$EAR = \left(1 + \frac{r_a}{\nu}\right)^k - 1$

LAST NAME

FIRST NAME _____

$$A(C,r,g,n) = \frac{C}{r-g} \left(1 - \left(\frac{1+g}{1+r}\right)^n \right)$$

a) A bank account pays an annual rate (APR or r_a) of 6%. The frequency of compounding is k=4. What is the effective annual rate?

□ 6% □ 6.09%

- □ 6.136% <
- **G** 6.168%
- **6.235%**
- Cash flow stream A
- Cash flow stream B
- $\Box \quad \text{Cash flow stream C} \leftarrow$
- Cash flow stream D
- □ All have the same future value

b) Which	cash	flow	stream	has	the	high	lest	t future
value at 7	Г=2?	The i	nterest/o	disco	ount	rate	is	strictly
positive.								

	CF ₀	\mathbf{CF}_1	CF ₂
Α	80	80	80
В	90	70	80
С	90	80	70
D	90	75	75

c) You want to invest money in a bank account. Banks A, B and C all offer accounts with the same APR (r_a) of 12%, but different compounding frequencies. Bank A compounds monthly, Bank B compounds quarterly, and Bank C compounds semiannually. Which account offer do you prefer?

d) After a successful career, you plan to make a donation to HEC. The donation is used to endow a research chair (i.e., a position for a professor) with a salary of $\bigcirc 100,000$ per year forever, paid in full at the end of each year. To finance the chair, HEC will invest the money into a savings account that offers an annual return of 10% forever. How much money do you need to donate to HEC?

e) What is the present value of a growing annuity that starts paying $\triangleleft 100$ at T=0 (today) and with a last payment made at T=9? The growth rate of cash flows equals 10% (meaning that the cash flow at T=1 equals $\triangleleft 10$ etc.). The discount rate is 5%.

	Bank	Α	\leftarrow
--	------	---	--------------

 $\Box \quad Bank B$

- □ Bank C
- □ I am indifferent between the three offers
- **□** €100,000
- □ €500,000
- □ €1,000,000 ←
- □ €2,000,000

• No finite amount is enough to

- finance the research chair forever
- □ -€11.31
- □ €1,089.32 □ €1.138.87
- □ €1,158.8/
- □ €1,243.90 **←**
- □ €1,368.41

 $EAR = \left(1 + \frac{r_a}{k}\right)^k - 1$

LAST NAME

С

D

90

90

FIRST NAME _____

$$A(C,r,g,n) = \frac{c}{r-g} \left(1 - \left(\frac{1+g}{1+r}\right)^n \right)$$

a) A bank account pays an annual rate (APR or r_a) of 6%. The frequency of compounding is k=12. What is the effective annual rate?

b) Which cash flow stream has the highest future

value at T=2? The interest/discount rate is strictly

75

70

- □ 6% □ 6.09%
- **G** 6.136%
- □ 6.168% <
- □ 6.235%
- Cash flow stream A
- Cash flow stream B
- Cash flow stream C
- $\Box \quad \text{Cash flow stream D} \leftarrow$
- □ All have the same future value

positive.				
	CF ₀	CF ₁	CF ₂	
А	80	80	80	
В	90	70	80	

75

80

c) You want to borrow money from a bank. Banks A, B and C all offer loans with the same APR (r_a) of 12%, but different compounding frequencies. Bank A compounds monthly, Bank B compounds quarterly, and Bank C compounds semi-annually. Which loan offer do you prefer?

d) After a successful career, you plan to make a donation to HEC. The donation is used to endow a research chair (i.e., a position for a professor) with a salary of $\bigcirc 100,000$ per year forever, paid in full at the end of each year. To finance the chair, HEC will invest the money into a savings account that offers an annual return of 5% forever. How much money do you need to donate to HEC?

e) What is the present value of a growing annuity that starts paying $\triangleleft 100$ at T=0 (today) and with a last payment made at T=9? The growth rate of cash flows equals 8% (meaning that the cash flow at T=1 equals $\triangleleft 108$ etc.). The discount rate is 5%.

