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Abstract

We study games endowed with a pre-play phase in which players prepare the

actions that will be implemented at a predetermined deadline. In the preparation

phase, each player stochastically receives opportunities to revise her actions, and

the finally-revised action is taken at the deadline. In 2-player “common interest”

games, where there exists a best action profile for all players, this best action profile

is the only equilibrium outcome of the dynamic game. In “opposing interest” games,

which are 2× 2 games with Pareto-unranked strict Nash equilibria, the equilibrium

outcome of the dynamic game is generically unique and corresponds to one of the

stage-game strict Nash equilibria. Which equilibrium prevails depends on the payoff

structure and on the relative frequency of the arrivals of revision opportunities for

each of the players.
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1 Introduction

This paper studies a situation in which players prepare their actions in a pre-play phase

before the actions are taken at a predetermined deadline. As a deadline approaches, each

player has the opportunity to prepare an action at stochastically-determined (Poisson)

times. At the deadline, the actions most recently prepared are taken, and the players’

payoffs are determined only by these actions. In this framework, called the “revision

game,” Kamada and Kandori (2010) show that the addition of pre-play phase can widen

the set of achievable payoffs. This paper uncovers another role that the pre-play phase

can play. We show that it can narrow down the set of achievable payoffs.

We study this problem in two classes of games where coordination is an issue. The first

is “common interest” games, in which there is an action profile that all players strictly

prefer to all other profiles. For this class of games, we show that, in 2-player games, this

“best profile” is the unique outcome of the revision game. The second class of games

is that of “opposing interest” games, which are 2 × 2 games with two Pareto-unranked

strict Nash equilibria. In this class of games, we show that generically there is a unique

outcome of the revision game, which corresponds to one of the strict Nash equilibria.

Which equilibrium prevails in the revision game depends on the payoff structure and the

relative arrival frequency of revision opportunities for each player. We prove these results

by using a type of backward-induction argument in continuous time.

Three assumptions, in addition to the assumption that revision opportunities are

stochastic, are crucial to our results. The first one is observability. If a player is unable to

observe what the other player has prepared, then the revision phase has no binding force,

and so the equilibrium outcomes of revision games are identical to those of static games.

The second is asynchronicity. If all revision opportunities are synchronous, then any

repetition of static Nash equilibria is subgame perfect. Hence, uniqueness does not hold

if there are multiple static Nash equilibria. However, if opportunities are asynchronous,

each player’s preparation must be contingent on the opponent’s current action (by ob-
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servability). Thus a player can induce the opponent to prepare some particular action

by using as a threat the possibility that she may not be able to revise her own action

before the deadline. The third key ingredient is finite actions and strict incentives. As we

will argue, uniqueness is implied by backward induction. If there are only finitely many

actions and the static game best replies to pure actions are strict, then each player has

a single best reply near the deadline (by asynchronicity) in the revision game, and this

constitutes the starting point of our backward induction argument.

These assumptions seem natural in real-life and economic contexts where coordination

is crucial. For example, such a situation arises in the daily practice of some financial

markets, such as Nasdaq or Euronext for example, where half an hour before the opening

of the market, participants are allowed to submit orders, which can be withdrawn and

changed until opening time. These orders and the resulting (virtual) equilibrium trading

price are publicly posted during the whole “pre-opening” period. Only orders that are

still posted at the opening time are binding and hence executed. In this framework, it

is natural to assume that orders are submitted asynchronously and that traders do not

always manage to withdraw old orders or submit new orders instantaneously because it

takes a certain random time to fill in the new order faultlessly. Observability holds as

the posted orders are displayed on the screen, and the number of payoff-relevant orders

is practically finite.1,2

The rest of the paper is organized as follows. Section 2 reviews the related literature.

Section 3 introduces the model. Section 4 presents a simple but a useful lemma that

allows us to implement a backward induction argument in continuous time. Section 5

considers common interest games and Section 6 studies 2-player opposing interest games.

Section 7 discusses further results. Some of the proofs are relegated to the Appendix.

1Given this application, Calcagno and Lovo (2010) call the revision game a “preopening game”.
2Biais et al. (2008) present an experiment simulating preopening in a financial market where the actual

play is preceded by (only) one round of pre-play communication, which is either completely binding or
completely non-binding. In both specifications players choose their actions simultaneously and there are
multiple SPE equilibria. Consistently, they find both Pareto efficient and Pareto inefficient outcomes are
observed in the experiment.
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2 Literature Review

Cheap talk. It is important to make a distinction between our model and cheap-talk

models such as those in Farrell (1987), Rabin (1994) and Aumann and Hart (2003). In

these models, players are allowed to be involved in preplay non-binding communication.

In contrast, in our model, at each moment of time, the prepared action will become the

final payoff-relevant action with a strictly positive probability. For this precise reason,

the outcome can be affected by the addition of a revision phase in our model.

Equilibrium selection. It is instructive to compare our selected outcome with those

in the equilibrium selection literature. In many works on equilibrium selection, the risk-

dominant equilibria of Harsanyi and Selten (1988) are selected in 2 × 2 games. In our

model, however, a different answer is obtained: a strictly Pareto-dominant Nash equilib-

rium is taken even when it is risk-dominated. Roughly speaking, since we assume perfect

and complete information with non-anonymous players, there is only a very small “risk”of

mis-coordination when the deadline is far. There are three lines of the literature in which

risk-dominant equilibria are selected: models of global games, stochastic learning mod-

els with myopia and models of perfect foresight dynamics.3,4 Since the model of perfect

foresight dynamics seems closely related to ours, let us discuss it here.

Perfect foresight dynamics. Perfect foresight dynamics are studied by Matsui and

Matsuyama (1994) in evolutionary models in which players are assumed to be patient

and “foresighted.” That is, they value the future payoffs and take best responses given

3The literature on global games was pioneered by Rubinstein (1989), and analyzed extensively in
Carlsson and van Damme (1993), Morris and Shin (1998), and Sugaya and Takahashi (2009). They show
that the lack of almost common knowledge due to incomplete information can select an equilibrium. The
type of incomplete information they assume is absent in our model. Stochastic learning models with
myopia are analyzed in Kandori, Mailath, and Rob (1993) and Young (1993). They consider a situation
in which players interact repeatedly, and each player’s action at each period is stochastically perturbed.
The key difference between their assumptions and ours is that in their model players are myopic, while
we assume that players prepare actions anticipating the opponents’ future moves. In addition, the game
is repeated infinitely in their models, while the game is played once and for all in our model.

4As an exception, Young (1998) shows that in the context of contracting, his evolutionary model
does not necessarily lead to the risk-dominant equilibrium (p-dominant equilibrium in Morris, Rob and
Shin (1995)). But he considers a large anonymous population of players and repeated interaction, so the
context he focuses on is very different from the one of this paper.
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(correct) beliefs about the future path of play.5 A continuum of agents are randomly

and anonymously matched over an infinite horizon according to a Poisson process. In

this setup, they select the risk-dominant action profile in 2 × 2 games with two Pareto-

ranked (static) Nash equilibria. The key difference is that they assume anonymous agents

while we assume non-anonymous agents. For the “best action profile” to be selected

in our model, it is important for each player to expect that if she prepares an action

corresponding to the best profile, then that preparation can affect the other player’s

future preparation. This consideration is absent with anonymous players.

Common interest games and asynchronous moves. Farrell and Saloner (1985)

and Lagunoff and Matsui (1997) are early works on the topic of obtaining the unique

outcome in common interest games.6 Dutta (2012) shows convergence to the unique

outcome and Takahashi (2005) proves uniqueness of subgame perfect equilibria when

players move asynchronously. One difference is that we assume a stochastic order of moves

while they consider a fixed order. Also, we obtain a uniqueness result more generally than

do Lagunoff and Matsui (1997) due to the finite horizon.

