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Abstract

We compare the seller’s expected revenue in a second price sealed bid auction for a single object

in which bidders receive multidimensional signals. Bidders’ valuations for the object depend on

their signals and a signal observed privately by the seller. We show in various examples that the

seller can be better off not revealing publicly his signal. Hence the linkage principle does not

necessarily hold when bidders receive multidimensional signals.
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1 Introduction

The “linkage principle” is a very important result of auction theory. An implication of the linkage

principle is that a seller maximizes his expected revenue by publicly revealing his information

regarding the value of the object for the bidders. This result has been established by Milgrom

and Weber (1982).1 It holds true in single-unit auctions, with symmetric bidders, when bidders’

valuations are affiliated. Recently Perry and Reny (1999) have shown, by way of a counter-

example, that this is not necessarily true in multi-unit auctions. Building on this counter-example,

Krishna (2002) shows that the release of public information may generate a decrease in seller’s

revenue when bidders are asymmetric in a single-unit auction.2 In this paper, we complement

these negative findings regarding the linkage principle. We show that the linkage principle can

fail in a single unit auction when bidders are symmetric but receive multidimensional signals.

We establish this result by considering “blind auctions”. A blind auction is an auction in

which bidders do not know the object which is auctioned. However they know that the object is

of one among m possible types and they know their private valuation for each type. The seller

knows the type of the object but does not observe bidders’ valuations. A bidder’s value for the

object is therefore determined by m (real value) signals (his private valuation for each type) and

the signal possessed by the seller. The main difference with the standard independent private

value framework is the fact that each bidder has multiple signals.

We compare the seller’s expected revenue when he runs a blind auction and when he publicly

releases perfect information on the type of the object. In either format, the seller uses a sealed

bid second price auction. We show that when there are two bidders the seller’s expected revenue

is always strictly larger in the blind auction, i.e. when he does not publicly reveal the type of

the object. Moreover, using various examples, we show that the seller’s expected revenue can

also be strictly larger in the blind auction when the number of bidders is larger than 2. As we

do not depart from the independent private value framework, the revenue equivalence theorem

1See Krishna (2002), Chapter 7 for an exposition of the linkage principle.
2A related paper is Bergemann and Pesendorfer (2003). They consider an optimal auction design problem in

which the seller can also choose the information structure of each bidder. They show that optimal information

structures are “partitional” and thus leaves some uncertainty on their valuations to the bidders. The linkage

principle does not apply in their setting because information is not released publicly and is unknown to the seller

(i.e. remains private to each bidder). Finally, they do not consider the case in which bidders receive multi-

dimensional signals
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applies and our results extends to the first price auction and to other commonly used auction

mechanisms.

Interestingly blind auctions are actually used in financial markets. Increasingly portfolio

managers auction packages of trades to brokers. Brokers announce a trading fee per share at

which they commit to execute each stock in the package at its closing price on the day preceding

the auction.3 The broker announcing the lowest fee wins the auction and will be in charge of

executing all the trades in the package (see Kavajecz and Keim (2002) for a detailed description

of these auctions). The winning broker makes a profit if he achieves lower transaction costs than

his fee.4 This can be done by clearing many of the orders in the package against his own book of

pending transactions.5 A key feature of these auctions is that portfolio managers do not reveal

the identity of the securities in the package and the number of shares to buy or sell for each

security. Hence brokers (i.e., bidders) face some uncertainty regarding the “object” (a package

of trades) which is auctioned.

The paper is organized as follows. Section 2 presents the model. Section 3 shows that it can

be optimal for a seller to conduct a blind auction. Section 4 concludes.

