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Abstract

We consider a family of infinitely long lived representative agent
economy where, each period, agents can only decide consumption plan
of finite dimension n. It is shown that myopia generates indeterminacy
and monetary equilibrium in infinitely lived representative economy.
Any invertible dynamics with at most one monetary steady state that
is increasing in the quantity of money can represent the set of equi-
libria of an appropriate myopic economy.
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1 Introduction

Two paradigms play an important role in macroeconomics and in monetary
theory: following Ramsey [11], the paradigm of an infinitely lived, represen-
tative agent (ILRA henceforth); and, following Samuelson [13], the paradigm
of overlapping generations (OLG henceforth).

Overlapping generations economies with finitely lived individuals are quite
different from those with a finite number of infinitely lived individuals. The
main differences concern the determinacy and the Pareto optimality of com-
petitive equilibria and the existence of monetary equilibria. In infinitely
lived individual economies, competitive equilibrium allocations are Pareto
optimal and locally unique and the equilibrium price of fiat money is zero.
On the contrary, in overlapping generation economies, competitive equilib-
rium allocations are not necessarily Pareto optimal or locally unique, while
fiat money may maintain a positive price at equilibrium. These differences
have important implications concerning on one hand the optimality of a
decentralized, competitive market as a mechanism for the intertemporal al-
location of resources; on the other hand the possibility and desirability of
active macroeconomic and monetary policy.

The fact that the two paradigms used in dynamic macroeconomics lead
to such different result is a weakness for macroeconomic theory that can be
solved providing a theory able to generate the two feature as particular cases.

It is possible to distinguish two branches in the literature that try to ex-
plain the differences between ILRA economies and OLG economies. One ap-
proach considers the ILRA economy as an extreme case of the OLG economy.
Aiyagari [1] and [3] shows as a ILRA economy can be obtained introducing
bequest motive in a OLG economy.

The other approach starts from ILRA economy and it proves that intro-
ducing cash in advance constraint (Huo [10]) or finance constraints (Wood-
ford [14]) the equilibrium dynamics is equivalent to the one of a two period
life span OLG economy.

Both these approaches make the link between two extreme cases: the two
period life span OLG economy and the ILRA economy. None explain what
are the relationships between an OLG economy where agent’s life span is
greater than two and ILRA economy.

This paper has two main purposes: on one hand we want to test the
robustness of some results concerning ILRA equilibrium through the intro-
duction of some degree of bounded rationality, and on the other hand we want
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to provide an alternative way to link the OLG literature with the ILRA, that
allows to generate ”long lived” OLG economy starting from ILRA economy.

We study what are the implication on the equilibrium price dynamics of
an ILRA exchange economies when introducing bounded rationality. Fur-
thermore we try to understand under what conditions the equilibrium set of
an OLG economy can be obtained as the equilibrium set of an associated
economy of infinitely lived bounded rational individuals.

We model bounded rationality in a simple way: at each date, individuals
optimize as if they were facing a finite horizon of n periods. Even if agents
derive utility from the consumption in each period from 0 to infinity, they are
able to choose only a finite dimension consumption plan. The dimension of
this plan measures the level of myopia in the economy. It follows that in each
date t the agent revises the consumption decision he made in t−1. Indeed in
t − 1 he did not consider the price and the endowment of period t + n while
these variables enter in the maximization problem solved in period t.

The first result (Theorem 2) concerns the properties of the equilibrium
prices dynamics when the representative agent is myopic. Using a con-
structive proof that applies some of the technics used in Boldrin and Mon-
trucchio [4] to the theory of integrability of incomplete system of demand
function (Epstein [6]), we prove that there are few restrictions on the equi-
librium price dynamics. Namely given any function G : Rn

+ × R → R+

homogenous of degree 1 and increasing in its last argument, there exist a
myopic economy whose backward monetary equilibrium price dynamic is
pt = G(pt+1, ...pt+n, M) when the aggregate level of money is M .

Thus even very irregular price dynamics can be observed at equilibrium
and, more striking is that introducing myopia is sufficient to generate indeter-
minacy of the equilibrium and monetary equilibria. Relaxing, even slightly,
the assumption of perfect rationality, the equilibrium loses its nice properties.

To understand what drives the result notice that the equilibrium of a
infinitely lived representative agent exchange economy is the sequence of
prices that induces agents to demand his endowment in each period. When
agents are perfectly rational it follows that: 1) the equilibrium is unique as
there exist only one infinite sequence of price that support the endowment of
the representative agent (see also Dana [5]); 2) fiat money has no value in the
economy as the value of the consumption is equal to the value of endowment
plus the value of money.

When the representative agent is myopic at each date he revise his demand
and his actual consumption need not to be equal to what he planned he
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would have consumed. This allows to weaken the link between the budget
constraints, that appears in the maximization problems, and the equilibrium
condition allowing for monetary equilibria and indeterminacy.

We show that when the utility function is separable and strictly con-
cave the equilibrium dynamics of interest rate has always two steady states:
one associated with a positive amount of money and constant price and
one where the interest rate is constant and different from zero but money
has no value. This properties recall the dynamics of overlapping generation
economies. This paper shows that the similarities between myopia and OLG
are even stronger: given some overlapping generation exchange economy, if
the resulting dynamic of equilibrium prices is invertible, then there exists a
myopic economy generating the same equilibrium dynamics. In particular, if
the agents life span in the OLG economy is l, there is a corresponding myopic
economy where the degree of myopia is n = 2(l − 1).

This result is stronger than those provided by the existing literature as
here the equivalence between myopia and OLG extends to ”long lived” OLG
economy.

Nevertheless, as most of the literature on OLG concerns the case where
agents live two periods and have separable utility function, it is interesting
to analyze the equivalence between OLG and myopia in this particular case.
Under these assumption we provide a direct method for obtaining a myopic
model equivalent to a given OLG economy, and vice-versa we show how to
build an OLG economy equivalent to some given myopic economy. Unfortu-
nately this simple method applies only to extreme myopia and overlapping
generations with a life span of two dates.

The paper is organized as follows: section 2 describes the family of
economies we consider, the assumption on individual behavior and the con-
cept of equilibrium. Section 3 studies the property of the equilibrium dy-
namics and include the main result of the paper. Section 4 analyzes the
equivalence between myopic and OLG economies, and section 5 concludes.
Some of the proofs are in the appendix.

