Name:_

Present value of a growing perpetuity:

$$P(C,r,g) = \frac{C}{r-g}$$

a) Today, you invest $\in 1,000$ at an effective annual rate (r_e) of 6%. Interests on this investment are compounded monthly. How much is your investment worth after 5.5 (five and a half) years?

◊ €1,330

♦ €1,377.79

◊ €1,389.82

◊ €46,793.7

 \diamond None of the above

b) Bank accounts A and B have the same annual rate (APR or r_a) of 12% but differ for their frequency of compounding. Frequency of compounding of bank account A is every quarter (k_A =4), whereas for bank account B it is every four months (k_B =3). Which bank account should you choose to maximize the future value of an investment made at date t=0?

- \Diamond Bank account A
- \diamond Bank account B
- Bank account A and B are equivalent
- \Diamond Impossible to tell

c) Consider three streams of cash flows: A, B and C. The discount rate is strictly positive. Which stream of cash flows has the lowest present value?

Year	0	1	2
А	20	15	25
В	25	15	20
С	20	20	20

♦ A

◊ B

- ◊ C
- \diamond They all have the same present value

d) Consider the following annuity with annual cash flows. The first cash flow at the end of the first year (at date t=1) is \notin 200, the last cash flow is at the end of year 13. Every year cash flows grow at an annual rate of 4%. What is the present value at t=0 of this annuity, knowing that the discount rate is 2%?

◊ €2,230.93

- ♦ €2,871.56
- ♦ €2,600
- \diamond None of the above

e) What is the present value of the following stream of cash flows, using a discount rate of 2% per year?

Year	0	1	2	3
Cash flow	10	10	-100	10

◊ -66.89
◊ 106.50

-70

66.89

 \diamond

$$A(C,r,g,n) = \frac{C}{r-g} \left(1 - \left(\frac{1+g}{1+r}\right)^n \right)$$

Present value of an annuity:

Financial Economics

- a) €1,377.79
- b) Bank account A
- c) A
- d) €2,871.56
- e) -66.89

Name:

Present value of a growing perpetuity:

$$P(C,r,g) = \frac{C}{r-g}$$

a) Today, you invest $\notin 1,000$ at an annual rate (APR or r_a) of 6%. Interests on this investment are

◊ €1,330

◊ €1,377.79

- ◊ €1,389.82
- ♦ €46,793.7
- \Diamond None of the above

$$A(C,r,g,n) = \frac{C}{r-g} \left(1 - \left(\frac{1+g}{1+r}\right)^n \right)$$

Present value of an annuity:

compounded monthly. How much is your investment worth after 5.5 (five and a half) years?

b) Bank accounts A and B have the same effective annual rate of 12% but differ for their frequency of compounding. Frequency of compounding of bank account A is every quarter (k_A =4), whereas for bank account B it is every four months (k_B =3). Which bank account should you choose to maximize the future value of an investment made at date t=0?

- \Diamond Bank account A
- ♦ Bank account B
- Bank account A and B are equivalent
- Impossible to tell \Diamond

c) Consider three streams of cash flows: A, B and C. The discount rate is strictly positive. Which stream of cash flows has the highest present value?

Year	0	1	2
А	20	15	25
В	25	15	20
С	20	20	20

 \Diamond А

 \Diamond В

- \Diamond С
- They all have the same present value

d) Consider the following annuity with annual cash flows. The first cash flow at the end of the first year (at date t=1) is $\in 200$, the last cash flow is at the end of year 13. Every year, cash flows grow at an annual rate of 2%. What is the present value at t=0 of this annuity, knowing that the discount rate is 4%?

♦ €2230.93

- ◊ €2871.56
- ◊ €2600
- \Diamond None of the above

e) What is the present value of the following stream of cash flows, using a discount rate of 2% per year?

