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This is a supplement that contains some omitted details on the existence of belief free equi-
libria for two families of games that are studied in the literature on reputation. Namely, for
the specific cases considered in footnotes 14 and 18 we claim that it is possible to find games
arbitrarily close to the respective original reputation games such that V ∗ has non-empty interior.
In this supplementary material, we explain this in greater detail.

Consider first a one sided incomplete information game Γ with known own payoffs where
Player 2 payoff matrix is u2, while player 1 payoff is u1 in state j = 1 and −u2 in state j = 2.
In Footnote 14 of the paper, we claim that there exists a game Γ̂ arbitrarily close to Γ for which
the set of belief free equilibria is non-empty.

Let’s start with a two player full information game where u1 and u2 are players payoff matrixes,
and assume that the set of individually rational payoffs of this game has non-empty interior
(otherwise the question of reputation is trivial). Consider a complete information zero-sum two-
player game Γ0 where player 2 payoff matrix is u2 with value v1 = v, v2 = −v. Let (s∗1, s

∗
2)

denote a saddle-point of this game. Let Mi denote the highest feasible payoff for player i and
ai denote the action profile attaining this payoff. First, we shall show that there always exists
a perturbation of payoffs in Γ0 that generates a full information game Γ′ arbitrarily close to Γ0

and whose set of individually rational payoffs has nonempty interior. To this purpose we perturb
payoffs in such a way that (s∗1, s

∗
2) remains an equilibrium of Γ′, but there exists a feasible payoff

Pareto-dominating (s∗1, s
∗
2).

1. s∗i is not completely mixed, for some i = 1, 2:

(a) Mi > vi: Let s′i denote some action assigned zero probability by s∗i , and increase
u−i(s

′
i, s−i) by ε > 0 for all s−i. Call u′ the new payoff matrix. Since player i

is not using s′i, s
∗
−i remains a best-reply to s∗i , and since i’s payoff matrix has not

changed, s∗i also remains a best-reply to s∗−i. So s∗ remains an equilibrium. Because
player i does not use s′i, it means that ui(s

′
i, s
∗
−i) ≤ vi, and so u−i(s

′
i, s
∗
−i) + ε >

v−i, while also ui(s
′
i, s
∗
−i) + u−i(s

′
i, s
∗
−i) + ε > 0 (since the game is zero-sum), i.e.

u′i(s
′
i, s
∗
−i) + u′−i(s

′
i, s
∗
−i) > 0. As ai denotes an action profile such that ui(a

i) = Mi,
there exists a mixture λai + (1 − λ)(s′i, s

∗
−i) that strictly improves upon the Nash

equilibrium (s∗1, s
∗
2).

(b) Mi = vi: this means that player i is getting his maximal payoff from playing s∗i
independently of player −i’s action, so that any strategy profile (s∗i , s−i), s−i ∈ A−i,
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is a saddle-point. So pick one action s−i and consider the game in which u′i(si, s−i) =
ui(si, s−i) + ε, for all si ∈ Ai and some ε > 0, and all other payoffs remain unchanged.
Clearly, (s∗i , s−i) is an equilibrium point of the game u′, and in this equilibrium point,
player i receives vi+ε . We then proceed as in the previous case: there exists a mixture
λa−i + (1− λ)(s∗i , s−i) that strictly improves upon the Nash equilibrium (s∗1, s

∗
2).

2. Both s∗1 and s∗2 are completely mixed: u(a1) ∈ R2 and u(a2) ∈ R2 are the two extremes
of the set of feasible payoffs that is a segment with slope −45o while u(s∗) is somewhere
on the interior of this segment. Let a1 = (a1, a2) and a2 = (a′1, a

′
2). Both ai, a

′
i are in the

support of s∗i , for i = 1, 2, and let αi, α
′
i denote the probabilities of those actions given s∗i .

