.
- Cerreia–Vioglio, S., Hansen, L. P., Maccheroni, F., and Marinacci, M. (2025). Making decisions under model misspecification. *Review of Economic Studies*, page rdaf046. Publisher: Oxford University Press.
- Chateauneuf, A. and Faro, J. H. (2009). Ambiguity through confidence functions. *J. Math. Econ.*, 45:535–558.

References II

- Dietrich, F. (2021). Fully Bayesian Aggregation. *Journal of Economic Theory*, 194:105255. Publisher: Elsevier.
- French, S. (1985). Group consensus probability distributions: A critical survey in Bayesian statistics. *Bayesian statistics*, 2.
- Genest, C. and Zidek, J. V. (1986). Combining Probability Distributions: A Critique and an Annotated Bibliography. *Statistical Science*, 1(1):114–135.
- Hansen, L. P. and Sargent, T. J. (2008). *Robustness*. Princeton university press.
- Hansen, L. P. and Sargent, T. J. (2022). Structured ambiguity and model misspecification. *Journal of Economic Theory*, 199:105165.
- Hill, B. (2013). Confidence and decision. *Games and Economic Behavior*, 82:675–692.

References III

- Hill, B. (2019a). Confidence in Belief, Weight of Evidence and Uncertainty Reporting. In *Proceedings of the Eleventh International Symposium on Imprecise Probabilities: Theories and Applications*, pages 235–245. PMLR. ISSN: 2640-3498.
- Hill, B. (2019b). Confidence in Beliefs and Rational Decision Making. *Economics & Philosophy*, 35(2):223–258.
- Hill, B. (2022). Updating confidence in beliefs. *Journal of Economic Theory*, 199:105209.
- Klibanoff, P., Marinacci, M., and Mukerji, S. (2005). A Smooth Model of Decision Making under Ambiguity. *Econometrica*, 73(6):1849–1892.
- Maccheroni, F., Marinacci, M., and Rustichini, A. (2006). Ambiguity Aversion, Robustness, and the Variational Representation of Preferences. *Econometrica*, 74(6):1447–1498.

References IV

- Manski, C. F. (2013). *Public Policy in an Uncertain World : Analysis and Decisions*. Harvard University Press, Cambridge, Mass.
- Mongin, P. (1995). Consistent Bayesian Aggregation. *Journal of Economic Theory*, 66(2):313–351.
- Mongin, P. (2016). Spurious unanimity and the Pareto principle. *Economics & Philosophy*, 32(3):511–532. Publisher: Cambridge University Press.
- Mongin, P. and Pivato, M. (2020). Social preference under twofold uncertainty. *Economic Theory*, 70(3):633–663. Publisher: Springer.
- Ortoleva, P. (2012). Modeling the Change of Paradigm: Non-Bayesian Reactions to Unexpected News. *American Economic Review*, 102(6):2410–2436.
- Rényi, A. (1955). On a new axiomatic theory of probability. *Acta Mathematica Hungarica*, 6(3-4):285–335.

References V

Steel, M. F. (2020). Model averaging and its use in economics. *Journal of Economic Literature*, 58(3):644–719.

Technical axioms

Axiom (Consensus-based beliefs)

For every stakes level $s \in \mathcal{S}$ and acts $f, g \in \mathcal{A}$, if $f \not\succ_{s'}^0 g$ for every stakes level s' such that some consensus $\succ_{\mathbf{s}}$ is respected at s', then $f \not\succ_{s}^0 g$.

Axiom (Non-degeneracy)

There exists a tuple of stakes levels **s** exhibiting consensus.