Year	0	1	2	3
Cash flow	10	10	100	-10

 \Diamond \diamond 66.89 Ò -66.89 106.50

110

- a) 1,389.82
- b) Bank account A and B are equivalent.
- В
- c) d) €2230.93
- 106.50 e)

Present value of an annuity:

 $A(C,r,g,n) = \frac{C}{r-g} \left(1 - \left(\frac{1+g}{1+r}\right)^n \right)$

Name:

Present value of a growing perpetuity:

$$P(C,r,g) = \frac{C}{r-g}$$

a) Today, you invest $\in 1,000$ at an effective annual rate (r_e) of 6%. Interests on this investment are compounded monthly. How much is your investment worth after 5.5 (five and a half) years?

◊ €1,330

♦ €1,377.79

- ◊ €1,389.82
- ♦ €46,793.7
- \Diamond None of the above

b) Bank accounts A and B have the same effective annual rate of 12% but differ for their frequency of compounding. Frequency of compounding of bank account A is every quarter (k_A =4), whereas for bank account B it is every four months (k_B =3). Which bank account should you choose to maximize the future value of an investment made at date t=0?

- \diamond Bank account A
- \Diamond Bank account B
- ♦ Bank account A and B are equivalent
- \Diamond Impossible to tell

c) Consider three streams of cash flows: A, B and C. The discount rate is strictly positive. Which stream of cash flows has the lowest present value?

Year	0	1	2
А	20	15	25
В	25	15	20
С	20	20	20

- A
- ◊ B
- ◊ C
- \diamond They all have the same present value

d) Consider the following annuity with annual cash flows. The first cash flow at the end of the first year (at date t=1) is \notin 200, the last cash flow is at the end of year 13. Every year, cash flows grow at an annual rate of 2%. What is the present value at t=0 of this annuity, knowing that the discount rate is 4%?

- ♦ €2230.93
- ◊ €2871.56
- ◊ €2600
- \Diamond None of the above

e) What is the present value of the following stream of cash flows, using a discount rate of 2% per year?

Year	0	1	2	3
Cash flow	10	10	-100	10

♦ -66.89

 \diamond

-70

66.89

◊ 106.50

Financial Economics

- a) €1,377.79
- b) Bank account A and B are equivalent.
- c) A
- d) €2230.93
- e) -66.89

Present value of an annuity:

 $A(C,r,g,n) = \frac{C}{r-g} \left(1 - \left(\frac{1+g}{1+r}\right)^n \right)$

Name:

Present value of a growing perpetuity:

$$P(C,r,g) = \frac{C}{r-g}$$

a) Today, you invest $\in 1,000$ at an annual rate (APR or r_a) of 6%. Interests on this investment are compounded monthly. How much is your investment worth after 5.5 (five and a half) years?

◊ €1,330

♦ €1,377.79

- ◊ €1,389.82
- ♦ €46,793.7
- \Diamond None of the above

b) Bank accounts A and B have the same annual rate (APR or r_a) of 12% but differ for their frequency of compounding. Frequency of compounding of bank account A is every quarter (k_A =4), whereas for bank account B it is every four months (k_B =3). Which bank account should you choose to maximize the future value of an investment made at date t=0?

- \Diamond Bank account A
- \Diamond Bank account B
- ♦ Bank account A and B are equivalent
- \Diamond Impossible to tell

c) Consider three streams of cash flows: A, B and C. The discount rate is strictly positive. Which stream of cash flows has the highest present value?

Year	0	1	2
Α	20	15	25
В	25	15	20
С	20	20	20

- A
- ◊ B
- ◊ C
- \diamond They all have the same present value

d) Consider the following annuity with annual cash flows. The first cash flow at the end of the first year (at date t=1) is \notin 200, the last cash flow is at the end of year 13. Every year cash flows grow at an annual rate of 4%. What is the present value at t=0 of this annuity, knowing that the discount rate is 2%?

♦ €2,230.93

- ♦ €2,871.56
- ♦ €2,600

110

66.89

-66.89 106.50

 \diamond

 \diamond

 \diamond None of the above

e) What is the present value of the following stream of cash flows, using a discount rate of 2% per year?

Year	0	1	2	3
Cash flow	10	10	100	-10
L	•	•		

- a) 1,389.82
- b) Bank account A
- c) B
- d) €2,871.56
- e) 106.50