2 The model

We consider a family of economies parametrized by the natural number n.
A typical element EM(n) of this family has the following properties: there
is a continuum of identical infinitely long lived agents and one consumption
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good per period. At beginning of time the representative agent possesses an
amount M of fiat money and at any given date t he receives a constant en-
dowment ω and he consumes an amount xt. Letu(xt, xt+1, ..., xt, ...) be the
utility derived by the consumption of path {xt, xt+1, ..., xt, ...}, u is increas-
ing, quasi concave and C2 in its first n arguments. Let Y = {y, y, ..., y, ...},
where y ∈ R+.

The agent’s rationality is bounded in some sense: even if he lives an
infinity of periods and he derives utility from consumption in every period,
he can choose just a consumption plan of dimension n. In each period t the
agent solves the following problem

MPt(n) =


max{x(t,n)} u(xt

t, x
t
t+1, ..., x

t
t+n, Y )

s.t.
∑t+n

j=t pj

(
xt

j − ω̃j−t

)
≤ Mt

Mt = given

(1)

where x(t, n) = {xt
t, xt

t+1, ...xt+n}, xj
i ( j ≤ i) is the level of time i consump-

tion planned in period j, pt is the monetary price of the good in period t and
Mi is the quantity of money that the agent holds at beginning of time i.

The natural number n represents the consumer’s maximization horizon at
any period t, and 1/n can be interpreted as the level of myopia. Indeed when,
at beginning of period t, agent solves problem MPt(n), he plans consumption
from t to t + n and he does not consider consumption level in the periods
after t + n.

Bounded rationality can also concern the expectation about future en-
dowment. We assume ω̃τ = ωδ(n, τ), where δ : N × N → R+ satisfies
δ(n, 0) = 1, and δ(n, τ) = 0 for any τ > n. ω̃i represents the endowment that
the representative agent expects to perceive after i periods. The condition
δ(n, 0) = 1 means that the agent knows his present endowment. Notice that
as the real endowment is constant, agent’s expectation about future n endow-
ments is correct if and only if δ(k, i) = 1, i = 1, 2, ..., n. Finally δ(n, τ) = 0
for any τ > n means that the agent does not consider the endowments that
are too far in the future. Thus, the heptoses of perfect foresight of future n
endowments is a particular case of this specification of the model. Note that
the expectation about future endowment are stationary in the sense that ω̃i

do not depends on t.
As in each period t the agent plans consumption form t to t + n, each
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time t + 1 he solves a new maximization problem where he considers con-
sumption, endowment and prices from t + 1 to t + n + 1. Indeed prices and
endowment of period t + n + 1 were not considered in the previous period
maximization phases. This implies that agent’s consumption in some period
t is not necessarily equal to what, some period before t, he planned he would
have consumed in t. Thus it will be often the case that xt

t 
= xj
t for j < t.

There are many explanations for this myopic behavior, one possible is
that even if the agent has perfect foresight on the price level in the short run
(from today to n periods after today), he has no idea about the long run level
of prices (after n + 1 periods on) and therefore he cannot plan consumption
that are too far in the future. Nevertheless after each period he knows one
more price he did not know the pervious period so that he maximizes again
his objective function taking into account this new information. Therefore
as time pass by he revises his consumption decision on the basis of the new
information.

Let p(t) = {pi}∞i=t, let p(t, n) = {pi}t+n
i=t and let x(p(t, n), Mt, n) be the

demand function of good at time t expressed in time t as a function of the
prices from t to t + n, the endowment vector ω̃ and the quantity of money
held at beginning of t. Formally x(p(t, n), Mt, n) is the first element of the
vector arg maxMPt(n).

Notice that if myopia disappear (i.e. n goes to infinity) and the agent
has perfect foresight of endowments, the representative agent behaves as a
perfectly rational infinitely lived individual and so we obtain the standard
ILRA economy.

We are ready now to define the concept of equilibrium:

Definition 1 A perfect foresight equilibrium of the economy EM(n) is a
sequence of prices p̂(0) = {p̂i}∞i=0 such that spot markets of good and money
are in equilibrium:

x(p̂(t, n), M, n) = ω, ∀t (2)

where p̂(t, n) = {p̂i}t+n
i=t .

As in the standard ILRA model, at equilibrium the representative agent
consumes his endowment in each period. Nevertheless when agents are per-
fectly rational, the level of consumption they plan to sustain in the future is
equal to the consumption they will actually sustain, this implies that spot
market are at equilibrium only if future markets clear. When agent are my-
opic, they revise their consumption decision after each period, so that the
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minimal equilibrium condition is that what agents consume in each period is
equal to their present demand, that is only spot market need to clear.

The sequence of equilibrium prices is such that in any period, when the
agent chooses his present consumption considering the next n ones, he decides
to consume his present endowment. Notice that in any period t, the agent has
perfect foresight about the price level in the next n periods. Nevertheless, as
agents change their mind after every period, the equilibrium does not require
any condition on planned future demand.

If myopia disappear (i.e. n is infinity) and the agent has perfect fore-
sight of endowment, the representative agent behaves as a perfectly rational
infinitely lived individual. If this is the case, the equilibrium is unique as
there exist only one infinite sequence of prices that supports the endowment.
Furthermore money has zero value.

Intuitively, when n is finite, the sequence of equilibrium price p̂(0) can be
built as follows: fix arbitrarily the first n prices and find p̂n, the price of period
n, such that the spot market in period 0 is in equilibrium: x(p̂(0, n), M, n) =
ω; then, given prices from period 1 to n, find pn+1 so that x(p̂(1, n), M, n) = ω
and so on . Therefore, given some n the equilibrium prices dynamics is given
by the n-th order difference equation that is implicitly defined by (2).

3 Equilibrium dynamics

Consider some myopic economy where the degree of myopia is n. Let Z :
Rn

+ × R → R+ be

Z(pt, ...pt+n, Mt) = x(p(t, n), Mt, n) − ω

Z is the excess demand for time t consumption as it is expressed in time
t. This demand is function of the monetary prices from t to t + n and the
quantity of money held at beginning of period t. Given that the amount of
money is M in any period, the equilibrium condition for the myopic economy
is

Z(pt, ..., pt+n, M) = 0, ∀t (3)

The equilibrium condition (3) defines implicitly a n-th order dynamics of
equilibrium prices parametrized by M .

