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BELIEF-FREE EQUILIBRIA IN GAMES WITH
INCOMPLETE INFORMATION

BY JOHANNES HÖRNER1 AND STEFANO LOVO

We define belief-free equilibria in two-player games with incomplete information
as sequential equilibria for which players’ continuation strategies are best replies after
every history, independently of their beliefs about the state of nature. We characterize
a set of payoffs that includes all belief-free equilibrium payoffs. Conversely, any payoff
in the interior of this set is a belief-free equilibrium payoff. The characterization is
applied to the analysis of reputations.

KEYWORDS: Repeated game with incomplete information, Harsanyi doctrine,
belief-free equilibria.

1. INTRODUCTION

THE PURPOSE OF THIS PAPER is to characterize the set of payoffs that can be
achieved by equilibria that are robust to specification of beliefs. The games
considered are two-player discounted repeated games with two-sided incom-
plete information and observable actions. The equilibria whose payoffs are
studied are such that the players’ strategies are optimal from any history on and
independently of players’ beliefs about their opponent’s type. This concept is
not new. It has been introduced in another context, namely in repeated games
with imperfect private monitoring, in Piccione (2002) and Ely and Välimäki
(2002), and further examined in Ely, Hörner, and Olszewski (2005). It is also
related to the concept of ex post equilibrium that is used in mechanism de-
sign (see Crémer and McLean (1985)) as well as in large games (see Kalai
(2004)). A recent study of ex post equilibria and related belief-free solution
concepts in the context of static games of incomplete information was provided
by Bergemann and Morris (2007).

To predict players’ behavior in games with unknown parameters, a model
typically includes specification of the players’ subjective probability distribu-
tions over these unknowns, following Harsanyi (1967–1968). This is not nec-
essary when belief-free equilibria are considered, as their characterization
requires a relatively parsimonious description of the model. One needs to enu-
merate the set of possible states of the world and players’ information parti-
tions over these states, but it is no longer necessary to specify players’ beliefs.
Therefore, while solving for belief-free equilibria requires the game to be fully
specified, it does not require that all players know all the parameters of the

1We thank Gabrielle Demange, Jeff Ely, Stephen Morris, Tristan Tomala, and, particularly,
Larry Samuelson for useful comments. We are grateful to two anonymous referees and the editor
for insightful comments and suggestions that substantially improved the paper. Stefano Lovo
gratefully acknowledges financial support from the HEC Foundation.
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model. In this sense, this idea is close to the original motivation of von Neu-
mann and Morgenstern (1944) in defining “games of incomplete information”
as games in which some parameters remain unknown, and it is consistent with
misperceptions as defined by Luce and Raiffa (1957). Nevertheless, as in the
case of games with perfect information, players are expected utility maximiz-
ers: players are allowed to randomize, and take expectations with respect to
such mixtures when evaluating their payoff.2 Our purpose is to characterize
which equilibria do not require any probabilistic sophistication beyond that
assumed in repeated games with perfect information.

Just as for ex post equilibria, belief-free equilibria enjoy the desirable prop-
erty that the beliefs about the underlying uncertainty are irrelevant. This means
that they remain equilibria when players are endowed with arbitrary beliefs.
Such beliefs need not be derived by Bayes’ rule from a common prior. Fur-
thermore, the way in which players update their beliefs as the game unfolds
is irrelevant. For instance, belief-free equilibria remain equilibria if we allow
players to observe a signal of their stage-game payoff and to learn in this way
about the other player’s private information. Thus, belief-free equilibria are
robust to all specifications of how players form and update their belief. In par-
ticular, belief-free equilibria are sequential equilibria (for any prior) satisfying
any potentially desirable refinement. In a belief-free equilibrium, the players’
strategies must be a subgame-perfect Nash equilibrium of the game of com-
plete information that is determined by the joint of their private information.
However, we do not view belief-free equilibrium as an equilibrium refinement
per se. In fact, belief-free equilibria need not exist. The robustness that is de-
manded is extreme in the sense that it is not only required that the strategies
be mutual best replies for a neighborhood of beliefs, but for all possible beliefs.
Note that it is also stronger than the way it is modeled in the recent macroeco-
nomics literature (Hansen and Sargent (2007)), since the property examined
here treats all possible beliefs identically.

We provide a set of necessary conditions that belief-free equilibrium payoffs
must satisfy, which defines a closed convex and possibly empty set. Conversely,
we prove that every interior point of this set is a belief-free equilibrium payoff,
provided that players are sufficiently patient. In the proof, we also show how
to construct a belief-free equilibrium supporting any payoff in this set. This
equilibrium has a recursive structure similar to standard constructions based
on an equilibrium path and a punishment path for each player. While the set
of belief-free equilibria is empty for some games, belief-free equilibria exist for
large classes of games studied in economics such as, for example, most types
of auctions, Cournot games, and Bertrand games. Constructing “belief-based”
equilibria generally requires keeping track of beliefs and even of hierarchies
of beliefs. This is usually untractable unless the information structure is quite

2This is also the standard assumption used in the literature on non-Bayesian equilibria (see,
for instance, Monderer and Tennenholtz (1999)).
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special or the game is repeated at most twice.3 This problem does not arise
with belief-free equilibria, thus offering a possible route for the analysis of dy-
namic economic interactions with relatively complex and realistic information
structures at a time when there is a strong interest in modeling robustness in
economics.

The set of belief-free equilibrium payoffs turns out to coincide with a set
that plays a prominent role in the literature on Nash equilibria in games with
one-sided incomplete information. Building on this literature, we describe the
implications of the concept to the study of reputations. In particular, the Stack-
elberg payoff is equal to the lowest (belief-free) equilibrium payoff if the game
is of conflicting interest, which is precisely the type of game typically used as
example to show how surprisingly limited reputation effects are when players
are equally patient. More generally, focusing attention on belief-free equilibria
with equally patient players is shown to involve restrictions on the equilibrium
payoff set similar to those of Nash equilibria when the informed player is infi-
nitely more patient than the uninformed player.

As mentioned, the set of payoffs that characterizes belief-free equilibria has
already appeared in the literature, at least in the case of one-sided incomplete
information. In particular, Shalev (1994) considered the case of known-own
payoffs (the uninformed player knows his own payoffs) and showed that the
set of uniform (undiscounted) Nash equilibrium payoffs can be derived from
this set. Closest to our analysis is Cripps and Thomas (2003), which considered
the one-sided case with known-own payoffs as well, but with discounting. Most
relevant here is their Theorem 2, which establishes that the payoffs in the strict
interior of this set are Nash equilibria for all priors. In general, however, the
set of Nash equilibrium payoffs is larger, as they demonstrated in their Theo-
rem 3, which establishes a folk theorem. The work of Forges and Minelli (1997)
is related as well. They showed how communication can significantly simplify
the construction of strategies that achieve the Nash equilibrium payoffs. These
simple strategies also appear in Koren (1992). The most general characteriza-
tion of Nash equilibrium payoffs remains the one obtained by Hart (1985) for
the case of one-sided incomplete information. A survey is provided by Forges
(1992).

The assumptions of Bayesianism has already been relaxed in several papers.
Baños (1968) and Megiddo (1980) showed that strategies exist that asymptoti-
cally allow a player to secure a payoff as high as in the game with complete in-
formation. Milnor (1954) reviewed several alternative criteria and discuss their
relative merits. The topic has also been explored in computer science. Aghassi
and Bertsimas (2006) used robust optimization techniques to provide an al-
ternative concept in the case of bounded payoff uncertainty. Monderer and

3Examples can be found in financial economics, where sequential trade of a security is often
modeled as a dynamic auction, and in industrial organization, where repeated Cournot games are
used to model dynamic competition among firms.
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Tennenholtz (1999) studied the asymptotic efficiency in the case in which play-
ers are non-Bayesian and monitoring is imperfect. All these papers either offer
an alternative equilibrium concept or study what is asymptotically achievable
without using any solution concept. Yet the strategy profiles that are character-
ized in these papers are not Bayesian equilibria (at least under discounting),
which is a major difference with our paper.

As mentioned, the concept of belief-free equilibria has already been intro-
duced in the context of games with complete but imperfect information. There,
the restriction on the equilibrium pertains to the private history observed by
the opponent. In both contexts, the application of the concept reduces the
complexity of the problem (players need no longer keep track of the relevant
beliefs) and yields a simple characterization. In games with imperfect private
monitoring, this has further allowed the construction of equilibria in cases in
which only trivial equilibria were known so far.

The next section introduces notations and definitions. Section 3 then pro-
vides the payoff characterization, identifying in turn necessary and sufficient
conditions on payoffs that belief-free equilibrium payoffs satisfy. This section
also gives a relatively short proof of sufficiency using explicit communication
(the proof without such communication is given in Appendix) and provides
counterexamples to existence, as well as sufficient conditions for existence.
Section 4 applies the concept to the study of reputations.

2. NOTATION AND DEFINITIONS

We consider repeated games with two-sided incomplete information, as de-
fined by Harsanyi (1967–1968) and Aumann and Maschler (1995). There is a
J × K array of two-person games in normal form. The number of actions of
player i = 1�2 is the same across all J × K games. At the beginning of time
and once for all, Nature chooses the game in the J × K array. Player 1 is told
in which row j = 1� � � � � J the true game lies, but he is not told which of the
games in that row is actually being played. Player 2 is told in which column
k = 1� � � � �K the true game lies, but he is not told which of the games in that
column is the true game. The row j (respectively, column k) is also referred to
as player 1’s (respectively, player 2’s) type. Given some finite set B, |B| denotes
the cardinality of B and �B denotes the probability simplex over B. Also, given
some set B, let intB denote its interior and coB denote its convex hull.

The stage game is a finite-action game. Let A1 and A2 be the finite sets of
actions for players 1 and 2, respectively, where |Ai| ≥ 2. Let A =A1 ×A2.

