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1 Introduction

Since the first series of spectrum auctions held by the Federal Communications
Commission (FCC) in the United States, academics and policymakers alike have
pointed out at least three advantages of the FCC auction rules: they ensure a trans-
parent bidding process, they enable extensive information revelation of bidders’
valuations, and they allow bidders to build fairly efficient aggregations of licenses.1

At the same time, an important drawback that has been documented in the litera-
ture is the large potential for signaling and collusion, with corresponding negative
consequences for efficiency and revenue.2

In this paper we consider two basic auction mechanisms: the Japanese Auction
for Multiple Objects (JAMO) and the Simultaneous English Auction for Multiple
Objects (SEAMO), which is very close to the actual FCC auctions. We show that
the JAMO is much more immune to collusive and signaling equilibria than the
SEAMO. Both auctions are simultaneous ascending auctions, thus both ensure a
transparent bidding process, enabling extensive information revelation, and efficient
aggregation of objects. However, unlike the SEAMO and the FCC auctions, in the
JAMO, prices are raised directly by the auctioneer, and closing is not simultaneous
but rather license-by-license. These two basic differences eliminate many unwanted
collusive equilibria of the SEAMO.

More specifically, Brusco and Lopomo (2002) construct multiple collusive equi-
libria for the SEAMO, where each bidder signals her most preferred item to com-
petitors during early phases of the auction. The goal of the signaling strategy is
to “split the market” and keep prices low. Thus the openness and simultaneity of
the SEAMO, while allowing for transparent bidding, also provides bidders with
effective communication devices that can be exploited to achieve collusive out-
comes. The JAMO, on the other hand, by imposing a strong activity rule (bidders
have no control over the pace at which prices rise) and license-by-license closing,
rules out communication devices among bidders that might be used to achieve tacit
collusion, while preserving the positive features of the ascending bid process. In-
deed Albano et al. (2001), within an example with 2 objects and 4 bidders, show
that the JAMO obtains close to ex-post efficiency with higher revenues than the
revenue-maximizing ex-post efficient mechanism (Vickrey-Clarke-Groves mech-
anism), and that it dominates both the sequential and the one-shot simultaneous
auctions in terms of ex-ante efficiency. Branco (1997, 2001) obtains related results
in a somewhat different framework.

In order to capture some of the most salient features of actual FCC auction
environments, we consider a framework in which two licenses are auctioned by the
seller to two different sets of participants: unit and bundle bidders. Unit bidders
are interested in one license only, bundle bidders are interested in both. We also

1 See e.g., McAfee and McMillan (1996), Cramton (1997, 1998), Milgrom (1998), Cramton and
Schwartz (1999, 2000), Klemperer (2001).

2 Cramton and Schwartz (1999, 2000) report on bidding phases of the FCC which illustrate many
of the communication and coordination devices tacitly used in practice by bidders; Klemperer (2001)
provides further evidence and discussion, also relating to the recent European UMTS auctions; Salmon
(2004) contains a survey of collusive equilibria in ascending auctions.



Ascending auctions for multiple objects: the case for the Japanese design 333

assume that there exist positive synergies or complementarities between licenses.
These synergies may arise, for instance, from the saving of infrastructure costs
whenever the two licenses correspond to two neighboring regions.

We show that every perfect Bayesian equilibrium (PBE) of the JAMO induces
a PBE in the SEAMO, while the reverse is not true. This result implies that the
set of equilibria of the JAMO is strictly smaller than that of the SEAMO. The
rules of the JAMO eliminate many (unwanted) collusive or signaling equilibria
that are equilibria of the SEAMO. In particular, jump bid equilibria constructed in
Gunderson and Wang (1998) and collusive equilibria constructed in Engelbrecht-
Wiggans and Kahn (1998) and Brusco and Lopomo (2002) are not equilibria of the
JAMO.

Knowing that most signaling and collusive equilibria of the SEAMO do not have
a counterpart in the JAMO, leaves the issue of the optimal bidding behavior in the
latter mechanism open. This paper also provides a novel approach to characterize
a “competitive” (symmetric) perfect Bayesian equilibrium (PBE) of the JAMO.
While unit bidders’ optimal behavior simply corresponds to that in a standard one-
object second-price auction, the derivation of the bundle bidders’optimal strategies
in a framework in which they have both private stand-alone values for the objects
and a common value given by the synergy is by far less trivial.

Specifically, we adopt an indirect but constructive approach. We first extend to
the two-object case the strategic equivalence between the JAMO and the Survival
Auction (SA). The SA was used by Fujishima et al. (1999) who proved the strategic
equivalence with the Japanese Auction in the one-object case. The SA consists in
a finite sequence of sealed-bid auctions. At each round the auctioneer announces
only the lowest bid on both licenses, and the identity of the “losing” bidder(s), that
is, the one(s) who submitted the lowest bid(s). In the following round, the losing
bidder(s) of the previous round are not allowed to bid on the object(s) on which they
had submitted the losing bid(s), and the surviving bidders are allowed to submit
new sealed-bid offers provided that they are not less than the losing bid(s) of the
previous round. Bundle bidders’ optimal behavior in the SA can be characterized
by using backward induction. Starting from the terminal nodes of the game tree,
we can reconstruct the bidder’s continuation payoffs at each decision node of the
game. Thus we derive optimal bids in the SA which in turn translate to optimal
exiting times in the JAMO.

The remainder of the paper is organized as follows. In Section 2, we describe
the actual auction rules and in Section 3 we construct our indirect approach to
characterize a PBE of the JAMO. In Section 4, we consider a series of collusive
and signaling equilibria and show that many equilibria of the SEAMO have no
counterpart in the JAMO. Section 5 concludes with directions for future research.
The proof of Proposition 2 is contained in the Appendix.
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2 Three ascending auctions

2.1 The framework

Throughout the paper we work with a framework close to the ones of Krishna and
Rosenthal (1996) and Brusco and Lopomo (2002). Two objects are auctioned to a
set of participants of two types:M bundle bidders who are interested in both objects
and Nk unit bidders who are interested in only one of the two objects, k = 1, 2.
Both bundle and unit bidders draw their values independently from some smooth
distributionF with positive density f , both defined over [0, 1]. Let vk and uk denote
the value of object k = 1, 2 to a bundle and to a unit bidder respectively. The value
of the bundle vB to a bundle bidder is greater or equal than the sum of stand-alone
values, that is,

vB = v1 + v2 + α,

where α ≥ 0 is commonly known and coincides across all bundle bidders. The
nature of bidders, bundle and unit, is also commonly known.3

We further restrict the analysis to the following cases: (i) v1 = v2 ∈ [0, 1] and
α ≥ 0; (ii) v1, v2 ∈ [0, 1] and α = 0; (iii) v1, v2 ∈ [0, 1] and α > 1; Krishna and
Rosenthal (1996) consider case (i); Brusco and Lopomo (2002) consider cases (ii)
and (iii). We will refer to these three cases throughout the paper.

Finally, we introduce some notation that will be used later. Let F (z | t) =
F (z)−F (t)

1−F (t) be the distribution function of a unit bidder’s valuation given that his
valuation is at least t and f(z|t) = F ′(z|t). Let FN (· | t) denote the distribution
function of the lowest valuation among N unit bidders given that their valuations
for the object are at least t, and let fN (· | t) = F ′

N (· | t). Since unit bidders’
valuations are i.i.d. random variables with distribution function F (·), we can write
FN (z | t) = 1 − (1 − F (z | t))N .

2.2 Auction rules

The two main auction mechanisms we consider (JAMO and SEAMO) are more or
less simplified versions of the simultaneous ascending auctions used by the FCC
for the sale of spectrum licenses in the US. The third mechanism (SA) is equivalent
to the first (JAMO) and is used mainly to simplify some of the analysis. We briefly
describe the rules. All auctions have in common a tie-breaking rule that assigns
the object with equal probability; also, we assume it is specified before the auction
begins on which objects the different bidders are going to bid. In particular, we
assume throughout the paper that bidders bid only on objects they value, that is, we
assume local bidders bid on one object only. This always happens if bidders have
to pay a participation fee proportional to the number of objects they want to bid for.

3 The fact that a bidder with v1 = 0 and v2 > 0 qualifies as a bundle bidder when α = 0 is
a degenerate case; it may be worth stressing that what distinguishes bundle from unit bidders is that
bundle bidders have a potential (in the eyes of other bidders) for obtaining a positive value from each
object, besides the typically positive complementarity.
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JAMO: Prices start from zero for all objects and are simultaneously and contin-
uously increased on all objects until only one agent is left on a given object, in
which case prices on that object stop and continue to rise on the remaining auc-
tions. Once an agent has dropped from a given object, the exit is irrevocable. The
last agent receives the object at the price at which the auction stopped. Whenever
an agent exits one object, the clock (price) temporarily stops on both objects giving
the opportunity to other bidders to exit at the same price. If all active bidders exit
simultaneously on one object, then the object will be allocated randomly among
those bidders that exit after the price has stopped. The number and the identity of
agents active on any object is publicly known at any given time. The overall auction
ends when all agents but one have dropped out from all objects. We refer to this
mechanism as the Japanese auction for multiple objects (JAMO); some also refer
to it as the English clock auction.