What can be said about the dynamics of equilibrium price in myopic
economies?
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Notice that Z is homogenous of degree 0 and therefore the equilibrium
dynamics of price will be homogenous of degree 1 in prices and money. Fur-
thermore from Slutzky equation, we know that when the excess demand is
zero the income effect vanishes; therefore the derivative of Z with respect to
its first argument evaluated at some point satisfying (3) is always negative.
This implies that the backward dynamics of prices is always well defined, or
in other word, for any level of future prices (pt+1, ...pt+n−1) and money M
there exist at most one present price pt that induces the agent to demand
exactly his endowment. Thus the equilibrium price dynamics generated by
myopic representative agents economy is always invertible1.

These are necessary condition that the equilibrium dynamics must sat-
isfy. The following theorem provides sufficient condition on the backward
dynamics of prices in order to be generated by some myopic economy

Theorem 1 Let D−0 ⊂ Rn
+, DM ⊂ R and D0 ⊂ R+ be convex and compact

sets satisfying D−0 ⊇ Dn
0 ; let G : D−0 × DM → D0 be a twice continuously

differentiable function satisfying the following conditions: i) G is homoge-
neous of degree one, ii) ∂G/∂M > 0 on D−0 × DM ; then there exists a
myopic economy whose degree of myopia is n and whose backward equilib-
rium dynamics is represented by p0 = G(p1...pn, M) for any initial condition
and quantity of money in D−0 × DM .

From theorem 2 it follows that there are few restrictions on the dynamics
of equilibrium prices that can be generated by a myopic economy. Neverthe-
less from the homogeneity of G it follows that G has at most one monetary
equilibrium. That means that there exist at most one level of real amount
of money M/p that is compatible with constant equilibrium prices.

Theorem 2 may some how recall the indeterminacy result of the policy
function obtained by Boldrin and Montrucchio [4], nevertheless their result
concern the optimal solution of dynamic programming problem that is exac-
erbated from a general equilibrium context. Here we are considering the set
of equilibria that can arise from a simple general equilibrium economy.

To prove theorem 2 means to find a representative agent myopic economy
whose equilibrium dynamics can be described by G, where G is a given
function that satisfies the hypothesis of the theorem. A myopic economy
is identified with the representative agent’s maximization problem (1) and

1This property follows from the representative agent assumption and can be weakened
assuming that agents are heterogenous.
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its equilibrium dynamics is implicitly defined by equation (3), given that Z
comes from the solution of (1). Therefore we need to find an appropriate
utility function U(x0, x1, ..., xn−1) and endowment level ω such that, calling
Z the excess demand for present good, it results:

Z(p0, ..., pn, M) = 0 ⇔ p0 = G(p1, ..., pn, M) (4)

for all (p0, p1, ..., pn, M) ∈ D0 × D−0 × DM .
Note that there is no loss of generality in studying the equilibrium con-

dition at time 0 as the fundamentals of the economy are stationary and the
function Z does not depend on time. Indeed the dynamic properties of the
equilibrium depends only on the shape of Z(.).

It is useful to normalize prices and to express Z and G as functions of rela-
tive prices and real amount of money. Let q0 = p0/pn, q−0 = (p1/pn, ...pn−1/pn)
and m = M/pn. Define the functions z and g as follows:

z(q0, q−0, m)
def
= Z(p0/pn, ..., pn−1/pn, 1, M/pn)

g(q−0, m)
def
= G(p1/pn ..., pn−1/pn, 1, M/pn)

From the homogeneity of degree 1 of G, it results that q0 = g(q−0, m). Notice
that g maps d−0 × dm into d0 where d−0 × dm and d0 are respectively the
relevant domain and co-domain for g. Furthermore, from the hypothesis on
G it follows that ∂g/∂m = 1

pn
∂G/∂M > 0.

Consider finally the function m̂ : d0 × d−0 → dm defined as follows:

m̂(q0, q−0) = m ⇔ q0 = g(q−0, m)

for all (q0, q−0) ∈ d0 × d−0. m̂ is obtained inverting g with respect to m. If G
represents the equilibrium dynamics, then m̂(q0, q−0) is the real quantity of
money that is compatible with relative prices (q0, q−0) at equilibrium. Notice
that from implicit function theorem and the hypothesis on G, m̂ is C1 and
there exist a µ > 0 satisfying ∂m̂/∂q0 ≥ µ on d0 × d−0.

Restating condition (4) in real terms, it results:

z(q0, q−0, m) = 0 ⇔ q0 = g(q−0, m) ∀ (q0, q−0, m) ∈ d0 × d−0 × dm

It is now possible to define the set of excess demand function that originate
the equilibrium dynamics G:

Ω
def
= {z | ∀(q0, q−0) ∈ d0 × d−0, z(q0, q−0, m) = 0 ⇔ m = m̂(q0, q−0)}
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I need to show that whenever m̂ comes from some G that satisfies the hy-
pothesis of the theorem, there exist a myopic economy whose excess demand
z belongs to Ω. The theorem is proved if there exist a utility maximization
problem of the form (1) whose solution provides an excess demand for good
0, z(q0, q−0, m), that belongs to Ω.

This problem is somehow closed to that of the integrability of an incom-
plete system of demand functions (see Epstein [6]): given the demand z for
one good as function of the price of all the goods and the quantity of money,
we want to know if this demand can be generated by a utility maximization
problem. The difference with Epstein’s problem is firstly that here instead
of having only one demand function we can choose it in a class of functions
(the set Ω). Secondly we are dealing with excess demand function instead of
demand functions.

To integrate back from a demand function X to an utility function is
equivalent to integrate back from X to an expenditure function E(p0, ..., pn, u).
Where the expenditure function E(p0, ..., pn, u) is the minimum income re-
quired to reach utility level u when prices are (p0, ..., pn). Indeed given the
expenditure function it is always possible to recover the indifference curves.