When the row is j and the column is k (for short, when the state is (j�k)),
player i’s reward (or payoff) function is denoted u

jk
i for i = 1�2. We extend the

domain of ujk
i from pure action profiles a ∈ A to mixed action profiles α ∈ �A
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in the standard way. We let uk
1 := {ujk

1 }Jj=1 and u
j
2 := {ujk

2 }Kk=1. The set of feasible
payoffs in R

J×K × R
J×K is defined, as usual, as

co
{(
(u

jk
1 (a))(j�k)� (u

jk
2 (a))(j�k)

)
:a ∈A

}
�

Let M := max |ujk
i (a)|, where the maximum is taken over players i = 1�2, states

(j�k), and action profiles a ∈ A. Given some payoff function u, let u or valu
refer to the corresponding minmax payoff. We let Bjk

i (α−i) denote the set of
player i’s best replies in the stage game given state (j�k) and action α−i of
player −i. We omit the superscript k in case |K| = 1, that is, if the game is of
one-sided incomplete information. If furthermore player 2’s payoff does not
depend on j, we write B(α1) for his set of best replies.

As an example, consider the stage game given below. Since this game is dom-
inance solvable and the dominant action depends on the state, ex post equilib-
ria do not exist in the static game. Yet as we shall see, the repeated game admits
a rich set of belief-free equilibria.

EXAMPLE 1—Prisoner’s Dilemma With One-Sided Incomplete Information:
Player 1 is informed of the true state ( = the row), player 2 is not, and there is
only one column (J = 2, K = 1). If the true game corresponds to j = 1, payoffs
are given (in every period) by the prisoner’s dilemma payoff matrix in which T
is “cooperate” and B is “defect.” If the true game corresponds to j = 2, payoffs
are given by the prisoner’s dilemma payoff matrix in which B is “cooperate”
and T is “defect.” The payoffs in the first state are given by

T B

T 1�1 −L�1 +G

B 1 +G�−L 0�0

and in the second state by

T B

T 0�0 1 +G�−L

B −L�1 +G 1�1
.

We consider the repeated game between the two players. Players select an
action in each period t = 1�2� � � � � Realized actions are observable, mixed ac-
tions and realized rewards are not.
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Let Ht = (A1 × A2)
t−1 be the set of all possible histories of actions ht up

to period t, with H1 = ∅. A (behavioral) strategy for type j of player 1 (resp.
type k of player 2) is a sequence of maps s

j
1 := (s

j�1
1 � s

j�2
1 � � � �), sj�t1 :Ht → �A1

(resp. sk2 := (sk�12 � sk�22 � � � �), sk�t2 :Ht → �A2). We define s1 := {sj1}Jj=1 and s2 :=
{sk2 }Kk=1.

Consider the game of complete information given state (j�k). Given the
common discount factor δ < 1, player i’s payoff in this game is the average
discounted sum of expected rewards. A subgame-perfect Nash equilibrium of
this game is defined as usual.

Our purpose is to characterize the payoffs that can be achieved, with low dis-
counting, by a special class of Nash equilibria. In a belief-free equilibrium, each
player’s continuation strategy, after any history, is a best reply to his oppo-
nent’s continuation strategy, independently of his beliefs about the state of the
world and, therefore, independently of his opponent type. Such equilibria are
trivially sequential equilibria that satisfy any belief-based refinement. At the
same time, they do not require players to be Bayesian or to share a common
prior. Because they are belief-free, they must, in particular, induce a subgame-
perfect equilibrium in every complete information game that is consistent with
the player’s private information. Formally, a belief-free equilibrium is defined
as follows.

DEFINITION 1: A strategy profile s := (s1� s2) is a belief-free equilibrium
if it is the case that, for all states (j�k), (sj1� s

k
2 ) is a subgame-perfect Nash

equilibrium of the infinitely repeated game with stage-game payoffs given
by (u

jk
1 �u

jk
2 ).

As mentioned, belief-free equilibria have been previously introduced in and
applied to games with imperfect private monitoring. With incomplete infor-
mation but observable actions, there is no need for randomization on the equi-
librium path. Indeed, in our construction, along the equilibrium path, players
always have a strict preference to play some particular action. Of course, this
action potentially depends on a player’s private information (and on the his-
tory). In our construction, randomization is only necessary during punishment
phases, as is standard in folk theorems that allow for mixed strategies to deter-
mine minmax payoffs, as we do.4

It follows from the definition of belief-free equilibria that even when differ-
ent player’s types use the same strategy, it would be weakly optimal for them to
reveal their type (if there was a communication device). Indeed, by definition,
the strategy profile that is played is an equilibrium of the underlying complete
information game. This means that pooling belief-free equilibria are simply

4Yet a randomization device considerably simplifies the exposition. At the end of the Appen-
dix, we indicate how to dispense with it.



BELIEF-FREE EQUILIBRIA IN GAMES 459

“degenerately separating” belief-free equilibria. In particular, the payoffs of
pooling belief-free equilibria are in the closure of the set of payoffs achieved
by separating belief-free equilibria.

This finding implies that this concept is more restrictive than most refine-
ments, since refinements do not usually prune all pooling equilibria that are
not degenerate separating ones.5

3. CHARACTERIZATION

Any belief-free equilibrium determines a J × K array of payoffs (v
jk
i ), for

each player i = 1�2. We first provide necessary conditions that such a pair of
arrays must satisfy, before providing sufficient conditions that ensure they are
achieved by some belief-free equilibrium.

3.1. Necessary Conditions

For definiteness, consider i = 1. Conditional on the column k he is being
told, player 2 knows that player 1’s equilibrium payoff is one among the coor-
dinates of the vector vk1 = (v1k

1 � � � � � vJk1 ). Because the equilibrium is belief-free,
player 1’s payoff must be individually rational in the special case in which his
beliefs are degenerate on the true column k. This means that, for a given col-
umn k, player 2’s strategy sk2 is such that player 1 cannot gain from deviating
from s

j
1, for all j = 1� � � � � J. The existence of such a strategy sk2 puts a restric-

tion on how low player 1’s payoff vjk1 can be (in fact, a joint restriction on the
coordinates of the vector vk1 ).

If J = 1, so that the game is of one-sided incomplete information, this re-
striction on player 1’s payoff is standard: for each k, player 1 must receive at
least as much as his minmax payoff (in mixed strategies) in the true game being
played. In the general case however, the minmax level in one state depends on
the payoffs in the other states, and there is a trade-off between these levels:
punishing player 1 for one row may require conceding him a high payoff for
some other row. Determining these minmax levels is not obvious. This is pre-
cisely the content of Blackwell’s approachability theorem (Blackwell (1956)).

For a given p ∈ �{1� � � � � J} (resp. q ∈ �{1� � � � �K}), let bk
1(p) (resp. bj

2(q))
be the value for player 1 (resp. player 2) of the one-shot game with pay-
off matrix p · uk

1 (resp. q · uj
2). We say that a vector v1 ∈ R

J×K is individually
rational for player 1 if it is the case that, for all k= 1� � � � �K,

p · vk1 ≥ bk
1(p) ∀p ∈ �{1� � � � � J}�

5Indeed, many games admit “traditional” pooling equilibria in which individual rationality
holds in expectation, but not conditional on every type of opponent.
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where vk1 = (v1k
1 � � � � � vJk1 ). Similarly, v2 ∈ R

J×K is individually rational for
player 2 if it is the case that, for all j = 1� � � � � J,

q · vj2 ≥ b
j
2(q) ∀q ∈ �{1� � � � �K}�

where v
j
2 = (v

j1
2 � � � � � v

jK
2 ). Blackwell’s characterization ensures that if v1 ∈ R

J×K

is individually rational for player 1, then for any column k, player 2 has a strat-
egy ŝk2 (referred to as a punishment strategy hereafter) such that player 1’s aver-
age payoff cannot be larger than v

jk
1 for all j independently of the strategy he

uses. In a belief-free equilibrium, each player can guarantee that his payoff is
individually rational, independently of the discount factor.6

NECESSARY CONDITION 1—Individual Rationality: If vi is a belief-free equi-
librium payoff, then it is individually rational.

In a belief-free equilibrium, play may depend on a player’s private informa-
tion. That is, player 1’s equilibrium strategy s

j
1 typically depends on the row j

he is told, and player 2’s strategy sk2 depends on the row k. Since player 1’s
strategy s

j
1 must be a best reply to s2 independently of his beliefs, it must be a

best reply to sk2 , corresponding to beliefs that are degenerate on the true col-
umn k. In particular, sj1 must be a better reply to sk2 than s

j′
1 , j′ 	= j, when the

row is j. While this might seem a weaker restriction than individual rationality,
it is not implied by it, since it places restrictions on the equilibrium path. By
deviating to s

j′
1 when the state is (j�k), player 1 induces the same distribution

over action profiles as the one generating the payoff vj
′k

1 in state (j′�k). This
imposes additional restrictions on the equilibrium strategies.

To state this second necessary condition in terms of payoffs, observe that
each pair (s

j
1� s

k
2 ) induces a probability distribution {Pr{a | (j�k)} :a ∈ A}(j�k)

over action profiles, where

Pr{a | (j�k)} = (1 − δ)

∞∑
t=1

δt−1 Pr{at = a | (sj1� sk2 )}

and Pr{at = a | (sj1� sk2 )} is the probability that action a is played in period t

given the strategy profile (s
j
1� s

k
2 ).

6The punishments that can be imposed in the discounted game are lower than, but converge
uniformly to, those that can be imposed in the undiscounted game. See Cripps and Thomas (2003)
and references therein. We thank a referee for pointing out that individual rationality must hold
for all discount factors.
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NECESSARY CONDITION 2—Incentive Compatibility: If (v1� v2) is a pair of
belief-free equilibrium payoff arrays, there must exist distributions {Pr{a |
(j�k)} :a ∈ A}(j�k) such that, for all (j�k),

v
jk
1 =

∑
a

Pr{a | (j�k)}ujk
1 (a) ≥

∑
a

Pr{a | (j′�k)}ujk
1 (a)

and

v
jk
2 =

∑
a

Pr{a | (j�k)}ujk
2 (a) ≥

∑
a

Pr{a | (j�k′)}ujk
2 (a)�

If such distributions exist, we say that (v1� v2) is incentive compatible. While
not every pair of payoff arrays is incentive compatible, there always exist some
incentive compatible pairs, since the constraints are trivially satisfied for distri-
butions Pr{a | (j�k)} that are independent of (j�k).