SEAMO: The auction proceeds in rounds. At each round, n = 1, 2, .., each bidder
submits a vector of bids where bids for single objects are taken from the set {∅} ∪
(bk(n−1),+∞), where∅denotes “no bid”, and bk(n−1) is the “current outstanding
bid”, that is, the highest submitted bid for object k up to round n−1. Thus for each
object k a bidder can either remain silent or raise the high bid of the previous round
of at least ν > 0, (ν arbitrarily close to zero). All objects close simultaneously.
The auction ends if all bidders remain silent on all objects, and the winners are the
“standing high bidders” determined at round n − 1 and they pay their last bids.
If there is more than one standing high bidder on one object, then that object will
be allocated randomly among these bidders. Given the simultaneity of closing, we
refer to this mechanism as the simultaneous English auction for multiple objects
(SEAMO).

Two basic differences distinguish the two mechanisms. First, the JAMO does
not allow for rounds of bidding; bidders press buttons corresponding to the objects
on which they wish to bid; by releasing a button, a bidder quits that auction irrevo-
cably; thus, bidders have “smaller” strategy spaces than in SEAMO; in particular
they have no influence on the pace at which prices rise. Second, closing is not si-
multaneous in the JAMO but rather object-by-object. We shall highlight the role of
these distinguishing features in the emergence of collusive and signaling equilibria.

SA: The auction proceeds in rounds. At round n = 1, 2, .., each bidder submits a
vector of sealed bids for objects on which they are allowed to bid. Bids for a single
object are taken from the set [bmin(n−1),+∞), where bmin(0) = 0 and for n > 1,
bmin(n−1) is the lowest among all bids submitted during the previous round on all
objects. In the following rounds, all the bidders who offered bmin(n) in the current
round, are not allowed to bid again on the object on which they submitted bmin(n).
At the end of each round the auctioneer only announces bmin(n), the object for
which bmin(n) was submitted and the identity of the bidder(s) that submitted that
bid. An object is attributed to the last bidder having the right to bid on that object
and the winner will pay an amount of money equal to the last lowest bid on that
object. If all active bidders bid the minimum admissible bid bmin(n) on one object,
then that object will be randomly allocated among those bidders. Note that since
at least one bidder exits some object in any given round, the two objects will be
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attributed after at most 2(M + N1 + N2) − 2 rounds. Following Fujishima et al.
(1999), we refer to this auction as the survival auction (SA).

Example of the SA: Suppose there are three bidders: A, G and L. Suppose A only
bids on object 1, whereas both G and L bid on both objects. At round 1, bids are
as follows: bA1 = .4, (bG1 , b

G
2 ) = (.1, .6), (bL1 , b

L
2 ) = (.2, .2). Having observed all

bids, the auctioneer only announces that the lowest bid on all objects is .1 (i.e.,
bmin(n = 1) = .1), and that this bid has been submitted by bidder G on object 1.
Thus bidder G is excluded from object 1, and, in the following round, bidder A will
bid on object 1, bidder L will bid on both objects, while bidder G will bid on object
2 only. The lowest admissible bid is .1. Suppose now that at round 2, the bids are
as follows: bA1 = .4, bG2 = .6, (bL1 , b

L
2 ) = (.3, .3). Then bmin(2) = .3, bidder L

exits both objects simultaneously, and only one bidder is left on each object. The
auction ends at this point, (i.e., after two rounds), and bidders A and G are awarded
objects 1 and 2 respectively at price .3.

3 Main results

In this section, we derive the main results on the three mechanisms just described.
The main result (Proposition 2) characterizes a symmetric perfect Bayesian equi-
librium (PBE) of the SA, which in turn induces a corresponding equilibrium in the
other two mechanisms.

In the JAMO or the SA, the information available to a bidder at any time t,
is described by Ht. In the JAMO, t coincides with the current level reached by
prices, while, in the SA, t represents the current minimum admissible bid on any
of the objects; in both mechanisms, Ht contains, for each object, the set of active
bidders on that object, as well as the price at which the other bidders dropped
out. The following proposition, which extends Fujishima et al. (1999), is useful in
characterizing equilibria of the JAMO; it is used in the proof of Proposition 2.

Proposition 1. The JAMO and the SA are strategically equivalent.

Proof. Fujishima et al. (1999) cover the case of a single object. Given our rules for
the SA and the JAMO, their proof can easily be adapted to the multi-object case.
In order to show strategic equivalence between the JAMO and the SA, one needs
show that: (a) An isomorphism exists between each bidder’s set of decision nodes
in the two auctions such that the precedence relation is preserved; (b) there exists
an isomorphism between feasible action sets at the same decision nodes, which is
consistent with the precedence relation; (c) bidders’ payoffs are always the same at
the same terminal nodes. We follow Fujishima et al. (1999) to prove points (a)-(c)
for the present two-object case.

(a) In the SA, the new information that a bidder obtains between round n and n+1,
provided that he does not submit the lowest bid, is the identity of the loser(s) in
round n and the losing bid in that round. Note that the losing bid might well be
a vector of identical bids submitted by a bundle bidder on the two objects. Thus
each (surviving) bidder’s decision node in round n+1 can be described by the 2n-
dimensional vector of losing bids and losing bidders in the first n rounds. (There
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may well be more than one losing bidder submitting the same losing bid at a given
round, possibly even on two different objects.) In the JAMO, the new information
that a bidder receives after the n-th drop-out, provided he has not yet exited himself
atn, is again the 2n-dimensional vector of exiting times with corresponding bidders
who have exited. Thus the isomorphism of the bidders’ set of decision nodes is the
identity mapping. Suppose for instance that bidder h who is active on objects 1
and 2 observes that bidders i and j active only on object 2 have both submitted the
lowest bid of b(1) on object 2 in round 1 of the SA. Then bidder h’s decision of how
much to bid on objects 1 and 2 in round 2 of the SA is equivalent to the decision of
when to exit before being the next to exit in the JAMO after observing that bidders
i and j exited object 2 at b(1). Notice that this holds regardless of whether bidder
are active on two (or more) objects rather than one object.

(b) In the (n + 1)st round of the SA, both a bundle and a unit bidder can submit
bid(s) greater or equal to the lowest bid submitted on the two (or more) objects in
round n. In the JAMO, a bidder can decide either to exit exactly at the same time
of the n-th drop-out or to wait longer until being the next one to exit. Thus the
feasible action sets at any given decision node are identical in the two auctions, and
consistency of the precedence relation with the decision node isomorphism clearly
also holds.

(c) If play in the two auctions reaches the same terminal node, then all actions must
have been the same at same decision nodes. This implies that the same bidder(s)
will win, the bidder(s) will pay the same amount(s), and the information available
to all bidders at that terminal point will be the same. ��

The proposition implies that the JAMO and the SA are outcome equivalent and
that their equilibria coincide. This allows us to use the easier SA to analyze the
JAMO. Since at each round of the SA there is at least one bidder that “exits” from
at least one object, with finitely many bidders (and objects), the SA ends in a finite
number of rounds; hence we can use a backward induction argument to construct
equilibria of a game that, as the JAMO, is actually in continuous time.

Specifically, at each round of the SA, unit bidders bid their valuation for that
object. This is simply a bidder’s weakly dominant strategy in a one-object, second-
price auction. The same happens for bundle bidders in the absence of synergies
(case (ii)). The bundle bidders’ equilibrium strategies in the presence of synergies
(cases (i) and (iii)) are less trivial. Still they display some simple features. A bundle
bidder always makes the same bid on the two objects unless she has already won
one of them. The level of this (double) bid depends on three factors: the bundle
bidder’s overall valuation for the bundle, the numbers of unit bidders active on
objects 1 and 2, and whether or not other bundle bidders are still active. That is, the
optimal bid does not depend on the number of other bundle bidders active provided
that there is at least one other active bundle bidder, it does however depend on the
numbers of unit bidders. Moreover, a bundle bidder’s optimal bid increases as unit
bidders quit the auction.

We characterize now a symmetric PBE of the SA (hence also of the JAMO). As
a general rule, equilibrium bids can be determined as the smallest bids at which each
bidder’s expected marginal payoff of submitting the bid, computed with appropriate
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beliefs, is equal to zero. In particular, a unit bidder bids his value uk on object k,
the only object on which he is active, and submits such a bid until he either wins the
object or is eliminated from the auction; this behavior mimics the weakly dominant
strategy in a standard single-object, second-price auction. The same logic applies
to bundle bidders in two instances; first, a bundle bidder, say of type (v1, v2) who
has already won object 1, will submit a bid equal to v2 +α at each round; second, in
the absence of synergies, i.e., in case (ii), a bundle bidder will submit v1 and v2 on
object 1 and 2 respectively, starting from the first round. More difficult to determine,
are the bundle bidders’ equilibrium bids in cases (i) and (iii), when they are active
on two objects. In any given round Ht, the bids will depend on the bundle bidder’s
type (v1, v2), on the minimum admissible bid t, and on the set of other bidders
that are still allowed to bid in that round, as well as beliefs about their behavior.
Equilibrium strategies are determined by backward induction. We distinguish two
cases: (1) M = 1 and (2) M ≥ 2 bundle bidders.