War of attrition with incomplete information. The intuition behind the result

for opposing interest games is similar to the one for the “war of attrition with incomplete

information.”7 Although the structure of the equilibria in war of attrition is similar to the

structure of the equilibria in our model, the reasoning is different: in our model, players

use the probability of not having future revision opportunities as a “commitment power”

while the literature in the war of attrition assumes the existence of “commitment types”

a priori.

Switching cost. Our model assumes that no cost is associated with revision. Several

5See also Oyama, Takahashi, and Hofbauer (2008).
6Dutta’s (1995) result implies that this result in Lagunoff and Matsui (1997) is due to the lack of full

dimensionality of the feasible and individually rational payoff set. See also Lagunoff and Matsui (2001),
Yoon (2001), and Wen (2002). Rubinstein and Wolinsky (1995) show that, even when the discount factor
is arbitrarily close to one, the set of SPE payoff vectors of the repeated games resulting from the repetition
of the extensive form game may not coincide with the one resulting from the normal form game, if the
individually rational payoffs are different or full dimensionality is not satisfied.

7For example, among others, see Abreu and Gul (2000) and Abreu and Pearce (2007).
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papers consider a finite-horizon model with switching cost and show that a unique outcome

prevails in their respective games. Typically, the existence of switching cost results in

different implications on equilibrium behavior. See, for example, Lipman and Wang (2000)

and Caruana and Einav (2008) for details.

Revision games. Kamada and Kandori (2010) introduce the model of revision games.

They show that, among other things, non-Nash “cooperative” action profiles can be taken

at the deadline when a certain set of regularity conditions is satisfied. Hence their focus is

on expanding the set of equilibria when the static Nash equilibrium is inefficient relative

to non-Nash profiles. We ask a very different question in this paper: we consider games

with multiple efficient static Nash equilibria and ask which of these equilibria is selected.8

What drives this difference is that the action space is finite in our paper, whereas it is not

in Kamada and Kandori (2010). Kamada and Sugaya (2010b) consider a revision game

model in which the players have finite action sets in the context of an election campaign.

The main difference is that they assume once a player changes her action, she cannot

revise it further. Thus the characterization of the equilibrium is essentially different from

the analysis in the present paper because in our model, when another opportunity arrives,

a player can always change her prepared action to the previously-prepared action.9

Further results. Finally, further results beyond what we have in this paper can be

found in either or both of Calcagno and Lovo (2010) and Kamada and Sugaya (2010a).

We refer to these papers whenever appropriate.

3 The Model

We consider a 2-player normal-form finite game
(
(Xi)i=1,2 , (ui)i=1,2

)
(the component

game) where Xi is the finite set of player i’s actions with |Xi| ≥ 2 and ui : X → R is

8See also Ambrus and Lu (2009) for a variant of revision games model of bargaining in which the
game ends when an offer is accepted.

9van Damme and Hurkens (1996) analyze a related model of “timing games,” in which players can
choose the timing of their move out of two periods and they cannot switch back.
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player i’s utility function. Here, X = X1 × X2 is the set of action profiles. We use a

female pronoun for player 1 and a generic player i, and use a male pronoun for player 2.

Before players take actions, they need to “prepare” their actions. We model this

situation as in Kamada and Kandori (2010): time is continuous, t ∈ [−T, 0], and the

component game is played once and for all at time 0. The revision game proceeds as

follows. First, at time −T , the initial action profile is exogenously given.10 In the time

interval (−T, 0], each player independently obtains opportunities to revise her prepared

action according to two random Poisson processes p1 and p2 with arrival rates λ1 and λ2

respectively, where λi > 0, i = 1, 2. As the Poisson processes p1 and p2 are independent,

the probability that the two players revise their actions simultaneously is zero. In other

words, almost certainly only asynchronous revision opportunities arise.11 At t = 0, the

action profile that has been prepared most recently is actually taken and each player

receives the payoff that corresponds to the payoff specification of the component game.

In order to define the strategy space of the revision game, suppose the game has

reached time t. We assume here that each player i at any time t has perfect information

about all past events. In particular, she knows whether i has a revision opportunity at

t but does not know whether the opponent gets an opportunity at t. Formally, for any

given t ∈ (−T, 0], let Hn
i (t) and Hr

i (t) denote the subset of all possible histories for player

i such that she does not have a revision opportunity at t and that corresponding to her

having a revision opportunity at t, respectively. Thus, the set of all possible histories for

player i is Hi := ∪t∈[−T,0]H
n
i (t)∪Hr

i (t). A history for player i at t ∈ (−T, 0] takes either

of the following two forms, depending on whether i receives an opportunity at t.

hi(t) =
((

tk1, xk
1

)k1

k=0
,
(
tk2, xk

2

)k2

k=0

)
∈ Hn

i (t)

10As we will see, the uniqueness results in Sections 5 and 6 become even sharper if players simultaneously
choose actions at time −T .

11We refer to Section 7 for the discussion of the role played by this assumption. See Calcagno and
Lovo (2010) and Ishii and Kamada (2011) for more general processes underlying the arrival of revision
opportunities.
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if player i does not have a revision opportunity at t, and

hi(t) =
((

tk1, xk
1

)k1

k=0
,
(
tk2, xk

2

)k2

k=0
, t

)
∈ Hr

i (t)

if she does, where t0i := −T , ki is a nonnegative integer for i = 1, 2, −T < t1i < t2i < ... <

tki
i < t for i = 1, 2, xk

i ∈ Xi for i = 1, 2. The interpretation is that x0
i is the exogenously-

given action for player i at time t0i = −T , ki is the number of revision opportunities that

i has received in the time interval (−T, t), tki is the time at which player i received her

k-th revision opportunity and xk
i is the action player i prepared at tki .

A strategy for player i is a mapping σi : Hi → {∅} ∪ ∆(Xi) where σi(hi(t)) = ∅ if

hi(t) ∈ Hn
i (t) and σi(hi(t)) ∈ ∆(Xi) if hi(t) ∈ Hr

i (t).

For any given history hi(t), let xi(t) := xki
i ∈ Xi be player i’s prepared action resulting

from his last revision opportunity (strictly) before t. We denote by x(t) := {xi(t)}i=1,2

the last prepared action profile before time t (time t “PAP” henceforth). Note that xi(t)

is player i’s payoff-relevant action at t = 0 in the event i receives no further revision

opportunities in the time interval [t, 0].

Our main results concern subgame perfect equilibrium (SPE) of the revision game for

the case when T is large. However, we note that the model with arrival rate (λ1, λ2) and

horizon length T is essentially equivalent to the model with arrival rates (aλ1, aλ2) and

horizon length T/a, for any positive constant a.12 Hence all our results obtained for T

large enough and fixed revision frequencies (λ1, λ2) can be obtained by keeping fixed the

horizon T and having revisions frequent enough.

To avoid ambiguity, in the rest of the paper, we use terminology revision equilibrium

for a SPE of the whole revision game and (strict) Nash equilibrium for a (strict) Nash

equilibrium of the component game.

12See the “arrival rate invariance” result discussed in Kamada and Kandori (2010).
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4 Backward Induction in Continuous Time

The proofs of our main results rely on the idea of backward induction. The standard

backward induction argument starts by proving a statement for the last period and then

given the statement is true, proves the statement for the second-last period and so forth.

However, this argument is not immediately applicable to our continuous-time setting, as

there is no obvious definition of “second-last period”. In this section we present a lemma

that allows us to implement a type of backward induction argument in continuous time.

The proof is in Appendix A.1.

Lemma 1. Suppose for every t ∈ (−T, 0], there exists ε > 0 such that statement At′

is true for all t′ ∈ (t − ε, t] if statement At′′ is true for every t′′ > t. Then, for every

t ∈ (−T, 0], statement At is true.