3.2. Sufficient Conditions

Let V ∗ denote the feasible set of pairs of payoff arrays satisfying Conditions 1
and 2. It is clear that V ∗ is convex. Our main result is the following.

THEOREM 1: Fix some v in the interior of V ∗. The pair of payoff arrays v is
achieved in some belief-free equilibrium if players are sufficiently patient.

This theorem establishes that the necessary conditions are “almost” suffi-
cient. It is then natural to ask whether we can get an exact characterization.
However, the strict inequalities corresponding to individual rationality can-
not be generally weakened. One reason for this is that our optimality crite-
rion involves discounting, while Blackwell’s characterization of approachabil-
ity is only valid for the undiscounted case. The strict inequalities corresponding
to incentive compatibility may be weakened when V ∗ has nonempty interior.
However, for the interesting case in which V ∗ has empty interior, this may not
be possible.7

While belief-free equilibria need not exist, as shown in Section 3.4, they exist
in a variety of games. For instance, the game in Example 1 admits a large set
of belief-free equilibrium payoffs. Figures 1 and 2 display the resulting equilib-
rium payoffs.8

7Consider for instance the case of one-sided incomplete information: player 1 knows the row,
but his payoff does not depend on the row, so the incentive compatibility constraints necessarily
bind.

8Note that these are the projections of the equilibrium payoff pairs onto each player’s pay-
off. It is not true that every pair of vectors selected from these projections is a pair of equilib-
rium payoff vectors. Incentive compatibility imposes some restrictions on the pairing. Details on
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FIGURE 1.—Belief-free equilibrium payoffs for player 1 as δ → 1.

3.3. Sketch of the Proof

The proof of the theorem is constructive. A natural way to proceed is to
follow Koren (1992) and others. First, players signal their type (through their
choice of actions). Given the reported types, players then choose actions so as

FIGURE 2.—Belief-free equilibrium payoffs for player 2 as δ → 1.

the derivation of individually rational and incentive compatible payoffs for Example 1 can be
found in the working paper HEC CR 884/2008 available at http://www.hec.fr/hec/fr/professeurs_
recherche/upload/cahiers/CR884SLOVO.pdf. We thank one referee for pointing out a mistake.

http://www.hec.fr/hec/fr/professeurs_recherche/upload/cahiers/CR884SLOVO.pdf
http://www.hec.fr/hec/fr/professeurs_recherche/upload/cahiers/CR884SLOVO.pdf
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to generate the distribution over action profiles corresponding to these reports.
If a player deviates in this second phase, he is minmaxed. Individual rationality
guarantees that deviating after some report yields a lower payoff than equilib-
rium play does, independently of the state. Incentive compatibility ensures that
truthful reporting is optimal.

However, such strategies typically fail to be sequentially rational. Minmaxing
forever one’s opponent need not be individual rational. While this issue can be
addressed with the obvious modification, a more serious difficulty is that the
resulting strategy profile still fails to be belief-free. In particular, if a player be-
lieves that the reported type is incorrect, following his prescribed continuation
strategy is no longer individually rational.

The actual construction is therefore more involved, to ensure that beliefs are
irrelevant after every possible history. To simplify exposition, we assume here
that there is a public randomization device and that players can communicate
at no cost in every period. These assumptions are dropped in the Appendix. So
suppose that at the beginning of each period, a draw from the uniform distrib-
ution on the unit interval (independent of the state of nature and over time) is
publicly observed, and suppose that at the beginning of the game (before the
first draw is realized) and at the end of every period, players simultaneously
make a report that is publicly observable. The set of possible reports is the set
of rows and columns, respectively. Player 1 reports some j′ = 1� � � � � J, while
player 2 reports some k′ = 1� � � � �K.

In every period, and using the most recent outcome of the randomization
device as a correlation device, a correlated action profile is played that only
depends on the last pair of reports made by the players. These correlated ac-
tion profiles are such that each player obtains the desired payoff whenever
(j′�k′) = (j�k), that is, whenever reports are correct, and such that this pay-
off exceeds what can be obtained by misreporting, independently of the type
truthfully reported by the opponent. Thus, players are willing to report their
type truthfully, regardless of their beliefs. In case a player deviates from the
prescribed action, he is then punished for finitely many periods. Making sure
that play during such a punishment phase is also belief-free introduces some
additional complications.

Because players report their types infinitely often, a player who believes that
his opponent’s report is incorrect still expects his opponent to revert to the true
report in the next period. As a consequence, it is less costly for him to play for
one period according to the report that he believes to be false than to deviate
and to face a long punishment phase.

More formally, given some v ∈ intV ∗, we first describe the equilibrium
strategies, and then check that these strategies (i) achieve v and (ii) are best
replies that are belief-free.
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Equilibrium Strategies

The play can be divided into phases, which are similar to states of an au-
tomaton. There are two kinds of phases. Regular phases last one period. Pun-
ishment phases can last from 1 to T periods, where T is to be specified. Regular
phases are denoted Rjk(ε1� ε2), where ε1� ε2 ∈ R. Punishment phases are de-
noted Pk

1 , P
j
2.

Actions

(i) Regular phase: In a regular phase Rjk(ε1� ε2), actions are determined
by the outcome of the public randomization device. Each action profile a is
selected with probability Pr{a |Rjk(ε1� ε2)}. Given

v
jk
i (R

j′k′
(ε1� ε2)) :=

∑
a∈A

Pr{a | Rj′k′
(ε1� ε2)}ujk

i (a)

and vi(R(ε1� ε2)) := {vjki (Rjk(ε1� ε2))}(j�k), these probabilities, along with some
number ε̄ > 0, are chosen such that

vi(R(ε1� ε2))= vi + εi(1)

and

v
jk
1 (Rjk(ε1� ε2)) > v

jk
1 (Rj′k(ε′

1� ε
′
2))�(2)

v
jk
2 (Rjk(ε1� ε2)) > v

jk
2 (Rjk′

(ε′
1� ε

′
2))

for all i = 1�2, εi� ε
′
i ∈ [−ε̄� ε̄], j′ 	= j, k′ 	= k. This is possible for all sufficiently

small ε̄ by incentive compatibility, given that v ∈ intV ∗.
At the end of a regular phase, types are reported truthfully.
(ii) Punishment phase: The punishment phase lasts at most T periods. With-

out loss of generality, we describe here the actions and reports in phase Pk
1 .

Both the subscript (the identity of the punished player) and the superscript
(the reported type by the punisher) remain constant throughout the phase. De-
creasing ε̄ if necessary, the (behavior) strategy ŝk2 of player 2 during the pun-
ishment phase Pk

1 is such that, for some δ̄ < 1 and all discount factors δ > δ̄,
the average discounted payoff of player 1 over the T periods, conditional on
state (j�k), is no larger than v

jk
1 −2ε̄. This is possible for all sufficiently large T

by individual rationality, given that v ∈ intV ∗.
We further assume that T , δ̄, and ε̄ satisfy, for all j�k, and i = 1�2,

−(1 − δ)M + δ(v
jk
i − ε̄)(3)

> (1 − δ)M + δ
(
(1 − δT )(v

jk
i − 2ε̄)+ δT (v

jk
i − ε̄)

)
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and

−(1 − δT )M + δTv
jk
i > (1 − δT )M + δT (v

jk
i − 2ε̄/3)�(4)

To see that such T , δ̄, and ε̄ exist, observe that for a fixed but small enough
ε̄ > 0, (3) is satisfied for all T large enough and δ > δ̄ for δ̄ close enough to 1.
Increasing the value of δ̄ if necessary, (4) is then satisfied as well.

Returning to the specification of actions and reports, as long as the punish-
ment phase Pk

1 lasts (i.e., for at most T periods), player 2 plays according to ŝk2
(given k and the history starting in the initial period of Pk

1 ). Observe that ŝk2
need not be pure. Player 1 plays a best reply s

jk
1 to ŝk2 , conditional on the true

column being k. Without loss of generality, we pick s
jk
1 to be pure. Observe

that sjk1 may depend on j.
Players report truthfully types in all periods of the punishment phase.
(iii) Initial phase: As mentioned, players report types at the beginning of the

game. These initial reports are made truthfully. The initial phase is the regular
phase Rjk(0�0), where (j�k) are the initial reports.

Transitions

(i) From a regular phase Rjk(ε1� ε2): If the action of player 1 (resp. player 2)
differs from the prescribed action, while player 2 (resp. 1) plays the prescribed
action, then the next phase is Pk′

1 (resp. Pj′
2 ), where k′ (resp. j′) is the report

made at the end of the period by the corresponding player. (Observe that the
message of the deviator plays no role here.) Otherwise: (a) if (j′�k′)= (j�k) or
both j 	= j′ and k 	= k′, the next phase is Rj′k′

(ε1� ε2), where (j′�k′) is the pair
of messages in the period; (b) if j 	= j′ and k = k′ (resp. j = j′ and k 	= k′), the
next phase is Rj′k′

(−ε̄� ε2) (resp. Rj′k′
(ε1�−ε̄)). In words, unilateral deviations

from the prescribed action profile trigger a punishment phase, while incon-
sistencies in successive reports are punished via the payoff prescribed by the
regular phase. Simultaneous deviations are ignored.

(ii) From a punishment phase: Without loss of generality, consider Pk
1 ,

where k is player 2’s report at the end of the last period before the punishment
phase (so k is fixed throughout Pk

1 ). In what follows, all statements to histo-
ries and periods refer to the partial histories starting at the beginning of the
punishment phase. Given ŝk2 , define Hk ⊆ HT as the set of histories of length
at most T for which there exists a (arbitrary) strategy s1 of player 1 such that
this history is on the equilibrium path for s1 and ŝk2 as far as actions are con-
cerned. That is, a history is not in Hk if and only if, in some period, the action
of player 2 is inconsistent with ŝk2 .