(1) M = 1: Suppose first the SA has reached a stage Ht in which only one bundle
bidder is active on both objects, and N1, N2 ≥ 1 unit bidders are active on objects
1 and 2 respectively. What are the bundle bidder’s optimal bids on the two objects?
We first show that the bundle bidder optimally submits the same bid on both objects;
the bid must maximize his current expected payoff given the information atHt and
given the competitors’ optimal strategies in the current and following rounds. If in
the current round the bundle bidder submits the same bid p ≥ t on both objects, then
only three outcomes can occur with positive probability: (a) p is the lowest among
all bids submitted in the current round, and the bundle bidder exits the auction; (b)
a unit bidder on object 1 sets the lowest bid, exits from that object, and all other
bidders move to the following round; (c) a unit bidder on object 2 sets the lowest
bid, exits from that object, and all other bidders move to the following round.

In order to define the bundle bidder’s overall expected payoff at Ht, let
πLk

(s,Ht) denote his continuation payoff on both objects if the lowest of all sub-
mitted bids in round Ht is equal to s and it has been submitted by a unit bidder on
object k ∈ {1, 2}, (we drop arguments v1, v2, andα from πLk

to simplify notation).
The overall expected payoff can be written as the sum of the the expected (continua-
tion) payoffs in cases (a)–(c). We derive each of them in turn. In case (a), the bundle
bidder’s expected payoff is zero since he quits the auction without buying any object.
In case (b), if the lowest of all submitted bids is s ∈ [t, p), and has been submitted
by a unit bidder on object 1, then the bundle bidder’s expected continuation payoff
will be exactly πL1(s,Ht) and this event has a density (1 − FN2(s | t))fN1(s | t),
i.e., the probability that the lowest of the unit bidders’bid on object 2 is greater than
s times the density of having the lowest bid on object 1 equal to s, (this assumes
unit bidders bid their valuations). The overall expected (continuation) payoff for
(b) is then

∫ p

t
πL1(s,Ht)(1 − FN2(s | t))fN1(s | t)ds. Similarly, the expected

(continuation) payoff in (c) is
∫ p

t
πL2(s,Ht)(1 − FN1(s | t))fN2(s | t)ds.

Let Π(p;Ht) denote the bundle bidder’s overall expected payoff from bidding
p on the two objects at information set Ht, then we have,

Π(p;Ht) = 0 +
∫ p

t

πL1(s,Ht)(1 − FN2(s|t))fN1(s|t)ds (1)
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+
∫ p

t

πL2(s,Ht)(1 − FN1(s | t))fN2(s | t)ds.

where 0 is the expected payoff in case (a), and the two integrals represent cases (b)
and (c) respectively. Assume now that Π(p;Ht) is differentiable, (differentiability
of Π(p,Ht) and second-order conditions are shown in the Appendix). The neces-
sary condition for optimality of the bundle bidder’s bid is obtained from the first
derivative of Π(p;Ht) with respect to p,

Π ′(p;Ht) = πL1(p,Ht)(1 − FN2(p | t))fN1(p | t)
+πL2(p,Ht)(1 − FN1(p | t))fN2(p | t) (2)

=
(

N1

N1 +N2
πL1(p,Ht) +

N2

N1 +N2
πL2(p,Ht)

)
fN1+N2(p | t),

since (1 − FNk
(p | t))fN3−k

(p | t) = N3−k(1 − F (p | t))N1+N2−1f(p | t) for
k = 1, 2. The optimal bid is the smallest p ≥ t such that Π ′(p;Ht) ≤ 0. Denote
the corresponding bid by τ(Ht).4

(2)M ≥ 2: Suppose next that the SA is at a stageHt whereM ≥ 2 bundle bidders
are active on both objects and there are N1, N2 ≥ 0 unit bidders active on objects
1 and 2 respectively. Again, it is possible to show that bundle bidders will exit both
objects simultaneously and that optimal bids can be determined as the smallest
bids at which corresponding expected marginal payoffs are zero. However, it is
also shown in the Appendix that the equations determining the optimal bids reduce
to simpler equations that are independent of the number of bundle bidders active at
Ht. Let πBB(p,Ht) denote a bundle bidder’s continuation payoff on both objects at
Ht, where the minimum admissible bid is p ≥ t, all unit bidders are present, but all
other bundle bidders have already left both objects with a bid of p.5 We distinguish
three possible cases: (a) there are no unit bidders active (N1, N2 = 0);(b) there
are unit bidders active on only one of the two objects (N1 = 0 or N2 = 0); and
(c) there are unit bidders active on both objects (N1, N2 ≥ 1). Hence we can write
more explicitly,

πBB(p,Ht)

=



v1+v2+α−2p, if N1 = 0, N2=0
v3−k−p+ ∫ vk+α

p
(vk+α−z)NkF

Nk−1(z|s)f(z|p)dz, if Nk≥1, N3−k=0∫ τ(vB ,H
′
p)

p

(
N1

N1+N2
πL1(s,H

′
p)+

N2
N1+N2

πL2(s,H
′
p)

)
fN1+N2(s|H

′
p)ds, else,

where NkF
Nk−1(z | s)f(z | p)dz is the density of the highest among the Nk ≥ 1

unit bidders’valuations for object k, k ∈ {1, 2};H
′
p denotes the information setHt

updated by the fact that all other bundle bidders exited with a bid p, and τ(vB , H
′
p) is

the optimal bid previously computed for the caseM = 1 andN1, N2 ≥ 1, which are

4 We show in the Appendix that the bundle bidder’s optimal bid only depends on vB = v1 +v2 +α
and not on v1 and v2 separately.

5 This event does not arise with positive probability at equilibrium. It is merely instrumental to the
characterization of the equilibrium bid when M ≥ 2.



340 G.L. Albano et al.

now the remaining bidders. It is shown in the Appendix that, in cases whereM ≥ 2,
optimal bids are determined as the smallest p ≥ t such that πBB(p,Ht) ≤ 0. For
example, it can be verified that in case (a) where N1, N2 = 0, the optimal bid is
equal to vB/2; and also in case (c) where N1, N2 ≥ 1, the optimal bid is given by
τ(vB , H

′
t) the same bid that one obtains without other bundle bidders. Finally, for

a bundle bidder active on both objects, define

ψ(p;Ht) =

{(
N1

N1+N2
πL1(p,Ht) + N2

N1+N2
πL2(p,Ht)

)
, if M = 1

πBB(p,Ht), if M ≥ 2.
(3)

We are now in a position to describe our PBE of the SA (or JAMO).

Proposition 2. The following constitutes a symmetric PBE of the SA:

(E1) A unit bidder on object k bids uk, k = 1, 2;
(E2) A bundle bidder active only on object k bids vk + α if he has won the other

object and bids vk otherwise, k = 1, 2;
(E3) In case (ii), a bundle bidder active on both objects bids vk on object k,

k = 1, 2;
(E4) In cases (i) and (iii), a bundle bidder that is active on both objects at Ht

submits the same bid τ(vB , Ht) on the two objects, which is determined as
the smallest p ≥ t that solves ψ(p;Ht) ≤ 0 if τ(vB , Ht) ≤ 1 and is equal to
vB/2 otherwise.

(E5) Out-of-equilibrium-path beliefs: In case (i) and (iii), if at price t, bundle
bidder h has quit object 3 − k only and continues on object k, then all other
bidders hold that Pr[vh

k ≤ t + δ | τh
3−k = t] = 1, δ positive and small, i.e.,

they believe that with probability 1 bundle bidder h will bid at most t+ δ on
object k.

Proof. See the Appendix. ��
Note that by Proposition 1 the optimal bids described in Proposition 2 corre-

spond to optimal exiting times in the JAMO. As mentioned above, in cases (i) and
(iii), in equilibrium, it never happens that a bundle bidder quits one object to con-
tinue on the other one. This greatly simplifies the analysis when there are synergies.
In fact, for intermediate values of α ∈ (0, 1), and if v1 and v2 are different, submit-
ting the same bid on the two objects is not always optimal; a bundle bidder’s optimal
bids will depend on how exiting on one object will affect the other bundle bidders’
behavior on the other object; showing existence of a PBE is already problematic in
this case.6 Next, we relate equilibria of the SEAMO and the JAMO.

Proposition 3. Every PBE of the JAMO induces a PBE of the SEAMO.