Since here we are dealing with excess demand as functions of both mon-
etary wealth and endowments, it is useful to define the modified expenditure
function F obtained subtracting to the expenditure function the value of the
endowment. If the agent receives an endowment equal to ω for all goods, the
modified expenditure function associated with the maximization problem (1)
is:

F (p0, p−0, u) = E(p0, p−0, u) − ω

n∑
i=0

pi

The modified expenditure function represents the minimal transfer of money
required to reach exactly the utility level u when the level of price is (p0, p−0)
and the agent have an endowment equal to ω for all n goods. Clearly while
E is non-negative, F can be negative; this because for small u it could be
necessary to ”tax” the consumer in order to force him to reach just the utility
level u. Furthermore as we are dealing with relative prices and real quantity
of money it is useful to define the normalized expenditure function and the
normalized modified expenditure function (NMEF henceforth) as

e(q0, q−0, u) =
E(p0, ..., pn, u)

pn

= E(q0, q−0, 1, u)
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f(q0, q−0, u) =
F (p0, ..., pn, u)

pn

= F (q0, q−0, 1, u)

Where the right hand side equalities follows form the homogeneity of degree
1 of the expenditure function.

Let f(q0, q−0, u) be the NMEF deriving from some maximization problem
of the form (1) and let z0(q0, q−0, m) be the corresponding excess demand for
good zero. From classical consumer theory it results that

∂f(q0, q−0, u)

∂q0

= z0(q0, q−0, f(q0, q−0, u)) (5)

Equation (5)2 allows to characterize the set of modified expenditure func-
tion that are associated with an excess demand function that belongs to Ω.

Lemma 1 z0(q0, q−0, m) ∈ Ω if and only if

∂f(q0, q−0, u)

∂q0

= 0 ⇔ u is such that f(q0, q−0, u) = m̂(q0, q−0) (6)

Proof: Note first that from expression (5), z0(q0, q−0, f(q0, q−0, u)) = 0
if and only if ∂f(q0, q−0, u)/∂q0 = 0.

Suppose that z0(q0, q−0, m) ∈ Ω, this means that z0(q0, q−0, m) = 0 ⇔
m = m̂(q0, q−0) but then z0(q0, q−0, f(q0, q−0, u)) = 0 ⇔ u is such that

f(q0, q−0, u) = m̂(q0, q−0) that implies that∂f(q0,q−0,u)
∂q0

= 0 ⇔ u is such that

f(q0, q−0, u) = m̂(q0, q−0) for expression (5).

Suppose now that ∂f(q0,q−0,u)
∂q0

= 0 ⇔ u is such that f(q0, q−0, u) = m̂(q0, q−0),

but as z0(q0, q−0, f(q0, q−0, u)) = 0 ⇔ ∂f(q0, q−0, u)/∂q0 = 0, this means that
z0(q0, q−0, m) = 0 ⇔ m = m̂(q0, q−0) and thus z0 ∈ Ω.�

Proof of theorem 2: We proceed as follows: firstly we find the a mod-
ified expenditure functions that is associated with the excess demand func-
tions that are in Ω. Choosing an appropriate endowment level ω we derive
the expenditure function from the modified expenditure function. Finally we
show that the expenditure function we derived satisfies all the integrability
condition so that the associated utility function U(x0, x1, ..xn) is increas-
ing and concave. Thus we have found a consumer maximization problem

2Let x̃(q0, q−0) be the demand as function of income and price. From classical consumer
theory we know that ∂e/∂q0 = x̃0(q0, q−0, e); considering that x0(., m) = x̃0(., qω + m) it
follows that ∂e/∂q0 = x0(q0, q−0, e − qω), and so the equation (5).
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that generate an excess demand for present consumption that belongs to
Ω. Therefore, the equilibrium dynamics of the myopic economy associated
with this consumer maximization problem can be represented by the given
function G.

Step 1) Construction of the modified expenditure function.
The following lemma provides some of the ingredients that are used to

build an appropriate NMEF.

Lemma 2 If G satisfies the hypothesis of theorem 2 then there exist a couple
(γ, θ) of twice continuously differentiable functions, γ : d−0 × R → dm and
θ : d−0 × R → d0, satisfying:

i) γ(q−0, u) is bounded, strictly increasing in u, and strictly concave in
q−0 for any u in du ⊂ R;

ii) m̂ (θ(q−0, u), q−0) = γ(q−0, u);
iii) θ(q−0, u) is strictly increasing u;
iv) the derivative of θ with respect to q−0 is bounded.

Proof: Chose some γ(q−0, u) : d−0 × du → dm satisfying property i)
in the lemma. Note that for any x ∈ dm and any q−0 ∈ d−0 there always
exist some q0 such that m̂ (q0, q−0) = x and namely q0 = g(q−0, x); thus
defining θ(q−0, u) = g(q−0, γ(q−0, u)), it results that the function γ and θ
satisfy properties i) and ii) by construction. Property iii) follows from the
definition of θ and γ and from ∂G/∂M > 0. Property iv) comes from the
boundedness of the partial derivative of m̂.�

In the following lemma we provide a candidate for the NMEF.

Lemma 3 Let γ and θ be as defined in lemma 4, and let f defined as follows:

f(q0, q−0, u) = α
(
−q2

0 + 2q0θ(q−0, u) − θ(q−0, u)2
)

+ γ(q−0, u)

if

0 < α < min

[
µ

2δ
,

σ

2δ|Σ|

]
then the there exist a real number k such that function f(q0, q−0, u) satisfies
the following conditions:

i) fu > 0
ii) f is concave in (q0, q−0) for each u
iii) fqi

> k, for i = 0, 1, ...n − 2
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iv) f −
∑n−2

i=0 qifqi
> k

where δ = diam d0 = max{||x−y||, x, y ∈ d0}, Σ = max{||D2
q−0

θ(q−0, u)||,
(q−0, u) ∈ d−0 × du}, σ = −max{||D2

q−0
γ(q−0, u)||, (q−0, u) ∈ d−0 × du}.

Proof: Deriving f with respect to u it results: fu = θu2α(q0−θ(q−0, u))+
γu; considering that γu = m̂q0θu, it follows that fu = θu(2α(q0 − θ(q−0, u)) +
m̂q0). As θu > 0, q0 − θ(q−0, u) ≥ −δ and mq0 ≥ µ, it follows that fu is
not smaller than θu(−2αδ + µ) that is strictly positive for α < µ/2δ, thus
property i).