If ht ∈ Hk but ht+1 /∈ Hk, the punishment phase stops at the end of period
t+1 and the punishment phase P

j′
2 starts, where j′ is player 1’s report in period
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t + 1. Otherwise, the punishment phase continues up to the T th period, and
we henceforth let h denote such a history of length T . Let (j′�k′) denote the
pair of reports in the last period of the punishment phase.

The next phase is then Rj′k′
(ε1(h;Pk

1 )�ε2(h;Pk
1 )) with ε1(h;Pk

1 ) ∈ [−ε̄�0]
and ε1(h;Pk

1 )= −ε̄ if k′ = k, and

PROPERTY 1: ε1(h;Pk
1 ) is such that, if k′ 	= k, playing the action specified in

the punishment phase is optimal for player 1 along every history h ∈ Hk under
the state of the world (j′�k′) (recall that h specifies (j′�k′)).9

Inequality (4) guarantees that the variation of ε1(h;Pk
1 ) across histories h

that is required is less than 2ε̄/3, so that this can be done with ε1(h;Pk
1 ) in

[−ε̄�0] for all histories h. As for ε2(h;Pk
1 ), it is in [ε̄/3� ε̄] if k′ = k and in

[−ε̄�−ε̄/3] otherwise. Furthermore,

PROPERTY 2: ε2(·;Pk
1 ) is such that, conditional on state (j′�k′) and after

every history h′ ∈ Hk within the punishment phase, player 2 is indifferent over
all sequences over action profiles (within the punishment phase) consistent
with Hk, and prefers those to all others.

Given (4), this is possible whether k′ = k or not.
It is clear that the strategy profile yields the pair of payoff arrays v = (v1� v2).

It is equally clear that play is specified in a way that is independent of beliefs.

Verification That the Described Strategy Profile Is a Perfect Bayesian Equilibrium

Regular Phase Rjk(ε1� ε2):
(i) Actions: Suppose that one player, say player 1, unilaterally deviates

from the prescribed action profile. Then the punishment phase Pk′
1 starts,

where k′ is the announcement by player 2. Accordingly, the payoff from de-
viating is at most equal to the right-hand side of (3), while the payoff from
following the prescribed strategy is at least the left-hand side of (3). The result
follows.

(ii) Messages: (a) Assume first that player 1 has deviated from the rec-
ommended action profile, while player 2 has not. Because player 2 will cor-
rectly report the column k at the end of the punishment phase Pk′

1 that starts,
he will get at most (1 − δT )M + δT (v

jk
i − ε̄/3) by announcing k′ 	= k, while

he gets at least −(1 − δT )M + δT(v
jk
i + ε̄/3) if he announces k′ = k, so

that player 2 has a strict incentive to report truthfully given (4). Given that
player 1 has deviated, player 1’s report is irrelevant, and so it is also optimal

9See Hörner and Olszewski (2006) for the details of an analogous specification.
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for player 1 to report truthfully; (b) Otherwise, if player i (say player 2) reports
the true state, he gets at least vjki − ε̄, while if he misreports, he gets at most
(1−δ)maxk′ v

jk
i (R

jk′
(ε̄� ε̄))+δ(v

jk
i − ε̄). Therefore, (2) guarantees that neither

player has an incentive to deviate. Note that whenever player i’s reports con-
tradict his previous report, his continuation payoff is at most vjki − ε̄, ensuring
that no player benefits from misreporting his type.10

Punishment Phase: Without loss of generality, consider Pk
1 .

(i) Messages: Observe first that all the messages in the punishment phase
are irrelevant except in the last period of this punishment phase, whether this
occurs after T periods or before. If such a history belongs to Hk, then truthful
announcements are optimal because of (2), as in case (ii)(b) above. If such a
history does not belong to Hk, then truthful announcements are also optimal
as the situation is identical to the one described just above (case (ii)(a)).

(ii) Actions: The inequality (4) (for i = 2) along with Property 2 ensures
that player 2 has no incentive to take an action outside of the support of the
(possibly mixed) action specified by ŝk2 after every history h ∈ Hk and that he
is indifferent over all the actions within this support (whether his report k is
correct or not). As for player 1, by definition his strategy is optimal in case
k is the true column, and Property 1 guarantees that it remains optimal to play
according to s

jk
1 in state (j�k′), for all j�k′.

3.4. Existence

Strict individual rationality and incentive compatibility are stringent restric-
tions, implying that the set of belief-free individually rational payoffs is empty
for some games. In the following, we discuss two examples in which the set V ∗

is empty and we provide two conditions ensuring nonemptiness. In Example 2
there is no feasible payoff that is individually rational for both players simulta-
neously. In Example 3 both the set of individually rational payoffs and the set
of incentive compatible payoffs are nonempty, but their intersection is empty.

EXAMPLE 2 —Nonexistence of Belief-Free Individually Rational Payoffs:
Player 1 is informed of the true state ( = the row); player 2 is not (J = 2,
K = 1). The payoffs are either

L R

U 10�−4 1�1
D 1�1 0�0

10Otherwise a player could profit from misreporting his type at the beginning of a punishment
phase and in the next regular phase, and reverting to truthtelling afterward.
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or

L R

U 0�0 1�1
D 1�1 10�−4

.

In each state, player 2 must be guaranteed at least 0 in a belief-free equilib-
rium: his equilibrium strategy must be optimal given any beliefs he may hold,
including degenerate beliefs on the true state. His payoff must therefore be at
least as large as his minmax payoff given the true state, which exceeds 0 in both
states. This implies that the action profile yielding −4 to player 2 cannot be
played more than a fifth of the time in equilibrium. Equivalently, this means
that player 1’s equilibrium payoff is at most 14/5 in each state. However, if
player 1 randomizes equally between U and D independently of the state, he
is guaranteed to get at least 3 in one of the states, a contradiction. (This state
typically depends on player 2’s strategy. However, no strategy of player 2 can
bring down player 1’s payoff below 3 in both states simultaneously.)

In Example 2, player 2’s payoff matrix depends on player 1’s type. In a belief-
free equilibrium, player 2 must get at least what he can guarantee when he
knows player’s 1 type. In this example, this is only possible, for all beliefs of
player 2, if the equilibrium is separating, that is, if in equilibrium player 1 re-
veals his information. However, in this example a nonrevealing strategy yields
a higher payoff to player 1 than any separating outcome that is individually
rational for player 2, and so no belief-free equilibrium exists. This does not
arise when the uninformed player does not need to know the state to secure
his individually rational payoff. This gives rise to the following condition that
guarantees that V ∗ is nonempty.

CONDITION 3: Consider a game of one-sided incomplete information in
which player 1 is informed. If there exist α∗

2 ∈ �A2 and α
j
1 ∈ B

j
1(α

∗
2) such that,

for all j = 1� � � � � J,

u
j
2(α

j
1�α

∗
2) ≥ u

j
2�

then V ∗ is nonempty.

In fact, the above inequality implies that the payoffs obtained if player 2
plays α∗

2 and player 1 plays his type-dependent best reply α
j
1 are individually

rational for both players as well as incentive compatible for player 1.
When the uninformed player always knows his own payoff, the strategy guar-

anteeing him his minmax payoff is independent of the informed player’s type.
Thus, Condition 3 always holds in games of one-sided incomplete information
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with known-own payoffs.11 This is the main class of games examined in the
literature on reputations. See Section 4.

The next example shows that, with two-sided incomplete information,
known-own payoffs is not a sufficient condition for V ∗ to be nonempty.12

EXAMPLE 3—Nonexistence of Individually Rational and Incentive Compat-
ible Payoffs: Each player is informed of his own payoffs. Player 1’s payoff is

L R

T 3 0
B 0 1

or

L R

T 1 + ε 1
B 0 0

for j = 1 and j = 2� respectively. Player 2’s payoff is

L R

T 1 0
B 0 3

or

L R

T 0 1
B 0 1 + ε

for k= 1 and k= 2, respectively, where ε ∈ (0�1/35)�
Consider state (j�k) = (2�1). Player 1 can secure a payoff of at least 1. This

requires that, in equilibrium, action T is used with frequency not smaller than
1−ε/(1+ε). Player 2 can guarantee 3/4, but as action profile {R�B} cannot be
played more than ε/(1+ε) of the time, it follows that Pr{T�L|(j�k)= (2�1)}>
3/4 − 3ε/(1 + ε). Applying a symmetric argument to player 2, we obtain that
Pr{B�R|(j�k)= (1�2)}> 3/4 − 3ε/(1 + ε). Consider now state (j�k)= (1�1).
Each player may pretend that he is of type 2� so that his preferred outcome
occurs at least 3/4 − 3ε/(1 + ε) of the time. Thus, the incentive compatibility
constraints for player 1 and for player 2 in state (1�1) require that

3 Pr{T�L|(j�k) = (1�1)} + (
1 − Pr{T�L|(j�k)= (1�1)})

≥ 3
(

3
4

− 3
ε

1 + ε

)

and

Pr{T�L|(j�k) = (1�1)} + 3
(
1 − Pr{T�L|(j�k) = (1�1)})

≥ 3
(

3
4

− 3
ε

1 + ε

)
�

11For this class of games, Shalev (1994) showed that V ∗ is nonempty (Proposition 5, p. 253).
12Example 3 is inspired by Example 6.6 in Koren (1992) that establishes that Nash equilibria

need not exist in undiscounted games with two-sided incomplete information.
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respectively. However, there is no value of Pr{T�L|(j�k)= (1�1)} that satisfies
both inequalities for ε < 1/35.

In Example 3, known-own payoffs guarantee that the set of individually
rational payoffs is nonempty. Still, none of these payoff arrays is incentive
compatible. This issue does not arise when there exists a distribution over
action profiles that yields individually rational payoffs independently of the
state. More formally, let α ∈ �A be a distribution over action profiles and
let u

jk
i (α) be player i’s payoff in state (j�k) under the distribution α. Let

ui(α) := (u11
i (α)� � � � � u

JK
i (α)).