Note that the ε in the statement of the lemma can depend on t. Hence, in particular,

the lemma goes through even though the required ε shrinks to zero as t approaches some

finite constant, and then jumps discontinuously there.13

5 Common Interest Games

In this section, we consider a component game with an action profile that strictly Pareto-

dominates all other action profiles. Formally, we say that an action profile x∗ is strictly

Pareto-dominant if ui(x
∗) > ui(x) for all i and all x ∈ X with x 6= x∗. We say that

a game is a common interest game if it has a strictly Pareto-dominant action profile.

Notice that if x∗ is strictly Pareto-dominant, then it is a strict Nash equilibrium.

For example, the games in Figure 1 are common interest games. In each case, (U,L)

is strictly Pareto-dominant.

13A version of the lemma that switches the order of quantifiers (so that ε cannot depend on t) appears
in Chao (1919).
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L R
U 2, 2 −10, 1
D 1,−10 1, 1

L C R
U 2, 2 1, 0 −4, 1
M 1, 1.5 1, 1 −3, 1
D 1, 0 0, 1 0, 0

Figure 1: Common Interest Games

The first main result of this paper is the following:

Theorem 1. Consider a common interest component game and let x∗ be the strictly

Pareto-dominant action profile. Then for any ε > 0, there exists T ′ > 0 such that for all

T > T ′, in all revision equilibria, x(0) = x∗ with probability higher than 1 − ε.

5.1 Intuition

The proof consists of two steps. First, we show that x∗ is absorbing in the revision game:

since the action space is finite, the difference between ui(x
∗) and i’s second best payoff

is strictly positive. Therefore, when the PAP is x∗, no player wants to prepare another

action and to create a possibility that she cannot have further revision opportunities and

will be forced to take a second best or even worse action profile.

Second, given the first step, each player i knows that if her opponent −i has a revision

opportunity while player i prepares x∗
i , then the opponent will prepare x∗

−i. Hence, the

lower bound of the equilibrium payoff for each player is given by always preparing x∗
i

whenever she receives a revision opportunity. If T is sufficiently large, then this strat-

egy gives her a payoff very close to ui(x
∗), which means x∗ should be taken with high

probability at the deadline in any revision equilibrium.

5.2 Proof of Theorem 1

Now we offer the formal proof. The two steps in the formal proof correspond to those in

the intuitive explanation above.

Step 1:
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Let m := mini,x6=x∗(ui(x
∗) − ui(x)), the minimum across players of the differences

between the best payoff and the second best payoff. Since X is finite and x∗ is strictly

Pareto-dominant, m is well defined and positive.

Fix t ≤ 0 arbitrarily. Suppose that for all time after t < 0, each player i has a strict

incentive to prepare x∗
i if the opponent −i’s prepared action is x∗

−i.
14 Suppose also that

player i obtains a revision opportunity at time t−ε and −i’s prepared action is x∗
−i. Then,

the payoff from preparing x∗
i is at least

ui(x
∗) − (1 − e−(λi+λ−i)ε)M (1)

where M := maxi,x6=x∗(ui(x
∗) − ui(x)) < ∞, because with probability at least e−(λi+λ−i)ε,

no further revision opportunities arrive between t − ε and t and the PAP at time t is x∗.

In such a case, action x∗ will be taken at the deadline by assumption. On the other hand,

the payoff from preparing an action xi 6= x∗
i is at most

ui(x
∗) − e−λi(−t+ε)m, (2)

because with probability e−λi(−t+ε), player i never has a revision opportunity again and

in such a case, the action profile at the deadline cannot be x∗.

Notice that expression (1) is strictly greater than expression (2) for ε = 0. Also by the

continuity of (1) and (2) with respect to ε, there exists ε′ > 0 such that for all ε ∈ (0, ε′),

expression (1) is strictly greater than expression (2).15 Hence, by Lemma 1, we have that

for any t < 0, each player i has a strict incentive to prepare x∗
i if her opponent −i prepares

x∗
−i.

Step 2: Since in any subgame perfect equilibrium, players can guarantee at least

the payoff that can be obtained by always playing the action x∗
i , it suffices to show that

14For t = 0, this is vacuously true.
15Note that here we again use the assumption that the action space is finite, so that the maximum

payoff difference is bounded.
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the payoff of always preparing x∗
i converges to the strictly Pareto-dominant payoff as T

goes to infinity. This implies that the probability of the action being x∗ at the deadline

converges to 1, as desired.

By Step 1, the action profile x∗ is the absorbing state: each player has a strict incentive

to prepare x∗
i if her opponent −i prepares x∗

−i. In 2-player games, since player i is the

unique opponent of player −i, player −i prepares x∗
−i if player i prepares x∗

i . Therefore,

the payoff of always preparing x∗
i guarantees a payoff that converges to ui(x

∗).

5.3 Remarks

Four remarks are in order at this stage.

First, if players choose their actions at −T , then we can pin down the behavior of

players on the equilibrium path. In fact, in Appendix A.2, we show that in a common

interest game defined as above, players prepare the strictly Pareto-dominant profile x∗ at

all times t ∈ [−T, 0] on the (unique) path of play in any revision equilibrium.

Second, notice that if there exist two strict Pareto-ranked Nash equilibria in a 2 × 2

component game, then the game is a common interest game. Hence in such a case, the

Pareto-superior Nash equilibrium is the outcome of the revision game.16

Third, the outcome of the revision game is the strictly Pareto-dominant profile even

if it is risk-dominated by another Nash equilibrium. For example, in the left payoff

matrix in Figure 1, the action profile (U,L) is risk-dominated while it is the equilibrium

outcome of the revision game. The key is that, whenever a player prepares x∗
i (the action

that corresponds to the Pareto-dominant profile), the opponent will move to the Pareto-

dominant profile whenever she can revise and they stay at this profile until the deadline

(Step 1 of the proof in the previous subsection). Therefore, if the remaining time is

sufficiently long, then the “risk of mis-coordination” by preparing x∗
i is arbitrarily small

(Step 2).

16Note that Kamada and Kandori (2010) prove that if each player has a strictly dominant action when
the action space is finite, then it is taken in asynchronous revision games.
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Fourth, notice that we allow for the component game to be different from a pure

coordination game (i.e. a game in which two players have identical payoff functions).

This result is in stark contrast with the result of Lagunoff and Matsui (1997), which

applies only to pure coordination games (see Yoon, 2001). This difference comes from

the different assumptions on the horizon: since their models have an infinite horizon,

there can be an infinite sequence of punishments. On the other hand, in our model, there

is a deadline so the incentives near the deadline can be perfectly pinned down as x∗ is

strictly Pareto-dominant. Hence, we can implement backward induction starting from

the deadline.

5.4 n-Player Case

In this subsection we examine how the result in this section can be generalized to the case

of n players. The model setting and the strictly Pareto-dominant profile, denoted x∗, are

analogously defined. Let I be the set of players, and denote by λi the arrival rate of the

revision opportunities for player i. Also, define ri = λi/
∑

j∈I λj. We assume |I| := n ≥ 2.

Step 1 of the proof is easily extended to the case of n players. However, Step 2 cannot

be extended. With more than two players, if each player i currently prepares an action

different from x∗
i , no single player can create a situation where it is enough for only one

player to change her preparation in order to go to x∗. Hence the proof in Subsection 5.2

does not work. Below we show that if there are more than two players, a unique selection

result is obtained when the preferences of the players are similar, where the measurement

of similarity is given by the following definition.

Definition 1. A common interest game is said to be a K-coordination game if for any

i, j ∈ I and x ∈ X,

ui (x
∗) − ui (x)

ui (x∗) − ui

≤ K
uj (x∗) − uj (x)

uj (x∗) − uj

where ui = minx ui (x).
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The minimum of K is 1 when the game is a pure coordination game, where the

players have exactly the same payoff functions. As K increases, the preferences become

less aligned.