Proof. Consider the exiting times constituting a PBE for the JAMO.Then all bidders
bidding the standing high bid plus an arbitrarily small bid increment in each round

6 For example, Athey’s (2001) theorem does not apply due to the presence of signals which are not
uni-dimensional; McAdams’ (2003) theorem does not apply because of a modularity condition on the
payoffs.
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and stopping to bid according to these exiting times (also along out of equilibrium
paths) constitutes an (arbitrarily close) PBE of the SEAMO. Because winning
bidders pay their own last high bids and because of the simultaneity of the closing,
there are no profitable deviations from the above strategies. ��

This also implies that the set of outcomes induced by PBE of the JAMO is
contained in the set of outcomes induced by PBE of the SEAMO. The converse of
this as well as of Proposition 3 is not true; the SEAMO has many more equilibria.
In what follows, we will see examples of equilibria that are PBE of the SEAMO
but not otherwise.

4 Collusive and signaling equilibria

In this section, we consider certain collusive and signaling equilibria that have been
studied in the literature, typically in the framework of the SEAMO, and show that
they are not viable in the JAMO, due to the more restrictive nature of the strategy
spaces.

4.1 Some signaling devices

Bidders in the FCC auctions attempted to communicate in a variety of ways. Since
there is no way of proving any private exchange of information among bidders, we
are bound to analyze communication arising through the exploitation of the auction
rules themselves. This section analyzes some common communication devices also
apparently used in the actual FCC auctions, namely code and jump bidding, and
withdrawal bids, from the viewpoint of the JAMO.

Code bidding: Code bidding is one of the more obvious forms of signaling. Since
bids are expressed in dollars and since, at least in the FCC auctions, most objects
displayed six-digit prices, bidders could use the last three digits to encode messages.
Code bids had different natures. Some bidders used the last three digits to “disclose”
their identities. For example, in the AB auction (Auction 4), GTE frequently used
“483” as the last three digits; this number corresponds to “GTE” on the telephone
keypad. In other circumstances code bidding had a reflexive nature. The last three
digits were used by a bidder both to signal an object of special interest to her and
the object on which the same bidder was punishing competitors for not bumping
the first market.7

In the JAMO, code bidding would take a simple form. Bidders have to stop
bidding on one object as soon as the price encodes “meaningful” digits. However,
this strategy would irrevocably exclude that bidder from competing for that object,
and with two objects, would therefore also exclude her from bidding for the bundle;
moreover it would also exclude her from performing any retaliation since exit is
irrevocable. It then follows that code bidding is ineffective in any PBE of the JAMO

7 See Cramton (1997) and Cramton and Schwartz (1999, 2000) for detailed accounts of collusive
behavior in the actual FCC auctions.
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(with two objects). The result, however, may not extend to more than two objects
if bidders can bid for objects they do not value. For example, suppose three objects
are being auctioned, suppose a bidder is interested in purchasing only one object,
say 1, and that she is active on all objects at an early stage of the auction. Then she
can stop bidding on, say, object 3 at a price whose digits encode a message similar
to the one used by GTE, while remaining active on the other two objects. This
allows her to use object 2 as a potential threat for retaliation. Nevertheless this code
bidding might be too costly to implement if bidders participation fee increases with
the number of objects for which they can bid. Moreover, such a signaling device
becomes more difficult and costly to use if prices are raised not continuously but
in predetermined finite amounts.

Jump bidding: It need not always be in the interest of the bidders to increase prices
at the minimum pace required by the auction rules. In fact, Gunderson and Wang
(1998) show how a bidder in a SEAMO can benefit by using jump bids as a signal
of a high valuation, possibly causing other bidders to drop out earlier; this may lead
to lower revenues for the seller.8 While jump bids are possible in the SEAMO they
are obviously not in the JAMO. The FCC’s recent decision to limit the amount by
which bids can be raised, e.g., in the LMDS auction (Auction 17), may suggest a
change in this direction.9

Bid withdrawals: While the FCC had originally allowed unlimited number of bid
withdrawals in order to allow bidders to make more efficient aggregations of objects,
it was soon noticed that they could be used as signaling devices. As Cramton and
Schwartz (2000) report, withdrawal bids were apparently used in FCC auctions as
part of a warning or of retaliatory strategies, as well as part of cooperative strategies,
where bidders attempted to split objects among themselves. Neither the JAMO nor
the SEAMO versions described above allow for withdrawal bids. Again, the FCC’s
recent decision to limit their number to two, e.g., in the LMDS auction (Auction
17), suggests another change in this direction.

4.2 Closing rules

Milgrom (2000) contains a description of the tâtonnement logic that inspired many
of the FCC auction rules. In particular, the rules specified that bidding would remain
open on all objects until there were no new bids on any object. This simultaneous
closing rule allows each losing bidder to switch at any time from the lost object to
a substitute or to stop bidding on a complement. However, as Milgrom points out,
it is also vulnerable to collusion.

Milgrom’s example: Consider the following example from Milgrom (2000). Two
bidders bid for two objects 1 and 2, which are each worth 1 to both bidders. Milgrom
shows that there exists a sequential equilibrium of the SEAMO (with complete
information) such that the selling price for both objects is ν, i.e., the smallest

8 See alsoAvery (1998) for further equilibria involving jump bids in the context of one-object English
auctions with affiliated values.

9 See also Cramton and Schwartz (2000).
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possible bid, and the bidders realize the highest collusive payoff of 2 · (1− ν), (see
Theorem 8, p. 264).

The logic of the equilibrium is that both players buy one object each at the
lowest possible price by using a simple threatening strategy: bidder 1 bids ν on
auction 1 if bidder 2 has never bid on 1; otherwise he does not bid. If bidder 2 has
bid on 1, then bidder 1 reverts to a “competitive” bidding strategy, that is to keep
bidding on each object until a price of 1 is reached; bidder 2 plays symmetrically.

As Milgrom suggests, such a low revenue equilibrium is avoided if closing is not
simultaneous but rather object-by-object. According to such closing rule, bidding
would stop on an object if at any round there is no new bid on that object. The JAMO
provides an example of object-by-object closing. Indeed, once all bidders but one
drop from one object and remain active on the other, the first object is awarded
irrevocably. The result of Theorem 9 in Milgrom (2000), which states that at each
(trembling-hand) perfect equilibrium with object-by-object closing the price of each
object is at least 1 − ν carries over to the JAMO (also with complete information),
where in fact the price of each object is exactly 1. By applying Proposition 2 to the
example described above where, as in our usual framework, the bidders’ values are
private information, it is easy to establish the following result:

Corollary 1. If bidders 1 and 2 have (private) values of 1 for both objects, and
α = 0, then, in the PBE of the JAMO, the selling price is 1 for each object.

Such a selling price of 1 (or 1 − ν) is also not guaranteed in the SEAMO with
incomplete information as the equilibria constructed in Engelbrecht-Wiggans and
Kahn (1998) and Brusco and Lopomo (2002) show.

The collusive equilibria of Brusco and Lopomo: Brusco and Lopomo (2002)
(henceforth BL) construct several kinds of PBE in undominated strategies of the
SEAMO (in our usual framework), some of which are very similar to the ones con-
structed by Milgrom under complete information. Kwasnica and Sherstyuk (2002)
provide some experimental evidence for such equilibria when there are few players
and with small complementarities. We shall see that none of BL’s equilibria are
possible in the JAMO.

The logic of their collusive equilibria is as follows: Consider two bundle bidders
and, for simplicity, takeα = 0. The bidders use the first round to signal to each other
which of the two objects they value the most. If they rank the objects differently,
bidders confirm their initial bids in all subsequent rounds and obtain their most
preferred object at the minimum price; otherwise they revert to the “competitive”
strategy of raising prices on both objects up to their private values. BL then go on
to refine this type of collusive equilibrium by allowing bidders to signal more than
just the identity of the higher valued object. This allows them to obtain collusive
equilibria even more favorable to the bidders. In particular, they show that a collusive
equilibrium may also arise when bidders have the same ranking for the objects, also
if there are more than two bidders as well as if there are positive complementarities
(α > 1); they also show, however, that the scope for collusion diminishes as the
number of bidders increases and the number of objects is fixed at two; and the
possibility of collusion is lowered if the complementarities are large and variable.
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Again, the rule driving the presence of such equilibria is simultaneous closing.
The JAMO mechanism instead is built around the irrevocable exit and induces
object-by-object closing, which makes the rounds of signaling necessary in the
above equilibria impossible. In these examples bidders always have an incentive to
bid for any object for which they have positive value. In particular, it follows:

Corollary 2. The collusive equilibria constructed as PBE of the SEAMO in Brusco
and Lopomo (2002) are never PBE of the JAMO.

Note also that these collusive equilibria are not PBE of the JAMO even if one allows
for rounds of cheap talk between the bidders prior to the auction.