CONDITION 4: If there exist α∗ ∈ �A� α̂
j
1 ∈ �A1, j = 1�2� � � � � J, and α̂k

2 ∈
�A2, k = 1�2� � � � �K, such that, for all (j�k) and i,

u
jk
1 (α∗)≥ u

jk
1 (B

jk
1 (̂αk

2)� α̂
k
2)

and

u
jk
2 (α∗)≥ u

jk
2 (B

jk
2 (̂α

j
1)� α̂

j
1)�

then V ∗ is nonempty.

The payoff array (u1(α
∗)�u2(α

∗)) is obviously incentive compatible, since it
is achieved by strategies that do not depend on players’ types. The existence of
“punishment” strategies α̂j

1, α̂k
2 that are independent of the other player’s type

guarantees that (u1(α
∗), u2(α

∗)) is individually rational.13 Condition 3 relied
on the existence of a strategy that secured a player his minmax payoff indepen-
dently of the state. Condition 4 relies on the existence of a strategy that drives
down an opponent’s payoff below some target level independently of the state.

Condition 4 can be further simplified when a player punishment strategy is
state-independent, that is, α̂j

1 = α̂1 and α̂k
2 = α̂2 for all states jk. This is the case

in a variety of games commonly used in economics. For instance, most auction
formats considered in the literature (including affiliated values, auctions with
synergies, and multiunit auctions) satisfy it provided that the range of allowable
bids includes the range of possible values of the units. In this case, any distribu-
tion α∗ for which the winning price is below the lowest possible value and each
bidder wins the auction with positive probability guarantees each player a pos-
itive payoff, while any punishment strategy α̂i that sets a bid no smaller than
the largest possible value drives player −i’s payoff to zero. Similar reasoning
applies to Bertrand games and Cournot games provided that for some output
range the market price is commonly known to exceed production cost. Thus,

13We thank a referee for pointing out that punishment strategies α̂ can vary with the punishing
player’s type.
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on the one hand, there always exists a way of sharing the market such that both
players achieve a positive profit. On the other hand, each player can minmax
his opponent by setting a low price in a Bertrand game or a high quantity in
Cournot games, independently of the state.

So far, we have focused on conditions guaranteeing that V ∗ is nonempty. Yet
Theorem 1 asserts the existence of belief-free equilibria only for payoffs in the
interior of V ∗. Focusing on the interior of V ∗ guarantees that it is possible to
provide incentives for players to carry out punishments, as in standard proofs
of folk theorems with perfect monitoring and complete information, and three
or more players (see Fudenberg and Maskin (1986)). This may or may not be
possible otherwise.

There are games for which the set V ∗ is nonempty, but its interior is empty.
The problem may lie with individual rationality. For instance, V ∗ has empty in-
terior in zero-sum games or in games in which a player has a strictly dominant
action yielding a payoff independent of the opponent’s action—the payoff cor-
responding to a Stackelberg type. We are not aware of any simple condition
ensuring that strictly individually rational payoffs exist.

On the other hand, the problem may lie with weak vs. strict incentive com-
patibility. Recall that weakly incentive compatible payoffs always exist, and
suppose that some weakly incentive compatible payoff is strictly individually ra-
tional. We may then as well assume that the corresponding (distribution over)
action profile(s) α ∈ (�A)JK is completely mixed.14 Strict incentive compatibil-
ity is equivalent to KJ(J − 1) and JK(K − 1) linear inequalities, correspond-
ing to player 1 and player 2, respectively. Given that incentive compatibility
constraints only depend on differences in the distributions of outcomes cor-
responding to different reports, there are (JK − 1) distributions that can be
chosen to find (strictly) incentive compatible payoffs. Thus, generically, this
is possible if (|A| − 1)(JK − 1) is at least as large as the number of con-
straints, JK(J +K− 2). Observe that (J +K− 1)(JK− 1)− JK(J +K− 2)=
(J − 1)(K − 1). Therefore, a sufficient condition ensuring that, for a generic
payoff matrix, V ∗ has nonempty interior whenever there exists some strictly
individually rational, weakly incentive compatible payoff v, is

|A| ≥ J +K�

If V ∗ is nonempty, but its interior is empty, belief-free equilibrium may or
may not exist. For instance, in strictly dominant action games with a unique
Stackelberg type—a class of games examined in the literature on reputations—
a belief-free equilibrium always exist, although the interior of V ∗ is empty.

14To see this, observe that any state-independent action profile is weakly individually ratio-
nal. Pick any such completely mixed action profile α′ and consider the convex combination
εα′ + (1 − ε)α, ε ∈ [0�1]. Since the set of incentive compatible action profiles is convex, this
linear combination is weakly incentive compatible, is completely mixed, and is strictly individu-
ally rational for small enough ε.
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4. REPUTATIONS

We consider games with known-own payoffs and one-sided incomplete in-
formation. By Proposition 5 of Shalev (1994), the set V ∗ is nonempty in such
games, and we restrict attention for now to games in which this set has non-
empty interior, which guarantees that belief-free equilibria exist. Player 1 is
the informed player, while player 2 is uninformed. We fix one payoff type of
player 1—the rational type—and study how the lower bound on the limit of
equilibrium payoffs as the discount factor tends to 1 varies with the addition
of (finitely many) other payoff types. The supremum of this lower bound over
these payoff types is called the reputation payoff.

Given some action α1 ∈ �A1 of the informed player, recall that B(α1) is the
set of best replies of player 2. The rational payoff type is denoted u1. When
considering two types only, we write u′

1 for player 1’s other payoff type.
The analysis of reputation is strikingly simple. Observe that if some other

type u′
1 is present, the rational type’s payoff must be at least

min
α∈�A

u1(α) such that u2(α) ≥ u2� u′
1(α)≥ u′

1�

Indeed, player 2’s strategy must be optimal if he assigns probability 1 to
player 1’s other (nonrational) type, so that the distribution over action pro-
files induced by player 1’s other type against player 2 must be individually ra-
tional for both players. Yet player 1’s rational type may mimic the other type.
The supremum over u′

1 of this expression gives then a lower bound on the rep-
utation payoff. (Introducing more than two types can only increase this lower
bound.) The dual problem is

sup
u′

1�p≥0�q≥0
pu2 + qu′

1 such that pu2 + qu′
1 ≤ u1�

Since the constraints can be taken to be binding, the reputation payoff is at
least

sup
p≥0

val(u1 −p(u2 − u21))�

where 1 is an |A1| × |A2| matrix with 1s as entries. This is the bound found
for Nash equilibrium payoffs in the undiscounted case by Israeli (1999, Theo-
rem 1) using Farkas’ lemma. His proof shows that it is tight and achieved by
u′

1 = −u2.15 Since there usually is a trade-off between punishing player 1’s ra-
tional type and his other type, punishing player 1’s rational type might give his
other type a payoff above his minmax. But if the other type’s preferences are
opposite to player 2’s, player 2’s payoff is below his minmax, a contradiction:

15As mentioned, zero-sum games have been ruled out by the assumption intV ∗ 	= ∅. Neverthe-
less, there exist payoff types arbitrarily close to u′

1 = −u2 for which the assumption is satisfied, so
that Israeli’s analysis applies. See the online supplemental material (Hörner and Lovo (2009)).
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By maximizing his payoff, player 2 minimizes the other type’s payoff, implying
that the rational type’s payoff is high. Note that the reputation payoff is the
lower bound on belief-free equilibrium payoffs, which may be higher than that
of Nash or sequential equilibrium payoffs.

A standard concept in the analysis of reputations is the Stackelberg payoff,
introduced by Fudenberg and Levine (1989).

DEFINITION 2: The Stackelberg payoff u∗
1 is defined as

sup
α1∈�A1

min
α2∈B(α1)

u1(α1�α2)�

A sequence achieving the supremum is a Stackelberg sequence and its limit is
a Stackelberg action.

We say that a reputation is possible in a given game if there exists some
type u′

1 such that, in all (belief-free) equilibria of the game, the rational type se-
cures a payoff strictly above the minmax payoff. We also introduce a particular
class of games (see, e.g., Schmidt (1993)).16

DEFINITION 3: A game has conflicting interest if some Stackelberg sequence
minmaxes player 2.

In other words, in a game of conflicting interests, there exists a Stackelberg
sequence {αn

1} such that

max
α2∈�A2

u2(α
n
1�α2)= u2�

THEOREM 2: Fix a game of one-sided incomplete information with known-own
payoffs in which player 1 is the informed player.

(i) The reputation payoff is equal to

sup
α1∈�A1

min
α2:u2(α1�α2)≥u2

u1(α1�α2)�

(ii) A reputation is possible if and only if, for some α1 ∈ �A1,

∀α2 ∈ �A2� u2(α1�α2)≥ u2 ⇒ u1(α1�α2) > u1�

(iii) The reputation and Stackelberg payoffs are equal if and only if, for any
n ∈ N, there exists αn

1 ∈ �A1 such that

∀α2 ∈ �A2� u2(α
n
1�α2)≥ u2 ⇒ u1(α

n
1�α2)≥ u∗

1 − 1/n�

16Our definition is slightly stronger than the usual one, as minmaxing must occur along the
sequence. If the supremum is a maximum, then one can take the constant sequence {α1} and the
definition coincides with Schmidt (1993). We thank a referee for an illuminating example.
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This includes all games of conflicting interest.

The first conclusion is due to Israeli (1999). The second conclusion of
the theorem follows immediately from the first. If a sequence {αn

1} satisfying
the condition of the third conclusion exists, then this sequence guarantees that
the reputation payoff is at least as large as the Stackelberg payoff. Conversely,
if the reputation payoff equals the Stackelberg payoff, then by definition of the
reputation payoff, there must exist a sequence satisfying this condition. As for
the last statement, observe that from the definition of a game of conflicting
interest, given any term αn

1 of a Stackelberg sequence, the set of best replies
to αn

1 and the set of individually rational actions for player 2 coincide. There-
fore, plugging this Stackelberg sequence into the definition of the reputation
payoff, it follows that the reputation payoff must be at least as large as, and
therefore equal to, the Stackelberg payoff.17

Note that the Stackelberg payoff may or may not exceed the minmax payoff.
That is, while the second conclusion characterizes when the reputation payoff
exceeds the minmax payoff, the third makes no claim regarding the level of the
reputation payoff.