The concavity of f in (q0, q−0, u) is equivalent to the concavity of the
function h : R → R defined as

h(t) = f(x0 + tx1, y0 + ty1, u)

with x0 and y0 fixed and (x0 + tx1, y0 + ty1) ∈ d0 × d−0. Without loss of
generality set ||y1|| = 1 and x1 bounded. As f is C2 it results

h′′(t) = α
(
−2(x1 − y′

1θq−0)
2 + 2 (x0 + tx1 − θ(y0 + ty1, u))

(y′
1D

2θ(y0 + ty1, u)y1

)
) + y′

1D
2γ(y0 + ty1, u)y1

if Σ > 0, then h′′(t) is less or equal to α2δΣ−σ that is strictly negative for
α < σ/2δΣ; if Σ < 0, then h′′(t) is less or equal to −α2δΣ−σ that is strictly
negative for α < −σ/2δΣ. Thus f is concave in (q0, q−0) for α < σ/2δ|Σ|.
Note that as γ is strictly concave in q−0, σ is strictly positive.

Properties iii), iv) and v) follow from the boundedness of the derivative
of θ and γ and the boundedness of f . �

The following lemma shows that if f as defined in lemma 5 is a modified
expenditure function, then the associated excess demand for good 0 will
belong to Ω.

Lemma 4 Let γ, θ and f be as defined in lemma 4 and 5, then

∂f(q0, q−0, u)/∂q0 = 0 ⇔ u is such that f(q0, q−0, u) = m̂(q0, q−0)

Proof: Note that ∂f(q0, q−0, u)/∂q0 = 0 ⇔ q0 = θ(q−0, u); if q0 =
θ(q−0, u), then f(q0, q−0, u) = γ(q−0, u) that, by lemma 4, is equal to m̂ (θ(q−0 ,
u)p−0) = m̂(q0, q−0)u the only u∗ such that f(q0, q−0, u

∗) = m̂(q0, q−0) is the
one that satisfies θ(q−0, u

∗) = q0; but this implies that if f(q0, q−0, u) =
m̂(q0, q−0), then ∂f(q0, q−0, u)/∂q0 = 0.�
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Step 2) From the NMEF to the expenditure function.
The function f as defined in lemma 5 is a candidate for the normalized

modified expenditure function, but in order for f to be a NMEF coming
from a maximization problem of the form (1), it must satisfy some regularity
conditions. In particular there must exist some endowment ω such that
calling

e(q0, q−0, u) = f(q0, q−0, u) + ω

(
n∑

i=1

pi

pn

+ 1

)
(7)

the function e(.) is a normalized expenditure function.
Form classical consumer theory we know that a function e is a normalized

expenditure function if it satisfies the following conditions on its domain:
1)∂e/∂u > 0;
2)∂e/∂qi > 0, i = 0, ..., n − 1;
3)e −

∑n−1
i=0 qi∂e/∂qi > 0;

4) e is concave in (q0, q−0) for each u;
5) e > 0
Condition 3 comes from ∂E/∂pn > 0, where E(p0, · · · , pn, u) = pne(p0/pn,

· · · , pn−1/pn) is the expenditure function.
Now it is possible to show that for α small, the f defined in lemma 5 is

actually a normalized modified expenditure function coming from a utility
maximization problem of the form 1.

Choosing ω > max[0,−k] and defining the function e as in expression
(7), it results that e is actually a normalized expenditure function. Indeed
e satisfies all the conditions 1-5: 1) ∂e/∂u = ∂f/∂u > 0 from lemma 5; 2)
considering that ∂e/∂qi = ∂f/∂qi + ω > 0 and that ∂f/∂qi ≥ k (lemma 5),
property 2 follows trivially if k > 0, while if k < 0 it follows from ω > −k;
3) considering that e −

∑n−1
i=0 qi∂e/∂qi = f −

∑n−1
i=0 qi∂f/∂qi + ω, and that

f −
∑n−1

i=0 qi∂f/∂qi > k (lemma 5), property 3 follows trivially if k > 0,while
if k < 0 it follows from ω > −k; 4) e is concave in (q0, q−0) as it is the sum
of a strictly concave function f and a linear function; 5) considering that
e ≥ f +ω, and that f > k, property 5 follows trivially if k > 0,while if k < 0
it follows from ω > −k.

Thus the maximization problem where the utility function is that recov-
ered from the expenditure function e as defined in (??) and the endowment is
ω > max[0,−k] originates a demand function for good zero that belongs to Ω.
Thus the myopic economy defined by such maximization problem generates
an inverse price dynamics equal to G on d−0 × dm.�
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Notice that from the technics used in the proof there exist more then
one maximization problem that is compatible with a given dynamics G, thus
when agents are myopic, knowing the equilibrium dynamics is not sufficient
for recovering their utility.

3.1 Separable utility and steady states

Until now we have not done any assumption on the shape of the utility
function u rather than monotonicity and concavity. Most of the problem
studied in this literature deal with additive utility function. In this paragraph
I show that when representative agent utility is additive and concave then
the equilibrium dynamics of interest rate has generically two steady states:
one monetary and one non monetary.

Assumption 1: u(x1, x2, ..., xt, ...) =
∑∞

t=0 ut(xt) where for all t, ut is
increasing, strictly quasi concave and satisfies the inada conditions.

Let ρt = pt+1/pt be the factor of interest at time t, in a steady state
equilibrium it must results ρt = ρ and x(p(t, n), M, n) = ω for any t. Let
{xi(n, ρ)}n

i=t = arg maxMPt(n) given ρt = ρ, ∀t, then, under assumption 1 it
results that at any steady state equilibrium the individual budget constraint
will take the form:

n∑
i=1

ρi [xi (n, ρ) − ω̃i] =
M

pt

(8)

for any t, where xi(n, ρ) = u′−1
t (u′

0 (ω)). It follows that any ρ that satisfies
equation (8) represents a steady state equilibrium of the economy.

Proposition 1 Under assumption 1, for any finite n there always exists at
most one monetary steady state and at least one non monetary steady state.
In the monetary steady state the level of prices is constant and the real value
of money is equal to

∑∞
i=1 [xi (n, 1) − ω̃i]. In the non monetary steady state

the rate of interest is constant and the real value of money is equal to zero.