As it has often been pointed out, simultaneous closing has the advantage of
being more flexible in allowing bidders to revise and update their bidding behav-
ior in forming aggregates, (see e.g., Cramton, 1997, 1998; Milgrom, 1998, 2000;
Cramton and Schwartz, 2000, 2002). Moreover, Kagel and Levin (2004) point out
that, especially for intermediate values of the complementarities, ascending auc-
tions may suffer from the exposure problem by which bundle bidders may drop
out too early from individual objects thus reducing efficiency. Although their com-
parison is with one-shot sealed bid auctions, it seems plausible that the exposure
problem would be even more pronounced in auctions with object-by-object closing
than in ones with simultaneous closing. This is something that needs to be further
investigated, also in connection with the rules for withdrawing bids.

5 Conclusion

Recent research on multi-unit ascending auctions has highlighted the existence
of two potentially conflicting features of the auction rules adopted by the FCC
and subsequently in some of the European UMTS auctions. On one hand, the
transparency and flexibility of the bidding process eases an efficient aggregation
of objects; on the other, the amount of information available to bidders together
with the strategic possibilities allowed by the rules may be used to implement
tacit collusive agreements, see Cramton and Schwartz (2000, 2002) and Klemperer
(2002).

By not allowing bidders to set the pace at which prices rise on individual ob-
jects, the auctioneer can make bidders’ signaling devices blunt without losing the
information revelation feature of the ascending mechanism. In this sense we main-
tain that the SEAMO facilitates tacit collusion relative to the JAMO and showed
that several collusive equilibria, which appear in the SEAMO, do not have a coun-
terpart in the JAMO. A more complete assessment of the relative performance of
the two auction formats certainly requires further study. We outline some directions
for future research.

First, the framework, while in line with the existing literature, is admittedly
restrictive. For example, if the number of objects is greater than two, the set of
equilibria is likely to depend on the composition of the bundles that bundle bidders
are interested in acquiring. That is, with more than two objects there are several
ways preferences over bundles can overlap, (Krishna and Rosenthal, 1996, mention
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some examples). It is also possible that code-bidding may reappear even in the
JAMO. But even with only two objects, the case of small synergies may already
pose non-trivial existence problems.

Second, an issue that has not been addressed is the rationale of having prices
on the two objects rise simultaneously in the JAMO. We have imposed the same
“speed” on both objects, being aware that there is no theoretical or empirical justi-
fication for this assumption.

Third, other aspects of the FCC auctions such as activity rules, the number of
allowable bid withdrawals, and the simultaneity of closing deserve further inves-
tigation. Although some modifications of the standard SEAMO undertaken by the
FCC may be seen as changes in direction of the JAMO, there seems to be no gen-
eral agreement on e.g., whether closing should be simultaneous or not. Albano et
al. (2001) and Branco (1997, 2001) show that under certain conditions, object-by-
object closing may perform rather well theoretically. Kagel and Levin (2004) on
the other hand provide experimental evidence indicating that, at least within certain
ranges of bidders’valuations, inefficiencies may arise due to what they call the “ex-
posure” problem. Clearly, more needs to be done to better assess the theoretical and
empirical performance of the “Japanese” vs. “English” design of the auction and
the simultaneous vs. object-by-object closing, as well as of other rules mentioned.
Also, while the JAMO and the SA are theoretically equivalent it would be useful
to obtain further experimental evidence contrasting their relative performance.

Finally, motivated by considerations of market structure and bidder asymme-
tries, Klemperer (1998, 2002) suggests an auction format he calls“Anglo-Dutch”
that combines an ascending or “English” auction with a first-price sealed-bid or
“Dutch” auction. Our results suggest that an alternative that may be worth consid-
ering in similar environments is a combination of a “Japanese” with a first-price
sealed-bid auction. Similarly, Ausubel and Milgrom (2002) suggest an English as-
cending auction that allows for package bidding in order to improve efficiency while
avoiding some of the problems arising for example from Vickrey-Clarke-Groves
mechanisms. Also here it may be worthwhile to consider a “Japanese” design while
keeping the remaining features that allow bidders to bid on packages; of course,
here the question of how to increase the prices of the items for sale becomes even
more pressing.

Appendix

Proof of Proposition 2. We argue using both the SA and the JAMO; as mentioned
above, bids in the SA correspond to exiting times in the JAMO. We first prove points
(E1)–(E3). If bidders only bid on objects they value, then unit bidders’ strategies
in (E1) are clearly optimal. For, a unit bidder with value uk for object k and who
is active only on object k, it is optimal to always submit a bid of uk in the SA,
and to remain active until the prices reach uk in the JAMO. Similarly, bundle
bidders currently bidding on one object behave as if they were unit bidders, with
valuations for the object depending upon whether or not they won the other object;
hence strategy (E2). For bundle bidders that are still bidding on two objects in case
(ii), i.e. v1, v2 ∈ [0, 1] and α = 0, we have that, given the other bidders’ strategies,
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no bundle bidder has any incentive to exit from object k after vk; on the other
hand, there is no incentive to exit before vk either , k = 1, 2; hence strategy (E3).
It remains to show (E4).

Given the strategies (E1) and (E2), we use Lemmas 1 to 4, to show that strategy
(E4) is globally optimal for a bundle bidder bidding on two objects in cases (i),
v1 = v2 = x ∈ [0, 1] and α ≥ 0, and (iii), v1, v2 ∈ [0, 1] and α > 1. First,
we show that, if, by exiting only one object a bundle bidder does not induce a
sensitive increase in the probability of winning the other object, then he will prefer
submitting the same bid for both objects; this is shown in Lemma 1. Second,
Lemma 2 characterizes a bundle bidder’s optimal bid when he faces only unit
bidders; from Lemma 1, this bid is the same on the two objects since unit bidders’
strategies under (E1) are independent of the bundle bidder’s actions. Third, in
Lemma 3, we show that a bundle bidders’ bids defined in (E4) are increasing in
their valuation for the bundle. Finally, we use the latter result to characterize bundle
bidders’ equilibrium bids when facing both unit and bundle bidders, Lemma 4;
for this, we also show that the assumption in Lemma 1 concerning the effect on
other bidders’ strategies of exiting only one object, is satisfied under the out-of-
equilibrium-path beliefs specified under (E5), so that Lemma 1 still applies.

All the following lemmas refer to the cases (i) v1 = v2 = x ∈ [0, 1], α ≥ 0,
and (iii) v1, v2 ∈ [0, 1], α > 1, and to information sets Ht, where a bundle bidder
is active on both objects and hence faces at least one other bidder active on object
1 and at least one other bidder active on object 2. Consider the SA and fix such
a bundle bidder h that is active on the two objects and let yk denote the highest
bid on object k among all other bidders in the current and following rounds. For
any given strategy profile of all other bidders, denote byGk(· | Ht) the cumulative
distribution function of yk given the information set Ht. Let further Hk

t denote the
information node that is reached starting from Ht if bundle bidder h exits object k
at t. Then we can state:

Lemma 1. For any Ht, there exists ε > 0 such that if Gk(· | H3−k
t ) ≤ Gk(· |

Ht) + ε, k = 1, 2, then it is optimal for bundle bidders to submit the same bid
τ ≥ max{v1, v2} on both objects.

Proof. We will argue using the JAMO. The conditions on Gk and ε imply that if
bundle bidderh exits one object only, the probability of winning the other object will
not increase too much. (We will see later that the distribution function Gk(· | H1

t )
of y2 given that the bundle bidder exits object 1 only at t is always well-defined,
given the out-of-equilibrium-path beliefs (E5)). The lemma states that in this case a
bundle bidder who is active on two objects has nothing to lose if he stays on the two
objects at least until the price reaches max{v1, v2}, or, in the terminology of the
SA, if he submits the same bid τ ≥ max{v1, v2} for both objects. The intuition is
that when ε is small, if he exits one object before max{v1, v2}, he does not increase
too much the probability of winning the other object while he loses the opportunity
of winning the bundle and of gaining the synergyα. More formally, assume without
loss of generality that v2 ≥ v1. We need to show that exiting object 1 at t < v2 is
worse than waiting at least until v2 before exiting any object at all. At t < v2, the



Ascending auctions for multiple objects: the case for the Japanese design 347

bundle bidder’s expected profit from exiting object 1 is

E[(v2 − y2)1{y2<v2}|H1
t ] =

∫ v2

t

(v2 − y2)dG2(y2 | H1
t ). (4)

Indeed, after exiting object 1 at t < v2, it becomes optimal for the bundle bidder
to stay on object 2 until v2. If y2 happens to be less than v2, then the bundle bidder
will win object 2 and his payoff will be (v2 − y2). We want to show that bundle
bidder h prefers to wait until v2 before exiting any object at all.