A few more remarks are in order.
• Reputation may or may not be possible in games of common interest

(Aumann and Sorin (1989)). This should not be surprising, since we allow
for mixed strategies and, more importantly, incomplete information pertains
to payoffs, not to the complexity of strategies.

• The theorem is reminiscent of results for Nash equilibrium payoffs with un-
equal discount factors. Schmidt (1993) showed that the Stackelberg payoff
and the reputation payoff coincide in games of conflicting interests, when
player 1 is sufficiently more patient than player 2 and both discount fac-
tors tend to 1. Cripps, Schmidt, and Thomas (1996) generalized this result
by showing that the reputation payoff is as given in the first conclusion of
the theorem and they provided an example that shows that the result is false
with equal discounting. In the case of equal discounting, more severe restric-
tions are thus required to obtain reputational effects with Nash equilibria.
Cripps, Dekel, and Pesendorfer (2005) showed that the Stackelberg payoff
can be achieved when attention is restricted to a subclass of games with con-
flicting interest, namely games of strictly conflicting interest. It should come
as no surprise that, unlike in the case of Nash equilibria, it is not necessary
that player 1 be more patient than player 2 here. After all, the uninformed
player must play a best reply to all possible beliefs. This alleviates the need
for the informed player to build a reputation, which may be a costly en-
terprise, before enjoying it. Indeed, given that the general characterization
of belief-free equilibrium payoffs is similar to the characterization of Nash

17We thank both referees for pointing this out, correcting an erroneous statement made in an
earlier version.
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equilibrium payoffs with no discounting (at least in the case of one-sided in-
complete information), it is natural that our findings regarding reputations
parallel those of Cripps and Thomas (1995) for the case of no discounting.

• Chan (2000) established that in strictly dominant action games (games in
which player 1 has a strictly dominant action, and player 2’s best reply yields
the highest possible individually rational payoff to player 1), the rational
type receives the Stackelberg payoff in any sequential equilibrium when the
game is perturbed by adding a single commitment type who always play the
Stackelberg action. See, for instance, the game in Figure 3. The reader may
wonder how this result is consistent with our analysis, since a strictly dom-
inant action game need not be a game of conflicting interest. Recall that
we assumed so far that intV ∗ 	= ∅, which rules out games in which the set
of feasible and individually rational payoffs has empty interior. That is, we
have excluded commitment types, as they correspond to payoff types with
a dominant action whose payoff is independent of player 2’s action.18 If the
game is perturbed by adding a single commitment type who always plays
the Stackelberg action, a belief-free equilibrium exists if and only if there
exists an action α1 of player 1 such that (α1� a2) is a Nash equilibrium in
the (stage) game of complete information between player 1’s rational type
and player 2, where a2 is 2’s best reply to the Stackelberg action. This con-
dition is satisfied in strictly dominant action games and, indeed, it is then
immediate that player 1’s rational type secures his Stackelberg payoff in the
belief-free equilibrium of any such game: Since player 2’s strategy must be
a best reply to all possible beliefs, including those which assign probability 1
to the commitment type, he must play a2 in every period, and player 1’s best
reply is then to play his Stackelberg action. Observe, however, that reputa-
tion is fragile in such games: Consider replacing the single commitment type
by any payoff type arbitrarily close to the commitment type, but for whom
the dominant action does not yield a payoff independent of player 2’s ac-
tion. Then, according to the previous theorem, to determine the reputation
payoff, we must minimize player 1’s payoff from his Stackelberg action over
player 2’s individually rational actions rather than over his best replies only.
In the example of Figure 3, this implies that for all nearby payoff types, the
reputation payoff is 4/3—still strictly above the minmax payoff of 0, so that
a reputation is indeed possible, but below the Stackelberg payoff of 2. Since
belief-free equilibria are sequential equilibria, this implies that reputation
in strictly dominant action games is also fragile with respect to sequential
equilibria.19 In contrast, the reputational effects obtained by Cripps, Dekel,

18More precisely, player 1 has a dominant strategy in the repeated game for all discount factors
if and only if he has a dominant strategy in the stage game yielding a payoff that is independent
of player 2’s action.

19Note, however, that this nongenericity is only with respect to the limit payoff set as the dis-
count factor tends to 1. For a fixed discount factor, the Stackelberg action is a strictly dominant
action in the supergame for payoff types sufficiently close to the Stackelberg type.
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FIGURE 3.—A strictly dominant action game.

and Pesendorfer (2005) in strictly conflicting interest games are robust, as
the reputation payoff is continuous in the payoff parameters (as long as
intV ∗ 	= ∅).

• The result also sheds some light on the possible nonexistence of belief-free
equilibria in games with two-sided incomplete information and known-own
payoffs. Indeed, following the same logic, each player should be able to se-
cure his reputation payoff in that case. However, nothing guarantees in gen-
eral that it is feasible for both players to simultaneously achieve their repu-
tation payoff.

5. CONCLUDING REMARKS

This paper has introduced a solution concept for two-player repeated games
of incomplete information and has characterized the corresponding payoff set
as the discount factor tends to 1. This characterization is simple. Payoffs must
be individually rational (in the sense of Blackwell (1956)) and must correspond
to probability distributions over action profiles that are incentive compatible,
given the private information of each player. The relevance and effectiveness
of this concept has been illustrated in the context of reputations.

There are several theoretical generalizations that demand attention. The in-
formation structure that we have considered in this paper is quite stylized, if
standard. More generally, a player’s information can be modeled as a partition
over the states of nature. Second, attention has been restricted to two players.
While the appropriate generalization of the incentive compatibility conditions
is quite obvious, it is less clear how to define individual rationality in the case
of three players or more, as Blackwell’s characterization immediately applies
to the case of two players only. Such a generalization could yield interesting
insights for the study of reputations with more than two players.

For economic applications, it is also of interest to extend the characteriza-
tion to the case of a changing state. For instance, Athey and Bagwell (2001) and
Athey, Bagwell, and Sanchirico (2004) characterized the (perfect public) equi-
librium payoffs of a repeated game between price-setting oligopolists whose
marginal cost in each period is private information. These costs are assumed
to be drawn independently across players and over time, according to some
commonly known distribution. In this context, we may wish to know which of
these payoffs remain equilibrium payoffs if all that firms know is that the costs
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are independent and identically distributed, but the underlying distributions
are unknown. In this way, the concept of belief-free equilibrium may turn out
to provide a useful robustness criterion in this literature.

APPENDIX: PROOF OF THEOREM 1

We first explain the construction without explicit communication, but with
a randomization device. Communication is replaced by choices of actions, but
since the set of actions may be smaller than the set of states, it may be nec-
essary to use several periods to report types. We let c − 1 denote the smallest
such number given the number of states and actions, that is, c is the smallest
integer such that |A1|c−1 ≥ J and |A2|c−1 ≥ K (recall that |Ai| ≥ 2). Players will
regularly report their type in rounds of c periods. For reasons that will become
clear, in the last of these c periods, players have the opportunity, through the
choice of a specific action, to signal that the report they have just made is in-
correct.

Equilibrium Strategies

The play is again divided into phases. To guarantee that players’ best replies
are independent of their beliefs, even within a round of communication (espe-
cially if a player’s own deviation during that round already prevents him from
truthfully reporting his type), the construction must be considerably refined.
For each player, we pick two specific actions from Ai, henceforth referred to
as B and U . The pair of payoff arrays v is in the interior of V ∗ and is fixed
throughout.

There are two kinds of phases. Regular phases last at most n periods and
punishment phases last at most T periods, where n and T are to be spec-
ified. Regular phases are denoted Rjk(ε1� ε2), where j ∈ {1� � � � � J} and k ∈
{1� � � � �K}, or Rxy , where x ∈ {1� � � � � J� (L�nU

1 )} and y ∈ {1� � � � �K� (L�nU
2 )},

with nU
i ∈ {1� � � � � c} and either x = (L�nU

1 ) or y = (L�nU
2 ), or both (L stands

for “lie”). Punishment phases are denoted Pi, i = 1�2. Let ŝk2 (resp. ŝj1) denote
a (behavior) strategy of player 2 (resp. 1) such that player 1’s (resp. player 2 ’s)
payoff is less than v

jk
1 − 3ε̄ for all j and all strategies of player 1 (resp. vjk2 − 3ε̄

for all k and all strategies of player 2) for ε̄ > 0 small enough to be specified.
Such strategies exist since v ∈ intV ∗. Further, let sjk1 (resp. sjk2 ) denote some
fixed pure best reply to ŝk2 (resp. ŝj1) given row j (resp. column k).

In several steps of the construction, a communication round of c periods
takes place (within a phase). We fix a 1–1 mapping from states {1� � � � � J} to J
sequences {at

1}c−1
t=1 of length c−1 (at

1 ∈ A1) and similarly fix a 1–1 mapping from
states {1� � � � �K} to K sequences {at

2}c−1
t=1 of length c− 1 (at

2 ∈ A2). If the play of
player 1 during the first c − 1 periods equals such a sequence and his action in
period c equals B, we say that player 1 (or his play) reports the row j that maps
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into this sequence of actions. Similarly, if the play of player 2 during the first
c−1 periods equals such a sequence and his action in period c equals B, we say
that player 2 (or his play) reports the column k that maps into this sequence
of actions. Otherwise, we say that player i (or his play) communicates (L�nU

i ),
where U is the number of periods during these c periods in which player i
chose action U . We shall provide incentives for player i to report the true row
or column, rather than report (L�nU

i ) for any nU
i , and to report (L�nU

i ) for any
nU
i ≥ 0, rather than the incorrect row or column. Further, we provide incentives

for player i to maximize this number nU
i as soon as his sequence of actions

{at
1}τt=1, τ ≤ c − 1, is inconsistent with any of the sequences that the mapping

maps into.