Let α = mini∈I ri (the smallest value of ri) and β = mini∈I,i6=j∗ ri where j∗ is an

arbitrary member of arg mini∈I ri (the second smallest value of ri).

Theorem 2. Suppose that a common interest game is a K-coordination game with the

strict Pareto-dominant action profile x∗ and

(1 − α − β)K < 1 − β. (3)

Then for any ε > 0, there exists T ′ such that for all T > T ′, in all revision equilibria,

x(0) = x∗ with probability higher than 1 − ε.

The proof is in Appendix A.3 and a detailed discussion can be found in Kamada and

Sugaya (2010a).

Several remarks regarding condition (3) are in order. The smaller K is, the more

likely this condition is to be satisfied. In particular, if the game is a pure-coordination

game (i.e., if K = 1), then it is always satisfied. In addition, for a fixed K and number

of players, if the relative frequency ri is more equally distributed, the condition is more

likely to be satisfied. Note also that if we let λi = λj for all i, j ∈ I and fix K > 1, then

it is more likely to be satisfied as the number of players becomes smaller. The condition

is automatically satisfied in two-player games since 1 − α − β = 0, so that Theorem 2

implies Theorem 1.

To understand the need for condition (3), consider the game in Figure 2 where λ1 =

λ2 = λ3 = λ.

Consider the Markov perfect strategy profile in which each player’s preparation de-

pends only on the PAP (not on time t), and she prepares a different action than her

current action if and only if the PAP includes exactly two a’s. It is straightforward to
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a2 b2

a1 1, 1, 1 −1,−1,−1
b1 −1,−1,−1 0, 0,−1

a2 b2

a1 −1,−1,−1 −1, 0, 0
b1 0,−1, 0 −1,−1,−1

a3 b3

Figure 2: A Counterexample

verify that this strategy profile is a SPE, and induces different outcomes depending on

the exogenously-given action profile at time −T .17 The key is that when the PAP is

(ai, aj, bk), i prefers preparing bi, which guarantees the payoff of 0, to sticking to ai to

bet on the lottery among the payoffs 1, 0, and −1. This is because in this lottery, −1 is

assigned a higher probability than the other two payoffs due to the possibility of no one

getting a future revision opportunity. What is important is that the moves are stochastic

so there is no event at which, at the PAP (ai, aj, bk), player i is sure that the next mover

is k and hence sticking to ai induces (ai, aj, ak). That is, player i is exposed to the risk

of player j switching to bj in the future and i getting the payoff −1.18 Note that player

j would not switch to bj if such a strategy would hurt her as well. But in this example,

moving from (ai, aj, bk) to (ai, bj, bk) gives opposite consequences to players i and j (bad

for player i but good player j). That is, the fact that preferences are diverse is also impor-

tant, which is the reason why we need to restrict to a class of games like K-coordination

games.

Finally, we note that the above example implies that condition (3) is tight in the sense

that for any nonpositive number, we can find a pair consisting of a component game and

a profile of arrival rates such that the difference of left and right hand sides of condition

(3), (1 − β) − (1 − α − β)K, is that number. In this game, for example, we have K = 2

and ri = 1
3

for all i. Hence, the difference is zero.19

17Specifically, the outcome is the same as the given action profile x at −T unless x has exactly two a’s,
in which case it is either an action profile with three a’s or exactly one a, depending on who moves the
first revision opportunity.

18Such a player j does not exist in 2-player games. This is why the unique selection result always holds
when n = 2.

19Notice that we can replace −1’s in the above example by −1 − l for any l > 0. This makes the left
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6 Opposing Interest Games

In the previous section, we analyzed games in which a single action profile is best for both

players. Now we turn to the class of games in which different players have different “best”

action profiles. Examples of games that we consider in this section are given in Figure 3.

L R
U 3, 3 0, 1
D 0, 5 1, 6

L R
U 2, 1 0, 0
D 0, 0 1, 2

Figure 3: Opposing Interest Games

Generally, we consider 2-player component games as in Figure 4 with two strict Nash

equilibria (U,L) and (D,R) such that

u1(U,L) > u1(D,R) and u2(U,L) < u2(D,R). (4)

The first inequality implies that player 1 strictly prefers (U,L) to (D,R) among pure Nash

equilibria while the second implies that player 2’s preference is opposite. Note that since

(U,L) and (D,R) are strict Nash equilibria of this component game, these conditions

imply that (U,L) gives player 1 a strictly better payoff than any other action profile, and

that (D,R) gives player 2 a strictly better payoff than any other action profile.

Let

t∗1 = − 1

λ1 + λ2

ln

(
λ1

λ2

u1 (D,R) − u1 (U,R)

u1 (U,L) − u1 (D,R)
+

u1 (U,L) − u1 (U,R)

u1 (U,L) − u1 (D,R)

)
(5)

L R
U u1(U,L), u2(U,L) u1(U,R), u2(U,R)
D u1(U,D), u2(U,D) u1(D,R), u2(D,R)

Figure 4: General Opposing Interest Game

hand side of the above inequality strictly negative (−l/3).
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and

t∗2 = − 1

λ1 + λ2

ln

(
λ2

λ1

u2 (U,L) − u2 (U,R)

u2 (D,R) − u2 (U,L)
+

u2 (D,R) − u2 (U,R)

u2 (D,R) − u2 (U,L)

)
. (6)

Theorem 3. Suppose that the component game of the revision game satisfies condition

(4). If t∗1 6= t∗2, then there exists a unique revision equilibrium for all T . As T → ∞,

1. if t∗1 > t∗2, then the equilibrium payoffs converge to ui(U,L).

2. if t∗1 < t∗2, then the equilibrium payoffs converge to ui(D,R).

Notice that t∗1 = t∗2 happens only for a knife-edge set of parameters. In this non-generic

case, the revision game has multiple equilibria.20

Theorem 3 states that for almost all parameter values, there is a unique revision

equilibrium payoff and the outcome at the deadline will form one of the strict Nash

equilibria in the component game with probability that converges to 1 as T increases.

Which Nash equilibrium is prepared depends on a joint condition on the payoff function

(u) and the ratio of arrival rates (λ1/λ2), as t∗1 and t∗2 depend on these parameters. In

Figure 3, if λ1 = λ2, then t∗1 > t∗2 in the left game and t∗1 = t∗2 in the right game. Hence

if λ1 = λ2, then (U,L) is the (limit) outcome in the left game, while the theorem does

not cover the case in the right game. However, if λ1 < λ2 then the theorem implies that

in the right game, the (limit) outcome is (U,L). Similarly, if λ1 > λ2 then the (limit)

outcome is (D,R).

In the proof, we completely pin down the behavior at any time t in the unique revision

equilibrium. In particular, players prepare the action corresponding to the limit payoff

profile for a sufficiently long time on the path of play, and this action profile is absorbing.

This implies that if they were to choose actions simultaneously at −T and if T were large

enough, then they would choose these actions and never revise them on the path of play.

In Subsection 6.1, we provide an interpretation of this result. Subsection 6.2 provides

20See Kamada and Sugaya (2010a) for a characterization of the set of revision equilibrium payoffs for
the case t∗1 = t∗2.
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the proof, and Subsection 6.3 fully describes the equilibrium dynamics, including off-path

plays.