- □ Bank B
- \Box Bank C \leftarrow
- □ I am indifferent between the three offers
- **□** €100,000
- **□** €500,000
- □ €1,000,000
- □ €2,000,000 ←
- □ No finite amount is enough to
- finance the research chair forever
- □ -€11.31
- □ €1,089.32
- □ €1,138.87 **←**
- □ €1,243.90
- □ €1,368.41

HEC Paris

 $EAR = \left(1 + \frac{r_a}{k}\right)^k - 1$

LAST NAME

FIRST NAME _____

$$A(C,r,g,n) = \frac{C}{r-g} \left(1 - \left(\frac{1+g}{1+r}\right)^n \right)$$

a) A bank account pays an annual rate (APR or r_a) of 6%. The frequency of compounding is k=2. What is the effective annual rate?

b) Which cash flow stream has the highest future value at T=2? The interest/discount rate is strictly positive.

	CF ₀	CF ₁	CF ₂
Α	90	80	70
В	90	70	80
С	80	80	80
D	90	75	75

c) You want to invest money in a bank account. Banks A, B and C all offer accounts with the same APR (r_a) of 12%, but different compounding frequencies. Bank A compounds semi-annually, Bank B compounds monthly, and Bank C compounds quarterly. Which account offer do you prefer?

d) After a successful career, you plan to make a
donation to HEC. The donation is used to endow a
research chair (i.e., a position for a professor) with a
salary of €75,000 per year forever, paid in full at the
end of each year. To finance the chair, HEC will
invest the money into a savings account that offers
an annual return of 15% forever. How much money
do you need to donate to HEC?

e) What is the present value of a growing annuity that starts paying $\notin 100$ at T=0 (today) and with a last payment made at T=9? The growth rate of cash flows equals 10% (meaning that the cash flow at T=1 equals $\notin 10$ etc.). The discount rate is 3%.

- □ 6.09% <
- **G** 6.136%
- **G** 6.168%
- **G** 6.235%
- \Box Cash flow stream A \leftarrow
- Cash flow stream B
- □ Cash flow stream C
- □ Cash flow stream D
- □ All have the same future value
- Bank A
- \Box Bank B \leftarrow
- □ Bank C
- □ I am indifferent between the three offers
- **□** €100,000
- □ €500,000 ←
- □ €1,000,000
- □ €2,000,000

□ No finite amount is enough to finance the research chair forever

- **□** -€11.31
- □ €1,089.32
- □ €1,138.87
- □ €1,243.90
- □ €1,368.41 ←

 $EAR = \left(1 + \frac{r_a}{k}\right)^k - 1$

LAST NAME

positive.

FIRST NAME _____

$$A(C,r,g,n) = \frac{c}{r-g} \left(1 - \left(\frac{1+g}{1+r}\right)^n \right)$$

a) A bank account pays an annual rate (APR or r_a) of 6%. The frequency of compounding is k=12. What is the effective annual rate?

b) Which cash flow stream has the highest future

value at T=2? The interest/discount rate is strictly

- □ 6%□ 6.09%
- **G** 6.136%
- □ 6.168% <
- **G** 6.235%
- □ Cash flow stream A
 - \Box Cash flow stream B \leftarrow
 - □ Cash flow stream C
 - Cash flow stream D
 - □ All have the same future value

r			
	CF ₀	CF ₁	CF ₂
А	80	80	80
В	90	80	70
С	90	75	75
D	90	70	80

c) You want to borrow money from a bank. Banks A, B and C all offer loans with the same APR (r_a) of 12%, but different compounding frequencies. Bank A compounds semi-annually, Bank B compounds monthly, and Bank C compounds quarterly. Which loan offer do you prefer?

d) After a successful career, you plan to make a donation to HEC. The donation is used to endow a research chair (i.e., a position for a professor) with a salary of el 20,000 per year forever, paid in full at the end of each year. To finance the chair, HEC will invest the money into a savings account that offers an annual return of 12% forever. How much money do you need to donate to HEC?

e) What is the present value of a growing annuity that starts paying $\triangleleft 100$ at T=0 (today) and with a last payment made at T=9? The growth rate of cash flows equals 8% (meaning that the cash flow at T=1 equals $\triangleleft 108$ etc.). The discount rate is 6%.

Bank A	\leftarrow

- Bank B
- □ Bank C
- □ I am indifferent between the three offers
- **□** €100,000
- □ €500,000
- □ €1,000,000 ←
- **□** €2,000,000

• No finite amount is enough to

- finance the research chair forever
- □ -€11.31
- □ €1,089.32 ←
- □ €1,138.87
- **□** €1,243.90
- □ €1,368.41