Proof: Left hand side of equation (8) is finite as long as n is finite, fur-
thermore it does not depends on t. Therefore equation (8) can be satisfied
only in two cases: when pt is constant and equal to M/

∑∞
i=1 [xi (n, 1) − ω̃i],

and when the real value of money is zero. The first case corresponds to the
monetary steady state: prices are constant and money has positive value pro-
vided that the amount of money M has the same sign of

∑∞
i=1 [xi (n, 1) − ω̃i].
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The non monetary steady state exists when right hand side of (8) is zero.
The existence of at least one non monetary steady state is derived observing
that

∑∞
i=1 ρi [xi (ρ

i) − ω̃i] is continuous in ρ, it goes to −∞ as ρ goes to +∞
and it is positive for ρ small enough.�

Proposition 7 states that given any ILRA exchange economy with ad-
ditive concave utility function, it is sufficient to introduce a small degree
of preference incompleteness in order to have money with positive value at
equilibrium.

We call m(n) =
∑∞

i=1 [xi (n, 1) − ω̃i] the real amount of money at the
monetary steady state. Using the overlapping generation convention (Gale
[7]) one could denote with ”classical” an economy where m(n) is negative
and Samuelson an economy where m(n) is positive.

As it has been shown by Aiyagari [2] and Reichlin [12] for overlapping
generations models, the existence of steady states where fiat money has pos-
itive value depends crucially on the weight that future consumption have in
the utility function with respect to the expected value of endowment avail-
able in the future. Intuitively whenever the intertemporal discount factor is
less than the expected factor of growth of the value of individual endowment,
positive monetary steady state does not exist. In this model it happens ex-
actly the same if we assume that ut(x) = βtu0(x). Given the intertemporal
preferences and the expected future endowments (that depends on the shape
of δ(t, n)), the real amount of money is positive for δ small enough and it is
negative for δ large.

4 Equivalence between myopia and OLG

In this section we study the observational equivalence between a myopic
economy EM(k) and an OLG exchange economy.

Definition 2 An economy E1 is equivalent to an economy E2 if any equi-
librium p̂(0) of E2 is also an equilibrium of E1 and vice-versa.

In the following we provide sufficient conditions on the equilibrium dy-
namics of an overlapping generation economy for the existence of an equiva-
lent myopic economy, i.e. a myopic economy whose dynamics of equilibrium
prices is the same of those generated by the given overlapping generation
economy.
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Consider an overlapping generation economy where time goes from -∞ to
+∞, there is one good per period and the representative agent live for l ≥ 2
periods. The agent born in period t solves the following utility maximization
problem

POt(l) :


maxxt,xt+1 V (xt, xt+1, ..., xt+l−1)

s.t. pt+j(x
t
t+j − ω̂i) + M t

t+1+j ≤ M t
t+j

for j = 0, 1, ...l − 1
with M t

t = Mt+l = 0

The solution to POt(l) provide the excess demand function Ẑ = (Ẑ1, Ẑ2, ...Ẑ l),

Where Ẑi(pt, pt+1, ..., pt+l−1) is the excess demand for consumption in pe-
riod t+i coming from an agent that is born in period t, or in other words it is
the excess demand of the agent during his i-th period of life. Ẑi(.) is function
of the monetary prices that the agent faces during his life. As the economy
is invariant the excess demand function Ẑ is the same for every generation.

Let M i(pt, pt+1, ..., pt+l−1) be the amount of money that an agent born in
t want to hold at beginning of his i-th period of life. Rearranging the budget
constraint it results that M i(pt, ..., pt+l−1) is equal to the monetary value of
the sum of present and future excess demands:

M i(pt, pt+1, ..., pt+l−1) =
l∑

j=i

pt+j−1Ẑ
j(pt, pt+1, ..., pt+l−1) (9)

An equilibrium of this economy is a sequence of prices such that the
aggregate excess demand for good and money is equal to zero in all periods.

Let M be the global amount of money in the economy, then a sequence of
monetary prices p(0) is an equilibrium if and only if it satisfies the following
condition:

l∑
i=1

M i(pt−i, ..., pt−i+l−1) = M ∀t

that means that the sum of quantity of money that agents hold at beginning
of each period is equal to the aggregate quantity of money in the economy.
Defining the aggregate demand for money as

M̂(pt−l+1, ..pt−2+l) ≡
l∑

i=1

M i(pt−i+1, ..., pt−i+l)

16



the equilibrium condition can be written as

M̂(pt−l+1, ..., pt−2+l) − M = 0, ∀t (10)

As Ẑi are the same functions for each generations, the equilibrium condi-
tion (10) defines implicitly a (2l−3)-th order dynamics of prices that depends
on the global amount of money in the economy. Therefore it is sufficient to
study the shape of the function M̂(p0, ...p2l−3) in order to analyze the dy-
namic properties of the equilibrium. Proposition 11 follows from theorem 2
and show that when the equilibrium backward dynamics of an overlapping
generation economy is well defined it is always possible to build an equivalent
myopic economy

Proposition 2 Consider an overlapping generation economy where agents
life span is l and the equilibrium backward dynamics can be represented by
a function Ĝ that satisfies hypothesis ii) of theorem 2, then there exists a
myopic economy that is equivalent to the given OLG economy where the level
of myopia is n = 2l − 3.

Recalling that hypothesis ii) of theorem 2 is ∂G/∂M > 0, using the

definition of M̂ and applying implicit function theorem on (??), it results

that ∂G/∂M > 0 only if Ẑ l
1 > 0, that means that the excess demand in the

last period of life is increasing in the prices in the first period of life.
Proposition 9 implies that all the well known properties about indetermi-

nacy of the equilibrium, existence of steady states and deterministic cycles,
complex behavior and sunspot equilibria in OLG model can be directly ex-
tended to economies where agents are myopic.

Note that the present equivalence result is in some sense stronger than
those obtained introducing cash in advance or finance constraint. Indeed the
existing results restrict to the two periods life span OLG economies while
here we are able to reproduce any invertible price dynamics resulting from
an OLG economy with no restriction an agent’s life span.

Hence, it is possible to move from the standard OLG model world to that
of infinite life span agents model by just moving the value of the parameter n
to infinity. In other words, some OLG model can be interpreted as an infinite
lived myopic agent model.
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4.1 High level of myopia

As most of the overlapping generations model used in macroeconomics in-
volve agents that live two periods and that have a separable utility function,
it is interesting to study the equivalence between myopia and OLG with this
set up.