6.1 Interpretation of Theorem 3

The first step of the proof of Theorem 3 shows that when t is close to zero, each player

strictly prefers to prepare a best response in the component game to the last prepared

action of her opponent. Hence, in the games of Figure 3, when the time is close to zero,

players will move away from PAP (U,R), to reach either (U,L) or (D,R) and then stay

there until the deadline.21 If t is further from 0 and we assume that after t each player

prepares a best response in the component game to her opponent’s last prepared action,

then player i’s expected continuation payoff from PAP (U,R) gets closer to a convex

combination of ui(U,L) and ui(D,R) since the probability that no players revise their

actions between t and 0 gets smaller. Hence, there is a finite time t∗ such that, when the

PAP is (U,R), one player, whom we call the strong player, becomes indifferent at time t∗

between (a) preparing a best response in the component game to her opponent’s prepared

action and (b) preparing the action necessary to form her preferred Nash equilibrium in

the component game. Strictly before t∗, the strong player strictly prefers choice (b) in

all PAPs. As the proof in the next subsection clarifies, t∗ = min{t∗1, t∗2} is the time such

that the strong player is indifferent between these two actions. In other words, t∗1 > t∗2

means that player 1 can stick to non-Nash profiles longer than player 2 to induce player

2 to coordinate on her own preferred Nash equilibrium. This is why we call player 1 the

strong player.

To see how this “strength” is affected by the parameters of the model, we consider

two special cases. First, suppose that λ1 = λ2. In this case, t∗1 > t∗2 is equivalent to

u2 (D,R) − u2 (U,R)

u2 (D,R) − u2 (U,L)
>

u1 (U,L) − u1 (U,R)

u1 (U,L) − u1 (D,R)
.

21Note that the incentive is strict at the deadline t = 0.
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The formula compares how strongly each player likes (U,R) relative to the two Nash

equilibria. If player 1 likes it more, then she suffers less from mis-coordination at (U,R),

so as a consequence the inequality is more likely to be satisfied. If player 1 likes (D,R)

less, then she expects less from moving away from (U,R) to (D,R), and so the inequality

is more likely to be satisfied if we decrease u1(D,R).22

Second, consider the case with symmetric payoff functions: u1(U,L) = u2(D,R),

u1(D,R) = u2(U,L), and u1(U,R) = u2(U,R). In this case, t∗1 > t∗2 is equivalent to

λ1 < λ2. This means that λ1 < λ2 implies (U,L) is the outcome of the revision game, and

that λ1 > λ2 implies (D,R) is the outcome of the revision game. More generally, |t∗1/t∗2| is

increasing in λ1/λ2: if player 1’s relative frequency of the arrival of revision opportunities

compared to player 2’s frequency decreases, then player 1’s commitment power becomes

stronger, so (U,L) is more likely to be selected.

These results are reminiscent of findings in the bargaining literature. Player i’s bar-

gaining power increases in the disagreement payoff ui (U,R), decreases with the steepness

of preference over the two “agreement outcomes” (|u1 (U,L) − u1 (D,R)| for player 1 and

|u2 (D,R) − u2 (U,L)| for player 2) and increases in the ability to commit 1/λi to a pro-

posal.

6.2 Proof of Theorem 3

In this subsection, we provide a proof of the convergence of the equilibrium payoff in

Theorem 3. The proof consists of the following three steps. In the first step, we show

that there is t∗ finite such that after t∗, each player strictly prefers preparing her best

22Note that a risk-dominated Nash equilibrium in the component game may be the (limit) outcome of
the revision equilibrium. Consider the payoff matrix

L R
U 2 + ε, 1 0, 0
D 2ε, 0 1, 2

with ε > 0. The action pair (U,L) is risk-dominated by (D,R), while it is the (limit) outcome of the
revision equilibrium when λ1 = λ2.
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response in the component game to her opponent’s action. Note that, starting from t∗,

players do not change their actions as soon as the PAP forms a strict Nash equilibrium.

In the second step, we consider the strategies before t∗. First we show that, before t∗,

the strong player prefers preparing the action consistent with her preferred strict Nash

equilibrium, irrespective of the prepared action of the weak player. Second, we show that

when the strong player’s prepared action is the one consistent with her preferred Nash

equilibrium, the weak player prefers to accommodate and prepares the action that will

form such a strict Nash equilibrium. In the third step, we show that when T is sufficiently

larger than |t∗|, there is enough time for the strong player to prepare the action consistent

with her preferred Nash equilibrium, and for the weak player to accommodate so that

the probability with which at t∗ the PAP forms such a Nash equilibrium can be made

arbitrarily close to one by increasing T . If this PAP is reached by t∗, players will stick to

it until the end of the game.23

Step 1:

First, for each player i, we define t∗i to be the infimum of times t such that given that

each player prepares her best response in the component game to her opponent’s action

at any t′ > t, i strictly prefers to prepare a best response in the component game to any

other action. Since the incentive to take a static best response in the component game is

strict at the deadline, this is true for t close enough to 0. By this definition and continuity

of the expected payoffs (with respect to probabilities and so to time), player i must be

indifferent between the two actions at t∗i given that (i) the PAP at t∗i is (U,R) and that

(ii) each player prepares a best response in the component game to her opponent’s action

at time t > t∗i . Then, from a straightforward calculation contained in Appendix A.3, we

show that for each i = 1, 2, t∗i defined in this way coincides with t∗i defined in (5) and (6).

Step 2:

Suppose w.l.o.g. that t∗1 > t∗2 and fix t ∈ (−T, 0]. Suppose that the following state-

23The intuition behind this proof idea is analogous to the one provided in Kamada and Sugaya’s (2010a)
“three-state example.” We thank an anonymous referee for suggesting the way to extend it.
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ments are true for any t′ > t:

1. t∗1 ≤ t′ or player 1 strictly prefers preparing U at t′ whatever her opponent’s current

prepared action is;

2. t∗1 ≤ t′ or player 2 strictly prefers preparing L at t′ when player 1’s current prepared

action is U .

These two statements are trivially true for t′ close enough to 0. We show that there

exists ε > 0 such that these two statements are true also for all t′ ∈ (t− ε, t], which proves

that the statements are true for any t, by Lemma 1.

Step 2-1: First, consider player 1’s incentive when she obtains an opportunity at time

t < t∗1 (if t > t∗1, the conclusion trivially holds; see Appendix A.4 for the case of t = t∗1).

Suppose first that player 2 is currently preparing L, or has a chance to revise strictly after

time t but strictly before time t∗1. If player 1 prepares action U , then statements (1) and

(2) and Step 1 imply that the action profile at the deadline is (U,L), which gives player 1

the largest possible payoff that she can obtain in this revision game. On the other hand, if

she prepares D, then there is a positive probability that she will obtain no other chances

to revise. In such a case, the action profile at the deadline is not (U,L). Hence, player 1

receives a payoff strictly less than her best possible payoff u1(U,L).

Suppose next that the current action of player 2 is R, and he will not have any chance

to revise strictly after time t but strictly before time t∗1. In this case player 1’s expected

payoff is the same as the continuation payoff when player 2’s prepared action is R at time

t∗1.
24 Hence, player 1 must be indifferent between U and D at t∗1 by Step 1.

Overall, player 1 is strictly better off by preparing U at time t. Hence statement (1)

is true at time t.

Step 2-2: Now consider player 2’s incentive when he obtains an opportunity at time

t < t∗1 (again, the case of t > t∗1 is trivial, and see Appendix A.4 for the case of t = t∗1).

24Note that the probability of player 2 getting a revision opportunity at t∗1 is zero.
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Suppose that player 1’s current action is U (note that statement (2) concerns only such a

case). If player 2 prepares L, then statements (1) and (2) and Step 1 imply that neither

player changes her action in the future. Hence, the action profile at the deadline is (U,L),

which leads to the payoff u2(U,L). On the other hand, suppose that he prepares R.

Player 2 prepares L if he obtains a revision opportunity strictly after time t but strictly

before time t∗1, which results in the payoff of u2(U,L). If he does not obtain any revision

opportunity within that interval, then his expected payoff is the same as his continuation

payoff given action profile (U,R) at time t∗1. The latter is strictly less than u2(U,L), since,

by the assumption that t∗2 < t∗1, player 2 has a strict incentive to prepare L given that

player 1 is preparing U at all t > t∗1.