2 Model

A seller wishes to sell one object. There are n risk neutral bidders. The seller and each bidder

receive real value private signals regarding the value of the object. The seller receives signal

S ∈ {1, 2, ...,m}, with Pr(S = j) = πj andm ≥ 2. Bidder i receives signalXi = (X
1
i ,X

2
i , ...,X

m
i ),

where the components Xj
i are identically and independently distributed over [0, 1]. We denote

by F (.) the cumulative distribution of signal Xj
i and by f(.) its density. Bidders’ signals Xi are

i.i.d. and they are independently distributed from S. Each bidder and the seller observes his

own signal, but not the signals received by the other agents. We denote by Vi = u(Xi, S) the

3Hence each broker commits to sell (buy) the stocks in the package at a fixed price plus a markup (resp. minus

a discount) which is the trading fee per share.
4The transaction cost on a specific trade is the difference between the average price at which the broker executes

the trade and the guaranteed price.
5Since each broker has a different book of pending transactions, it is not unreasonable to view the brokers as

having different private values for each possible composition of the package.
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random variable that represents bidder i’s valuation for the object. We assume that

u(xi, s) =
mX
j=1

xji1{s=j}, (1)

where (xi, s) is a given realization of (Xi, S) and 1{s=j} takes the value 1 if s = j and 0 otherwise.

Notice that a bidder’s valuation does not depend on the other bidders’ valuations and that u(., .)

is identical for all bidders. Hence bidders have private valuations and are symmetric. Finally we

note that all signals are affiliated.6

One interpretation for traders’ valuation is as follows. The object sold by the seller has m

possible types (for instance, the object has m possible different colors). Type j is obtained with

probability πj . Bidders have private valuations for the object that depend on its type.

The seller organizes a second price sealed bid auction. Each bidder submits a sealed bid. The

bidder who submits the highest bid receives the object and he pays the seller the second highest

bid. The seller can decide (before receiving his signal) to publicly and perfectly reveal his signal

or not before running the auction. We assume that the seller can credibly commit to a disclosure

policy.7 If the seller does not disclose his signal, we say he runs a blind auction since in this case

bidders do not know exactly the type of the object.

Suppose that the seller receives signal s, and bidder i receives signal xi = {x1i , x2i , ..., xmi }. If
the seller reveals his signal, then bidder i’s valuation will be vi = u(xi, s) = xsi , whereas if the

seller does not reveal his signal, then bidder i’s expected valuation will be wi = E[u(xi, S)] =Pm
j=1 πjx

j
i . Observe that bidders’ valuations are independent whether the type of the object is

known or not. Thus, as is well-known, each bidder has a weakly dominant bidding strategy which

consists in bidding his valuation for the object.

In the rest of the paper, we study the seller’s expected revenue in each possible format for

the auction.
6For all i, j, signals S, and Xj

i , are affiliated as independence is a special case of affiliation. Moreover, let h

be the joint distribution of Vi and S. Then we have h(vi, s) = f(vi)πs. Thus, for any v,v0, s and s0 it results

h(v, s)h(v0, s0) = h(v, s0)h(v0, s). Therefore Vi and S are affiliated.
7This is not important when traders’ valuations are given by Eq.(1). In this case, once the seller opts for

disclosure, it is weakly dominant for him to truthfully reveal his information since signals Xj
i are i.i.d for a given i.
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3 Findings

3.1 Two bidders

If the seller reveals his signal s, then the winner of the object is the bidder with the highest xsi

and he pays the second highest valuation among the n bidders conditional on the type of the

object being s. Let Xs
(2) be the second highest element of {Xs

1 ,X
s
2 , ...,X

s
n}. By assumption, all

the signals Xj
i are i.i.d. for all i, j. It follows that the X

s
(2) are i.i.d. for all s ∈ {1, 2, ...,m} with

cumulative distribution

F(2)(z) = F (z)n + nF (z)n−1(1− F (z)).

Hence the seller’s expected revenue ex-ante (before receiving the signal) is

RD =
mX
j=1

πjE[X
j
(2)] = E[X1

(2)] =

=

Z 1

0
zf(2)(z)dz = 1−

Z 1

0
F(2)(z)dz,

= 1 +

Z 1

0
((n− 1)F (z)n − nF (z)n−1)dz, (2)

where f(2)(.)
def
= F 0(2)(.).