In this section we show that thanks to these simplifying assumptions on
the OLG economy there exist a straight way to obtain the myopic economy
equivalent to the OLG one, without making use of the integrability theory.

Furthermore we show a converse to Theorem 2 when n = 2: given any
myopic economy where the level of myopia is n = 2 there always exist an
equivalent OLG economy.

I start with the latter result.
Consider the economy EM(n) where n = 2. In each period the agent

chooses his present consumption and he plans his demand of the next period.
His maximization problem in period t can be written as:

PMt(2) :


maxxt,xt+1 U(xt, xt+1)

s.t. ptxt + Mt+1 ≤ ptω + Mt

pt+1xt+1 ≤ pt+1ω̃1 + Mt+1

Mt given

First order condition leads to

U1(xt, xt+1) =
pt

pt+1

U2(xt, xt+1)

Where Ui is the derivative of U with respect to the i-th argument. At
equilibrium it results xt = ω and, for the budget constraint, xt+1 = ω̃1 +
mt+1/pt+1; since this must hold for every period it results Mt = M ∀t: as
at equilibrium the agent consume his endowment the quantity of money he
holds is constant. Substituting these conditions in the f.o.c. it follows

U1(ω, ω̃1 +
M

pt+1

) =
pt

pt+1

U2

(
ω, ω̃1 +

M

pt+1

)
(11)

Let mt = M/pt be the time t real amount of money in the economy. Multi-
plying both side of the expression (11) by mt we obtain the expression which
links two consecutive equilibrium levels of the real amount of money:

U1(ω, ω̃1 + mt+1)mt = U2 (ω, ω̃1 + mt+1) (12)
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The following proposition show how to built an OLG economy whose set
of equilibria coincides with those of the given myopic economy.

Proposition 3 EM(2) is equivalent to an OLG exchange economy with ag-
gregate amount of money equal to M , where representative agent lives two
periods, he receives an endowment equal to ω and ω̃1 in the first and second
period of life respectively and whose utility function V (xt, xt+1) is such that
V1(x

t
t, x

t
t+1) = U1(ω, xt

t+1) and V2(x
t
t, x

t
t+1) = U2

(
ω, xt

t+1

)
, where xi

j is time
j consumption of agent born in period i.

Proof : It will be sufficient to show that equation (12) characterizes the
sequence of equilibrium real quantity of money in the specified OLG model.
When considering the OLG economy, the maximization problem of individual
born in period t is

POt(2) :


maxxt,xt+1 V

(
xt

t, xt
t+1

)
s.t. ptx

t
t + M t

t+1 ≤ ptω
pt+1x

t
t+1 ≤ pt+1ω̃1 + M t

t+1

Mt given

Where M i
j is the quantity of money held by the agent born in i at beginning

of period j . First order conditions give

V1(xt, xt+1) =
pt

pt+1

V2(xt, xt+1)

Assuming that at time 0 there is just one old agent that holds the total
amount of money M , the equilibrium condition can be written as

xt
t = ω − M

pt

∀t

xt
t+1 = ω1 +

M

pt+1

∀t

That is young agents consume their endowment minus the amount of
the good they have to sell to the old for buying money, and old agents
consume their endowment plus the quantity of good they buy with their
money. Substituting equilibrium condition in the f.o.c. and multiplying
both side for M/pt and considering the expression of V1 and V2 given in the
proposition, it follows that at equilibrium

U1

(
ω, ω̃1 +

M

pt+1

)
M

pt

= U2

(
ω, ω̃1 +

M

pt+1

)
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which is exactly equation (12). �
It is easy to check that this result extends to the case where there are

l > 1 goods per period when U is intertemporal additive. In particular let
ui(x) : Rl

+ → R , i = 1, 2 with x ∈ Rl
+, the instantaneous utility today

and tomorrow respectively, ω ∈ Rl
+ the vector of endowment of time t goods

as perceived in period t, ω̃1 ∈ Rl
+ the vector of endowment of time t + 1

goods as perceived in period t and M the quantity of money held by the
representative agent in period 0. The equilibrium condition in this myopic
economy is xt

t = ω, ∀t. This implies that relative prices between goods of the
same period are constant, namely the equilibrium relative price between two
goods i and j of period t is equal to marginal rate of substitution between
these two goods at the endowment.

In the corresponding OLG economy, representative agent’s endowment is
equal to ω ∈ Rl

+ and ω̃1 ∈ Rl
+ respectively in the first and second period of

life, representative agent’s utility function is: u′
1(x)|ωxt

t+u2(x
t
t+1), where xi

j ∈
Rl

+ and u′
1(x)|ω is the gradient of u1 computed at the young’s endowment.

Since in each time t there are agents whose utility is linear in the goods of
that period, then relative prices within these goods do not depend on time
t. Therefore the equilibrium dynamic is completely resumed by the inflation
rate.

Proposition 10 shows that for any myopic economy when n = 2 there
always exist an equivalent overlapping generation economy.

Proposition 11 states the relation between 2 periods overlapping genera-
tion economies ”a la Grandmont” and myopic economy with n = 2.

Let EO(2) be an OLG exchange economy where the aggregate amount of
money is equal to M , agents live two periods, they receives an endowment
equal to ω0 and ω1 in their first and second period of life respectively, and
their utility function is of the form v (xt

t) + w
(
xt

t+1

)
. Let xt−1

t = θ
(
xt

t+1

)
be

the equilibrium dynamic of old agents’ consumption and let Rv(x) = −v′′(x)x
v′(x)

and Rw(x) = −w′′(x)x
w′(x)

.

Proposition 4 If Rv(x) and Rw are non-decreasing function of x for every
x > 0, Rv(x) < x/(x − ω0), ∀x > 0, v′′′(x) > 0 for x < ω0 , w′′′(x) > 0 for
x < ω1 and limx→0 w′(x) = +∞, then EO(2) is equivalent to an economy of
type EM(2) where ω̃1 = ω1, the aggregate quantity of money is M and the
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utility function is U(xt, xt+1) = u(xt) + βu(xt+1), with

u′(x) =
(ω − ω1) (θ(x) − ω1)

(θ(ω) − ω1) (x − ω1)
(13)

β =
θ(ω) − ω1

(ω − ω1)
(14)

The hypothesis of proposition 11 state that the demand in the second
period of life is non increasing in the rate of interest, and the offer curve is
concave as long as it is downward slopping. This implies that the backward
equilibrium dynamics of the overlapping generation economy is well defined.
Note that the hypothesis of proposition 11 with the exception of the assump-
tion on v′′′ and w′′′ are the same used by Grandmont [8]. Furthermore most
of the specification of the utility function used in macroeconomic models
satisfy these hypothesis.