Overall, player 2 is strictly better off by preparing L when player 1 prepares U at time

t. Hence statement (2) is true at time t.

Step 2-3: By continuity (of expected payoffs with respect to time), Steps 2-1 and 2-2

imply that there exists ε > 0 such that for all t′ ∈ (t − ε, t], both statements (1) and (2)

hold. Thus by Lemma 1, we have the desired result.

Step 3:

Statement (1) in Step 2 shows that at any t < t∗1, player 1 prepares U . Hence for

any t′ < t∗1, the probability that player 1’s prepared action is U at t′ converges to 1 as T

increases. If player 1’s prepared action is U at t′, then between t′ and t∗, by statement

(2), player 2 must prepare L and by statement (1) player 1 keeps preparing U . Hence the

probability that the PAP at t∗1 is (U,L) can be made arbitrarily close to 1 by setting T

large enough. Since the probability of revision at time t∗1 is zero, Step 1 implies that, if

the PAP at t∗1 is (U,L), then the players keep preparing (U,L) until the deadline.

6.3 Equilibrium Dynamics

The proof in the previous subsection characterizes the strong player’s equilibrium strategy

fully but the weak player’s equilibrium strategy only after the strong player prepares the
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action corresponding to the strong player’s preferred Nash equilibrium.25 Here we provide

a full characterization of the equilibrium dynamics, which implies that the equilibrium

strategy is unique. The proof of the result stated in this subsection is provided in Calcagno

and Lovo (2010) and Kamada and Sugaya (2010a).

The equilibrium dynamics are summarized in Figure 5 for the case t∗1 > t∗2. The

dynamics consist of three phases. In each phase, the arrow that originates from an

action pair x represents what players will prepare if they are given an opportunity to

revise during that phase when the PAP is x. More specifically, an arrow from (xi, x−i)

to (x′
i, x−i) means that if player i is given an opportunity to revise when the PAP is

x ∈ {(xi, x−i), (x
′
i, x−i)}, then player i would prepare x′

i. If a player does not switch her

action, then there is no arrow corresponding to that strategy. Hence, in particular, if

there are no arrows originating from x, then no player would change actions if given a

revision opportunity.

When the deadline is close, each player prepares a best response in the component

game to the PAP (each player “equilibrates”). This phase is (t∗1, 0], shown in the far-right

panel of Figure 5, where t∗1 is given in Step 1 of the proof of Theorem 3. Since t∗1 is the

time at which player 1 is indifferent between U and D, given that player 2 is preparing R,

in the next phase the direction of the arrow that connects (U,R) and (D,R) is flipped.

This is shown in the middle panel.

The proof shows that the directions of the arrows in this figure stay unchanged for all

t < t∗1, except the one that connects (D,L) and (D,R). Direct calculation in Calcagno

and Lovo (2010) and Kamada and Sugaya (2010a) show that the direction of the arrow

changes at some t∗∗ and then stays unchanged for all t < t∗∗.

In summary, for large T , the dynamics start from the phase where both players try

to go to the (U,L) profile irrespective of the current PAP. When the deadline comes

25If the players choose their actions simultaneously at −T , then it is common knowledge that the strong
player prepares the action corresponding to the strong player’s preferred Nash equilibrium at −T . Hence,
the proof is sufficient to fully characterize the path of play in the revision equilibrium.
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Figure 5: Dynamics on and off the equilibrium path.

closer, there comes the second phase where player 2 would choose R given that 1 chooses

D. Finally, when the deadline is close, each player prepares her best response in the

component game to the PAP. Since the strategies at time t < t∗∗ are perfectly pinned

down, it follows that if the players choose their actions at −T < t∗∗, then they immediately

select (U,L) and on the equilibrium path, no player changes her actions.

7 Homogeneity and Asynchronicity

In the previous sections, we assume that the Poisson processes are homogeneous across

time (the arrival rate λi is time-independent) and perfectly asynchronous. In this section,

we discuss the role of these assumptions.

First, consider the case in which Poisson processes is non-homogeneous. That is, the

arrival rates for players are measurable (not necessarily constant) functions of time. Note

that the proofs of Theorems 1 and 3 do not use the fact that the arrival rates are constant

over time. Thus, as long as the Poisson processes are perfectly asynchronous, Theorems

1 and 3 hold even for non-homogeneous Poisson processes. The only difference is in the

expression for t∗, the derivation of which is left as an exercise for the interested reader.
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Second, consider the effect of different degrees of asynchronicity. For this purpose,

in addition to the two independent processes specified in Section 3, consider another

independent Poisson process p12 with arrival rate λ12 > 0, at which both players revise si-

multaneously. For simplicity, we assume the Poisson process is homogeneous. At the time

of decision corresponding to each revision opportunity, player i does not know whether

such an opportunity is driven by the process pi or by p12. If λ1 = λ2 = 0 and λ12 > 0,

then all revision opportunities are synchronous and it is straightforward to show that any

repetition of a Nash equilibrium is an equilibrium of the revision game. The following

result shows that a small degree of asynchronicity is not enough to rule out multiple

equilibria when the component game has multiple strict Nash equilibria.

Theorem 4. Fix a component game
(
(Xi)i=1,2 , (ui)i=1,2

)
. There exists ε > 0 such that if

the arrival rates satisfy λ1, λ2 ∈ (0, ε) and λ12 > 1/ε, then for every strict Nash equilibrium

of the component game xN ∈ X and every horizon length T , there exists a revision

equilibrium in which each player i prepares action xN
i at all revision opportunities at

t ≤ 0.

The proof is in Appendix A.6 and a detailed discussion can be found in Calcagno and

Lovo (2010). Note that ε in the theorem is required to be strictly positive. This means that

a small degree of asynchronicity is not enough to eliminate multiple equilibria. This raises

the question of how much of asynchronicity is needed to obtain equilibrium uniqueness in

a revision equilibrium. Ishii and Kamada (2011) characterize the parameter regions such

that multiplicity persists in common interest games.
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A Appendix

A.1 Proof of Lemma 1

Proof. Suppose that the premise of the lemma holds. Let t∗ be the supremum of t such

that At is false (if the supremum does not exist (i.e., it is negative infinity), we are done).

Then it must be the case that for any ε > 0, there exists t′ ∈ (t∗ − ε, t∗] such that At′ is

false. But by the definition of t∗, there exists ε′ > 0 such that statement At′ is true for all

t′ ∈ (t∗ − ε′, t∗] because the premise of the lemma is true. This contradiction proves the

result.

A.2 A Sharper Result for the Case when the Players Move at

−T

Proposition 1. Suppose that the players choose their actions at −T and consider a

component game of a revision game with a strictly Pareto-dominant action profile x∗.

Then there exists T ′ such that for all T > T ′, in all SPE, x(0) = x∗ with probability 1.

Proof. Suppose without loss of generality that λ1 ≤ λ2. Consider first the case of λ1 < λ2.

Fix an SPE strategy profile where player 1 prepares x1 6= x∗
1 at −T < 0. In this case,

player 1’s expected payoff at time −T is at most

u1(x
∗) − e−λ1T m,
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as with probability e−λ1T , player 1 has no further revision opportunities.26 On the other

hand, one possible deviation is to prepare x∗
1 for all [−T, 0], and in that case her expected

payoff is

u1(x
∗) − e−λ2T M,

since by Step 1 in the proof of Theorem 1, it follows that player 2 will switch to x∗
2 as

soon as he has a chance to revise, and afterwards the PAP never changes.27,28 However

the assumption that λ1 < λ2 implies that for sufficiently large T , the latter value becomes

strictly greater than the former, implying that in any SPE, player 1 must prepare x∗
1 when

T is sufficiently large. Given this, player 2 has a strict incentive to prepare x∗
2 at −T as

that would give him the highest possible expected payoff in equilibrium, while preparing

some other action results in a strictly lower payoff because there is a strictly positive

probability that he has no chance to revise the action in the future.