If the seller runs a blind auction, then bidder i bids his expected valuation for the object, i.e.,

wi =
Pm

j=1 πjx
j
i . The winner of the object is the bidder with the highest expected valuation for

the object and he pays the second highest expected valuation among the n bidders. Let G be the

cumulative distribution of Wi =
Pm

j=1 πjX
j
i . As the Wi are i.i.d., the seller’s expected revenue

with the blind auction is

RND = E[W(2)] = 1 +

Z 1

0
((n− 1)G(z)n − nG(z)n−1)dz. (3)

Proposition 1 : If n = 2 then the seller’s expected revenue is larger in the blind auction, i.e.

RD < RND.

Proof : For n = 2, we have RD < RND iffZ 1

0
F (z)2 − 2F (z)dz <

Z 1

0
G(z)2 − 2G(z)dz (4)
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As the random variables Xj
i are i.i.d. for all i and j, we have E[Wi] =

Pm
j=1 πjE[X

j
i ] = E[X1

1 ].

As E[Wi] = E[X1
1 ], we have

R 1
0 zg(z)dz =

R 1
0 zf(z)dz where g(.)

def
= G0(.). Integrating by parts

we deduce that
R 1
0 F (z)dz =

R 1
0 G(z)dz. Hence Condition (4) rewritesZ 1

0
(F (z)2 −G(z)2)dz < 0. (5)

Observe that the random variable Wi is a weighted average of m i.i.d. random variables

with cumulative distribution F (.). Thus G second order stochastically dominates F .8 Hence the

following inequality holds true:Z x

0
(F (z)−G(z))dz ≥ 0 ∀x ∈ [0, 1],

and it is strict for some x ∈ (0, 1) as F 6= G. Let θ(z)
def
=
R z
0 (F (y)−G(y))dy. The function θ(.)

has the following properties: (i) θ0(z) = F (z)−G(z); (ii) θ(z) ≥ 0 for all z ∈ [0, 1]; (iii) θ(z) > 0
for some z ∈ (0, 1); (iv) θ(0) = 0 and (v) θ(1) = 0 since R 10 F (y)dy = R 10 G(y)dy. Thus,Z 1

0
(F (z)2 −G(z)2)dz =

Z 1

0
(F (z) +G(z))θ0(z)dz

= [(F (z) +G(z))θ(z)]10 −
Z 1

0
(f(z) + g(z))θ(z)dz

= 0−
Z 1

0
(f(z) + g(z))θ(z)dz < 0.¥

3.2 More than 2 bidders

The previous proposition shows that when there are 2 bidders, the seller is always strictly better

off not disclosing his information on the type of the object. Thus the linkage principle does

not necessarily hold true in our framework. Now we show, using 2 numerical examples, that this

conclusion also holds true when there are several bidders. In each example we assume that m = 2

and π1 = π2 = 1/2. Thus Wi =
1
2(X

1
i + X2

i ). The cumulative probability distribution of the

signals, F (.), is different in each example.

Example 1. Assume that Xj
i can take two values, say 0 and 1 with probability (1− p) and

p. Consider the case in which the seller discloses his signal. The price paid by the winner of
8For any strictly concave function U : R → R and any vector {x1i , ..xmi } ∈ [0, 1]m realization of Xi, we have

U(
Pm

j=1 πjx
j
i ) ≥

Pm
j=1 πjU(x

j
i ), with strict inequality if x

j
i are not all identical. Thus, E[U(

Pm
j=1 πjX

j
i )] >

E[
Pm

j=1 πjU(X
j
i )]. That is E[U(Wi)] > E[U(Xj

i )]. This means that G(.) second order stochastically dominates

F (.).
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the auction is 1 iff at least 2 buyers bid 1 for the object (in which case, the object is randomly

assigned to one of the 2 buyers). This occurs iff at least two among the n bidders have a valuation

equal to 1 . Otherwise the price paid by the winner of the auction is zero. Hence the seller’s

expected revenue is

RD = Pr(X
s
(2) ≥ 1) = 1− (1− p)n−1(1 + (n− 1)p).