Lemma 5 If Rv(x) and Rw are non-decreasing function of x for every x > 0,
Rv(x) < x/(x−ω0), ∀x > 0, v′′′(x) > 0 for x < ω0 and w′′′(x) > 0 for x < ω1,
and θ(.) is the resulting equilibrium dynamic of old agents’ consumption, then

θ′(x) <
θ(x) − ω1

x − ω1

∀x > ω1 (15)

and

θ′(x) >
θ(x) − ω1

x − ω1

∀x < ω1 (16)

Furthermore if limx→0 w′(x) = +∞ then limx→0 u′(x) = +∞, where u is
defined as in proposition 11.

Proof: See the appendix.
Proof of proposition 11: Notice that for the equilibrium condition in

the OLG economy
xt−1

t = ω1 + mt

where mt = M/pt is the real amount of money in period t. From the hy-
pothesis it follows that

mt = θ(mt+1 + ω1) − ω1 (17)
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is the equilibrium dynamics of real amount of money in the OLG economy.
From equation (12) and considering that U(xt, xt+1) = u(xt) + βu(xt+1), we
have that the equilibrium sequence of real asset in EM(2) is

mt =
βu′(ω̃1 + yt+1)yt+1

u′(ω)

Substituting the expression of u′(x) and β we obtain exactly (17) so the
equilibrium dynamics of monetary price is the same.

It remains to be proved that the utility function defined in (5) and (14)
respects the conditions: β > 0, u′(.) > 0, u′′(.) < 0. Notice first that x > ω1 if
and only if θ(x) > ω1: indeed if old agents of some period t+1 are consuming
more (resp. less) than their endowment, xt

t+1 > ω1 (resp. xt
t+1 < ω1), than

aggregate quantity of money is positive (resp. negative). This implies that it
was positive (resp. negative) also in the previous period and hence xt−1

t > ω1

or θ(xt
t+1) > ω1 (resp. θ(xt

t+1) < ω1). It follows that (θ(ω) − ω1) has the
same sign of (ω − ω1) and hence it results β > 0 and u′(.) > 0. Deriving
expression (5) we have

u′′(x) =
(ω − ω1) [θ′(x)(x − ω1) − θ(x) + ω1]

(θ(ω) − ω1) (x − ω1)
2

which is negative if and only if θ′(x) < θ(x)−ω1

x−ω1
∀x > ω1 and θ′(x) > θ(x)−ω1

x−ω1

∀x < ω1 that follow from first part of lemma 12. The second part of lemma
12 guaranties that the first order condition we used to characterize the equi-
librium dynamics are sufficient condition for the optimum in the consumer
maximization problem.�

5 Conclusion

We have studied infinite lived representative agents economy where agents
are myopic. We have shown that there are few restrictions on the dynamics
of equilibrium prices that can be generate by such economy. In particular
any invertible and monetary price dynamics homogenous of degree 1 and
increasing in the quantity of money is the equilibrium price dynamics of an
appropriate myopic economy. Furthermore we studied the robustness of some
properties of the equilibrium in infinite lived representative agent exchange
economy, introducing a myopic behavior. In particular we showed that the
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indeterminacy of equilibria and the monetary equilibria appear when a small
level of myopia is introduced.

Finally we show how to obtain a myopic economy equivalent to some
given OLG economy and the converse result is provided for high level of
myopia. Thus the model allows to move from the OLG world into the ILRA
one just changing the degree of myopia in the economy.

If representative agent utility function is additive, introducing myopia
in an infinitely lived representative agent exchange economy the qualitative
properties of the equilibrium are those of an OLG economy.

6 Appendix

Proof of lemma 12: First order condition for the OLG economy is

v′(xt
t)

pt

=
w′(xt

t+1)

pt+1

Multiplying both sides for m and substituting the equilibrium condition yt =
m/pt = ω0 − xt

t = xt−1
t − ω1 it results that the dynamics of real amount of is

implicitly defined by

v′(ω0 − yt)yt = w′(ω1 + yt+1)yt+1 (18)

deriving left hand side of this equality we have

D [v′(ω0 − yt)yt] > 0 ⇔ −v′′(ω0 − yt)yt

v′(ω0 − yt)
> −1

substituting the equilibrium condition one obtain that for any yt, D [v′(ω0 − yt)
yt] > 0 ⇔ Rv(x) < x/(x − ω0), ∀x > 0. Hence from hypothesis it follows
that left hand side of (18) is strictly increasing and hence invertible and for
any yt+1 one can write

yt = ϕ (w′(ω1 + yt+1)yt+1)

where ϕ is the inverse function of left hand side of (18). Using the equilibrium
condition and the definition of θ(.) it results

θ
(
xt

t+1

)
= ϕ

(
w′ (xt

t+1

) (
xt+1

t − ω1

))
+ ω1
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whose derivative is

θ′(x) = ϕ′ (w′ (x) (x − ω1)) [w′′(x)(x − ω1) + w′(x)]

which is always positive for x < ω1 and it can be negative only for x > x∗ > ω1

if it exists for instance some x∗∗ such that Rw(x∗∗) > 1.3 If this is the case
then equation (15) is satisfied for any x > x∗ . When θ′(x) is positive (i.e.
when x < x∗ or x = �+ if x∗ does not exist) inequalities (15) and (16) imply
the concavity of θ, or in other term that the offer curve is convex when
∂xt

t+1/∂xt
t < 0. θ′′(x) < 0 follows from the condition on Rv, Rw, w′′′ and v′′′.

In order to prove that limx→0 u′(x) = +∞ consider that, from the hypoth-
esis, limx→0 w′ (xt

t+1

) (
xt+1

t − ω1

)
= −∞. From equation (18) it follows that

limx→−∞ ϕ(x) = −∞ substituting in expression (5) we obtain the desired
result �.
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