Consider case (i) and take ε ≤ 1
2E[α1{y1,y2<v2} | Ht]. Suppose that the bundle

bidder stays on the two objects until v2 and then exits at v2 the objects he has not
won. In this case four outcomes are possible: (a) y2 < v2 < y1, the bundle bidder
wins only object 2 at y2 and exits object 1 at v2, (b) y1 < v2 < y2, he wins
only object 1 at y1 and exits object 2 at v2; (c) y1, y2 < v2, he wins both objects
at prices smaller than v2, (d) v2 < y1, y2, he exits both objects at v2; (again, we
implicitly assume that the probability that yk = v2 is zero and thatG2 has a positive
density, which we will see later is verified in equilibrium since bidders’strategies are
strictly increasing in their valuations that are continuously distributed). Therefore
the expected payoff from this strategy is:

E[(v2 − y2)1{y2<v2<y1} | Ht] + E[(v1 − y1)1{y1<v2<y2} | Ht]
+E[(v1 + v2 + α− y1 − y2)1{y1,y2<v2} | Ht] + 0

= E[(v2 − y2)1{y2<v2} | Ht] + E[(v2 − y1)1{y1<v2} | Ht]
+E[α1{y1,y2<v2} | Ht]

> E[(v2 − y2)1{y2<v2} | Ht] + (v2 − t)ε

≥ E[(v2 − y2)1{y2<v2} | H1
t ],

where we used v1 = v2 for the first equality and v2 > t and ε ≤ 1
2E[α1{y1,y2<v2} |

Ht] ≤ E[α1{y1,y2<v2}|Ht]
2(v2−t) for the strict inequality. SinceG2(· | H1

t ) ≤ G2(· | Ht)+
ε implies thatE[(v2−y2)1{y2≤v2} | H1

t ] ≤ E[(v2−y2)1{y2≤v2} | Ht]+(v2−t)ε,
we have the last inequality. Thus the bundle bidder prefers waiting at least until v2
before exiting object 1.

Now consider case (iii) and take ε ≤ 1
2E

[
(v1 + α− 1)1{min{y1,y2}<v2} | Ht

]
.

Suppose that bundle bidder h stays on the two objects until v2, exits the two objects
only if he wins no object before v2, and continues optimally otherwise. Then, if
a bundle bidder h wins one object, he will necessarily win both objects. This is
because, if all remaining bidders follow strategies (E1),(E2), after winning object
k, bundle bidderhwill remain active on the other object until v3−k+α > 1, whereas
his competitors will remain active until their valuations for that single object which
are at most 1. Thus, the strategy mentioned above leads to an expected payoff equal
to

E[(v1 + v2 + α − (y1 + y2))1{min{y1, y2}≤v2} | Ht]
= E[(v2 − min{y1, y2})1{min{y1, y2}≤v2} | Ht]

+E[(v1 + α− max{y1, y2})1{min{y1, y2}≤v2} | Ht]
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> E[(v2 − min{y1, y2})1{min{y1, y2}≤v2} | Ht] + ε(v2 − t)
≥ E[(v2 − min{y1, y2})1{y2≤v2} | Ht] + ε(v2 − t)
≥ [(v2 − y2)1{y2≤v2} | Ht] + ε(v2 − t)

≥ E[(v2 − y2)1{y2<v2} | H1
t ],

where the first inequality follows again from

ε ≤ E
[
(v1+α−1)1{min{y1,y2}<v2}|Ht

]
2

≤E
[
(v1+α−1)1{min{y1,y2}<v2}|Ht

]
2(v2−t)

and the second inequality is a consequence of the fact that {y2 < v2} is a subset
of {min{y1, y2} ≤ v2} and that we are taking expectation of positive random
variables. Thus for ε small the bundle bidder strictly prefers waiting at least until
v2 before exiting object 1. This proves that in case (i) and (iii) a bundle bidder does
not exit object 1 before v2. As it cannot be optimal for a bundle bidder to exit object
2 before v2 or to stay only on object 2 when t > v2, exiting simultaneously the two
objects at a price no smaller than v2 is an optimal strategy. ��

Lemma 1 implies that in the SA, assuming the condition on the distribution
functions Gk is verified, a bundle bidder will submit the same bid on both objects
and that in the JAMO a bundle bidder will exit simultaneously from both objects.
We use this result in the following Lemma that proves strategy (E4) for the case
where a bundle bidder faces only unit bidders.

Lemma 2. The strategy (E4) in Proposition 2 is globally optimal wheneverM = 1
and N1, N2 ≥ 1.

Proof. Consider bundle bidderh that has reached an information nodeHt in the SA,
where the minimum admissible bid is t, and where he is active on the two objects
and facesN1,N2 ≥ 1 unit bidders and no other bundle bidders.According to (E1) in
Proposition 2, a unit bidder will bid his valuation for the object at each round of the
SA as long as the minimum admissible bid is below his valuation; this regardless of
the bundle bidder’s strategy. Hence, when a bundle bidder faces only unit bidders,
by exiting only one object the bundle bidder does not modify the probability of
winning the other object simply because he does not affect unit bidders’ strategies.
Therefore, we have Gk(· | Ht) = Gk(· | H3−k

t ) and we can apply Lemma 1
and deduce that it is optimal for the bundle bidder to submit the same bid on the
two objects. If in round Ht the bundle bidder submits the same bid p ≥ t on the
two objects, then his expected payoff is given by expression (1). Suppose for the
time being that Π is differentiable, then the first order condition is Π ′(p,Ht) = 0,
where Π ′(p,Ht) is given by (3). Note first that πLk

(p,Ht) is non-increasing in p,
for k ∈ {1, 2}. Indeed, πLk

(p,Ht) is the bundle bidder’s continuation payoff given
that all remaining unit bidders’ valuations for the objects are at least p, which also
represents the minimum admissible bid in the next round. Clearly, an increase in
p cannot raise πLk

(p,Ht). Note also that as unit bidders valuations are not greater
than 1, we have fN1+N2(p | t) > 0 if and only if p ∈ [t, 1].

We can now prove that the bid given by (E4) represents a global maximum
when M = 1. Suppose first that τ(vB , Ht) ≤ 1. Given the definition of τ(vB , Ht)
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and that πLk
(p,Ht) is non-increasing in p, it must be that Π ′(p;Ht) > 0 for

p ∈ [t, τ(vB , Ht)) andΠ ′(p;Ht) ≤ 0 for p ≥ τ(vB , Ht). In other words, this says
thatΠ(p;Ht) reaches its global maximum at p = τ(vB , Ht). Second, suppose that(

N1

N1 +N2
πL1(p,Ht) +

N2

N1 +N2
πL2(p,Ht)

)
> 0 ∀p ≤ 1. (5)

In particular, suppose the bundle bidder’s continuation payoff is positive even at
p = 1; this last case arises only if vB > 2. Since fN1+N2(p | t) > 0 if and only if
p ∈ [t, 1], condition (5) implies thatΠ ′(p;Ht) > 0 for all p < 1 andΠ ′(p;Ht) = 0
for all p ≥ 1. Thus τ(vB , Ht) = vB/2 > 1 is a maximizer of Π(p;Ht) in this
case.

In order to complete the proof, we need to show thatΠ(p;Ht) is differentiable
for p ≤ 1. With expression (1), we argue that, ifπLk

is differentiable, thenΠ(p;Ht)
must also be differentiable; hence, it is sufficient to show that πLk

is differentiable.
The proof is by induction. First, suppose the SA has reached a stage in which the
bundle bidder faces only one unit bidder on each of the two objects. ThenπLk

(·, Ht)
is obviously differentiable in p as it will be equal to10

πLk
(p,Ht) = vk − p+

∫ v3−k+α

p

(v3−k + α− s)f(s | p)ds. (6)

Second, suppose that πL1(·, Ht) and πL2(·, Ht) are differentiable and take an infor-
mation node Ht′ that immediately precedes Ht. We want to prove that πLk

(·, Ht)
is differentiable, k = 1, 2. Information nodeHt′ is such that if the lowest among all
bids in the roundHt′ is t and it is submitted by a unit bidder on object k, then node
Ht is reached. Thus, πLk

(t,Ht′) represents the bundle bidder’s equilibrium payoff
at information node Ht. Denoting with τ(vB ;Ht) the bundle bidder’s optimal bid
in round Ht we have

πLk
(t,Ht′) = Π(p;Ht)|p=τ(vB ;Ht) = (7)

=
∫ τ(vB ;Ht)

t

(
N1

N1+N2
πL1(s,Ht)+

N2

N1+N2
πL2(s,Ht)

)
fN1+N2(s | t)ds

where N1 and N2 represent the number of unit bidders at node Ht that are ac-
tive on object 1 and 2 respectively. Thus, since πLk

(·, Ht) is differentiable, then
πLk

(·, Ht′) is twice differentiable. Finally notice that starting form expression (6)
and using expression (7) and the definition of τ(·), it is possible to derive recur-
sivelyπLk

(s,Ht) and the bundle bidder’s optimal bid for allHt such that the bundle
bidder only faces local bidders. This completes the proof of the Lemma. ��

Lemma 3. The bids defined by strategy (E4) of Proposition 2 are strictly increasing
functions of vB .