Now consider the case in which the seller does not disclose his signal. In this case, the

probability distribution of each bidder’s valuation (Wi) is:
Pr(Wi = 0) = (1− p)2

Pr(Wi =
1
2) = 2p(1− p)

Pr(Wi = 1) = p2

We deduce that the cumulative distribution of the second highest valuation among the n bidders

is 
Pr(W(2) ≤ 0) = (1− p)2(n−1)(n+ (1− n)(1− p)2),

Pr(W(2) ≤ 0.5) = (1− p2)n−1(1 + p2(n− 1)),
Pr(W(2) ≤ 1) = 1.

The price paid in the auction is equal to the second highest valuation among the n bidders. Thus,

the seller’s expected revenue if he does not disclose his information is

RND = 0.5(Pr(W(2) ≤ 0.5)− Pr(W(2) = 0)) + (1− Pr(W(2) ≤ 0.5) =
= 1 +

1

2
(1− p)2(n−1)((n− 1)p(p− 2)− 1)− 1

2
(1− p2)n−1(1 + (n− 1)p2).

The next table indicates for various pairs (p, n) whether the seller is better off disclosing (the cell

contains a “D”) or not (“ND”).

p/n 2 3 4 5 6 7 10 12 15 20 25 30

0.5 ND D D D D D D D D D D D

0.4 ND ND D D D D D D D D D D

0.3 ND ND ND D D D D D D D D D

0.2 ND ND ND ND ND D D D D D D D

0.1 ND ND ND ND ND ND ND ND D D D D

Table 1
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Example 2. In our second example, the bidders’ signals are drawn from a continuous dis-

tribution. Specifically, we assume that Xj
i is continuously distributed on [0, 1] with a cumulative

probability distribution:

F (z) =
z + α log(1 + z)

1 + α log(1 + z)
(6)

with α ≥ 0. Notice that F (z) increases with α.9 This means that the larger is α, the larger is the
probability that bidders have small valuations. In this sense, increasing α is similar to decreasing

p in the previous example. The cumulative probability distribution for a bidder’s valuation if the

seller does not disclose his information is then:

Pr(Wi < z) = G(z) =

Z 1

0
f(y)F (2z − y)dy

Using Equations (2) and (3) in the previous subsection, we compute numerically RD and RND

for various pairs (α, n). Table 2 indicates for which pairs (α, n), the seller is better off disclosing

(the cell contains a “D”) or not (“ND”).

α\n 2 3 4 5 6 7 8 9 10

2 ND ND D D D D D D D

4 ND ND ND D D D D D D

10 ND ND ND D D D D D D

40 ND ND ND ND ND ND ND D D

Table 2

Summary. In these 2 examples, the seller is better off with the blind auction if the number

of bidders is small and/or the probability of observing Xj
i close to zero is sufficiently large (p

small/α large). Thus the linkage principle does not necessarily hold in our set-up, even if the

number of bidders is relatively large.

3.3 A last example

Our model differs from the standard framework in auction theory (i.e. Milgrom and Weber

(1982)) for two reasons: (A) each bidder has a multidimensional signal and (B) the relationship

between a bidder’s valuation and the seller’s signal is not continuous or monotonic. The reader

9 Indeed ∂F/∂α = (1−z) log(1+z)
(1+α log(1+z))2

that is strictly positive for z ∈ (0, 1).
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may wonder whether (A) or/and (B) are the reasons for which the linkage principle fails in our

model. In order to address this issue, we have considered a slightly different framework in which

bidders’ valuations are given by

u(Xi, S) = X1
i + SX2

i ,

where Xi = (X
1
i ,X

2
i ) is the signal observed by bidder i and S is the signal observed by the seller.