Actions

(i) Regular phase: A regular phase lasts at most n > c periods, the last c of
which is a communication round. During the first n− c periods, for all regular
phases indexed by j�k, and true column k′, play proceeds as follows:

Phase Player 1 Player 2

Rj(L�nU2 ) ŝ
j
1 s

jk′
2

Rjk(ε1� ε2) a
jk
1 (ε1� ε2) a

jk
2 (ε1� ε2)

R(L�nU1 )(L�nU2 ) (U� � � � �U) (U� � � � �U)

The specification for R(L�nU1 )k is the obvious analogue to the case Rj(L�nU2 ).
The action ajk(ε1� ε2) is to be specified. The strategies ŝj1 and s

jk′
2 are the same

as in the punishment phase (note that the duration is not the same, however).
The superscript jk′ of the expression s

jk′
2 refers to the row j that indexes the

regular phase Rj(L�nU2 ) (which need not be the true row) and to the true col-
umn k′. This specification of actions is valid as long as (in the case of Rjk(ε1� ε2)

or R(L�nU1 )(L�nU2 )) the history within the phase is consistent with these actions or if
all deviations from the specified actions during this phase were simultaneous,
and as long as (in the case of Rj(L�nU2 )) the history within the phase is consistent
with ŝ

j
1 for some arbitrary s2: As will be specified, a punishment phase is imme-

diately entered otherwise. During the periods n−c+1� � � � � n−1 of this phase,
player 1 (resp. player 2) communicates the true row j (resp. true column k);
if this is impossible given his play from period n − c onward, he chooses U in
every remaining period.

(ii) Punishment phase: Without loss of generality, consider P1, where T > 2c
is to be specified. In the first c periods of this phase, player 1 plays U repeat-
edly while player 2 reports the true column (following the protocol described
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above). As in the regular phase, if this is impossible given player 2’s play, he
chooses U in every remaining period of this communication round. In the ta-
ble below, we refer to the case in which the column reported is k as the case k,
while (L� (nU

1 � n
U
2 )) refers to any other case, where nU

i is the number of times
player i chose action U in periods 1� � � � � c. Play in periods c + 1� � � � � T − c is
then as follows:

Phase P1 Player 1 Player 2

k s
j′k
1 ŝk2

(L� (nU
1 �n

U
2 )) U U

This specification is valid up to period T − c (i) in the case (L� (nU
1 � n

U
2 )),

as long as both players have played U in all periods since period c + 1 or all
deviations have been simultaneous, or (ii) in the case k, as long as the history
since period c + 1 is consistent with ŝk2 for some strategy s1; otherwise, a new
punishment phase is immediately entered (see below). Here, j′ refers to the
true row privately known to player 1.

In the last c periods of a punishment phase (assuming that the specification
above remained valid up to period T − c), a communication round takes place,
that is, players report the true row and column, and as soon as they fail to do
so, play U repeatedly.

(iii) Initial phase: In the first c periods of the game, a communication round
takes place, that is, players report the true row and column, and as soon as they
fail to do so, play U repeatedly. In period c + 1, the regular phase Rjk(ε1� ε2)
is entered if row j and column k are reported, where εi ∈ [−ε̄� ε̄] is chosen so
that the ex ante payoff in period 1 is exactly vjk conditional on j and k being
the true row and column. If player 1 reports j and player 2 reports (L�nU

2 ) in
the first c periods, the regular phase Rj(L�nU2 ) is entered. Similarly, if player 1 re-
ports (L�nU

1 ), whereas player 2 reports k, the regular phase R(L�nU2 )k is entered.
Regular phase R(L�nU1 )�(L�nU2 ) is entered in the remaining case.

Transitions

From a Regular Phase

We have already mentioned what happens if there is a deviation during the
first n − c periods of such a phase: If a player makes a unilateral deviation
during the first n − c periods of a regular phase Rjk(ε1� ε2) or R(L�nU1 )(L�nU2 ), a
punishment phase starts. If player 1 (player 2) unilaterally deviates, punish-
ment phase P1 (resp. P2) is immediately entered. Similarly, if player 1 (resp.
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player 2) deviates from ŝ
j
1 (resp. ŝk2 ) during the first n − c periods of a regular

phase Rj(L�nU2 ) (resp. R(L�nU2 )k), the punishment phase P1 (resp. P2) is imme-
diately entered. From now on, we assume without repeating it that no such
deviation occurs. In all tables that follow, j′ 	= j and k′ 	= k.

(i) From Rjk(ε1� ε2): The new phase depends on the last c periods of the
phase. Define also ρ := 2(1 − δ)δ−max(n�T)M . The quantity ε̃

jk
i will be defined

shortly. We have the following transitions:

During Periods n− c + 1� � � � � n of
Regular Phase the Phase, Players 1 and 2 Report Next Regular Phase

Rjk(ε1� ε2) (L�nU
1 )� (L�n

U
2 ) R(L�nU1 )(L�nU2 )

Rjk(ε1� ε2) (L�nU
1 )�k R(L�nU1 )k

Rjk(ε1� ε2) (L�nU
1 )�k

′ R(L�nU1 )k′

Rjk(ε1� ε2) j�k′ Rjk′
(ε1�−ε̄)

Rjk(ε1� ε2) j′�k′ Rj′k′
(ε1� ε2)

Rjk(ε1� ε2) j�k Rjk(ε1� ε2)

(We omit the obvious symmetric specification for reports j� (L�nU
2 ) and

j′� (L�nU
2 )�)

(ii) From R(L�nU1 )k (and symmetrically from Rj(L�nU2 )): We have the following
transitions:

During Periods n− c + 1� � � � � n of
Regular Phase the Phase, Players 1 and 2 Report Next Regular Phase

R(L�nU1 )k (L�n′U
1 )� (L�n′U

2 ) R(L�n′U
1 )(L�n′U

2 )

R(L�nU1 )k (L�n′U
1 )�k R(L�n′U

1 )k

R(L�nU1 )k (L�n′U
1 )�k′ R(L�n′U

1 )k′

R(L�nU1 )k j� (L�n′U
2 ) Rj(L�n′U

2 )

R(L�nU1 )k j�k Rjk(ε̃
jk
1 + ρnU

1 � ε
k;k
2 (h))

R(L�nU1 )k j�k′ Rjk′
(εk;k′

1 (h)+ ρnU
1 � ε

k;k′
2 (h))

Here εk;k
2 (h) ∈ [3ε̄/4� ε̄], εk;k′

2 (h) ∈ [−ε̄/2�−ε̄/4], and εk;k′
1 (h) ∈ [−ε̄� ε̄] are

computed as follows: εk;k
2 (·) makes player 2 precisely indifferent over all his-

tories h that are consistent with ŝk2 , conditional on the true column being k;
εk;k′

2 (·) makes player 2 precisely indifferent over all histories h that are con-
sistent with ŝk2 , conditional on the true column being k′, while εk;k′

1 (h) com-
pensates player 1 for every period along h in which the action he took is the
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action specified by s
jk
1 , so as to make sure that playing this action is optimal,

conditional on the true state being (j�k′) (reported in the last c periods).
(iii) Finally, from R(L�nU1 )(L�nU2 ): We have the following transitions:

During Periods n− c + 1� � � � � n of
Regular Phase the Phase, Players 1 and 2 Report Next Regular Phase

R(L�nU1 )(L�nU2 ) (L�n′U
1 )� (L�n′U

2 ) R(L�n′U
1 )(L�n′U

2 )

R(L�nU1 )(L�nU2 ) (L�n′U
1 )�k R(L�n′U

1 )k

R(L�nU1 )(L�nU2 ) j�k Rjk(ρnU
1 �ρn

U
2 )

(We omit the obvious symmetric specification for reports j� (L�nU
2 )�)

From a Punishment Phase

Without loss of generality, consider P1. We have already briefly mentioned
what happens if there is a deviation during the periods c+1� � � � � T −c of such a
phase; in case (L� (nU

1 � n
U
2 )), if player i unilaterally deviates from the play of U ,

the punishment phase Pi is immediately entered; in case k, if player 2 deviates
from the support of the (possibly mixed) action specified by ŝk2 , punishment
phase P2 is entered (no matter how player 1 has played). From now on, we
assume without repeating it that no such deviation occurs up to period T − c.
In case k, let h denote the history during the periods c + 1� � � � � T − c.

(i) In case k, we observe the following transitions:

During Periods T − c + 1� � � � �T of
Punishment Phase P1 the Phase, Players 1 and 2 Report Next Regular Phase

Case k (L�n′U
1 )� (L�n′U

2 ) R(L�n′U
1 )(L�n′U

2 )

Case k (L�n′U
1 )�k R(L�n′U

1 )k

Case k (L�n′U
1 )�k′ R(L�n′U

1 )k′

Case k j�k Rjk(ρnU
1 − ε̄� εk;k

2 (h))

Case k j�k′ Rjk′
(εk;k′

1 (h)�εk;k′
2 (h))

Case k j� (L�n′U
2 ) Rj(L�n′U

2 )

(ii) In case (L� (nU
1 � n

U
2 )), the transitions are described by the next table.