Suppose λ1 = λ2 ≡ λ. Fix a revision equilibrium, and let V t
i (x) be player i’s value from

the revision equilibrium when the PAP is x at time t. Let vt
1(x2) = maxx1 6=x∗

1
V t

1 (x1, x2)

be player 1’s maximum value at t when player 2 prepares x2 conditional on player 1’s

not preparing x∗
1. It suffices to show that, for any x2 6= x∗

2, there exists t̄ such that

V t̄
i (x∗

1, x2) > vt̄
1(x2), that is, player 1 prefers preparing x∗

1 given player 2 preparing x2 at

time t̄.

Let us explain why finding one t̄ for each x2 is sufficient (and t̄ can be different for

different x2 but must be independent of a particular equilibrium we fix). Suppose player

2 prepares x2 and player 1 receives a revision opportunity at time t < t̄. If player 2 has a

revision opportunity by t̄, then preparing x∗
1 at time t (and continuing to prepare x∗

1 until

t̄) gives player 1 the highest payoff u1(x
∗) by step 1 of Theorem 1. On the other hand,

if player 2 does not have a revision opportunity by t̄, then player 2 will prepare x2 at

26Recall from the proof of Theorem 1 that m := mini,x6=x∗(ui(x∗) − ui(x)).
27Recall again from the proof of Theorem 1 that M := maxi,x6=x∗(ui(x∗) − ui(x)) < ∞
28Here we use the fact that there are only two players. If there are two or more opponents, Step 1

cannot be used to conclude that all the opponents will switch to actions prescribed by x∗.
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time t̄. Thus, in this case, preparing x∗
1 at time t (and continuing to prepare x∗

1 until t̄) is

strictly better than any other strategies since we have V t̄
i (x∗

1, x2) > vt̄
1(x2). In total, since

the probability that player 1 cannot move between t and t̄ is strictly positive, preparing

x∗
1 at time t is strictly better than any other strategies.

Given the above discussion, it suffices to derive a contradiction by assuming that there

exists x2 6= x∗
2 with

V t
i (x∗

1, x2) ≤ vt
1(x2) for all t ≤ 0. (7)

Arbitrarily fix x2 6= x∗
2 such that (7) holds. Take any S < 0. By induction, we now

show that for all integer n ≥ 0,

vnS
1 (x2) ≤ u1(x

∗) − (n + 1 − neλS)menλS. (8)

First, with n = 0, (8) is equivalent to

v0
1(x2) ≤ u1(x

∗) − m.

This inequality holds by the definitions of v0
1 and m, so (8) is true for n = 0.

Second, suppose that (8) holds for n = k. We show that (8) holds also for n = k + 1.

To see this, note that player 1’s value at time kS when player 2 prepares x2 is bounded

from above by vkS
1 (x2) from (7). Therefore, v

(k+1)S
1 (x2) can be bounded by

u1(x
∗) − eλS︸︷︷︸

Pr of 2 not moving by kS

× (u∗
1(x2) − vkS

1 (x2))︸ ︷︷ ︸
from (7),

this is the least loss compared to u1(x∗)

− (1 − eλS)︸ ︷︷ ︸
Pr of 2 moving by kS

× eλS︸︷︷︸
Pr of 1 not moving by kS

× mekλS︸ ︷︷ ︸
the least loss for x6=x∗

= u1(x
∗) − eλS × (k + 1 − keλS)mekλS︸ ︷︷ ︸

by (8) with n=k

− (1 − eλS)me(k+1)λS

= u1(x
∗) − (k + 2 − (k + 1)eλS)me(k+1)λS,
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which is (8) with n = k + 1.

Therefore, (8) holds for all integer n ≥ 0. On the other hand, the lower bound of

player 1’s continuation payoff at t is

u1(x
∗) − eλtM, (9)

since this is the expected payoff she gets when she sticks to x∗
1 after time t until the

deadline. This and (8) (and eλS < 1) imply that, when n is sufficiently large, we have

that

vnS
1 (x2) ≤ u1(x

∗) − (n + 1 − neλS)menλS < u1(x
∗) − eλnSM ≤ V nS

i (x∗
1, x2).

Since this is the desired contradiction, the proof is complete.

A.3 Proof of Theorem 2

Let vt
i(k) be the infimum of player i’s payoff at t in subgame perfect equilibrium strategies

and histories such that there are at least k players preparing the action corresponding to

x∗ and no player receives a revision opportunity at t. By mathematical induction with

respect to k = n, ..., 0, we show that limt→−∞ vt
i(k) = ui(x

∗) for all i ∈ I.

The proof for k = n: Step 1 of the proof of Theorem 1 is valid with an arbitrary

number of players if we replace player −i with players −i (the set of players other than

player i) and λ−i with
∑

j∈−i λj. Hence, x∗ is the absorbing state with n players. Since

x∗ is absorbing, vt
i(n) = ui(x

∗) for all i and t, as desired.

Inductive argument: Suppose limt→−∞ vt
i(k+1) = ui(x

∗) for all i ∈ I with k+1 ≤

n. Given this inductive hypothesis, we show that limt→−∞ vt
i(k) = ui(x

∗) for all i ∈ I. For

simple notation, let Λ :=
∑

i∈I λi be the summation of the arrival rates, α1 := mini∈I ri
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be the smallest ri, and β := minj∈I,j 6=j∗ rj with j∗ ∈ arg minj∈I rj (take one arbitrarily if

there are multiple) be the second smallest ri.
29 In addition, let

K̄ = max
i,j∈I,x∈X,x 6=x∗

ui(x
∗) − ui(x)

uj(x∗) − uj(x)
< ∞

be the maximum ratio of the range of utilities between the players. The denominator of

the maximand is always strictly positive since we assume |Xj| ≥ 2 for each j and x∗ is

strictly Pareto-dominant.

Take ε > 0 arbitrarily. Since limt→−∞ vt
i(k + 1) = ui(x

∗), there exists T0 such that

for all t ≤ T0 and i ∈ I, vt
i(k + 1) ≥ ui(x

∗) − ε. Consider the situation where k players

prepare actions corresponding to x∗ at t = T0 + τ1 with τ1 ≤ 0, that is, t ≤ T0. Then, if

player j who is not preparing x∗
j at time t can move first by T0, then she yields at least

uj(x
∗) − ε by preparing x∗

j . This implies each player i will at least yield

ui(x
∗) − K̄ε. (10)

Therefore,

vt
i(k) ≥ α1

(
1 − eτ1Λ

)
(ui(x

∗) − K̄ε) + (1 − α1

(
1 − eτ1Λ

)
)ui (11)

for all i ∈ I. Note that α1

(
1 − eτΛ

)
is the minimum probability that player j who is not

preparing x∗
j at t can move first by T0, and that we assume that if such player j does not

move, the worst payoff ui realizes.

Taking τ1 sufficiently large (in absolute value) in (11), there exists T1 such that for all

τ2 ≤ 0,

vt
i(k) ≥ α1ui(x

∗) + (1 − α1)ui − K̄ε (12)

for all i ∈ I, where t = T0 + T1 + τ2 ≤ T0 + T1.

Consider vt
i(k) with t = T0 + T1 + τ2. Then, we can compute lower bounds of player

29Note that α1 = α defined right before the statement of Theorem 2.
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i’s payoff in different cases follows.

• If player j who is not preparing x∗
j at t will move first by T0+T1, then a lower bound

is ui(x
∗) − K̄ε by the same argument as in (10).

• If player i herself will move first by T0 + T1, then a lower bound is α1ui(x
∗) + (1 −

α1)ui − K̄ε since

– If player i is preparing x∗
i at t, then by staying at x∗

i , player i keeps the situation

that there are k players preparing the actions corresponding to x∗. In this

case, by (12), player i’s payoff is bounded by α1ui(x
∗) + (1−α1)ui − K̄ε for τ2

sufficiently large in absolute value.