10 Note that, if the unit bidder on object k sets the lowest bid p, then the bundle bidder wins object
k, he pays p. In the following round the bundle bidder will bid v3−k + α on object 3 − k whereas the
remaining unit bidder will bid his valuation for the object.
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Proof. Notice first that a bundle bidder’s bid depends on vB = v1 + v2 + α
rather than the individual values of his type (v1, v2). This is clearly true since
v1 = v2 = (vB − α)/2. By Lemma 1, the bundle bidder submits the same bid for
both objects. Therefore, in case (iii), because α > 1, with probability one, either he
wins both objects or none; this further implies that his expected payoff and hence
his bid will also depend only on the value of the bundle vB .

If τ(vB , Ht) = vB/2, then the exiting time is clearly increasing in vB . Suppose
then that τ(vB , Ht) ≤ 1. In this case, the probability of winning any object at any
given price depends only on the other bidders’valuations. Moreover, the bundle bid-
der’s ex-post payoff is non-decreasing in vB if he wins just one object and is strictly
increasing if he wins both. Thus, if v̄B > vB is the bundle bidder’s value for the bun-
dle, then the corresponding expressions π̄L1(p,Ht), π̄L2(p,Ht) and π̄BB(p,Ht),
computed with the higher value v̄B , are strictly greater than the respective coun-
terparts πL1(p,Ht), πL2(p,Ht) and πBB(p,Ht), computed with vB , since there
is always a strictly positive probability that he may win both objects, as long as
he is active on both objects. From the definition of Ψ(·), we deduce that Ψ(p,Ht)
computed with the higher value v̄B is strictly greater than Ψ(p,Ht) computed with
vB . Moreover, as πL1(p,Ht), πL2(p,Ht) and πBB(p,Ht) are non-increasing in p,
it results that also Ψ is so. Thus the definition of τ implies τ(vB , Ht) > τ(vB , Ht),
and hence the claim. ��
Lemma 4. The strategy (E4) in Proposition 2 is globally optimal for M , N1, and
N2 arbitrary.

Proof. The proof is by backward induction. Consider a bundle bidder who after
some sufficiently large number of rounds of the SA is still active on both objects.
If there is no other bundle bidder active on both objects, Lemma 2 applies; if all
active bidders are bundle bidders, then πBB(p,Ht) = v1 +v2 +α−2p = vB −2p.
Thus, the optimal bid τ(vB , Ht) defined in point (E4) reduces to vB/2 for a bundle
bidder with value for the bundle equal to vB , and it is easy to check that bidding
vB/2 on both objects is indeed a best reply in this case.

Given the above and Lemma 2, in what follows, we consider a roundHt where
there are at least two bundle bidders active on the two objects and at least one unit
bidder who is active on some object, i.e., M ≥ 2 and N1 + N2 ≥ 1. Note that
the latter requirement implies that t ≤ 1. Fix bundle bidder h with valuations v1
and v2. Suppose unit bidders’ strategies are those defined by (E1) and all bundle
bidders different from h use strategies defined by (E4). Moreover, suppose that
in the following rounds all bundle bidders’ strategies, including bundle bidder h,
are symmetric and strictly increasing in the value of the bundle. We show that the
strategy defined by (E4) is a best reply for bundle bidder h in the current round. To
begin with, we first restrict to strategies where bundle bidder h submits the same bid
for both objects and show optimality under this assumption; later, we will show that
Lemma 1 applies and it is indeed optimal to submit the same bid on both objects.

Suppose then that bundle bidderh submits bid p for both objects. We distinguish
three possible outcomes that can occur with positive probability atHt:11 (a) bundle

11 From (E1) in Proposition 2 and Lemma 3, bidders’strategies are strictly increasing in their valuations
so that ties occur with probability zero.
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bidder h’s bid p is the lowest among all bids submitted in the current round, and
bundle bidder h quits the auction without buying any object; (b) a unit bidder sets
the lowest bid s ∈ [t, p) on one of the two objects, quits the auction, and the other
bidders move to the following round; (c) a bundle bidder different from h sets the
lowest bid s ∈ [t, p) on both objects, quits the auction (on both objects), and the
remaining bidders move to the following round.

We can therefore write bundle bidder h’s expected payoff from bidding p on
both objects at an information set Ht with M ≥ 2 bundle bidders and N1, N2 unit
bidders, where N1 +N2 ≥ 1 as

Π(p;Ht) =
∫ p

t

πL(s,Ht)(1 − FB(s | Ht))fN1+N2(s | Ht)ds+

+
∫ p

t

πB(s,Ht)(1 − FN1+N2(s | Ht))fB(s | Ht)ds, (8)

where πL(s,Ht) is bundle bidder h’s continuation payoff if in the current round
the lowest bid is s ≥ t and it has been submitted by a unit bidder (outcome
(b)), πB(s,Ht) is bundle bidder h’s continuation payoffs if another bundle bidder
sets the lowest bid s ≥ t on the two objects (outcome (c)), FB(· | Ht) is the
cumulative distribution of the lowest bid among all bundle bidders different from
h, and fB(· | Ht) = F ′

B(· | Ht). Note that from Lemma 3, the strategies of bundle
bidders different from h are strictly increasing in their valuations for the bundle,
and individual valuations are independently and continuously distributed random
variables; therefore, from bundle bidder h’s perspective, the lowest bid among all
other bundle bidders is a continuously distributed random variable with a well
defined density function fB(· | Ht).

Differentiability of Π(·;Ht) follows from the differentiability of πL and πB .
In order to prove differentiability of the latter, it is sufficient to check that, in the
terminal rounds of the auction, πL and πB are both differentiable; it can then be
checked that, if in a given round, πL and πB are differentiable, then they will also
be differentiable in the preceding round; the induction argument is the same as the
one used in Lemma 2.

Differentiating (8) with respect to p, we have

Π ′(p;Ht) = πL(p,Ht)(1 − FB(p | Ht))fN1+N2(p | Ht)
+ πB(p,Ht)(1 − FN1+N2(p | Ht))fB(p | Ht). (9)

We need to show that τ(vB , Ht) defined by (E4) is globally optimal for bidder h.
We do this by showing that Π ′(p,Ht) ≥ 0 for p < τ(vB , Ht) and Π ′(p,Ht) ≤ 0
for p ≥ τ(vB , Ht). This is done by showing that for p < τ(vB , Ht) both the first
and the second term in (9) are non-negative, whereas for p ≥ τ(vB , Ht) they are
both non-positive.

Recall that we are considering information sets whereM ≥ 2 andN1+N2 ≥ 1
so that it is sufficient to distinguish the following four cases: (1)M = 2,N1+N2 =
1, (2) M = 2, N1 or N2 = 0, (3) M = 2, N1, N2 ≥ 1, (4) M ≥ 3, N1, N2 ≥ 0.

(1) Suppose that M = 2, N1 = 0, and N2 = 1, (the case M = 2, N1 = 1, and
N2 = 0 is analogous). Let (v1, v2) be bundle bidder h’s type, denote by i the other
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bundle bidder and let (vi
1, v

i
2) be his type. We have

πB(p,Ht) = πBB(p,Ht) = v1 − p+
∫ v2+α

p

(v2 + α− s)f(s | p)ds, (10)

since if bundle bidder i (the only other bundle bidder active at Ht) exits the two
objects at p, bundle bidder h wins object 1, pays p, and in the following round
will bid v2 + α against the unit bidder on object 2. Note that πB(p,Ht) is strictly
decreasing in p and increasing vB .12 Moreover, if vB = 2 then πB(p,Ht)|p=1 = 0.
This implies that whenevervB > 2, thenv1−p+

∫ v2+α

p
(v2+α−s)f(s|p)ds > 0 for

all p ∈ [t, 1] and consequently τ(vB , Ht) = vB/2 > 1. If vB ≤ 2, then τ(vB , Ht)
will be the minimum p ∈ [t, 1] that solves v1−p+∫ v2+α

p
(v2+α−s)f(s|p)ds ≤ 0.

In both cases the second term of (9) is not negative for p < τ(vB , Ht) and not
positive for p ≥ τ(vB , Ht).13

Denote by fB(vi
B |τ(vi

B , Ht) > p) the density of bundle bidder i’s valuation
for the bundle conditional on the fact that in the current round he has submitted a
bid larger than p. Then we have

πL(p,Ht) =
∫ vB

τ−1(p,Ht)
(vB − s)fB(s|τ(s,Ht) > p)ds, (11)

where τ−1(p;Ht) is the vi
B such that τ(vi

B , Ht) = p. Indeed, if in the current round
the unit bidder quits the auction at p, then bundle bidder h understands that bundle
bidder i has bid more than p and that vi

B is at least τ−1(p,Ht). Moreover in the
following round the only active bidders will be the two bundle bidders still active
on both objects, and each one of them will bid half his valuation for the bundle on
both objects. Thus, bundle bidder h can win only if vi

B ≤ vB . Note that as τ(·;Ht)
is increasing in the value of the bundle, then Pr(vi

B ≤ vB |τ(vi
B , Ht) > p) > 0

for p < τ(vB , Ht) and Pr(vi
B ≤ vB |τ(vi

B , Ht) > p) = 0 for p ≥ τ(vB , Ht).
Consequently, πL(s,Ht) > 0 for p < τ(vB , Ht) and πL(p,Ht) = 0 for p ≥
τ(vB , Ht).