Consider the payoffs u′ such that u′(a1, a2) = u(a1, a2)+(ε/α2, ε/α1), u
′(a1, a

′
2) = u(a1, a

′
2)+

(−ε/α′2,−ε/α1), u
′(a′1, a2) = u(a′1, a2)+(−ε/α2,−ε/α′1) and u′(a′1, a

′
2) = u(a′1, a

′
2)+(ε/α′2, ε/α

′
1)

(all other entries are left unchanged). By construction, s∗ remains an equilibrium in game u′

leading to payoffs v1 = v, and v2 = −v. Now the action profiles (a1, a2) and (a′1, a
′
2) provide

two points that are above the −45o line, namely (M1 + ε,−M1 + ε) and (−M2 + ε,M2 + ε),
respectively. Hence there exist a convex combination of a1, a2, that is a Pareto improvement
with respect to the Nash equilibrium (s∗1, s

∗
2).

Let Γ̂ be the one sided incomplete information game with known own payoffs where Player 2
payoff matrix is u′2, while player 1 payoff is u1 in state j = 1 and u′1 in state j = 2. Where u′1 and
u′2 are obtained as described above and are such that u′1 and u′2 are arbitrarily close to −u2 and
u2, respectively. The purpose is to show that the set of belief free equilibria in Γ̂ is non-empty.
Consider the following construction.

Let α∗ be the occupation measure generated by strategy profile (s∗1, s
∗
2). Let AIR2 be the

set of occupation measures leading to payoffs that are individually rational for player 2. This
set has nonempty interior and includes α∗.1 Let α1,j be the α ∈ AIR2 preferred by player 1
in state j = 1, 2. The payoff originated by α1,1 and α1,2 are incentive compatible for player 1
(and generically strictly incentive compatible provided |A| > 3). We shall show that α1,1 and α1,2

generate strictly individually rational payoffs for player 1, that is to say, player 2 has a strategy ŝ2

that punishes player 1 in the two states. Let Bj be player 1 best reply correspondence in state j.
Note first that payoffs that strictly Pareto dominate (u′1(s

∗
1, s
∗
2), u

′
2(s
∗
1, s
∗
2)) exist by construction

of Γ′ and are reachable with occupation measures that are in AIR2 . Thus, u′1(α
1,2) > u′1(s

∗
1, s
∗
2).

Also, since s∗ minmaxes player 2 payoff, it results u′2(B
1(s∗2), s

∗
2) ≥ u′2(s

∗
1, s
∗
2) and hence u1(α

1,1) ≥
u1(B

1(s∗2), s
∗
2), as (B1(s∗2), s

∗
2) is in AIR2 . Let ε := (u′1(α

1,2) − u′1(s∗1, s∗2))/2 > 0. Then there are
strategies s2 close to s∗2 such that u′1(B

2(s2), s2) < u′1(s
∗
1, s
∗
2) + ε < u′1(α

1,2). Thus, we can define
player 2 punishment strategy, ŝ2, as the s2 that solves

inf
s2

u1(B
1(s2), s2)

1Recall that the set of individually rational payoffs in the initial game has nonempty interior.
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s.t.
u′1(B

2(s2), s2) < u′1(s
∗
1, s
∗
2) + ε

Noting that u1(B
1(ŝ2), ŝ2) ≤ u1(B

1(s∗2), s
∗
2) ≤ u1(α

1,1) and considering that the set of individually
rational payoff has nonempty interior in the full information game corresponding to state j = 1, it
follows that generically u1(B

2(ŝ2), ŝ2) < u1(α
1,1). Finally note that α1,1 and α1,2 are individually

rational for player 2 as they are in AIR2 . Strict individual rationality can be obtained, by slightly
perturbing α1,1 and α1,2, if necessary. This can be done without violating player 1 individual
rationality and incentive compatible constraint since these constraints are strictly satisfied at
α1,1 and α1,2.

A similar, but simpler construction works for the case of dominant action games (Footnote
18 in the paper): pick for instance the commitment type’s payoff (for whom the payoff from the
dominant action is only ‘nearly’ independent of his opponent’s action) to be such that the ranking
over player 2’s pure actions (given his own dominant action) is the same for both types. Then,
since the minmax action of player 2 is independent of player 1’s type, we can find a distribution
over action profiles that is both weakly incentive compatible and strictly individual rational for
both players (take a ‘pooling’ distribution in which player 1 plays his dominant action and player
2 does not play for sure his minmax action);2 since there are two states and four action profiles,
there will also be strictly individually rational, strictly incentive compatible distributions.

2More precisely, this works if, as in the example in the paper, the dominant action for player 1 is not the
action that minmaxes player 2; otherwise, player 1 must also play another action with small probability.
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