– If player i is not preparing x∗
i at t, then by preparing at x∗

i , player i creates

the situation that there are k + 1 players preparing the actions corresponding

to x∗. In such a case, the inductive hypothesis guarantees that vt
i(k) is at least

ui(x
∗) − ε ≥ α1ui(x

∗) + (1 − α1)ui − K̄ε.

• If player j who is preparing x∗
j at t will move first by T0 + T1, then as in the first

subcase of the second case, player j can guarantee herself α1uj(x
∗)+(1−α1)uj−K̄ε.

By the definition of K, when player j gets at least α1uj(x
∗)+(1−α1)uj−K̄ε, player

i’s payoff ui should satisfy

ui(x
∗) − ui

ui(x∗) − ui

≤ K
uj(x

∗) −
(
α1uj(x

∗) + (1 − α1)uj − K̄ε
)

uj(x∗) − uj

= K (1 − α1) +
KK̄ε

uj(x∗) − uj

.

that is,

ui ≥ ui(x
∗) − K (1 − α1) (ui(x

∗) − ui) − KK̄
ui(x

∗) − ui

uj(x∗) − uj

ε

≥ (1 − K(1 − α1))ui(x
∗) + K(1 − α1)ui − K̄3ε.
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In total, player i’s value satisfies

vt
i(k) ≥ α1(1 − eτ2Λ)(ui(x

∗) − K̄ε)

+(β(1 − eτ2Λ) + eτ2Λ)(α1ui(x
∗) + (1 − α1)ui − K̄ε)

+(1 − α1 − β)(1 − eτ2Λ)((1 − K(1 − α1))ui(x
∗) + K(1 − α1)ui − K̄3ε).

Taking τ2 sufficiently large, there exists T2 such that, at t = T0 +T1 +T2 + τ3 with τ3 ≤ 0,

vt
i(k) ≥ (α1 + βα1 + (1 − (α1 + β))(1 − K(1 − α1)))ui(x

∗)

+(1 − (α1 + βα1 + (1 − (α1 + β))(1 − K(1 − α1))))ui − K̄3ε.

Defining

α2 := α1 + βα1 + (1 − (α1 + β))(1 − K(1 − α1)),

we have

vt
i(k) ≥ α2ui(x

∗) + (1 − α2)ui − K̄3ε.

Recursively, for each M = 1, 2, ..., there exists T0, T1, ..., TM such that, at t ≤ T0 +

T1 + · · · + TM ,

vt
i(k) ≥ αMui(x

∗) + (1 − αM)ui − K̄2M−1ε

with

αM = α1 + βαM−1 + (1 − (α1 + β))(1 − K(1 − αM−1)),

or

(αM − 1) = (β + (1 − (α1 + β))K) (αM−1 − 1).

By condition (3), αM is monotonically increasing and converges to one. Taking M suffi-

ciently large and ε > 0 sufficiently small yields the result.
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A.4 Proof of Theorem 3: Derivation of t∗i

We provide a derivation of t∗1. The value of t∗2 can be found in a symmetric manner. By

the definition of t∗1, assuming that both players prepare best responses to the PAP at any

time strictly after t∗1, the payoff from playing a best response against R at t∗1 and playing

otherwise must be equal. Thus, it must be the case that

u1(D,R) = e(λ1+λ2)t∗1u1(U,R)︸ ︷︷ ︸
nobody moves until 0

+ λ1

λ1+λ2
(1 − e(λ1+λ2)t∗1)u1(D,R)︸ ︷︷ ︸

player 1 moves first

+ λ2

λ1+λ2
(1 − e(λ1+λ2)t∗1)u1(U,L)︸ ︷︷ ︸

player 2 moves first

.

Solving this equation for t∗1, we obtain the desired expression.

A.5 Checking the Induction Argument for the Case t = t∗1

In step 2 of the proof of Theorem 3, we referred to an appendix. Here we prove that when

t = t∗1, there exists ε > 0 such that the two statements 1 and 2 hold for all t′ ∈ (t − ε, t],

assuming that the statements hold for all time strictly after t.

First, the existence of such ε for statement 2 is given by continuity: Given that both

players prepare static best responses strictly after t∗1, we know that player 2 has a strict

incentive to prepare a static best response at t∗1. By continuity, there exists some ε > 0

such that for all time in (t∗1 − ε, t∗1], player 2 has a strict incentive to prepare a static best

response against player 1’s currently prepared action, no matter what we assume about

player 1’s strategy in the time interval (t∗1 − ε, t∗1].

Second, consider statement 1. Take the ε that we took in the previous paragraph.

Suppose first that player 2 does not receive any revision opportunity in the time interval

(t′∗1 ). In this case, player 1’s expected payoff is u1(D,R) irrespective of her preparation

at t′ and at any time in (t′∗1 ) by the definition of t∗1 (i.e., player 1 is indifferent between

two actions at t∗1). The remaining case is when player 2 receives at least one revision

opportunity in the time interval (t′∗1 ). We divide this case in two subcases: (i) If player
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1 does not receive any opportunity in that time interval, then her payoff is u1(U,L) if

1 prepares U at t′ (as we have shown that player 2 prepares a static best reply at t′),

and at most maxa2 u1(D, a2)e
(λ1+λ2)t∗1 +u1(U,L)(1− e(λ1+λ2)t∗1) if she prepares D, which is

strictly smaller than u1(U,L). (ii) If player 1 receives an opportunity, then preparing D

is better than U by at most u1(U,L)−mina u1(a) < ∞. Since the ratio of the probability

of subcase (ii) to that of subcase (i) approaches zero as t′∗1 , this shows the existence of

ε > 0 such that statement 1 holds for all time t′∗1 − ε, t∗1] assuming that statements 1 and

2 hold for all time strictly after t∗1.

A.6 Proof of Theorem 4

Let PJ(t) denote the probability that from t on, players in set J ⊆ {1, 2} have some

revision opportunities in (t, 0] while players in {1, 2} \ J have none. Note that given

that after t players’ continuation strategies consist in preparing xN , player i’s expected

continuation payoff from PAP x(t) = x = (xi, x−i) is

π(x, t) := P∅(t)ui(x) + P{1,2}(t)ui(x
N) + P{i}(t)ui(x

N
i , x−i) + P{−i}(t)ui(xi, x

N
−i). (13)

Now suppose player i has a revision opportunity at t. With probability λ12/(λ12 + λi)

player −i is simultaneously revising (and will prepare xN
−i) and with probability λi/(λ12 +

λi) she is not. Thus if at t the PAP is x(t) = (x′
i, x−i), player i’s expected continuation

payoff from preparing xN
i at t is

λ12

λ12 + λi

π(xN , t) +
λi

λ12 + λi

π((xN
i , x−i), t). (14)

If instead she prepares xi 6= xN
i her continuation payoff is:

λ12

λ12 + λi

π((xi, x
N
−i), t) +

λi

λ12 + λi

π((xi, x−i), t). (15)
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Using expression (13), we have that (14) is strictly larger than (15) if and only if

P∅(t)

(
λ12

λ12 + λi

(ui(x
N) − ui(xi, x

N
−i)) +

λi

λ12 + λi

(ui(x
N
i , x−i) − ui(xi, x−i))

)
+

P{−i}(t)

(
λ12

λ12 + λi

(ui(x
N) − ui(xi, x

N
−i)) +

λi

λ12 + λi

(ui(x
N) − ui(xi, x

N
−i))

)
> 0.

Because xN is a strict Nash equilibrium, (ui(x
N) − ui(xi, x

N
−i)) > 0. Hence, because

P∅(t) > 0 and P{−i}(t) ≥ 0, if λ12/(λ12 + λi) < 1 is close enough to 1 then the previous

inequality is satisfied for all t.
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