Summing up, and taking in to account expression (9), we deduce thatΠ ′(p;Ht)
≥ 0 for p < τ(vB , Ht) and Π ′(p;Ht) ≤ 0 for p ≥ τ(vB , Ht), which is what we
needed to show global optimality of τ(vB , Ht) at Ht. In particular, note that the
level of τ(vB , Ht) can be determined only by means of the expression πBB(p,Ht)
given in (10), and that it is strictly increasing in vB for Lemma 3.

(2) Suppose now M = 2, N1 = 0 and N2 ≥ 1, (the case M = 2, N1 ≥ 1 and
N2 = 0 is analogous). Again, since M = 2, if the other bundle bidder exits both
objects at p, then h automatically buys object 1 at p, and in the following round
will bid v2 + α against N2 unit bidders on object 2; hence we have

πB(p,Ht) = πBB(p,Ht) = v1−p+
∫ v2+α

p

(v2+α−s)N2F
N2−1(s|p)f(s|p)ds,

(12)
12 To see this point recall that we are considering the cases where either v1 = v2 and α ≥ 0, or

v1 �= v2 and α > 1.
13 Note that as unit bidders bid at most 1, we have (1 − FN1+N2 (p|Ht)) = 0 for p > 1 and so the

second term in expression (9) vanishes for p > 1.
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where N1F
N1−1(s|p)f(s|p) is the density of the highest among N2 ≥ 1 unit

bidders’ valuations for object 2; h will win object 2 only if the highest valuation
among the unit bidders is below v2 +α. Applying the same arguments used for case
(1), we deduce that the second term of (9) is not negative for p < τ(vB , Ht) and not
positive for p ≥ τ(vB , Ht). Note now that for the first term of (9), πL(p,Ht) > 0
for p < τ(vB , Ht) and πL(p,Ht) = 0 for all p ≥ τ(vB , Ht). In order to see
this, recall that πL(p,Ht) is bundle bidder h’s continuation payoff given that in the
current round the lowest bid p is set by a unit bidder; this implies that bundle bidder
i submitted a bid greater than p, i.e., τ(vi

B , Ht) > p. Thus, if p ≥ τ(vB , Ht),
then τ(vi

B , Ht) > τ(vB , Ht). The latter implies that vi
B > vB since Lemma 3

tells us that τ(·, Ht) is strictly increasing in its first argument. As in the following
rounds bundle bidders’ strategies are supposed to be symmetric and increasing in
their valuations for the bundle, bundle bidder h cannot expect to win any object as
he will surely quit the auction before bundle bidder i. Therefore his continuation
payoff πL(p,Ht) will be zero. By contrast, if p < τ(vB , Ht), then the probability
that vi

B <vB remains positive, hence bundle bidderhwins with positive probability
and so πL(p,Ht) > 0.

Summing up, and taking into account expression (9), we can deduce that
Π ′(p;Ht) ≥ 0 for p < τ(vB , Ht) and Π ′(p;Ht) ≤ 0 for p ≥ τ(vB , Ht). Fi-
nally note again that also in this case, τ(vB , Ht) can be determined directly from
the expression πBB(p,Ht) given in (12), and that it is strictly increasing in vB by
Lemma 3.

(3) Suppose nowM = 2, andN1, N2 ≥ 1. With the exit of the other bundle bidder,
the only remaining bundle bidder is h who faces N1 and N2 ≥ 1 unit bidders on
the two objects, in which case we can apply Lemma 2 to get

πB(p,Ht) = πBB(p,Ht) = (13)

=
∫ τ(vB ,H′

p)

p

(
N1

N1+N2
πL1(s,H

′
p)+

N2

N1+N2
πL2(s,H

′
p)

)
fN1+N2(s|H ′

p)ds,

whereH ′
p is the information setHt updated by the fact that the other bundle bidder

exited the auction with a bid of p, and τ(vB , H
′
p) is the bundle bidder h optimal

bid in the round corresponding to information node H ′
p. Since in node H ′

p there
are no other bundle bidders besides h, we can use Lemma 2. From the definition
of τ(vB , H

′
p) we know that the argument of the integral in (13) is non-negative

for p < τ(vB , H
′
p) and non-positive for p ≥ τ(vB , H

′
p) and from the definition

of τ(vB , Ht) given in point (E4), we have τ(vB |Ht) = τ(vB |H ′
p). Moreover,

πL(p,Ht) > 0 for p < τ(vB , Ht) and πL(p,Ht) = 0 for all p ≥ τ(vB , Ht) by the
same argument used in case (2). Thus, using the expression for Π ′(p;Ht) given
in (9), we deduce that Π ′(p;Ht) ≥ 0 for p < τ(vB , Ht) and Π ′(p;Ht) ≤ 0 for
p ≥ τ(vB , Ht), which again proves the claim in this case. Note once again that
τ(vB , Ht) can be determined directly from the expression πBB(p,Ht) given in
(13), and that it is strictly increasing in vB by Lemma 3.

(4) Consider now the remaining case, whereHt is such that there are several unit
bidders and several bundle bidders still active besides bundle bidder h, i.e.,M ≥ 3
and N1, N2 ≥ 1. As shown in the previous cases, all the bundle bidders’ strategies
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in the following stages of the game, including bidder h’s strategies, are symmetric
and strictly increasing in vB . Hence, bundle bidder h’s continuation payoff will be
non-positive if in the current round there is at least one other bundle bidder iwhose
bid τ(vi

B , Ht) is larger than τ(vB , Ht). Indeed, if M ≥ 3 the continuation payoffs
πL(p,Ht) and πB(p,Ht) both correspond to situations where there is at least one
other bundle bidder, say i, who in the current round has bid more than p; hence, as in
the discussion for πL in cases (1)-(3), if p ≥ τ(vB , Ht), then there exists a bundle
bidder i with τ(vi

B , Ht) > τ(vB , Ht), which implies vi
B > vB and therefore

bundle bidder h cannot expect to win any object and his expected continuation
payoff will be zero. In particular, πL(p,Ht), πB(p,Ht) ≤ 0 if p ≥ τ(vB , Ht). On
the other hand, if p < τ(vB , Ht), then the probability that the remaining bundle
bidders’ valuations are less than vB remains positive, and so bundle bidder h’s
expected continuation payoff will be non-negative, i.e., πL(p,Ht), πB(p,Ht) ≥ 0
if p < τ(vB , Ht). Finally, notice that τ(vB , Ht) is determined from expression
πBB(p,Ht) by construction, and that by symmetry and monotonicity of τ(·, Ht),
it followed that Π ′(p;Ht) ≥ 0 for p < τ(vB , Ht) and Π ′(p;Ht) ≤ 0 for p ≥
τ(vB , Ht).

So far we have shown that, if all bidders but bundle bidder h follow strategies
(E1)-(E4) and bundle bidder h is restricted to submitting the same bid on the two
objects, then the latter’s optimal bid is given by (E4) as well. What remains to be
proven is that it is not optimal for bundle bidder h to submit two different bids. By
Lemma 1, bundle bidder h is not willing to submit two different bids if, by exiting
only one object, he does not induce a sensitive increase in the probability of winning
the other object. In the presence of other bundle bidders, the effect that exiting only
one object has on the probability of winning the other object depends on how the
other bundle bidders behave after observing this (out-of-equilibrium-path) event,
and this will depend on their out-of-equilibrium-path beliefs. We now show that
the out-of-equilibrium-path beliefs specified in (E5) do the job.

Suppose that the SA has reached node Ht corresponding to the event that the
lowest bid t has been submitted by bundle bidder h on object 1 only. That is,
contrarily to the symmetric equilibrium strategy, bundle bidder h does not exit the
two objects simultaneously. Notice first the the unit bidders’ optimal bids are not
affected by this event. Suppose next that all surviving bundle bidders i 
= h hold
the (out-of-equilibrium-path) beliefs under (E5), i.e., Pr[v2 ≤ t+ δ | τh

1 = t] = 1,
for δ positive and small. That is, after observing bundle bidder h exiting object 1 at
t, bundle bidders i 
= h believe that v2 is not greater than t+ δ and, therefore, that
bidder h will remain active at most until t + δ. Choosing δ sufficiently small will
guarantee that the continuation payoffs of bundle bidders i 
= h are arbitrarily close
to those arising in a situation where bundle bidder h exits both objects at the price
t. Thus their optimal bids will be arbitrarily close to the ones computed along the
equilibrium path. Therefore Lemma 1 applies. Since by exiting only one object a
bundle bidder cannot induce a significant increase in the probability of winning the
other object, in equilibrium a bundle bidder never exits one object and continues
on the second object. ��
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