It is clear from this specification that the strategy profile described here is
belief-free, since actions are always determined by the history and possibly by
a player’s own type (in case he is minmaxed), but not on his beliefs about his
opponent’s type.
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During Periods T − c + 1� � � � �T of
Punishment Phase P1 the Phase, Players 1 and 2 Report Next Regular Phase

Case (L� (nU
1 �n

U
2 )) (L�n′U

1 )� (L�n′U
2 ) R(L�n′U

1 )(L�n′U
2 )

Case (L� (nU
1 �n

U
2 )) (L�n′U

1 )�k R(L�n′U
1 )k

Case (L� (nU
1 �n

U
2 )) j� (L�n′U

2 ) Rj(L�n′U
2 )

Case (L� (nU
1 �n

U
2 )) j�k Rjk(ρnU

1 �ρn
U
2 )

Specification of ε̄, ajk
1 (ε1� ε2), δ, T , n, and ε̃

jk
i :

Since v is in the interior of V ∗, it is possible to find ε̄ > 0, as well as,
for all (ε1� ε2)� (ε

′
1� ε

′
2) ∈ [−2ε̄�2ε̄], probability distributions over A, Pr{· |

Rjk(ε1� ε2)}, such that for all j�k� j′�k′, and i = 1�2, defining

v
jk
i (R

j′�k′
(ε1� ε2)) :=

∑
a∈A

Pr{a |Rj′k′
(ε1� ε2)}ujk

i (a)�

it is the case that, for j′ 	= j and k′ 	= k�

v
jk
1 (Rj�k(ε1� ε2)) > v

jk
1 (Rj′k(ε′

1� ε
′
2)) and(A1)

v
jk
2 (Rj�k(ε1� ε2)) > v

jk
2 (Rjk′

(ε′
1� ε

′
2))�

Furthermore, if {at
1}ct=1 and {at

2}ct=1 are the sequences corresponding to reports j
and k, for all δ close enough to 1 and n large enough, we can pick those dis-
tributions so that player i’s average discounted payoff under state (j�k) from
the sequence {at

1� a
t
2}ct=1 followed by n−c repetitions of the action profile deter-

mined by Pr{a |Rjk(ε1� ε2)} is exactly equal to v
jk
i +εi. Observe that in the equi-

librium described above, all values of εi are in [−ε̄� ε̄]. Furthermore, since v is
in the interior of V ∗, we may assume that player 1’s (resp. player 2’s) average
discounted payoff under state (j�k) given that player 2 uses ŝk2 (ε) (resp. ŝj1(ε))
for n − 2c periods, followed by any arbitrary play during c periods, is at most
v
jk
1 + ε (resp. vjk2 + ε) for ε >−3ε̄.
Consider the inequalities

v
jk
1 + ε1 > (1 − δc)M + δc(1 − δn)(v− 2ε̄)+ δn+c(v

jk
1 + ε̃

jk
1 + cρ)�(A2)

v
jk
1 + ε1 <−(1 − δn+c)M + δn+c(v

jk
1 + ε̃

jk
1 )�(A3)

v
jk
1 − ε̄ > (1 − δc)M + δc(1 − δn−c)(v

jk
1 − 2ε̄)+ δn(v

jk
1 − ε̄)�(A4)

Given ε̄, fixing δn, inequality (A4) is satisfied as δ→ 1, provided that the value
of δn is large enough. Similarly, given ε̄, fixing δn, inequality (A2) is satisfied as
δ→ 1 for ε̃jk

1 = −ε̄ and (A3) is satisfied for ε̃jk
1 = 3ε̄/4, provided that the value

of δn is large enough and ε1 < ε̄/2 (recall that ρ= 2(1 −δ)δ−max(n�T)M → 0 for
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fixed δ−max(n�T)). Observe that the left-hand side of (A4) is the lowest possible
payoff for player 1, evaluated in the first period of a communication round,
concluding either a punishment phase or a regular phase, if he reports his
true row j and player 2 reports his true column k, while the right-hand side
is the most he can expect by reporting another row j′ 	= j when player 2 re-
ports his true column k. Similarly, the left-hand sides of (A2) and (A3) are
player 1’s payoff, evaluated in the first period of a communication round con-
cluding either a punishment phase or a regular phase, if he reports his true
row j and player 2 reports his true column k (and the upcoming regular phase
is Rjk(ε1� ε2)), while the right-hand side of (A2) (resp. (A3)) is the highest
(resp. lowest) payoff he can expect if he reports (L�nU

1 ) for some nU
1 . There-

fore, if ε1 < ε̄/2, by the intermediate value theorem, we can find different val-
ues of ε̃jk

1 ∈ (−ε̄�3ε̄/4) so that the payoff from reporting the true row exceeds
the payoff from reporting (L�nU

1 ) for all nU
1 , which in turn exceeds the payoff

from reporting another row j′ 	= j, provided player 2 reports the true column.
If ε1 ≥ ε̄/2, we can set ε̃jk

1 = 0: In that case as well, the same ordering obtains
provided that the value of δn is large enough as δ → 1. The values ε̃

jk
2 are

defined similarly.
Consider now the two inequalities

−(1 − δn)M + δn(v
jk
1 + 3ε̄/4) > (1 − δn)M + δn(v

jk
1 + ρc)�(A5)

−(1 − δn)M + δnv
jk
1 > (1 − δn)M + δn(v

jk
1 − ε̄)�(A6)

Conditional on player 2 reporting (L�nU
2 ) for some nU

2 , the left-hand side
of (A5) is the lowest possible payoff for player 1, evaluated in the first period
of a communication round concluding either a punishment phase or a regular
phase, if he reports his true row j, while the right-hand side is the highest pay-
off he can get if he reports (L�nU

1 ) for some nU
1 . Similarly, the left-hand side

of (A6) is the lowest possible payoff for player 1, evaluated in the first period
of a communication round concluding either a punishment phase or a regu-
lar phase, if he reports (L�nU

1 ) for some nU
1 , while the right-hand side is the

highest payoff he can get if he reports another row j′ 	= j. Observe that both
inequalities hold, given ε̄, letting δ→ 1, provided δn is large enough.

Finally, observe that the choice of ρ trivially ensures that, conditional on
having started reporting (L�nU

1 ) for some nU
1 , player 1 has strict incentives to

play U in all remaining periods of the communication round, no matter where
this round takes place.

Similar considerations hold for player 2. To summarize, we have shown that
we can ensure that both players prefer to report their true type, in any commu-
nication round, than to report (L�nU

i ) for all nU
i ; that, conditional on reporting

(L�nU
i ) for some nU

i , player i has strict incentives to choose U in any remain-
ing period of the communication round; and that they prefer to report (L�nU

i )
for any nU

i than to report an incorrect row or column; all this, provided that δn

(and δT ) is fixed but large enough, by taking δ→ 1, given ε̄.
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Turning now to actions, we must consider

(1 − δn+1)M + δn+1(1 − δT−n)(v
jk
i − 2ε̄)+ δT+1(v

jk
i − ε̄)(A7)

<−(1 − δn)M + δn(v
jk
i − ε̄)�

(1 − δn+1)M + δn+1(1 − δT−n)(v
jk
i − 2ε̄)+ δT+1(v

jk
i − ε̄)(A8)

<−(1 − δT )M + δT(v
jk
i − ε̄/2)�(

1 − δmax(T�n)
)
M + δmax(T�n)(v

jk
i − ε̄/2)(A9)

<−(
1 − δmax(T�n)

)
M + δmax(T�n)(v

jk
i − ε̄/4)�

Observe that all three inequalities hold for both i = 1�2, given ε̄, for δT and n
fixed as δ → 1. This ensures that, given ε̄, we can choose n, T , and δ to satisfy
all the inequalities above. As for the interpretation, (A7) ensures that player i
does not want to deviate during any regular phase, (A8) ensures that player i
does not want to deviate during the punishment phase P−i, and (A9) ensures
that we can pick εk;k

2 (·) and εk;k′
2 (·) within a range of values not exceeding

ε̄/4 in case k and after phases R(L�nu1 )�k and Rj�(L�nu2 ). Indeed, the left-hand
sides of (A7) and (A8) are the highest payoffs player i can hope for by de-
viating at any time (outside communication rounds), while the right-hand side
of (A7) (resp. (A8)) is the lowest payoff he can expect by sticking to the equi-
librium strategies in a regular phase (resp. in a punishment phase). Note that
(1 − δT )M is the highest payoff player 1 (resp. player 2) can get when using
strategy ŝ

j
1 (resp. ŝk2 ) during the punishment phase P−i over all actions consis-

tent with his equilibrium strategy, while −(1 − δT )M is the lowest such payoff.
Inequality (A9) guarantees therefore that there exist functions εk;k′

1 and εk;k
1

whose ranges do not exceed ε̄/4 such that player 1 is playing a best reply, given
εk;k′

1 (·), whether or not the true column is k.
To conclude, it remains to show that public randomization can be dispensed

with. Observe that this device is used in exactly one place. For all pairs (j�k),
and all (ε1� ε2) ∈ [−2ε̄�2ε̄], if {at

1� a
t
2}ct=1 is the sequence of action profiles cor-

responding to the reports (j�k), and for all δ close enough to 1, the public
randomization device guarantees that we can find a correlated action profile
such that the average discounted payoff from the sequence {at

1� a
t
2}ct=1 followed

by n − c repetitions of this correlated action profile yields a payoff vjki + εi to
player i, in state (j�k). Observe now that all incentives in the regular phase
are strict, so that they would also be satisfied, for all δ close enough to 1, as
long as the continuation payoff v̂ti in period t of the regular phase is within
2ε̄ + ε̂ (rather than within 2ε̄) of vjki for some ε̂ > 0 sufficiently small and all
t = 1� � � � � n. Observe now that, following Fudenberg and Maskin (1991) (which
itself builds on Sorin (1986)), we can find n large enough, so that for all δ
close enough to 1, there exists a sequence of sequences {{at

1(ν)�a
t
2(ν)}nt=1}∞

v=1,
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with {at
1(ν)�a

t
2(ν)}ct=1 = {at

1� a
t
2}ct=1 for all ν, such that (i) the average discounted

payoff from the infinite play

{a1
1(1)�a

1
2(1)� � � � � a

n
1(1)�a

n
2(1)�a

1
1(2)�a

1
2(2)� � � �}�

obtained by concatenation of the elements of this sequence, is equal to v
jk
i +εi,

and that (ii) the continuation payoff from any period t onward in this infinite
play is within ε̂ of vjki + εi.20 It is then clear how to modify the specification
above: Increase n and choose δ close to 1, if necessary, to guarantee the ex-
istence of such sequences; if players are in the vth consecutive regular phase
Rjk(ε1� ε2), with reports (j�k) that agreed in all those phases, play in that vth
phase is given by {at

1(ν)�a
t
2(ν)}nt=1. (Note that, in general, the continuation pay-

off of i at the beginning of the vth phase is not exactly v
jk
i + εi, so (ε1� ε2) only

refers to the continuation payoff achieved in the first such regular phase, or
more precisely, from the communication phase that immediately precedes this
first regular phase onward.) If a deviation occurs or consecutive reports dis-
agree, a new such sequence of consecutive plays {{at

1(ν)�a
t
2(ν)}nt=1}∞

v=1 starts in
the next regular phase (or more precisely, from the communication phase that
immediately precedes this first regular phase), given the new values of (ε1� ε2).
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