Furthermore we assume that (i) Xj
i are i.i.d. variables on [0, 1] with cumulative distribution F (.)

defined by Equation (6) and that (ii) S is independently distributed from bidders’ signals and

uniformly distributed on [1/2, 1]. In this framework all hypotheses of Milgrom and Weber (1982)

are satisfied with the exception that bidders receive a bi-dimensional signal. In particular, u(., .)

is continuous and increasing in X1
i ,X

2
i and S.

For any given s ∈ [1/2, 1], the random variable U = X1 + sX2 has distribution

H(z, s)
def
= Pr(U < z) =

Z 1

0
F (z − sx2)f(x2)dx2 ∀z ∈ [0, 1 + s].

If the seller discloses s then bidder i ’s valuation is wi(s) = x1i + sx2i and the cumulative

probability distribution of bidders’ valuations is H(z, s). Following the same reasoning as in

Section 2.1, we deduce that after disclosing his signal s , the seller’s expected revenue is equal to

RD(s) = 1 + s+

Z 1+s

0
(n− 1)H(z, s)n − nH(z, s)n−1dz.

Hence the seller’s expected revenue (ex-ante) is:

RD = E[RD(S)] = 1 +E[S] +

Z 1

1/2
2

Z 1+s

0
(n− 1)H(z, s)n − nH(z, s)n−1dzds.

If the seller does not disclose his signal then bidder i ’s expected valuation is wi = x1i +E[S]x
2
i .

Hence the cumulative probability distribution of bidders’ valuations is H(z,E[S]). We deduce

that the seller’s expected revenue is

RND = 1 +E[S] +

Z 1+E[S]

0
(n− 1)H(z,E[S])n − nH(z,E[S])n−1dz = RD(E[S])

In order to understand whether it is optimal for the seller to disclose ore not S, we compute

numerically RND and RD, as we did in Example 2.

8



α\n 2 3 4 5 6 7 8 ... 14 15

2 ND ND ND D D D D D D D

4 ND ND ND ND D D D D D D

10 ND ND ND ND ND ND D D D D

30 ND ND ND ND ND ND ND ND ND D

Table 3

We conclude that the linkage principle does not necessarily apply when bidders have multi-

dimensional signals. Notice that as in Examples 1 and 2, the seller is better off not disclosing

information when the number of bidders is small and/or the probability of observing Xj
i close to

zero is sufficiently large.

4 Conclusion

We conclude by providing the economic intuition for our findings. If the seller reveals the type of

the object, then only the bidders who have a high valuation for this specific type will aggressively

compete for the object. In contrast, if the seller does not reveal the type of the object, then the

most aggressive bidders will be those who have high valuation for some among the m possible

types of the object. Thus, by keeping secret the type of the object, the seller increases the number

of bidders who have large valuations. This effect explains why concealing information can raise

the seller’s expected revenue. On the other hand, if the seller does not disclose information, a

bidder’s offer is given by the average of his signals. Hence it is smaller than the highest of his

signals. This effect works to decrease the seller’s expected revenue and explains why the seller

may be better off revealing information.

The first effect dominates the second when, for each object, there is a large probability that

the bidders have a small valuation and/or when the number of bidders is small. As this number

enlarges, the first effect becomes less important since, for each object, the probability of having

at least 2 bidders with large valuations becomes larger. For a sufficiently large number of bidders,

the seller is then better off disclosing information.

It is worth stressing that our findings do not depend on the fact that we focus on a second

price sealed bid auction. For a given disclosure policy, the revenue-equivalence theorem holds
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true in our model (bidders have independent private values for the object). Thus, the ranking of

the seller’s expected revenue across disclosure regimes extends to the other auction mechanisms

that guarantee that the winner is the seller with the highest valuation10 and that the seller with

the lowest possible valuation has an expected payoff equal to zero.
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