Quiz 4a

LAST NAME _____

HEC Paris

Equation of the CAL with the tangency portfolio and one risk-free asset: $E(r_p) = r_f + \left(\frac{E(r_T) - r_f}{\sigma_T}\right)\sigma_p$

Variance of a portfolio composed of two assets, A and B: $Var(r_P) = w_A^2 \sigma_A^2 + w_B^2 \sigma_B^2 + 2w_A w_B \sigma_A \sigma_B \rho_{AB}$

Weight of asset A in the minimum variance portfolio with two assets, A and B: $w_A^{min} = \frac{\sigma_B(\sigma_B - \rho_{A,B}\sigma_A)}{\sigma_A^2 + \sigma_B^2 - 2\rho_{A,B}\sigma_A\sigma_B}$

The following applies to <u>all questions</u> below:

There are two risky assets, A and B, and one risk-free asset, r_f . $E(r_A)=15\%$, $E(r_B)=10\%$, $\sigma_A=8\%$, $\sigma_B=6\%$, $r_f=5\%$. The correlation between A and B is $\rho_{A,B}=$ - 0.5. The tangency portfolio has the following composition: $\{w_A; w_B\}=\{0.46; 0.54\}$. Short selling is allowed.

 \Box {0.2; -0.3; 1.1}

 \Box {0.046; 0.054; 0.9}

- a) What is the standard deviation of an efficient portfolio P that has $E(r_P)=20\%$, knowing that the standard deviation of the tangency portfolio is 3.48%?
- b) Can I obtain a riskless portfolio by investing **only** in the two risky assets, A and B?
- □ 35.78% □ 14.90% □ 7.15% □ 9.74%
 - □ Yes, by investing 100% in B and 0% in A
 □ Yes, by short-selling A and investing more than 100%

FIRST NAME

- in B
- No, such a portfolio cannot be obtained because assets A and B do not have the same standard deviation
 No, such a portfolio cannot be obtained because the correlation between A and B is not -1 or +1
- c) Which one of the following portfolios, {w_A; w_B; w_f}, is efficient?
- $\Box \{0.06; 0.04; 0.9\} \\\Box \{1.23; 0.27; -0.5\}$
- d) What is the weight of asset A in the Minimum Variance Portfolio?

□ 0.41 □ 0 □ 0.73		
□ -0.12		

e) What is the weight of asset A in a portfolio P that has E(r_P)=12%, and in which the weight of the risk-free asset is 0?

Quiz 4b

LAST NAME _____

HEC Paris

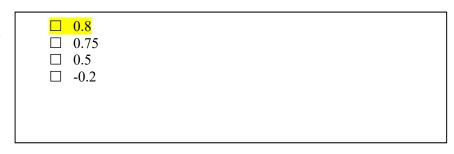
Equation of the CAL with the tangency portfolio and one risk-free asset: $E(r_p) = r_f + \left(\frac{E(r_T) - r_f}{\sigma_T}\right)\sigma_p$

Variance of a portfolio composed of two assets, A and B: $Var(r_P) = w_A^2 \sigma_A^2 + w_B^2 \sigma_B^2 + 2w_A w_B \sigma_A \sigma_B \rho_{AB}$

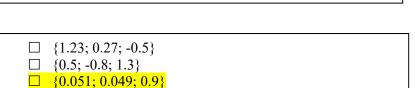
Weight of asset A in the minimum variance portfolio with two assets, A and B: $w_A^{min} = \frac{\sigma_B(\sigma_B - \rho_{A,B}\sigma_A)}{\sigma_A^2 + \sigma_B^2 - 2\rho_{A,B}\sigma_A\sigma_B}$

in B

The following applies to <u>all questions</u> below:


There are two risky assets, A and B, and one risk-free asset, r_f . $E(r_A)=15\%$, $E(r_B)=10\%$, $\sigma_A=8\%$, $\sigma_B=6\%$, $r_f=5\%$. The correlation between A and B is $\rho_{A,B}=$ - 0.1. The tangency portfolio has the following composition: $\{w_A; w_B\}=\{0.51; 0.49\}$. Short selling is allowed.

 \Box {0.12; -0.02; 0.9}


- a) Can I obtain a riskless portfolio by investing **only** in the two risky assets, A and B?
- b) What is the standard deviation of an efficient portfolio P that has $E(r_P)=18\%$, knowing that the standard deviation of the tangency portfolio is 4.78%?
- c) Which one of the following portfolios, {w_A; w_B; w_f}, is efficient?
- d) What is the weight of asset A in the Minimum Variance Portfolio?

□ 0 □ 0.85		
□ -0.16		

e) What is the weight of asset A in a portfolio P that has E(r_P)=14%, and in which the weight of the risk-free asset is 0?

□ 11.89% □ 29.67% □ 8.23% □ 6.45%

.WIE _____

FIRST NAME

 \Box Yes, by investing 100% in B and 0% in A

 \Box Yes, by short-selling A and investing more than 100%

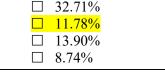
No, such a portfolio cannot be obtained because the correlation between A and B is not -1 or +1
 No, such a portfolio cannot be obtained because assets A and B do not have the same standard deviation

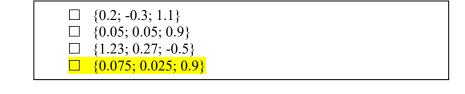
Quiz 4c

LAST NAME _____

HEC Paris

Equation of the CAL with the tangency portfolio and one risk-free asset: $E(r_p) = r_f + \left(\frac{E(r_T) - r_f}{\sigma_T}\right)\sigma_p$


Variance of a portfolio composed of two assets, A and B: $Var(r_P) = w_A^2 \sigma_A^2 + w_B^2 \sigma_B^2 + 2w_A w_B \sigma_A \sigma_B \rho_{AB}$


Weight of asset A in the minimum variance portfolio with two assets, A and B: $w_A^{min} = \frac{\sigma_B(\sigma_B - \rho_{A,B}\sigma_A)}{\sigma_A^2 + \sigma_B^2 - 2\rho_{A,B}\sigma_A\sigma_B}$

The following applies to <u>all questions</u> below:

There are two risky assets, A and B, and one risk-free asset, r_f . $E(r_A)=15\%$, $E(r_B)=10\%$, $\sigma_A=8\%$, $\sigma_B=6\%$, $r_f=5\%$. The correlation between A and B is $\rho_{A,B}=0.5$. The tangency portfolio has the following composition: $\{w_A; w_B\}=\{0.75; 0.25\}$. Short selling is allowed.

- a) What is the standard deviation of an efficient portfolio P that has $E(r_P)=20\%$, knowing that the standard deviation of the tangency portfolio is 6.87%?
- b) Which one of the following portfolios, {w_A; w_B; w_f}, is efficient?
- c) Can I obtain a riskless portfolio by investing **only** in the two risky assets, A and B?

FIRST NAME

- No, such a portfolio cannot be obtained because the correlation between A and B is not -1 or +1
 Yes, by investing 100% in B and 0% in A
 Yes, by short-selling A and investing more than 100% in B
 No, such a portfolio cannot be obtained because assets A and B do not have the same standard deviation
- d) What is the weight of asset A in the Minimum Variance Portfolio?

e) What is the weight of asset A in a portfolio P that has E(r_P)=11%, and in which the weight of the risk-free asset is 0?

Quiz 4d

LAST NAME _____

HEC Paris

Equation of the CAL with the tangency portfolio and one risk-free asset: $E(r_p) = r_f + \left(\frac{E(r_T) - r_f}{\sigma_T}\right)\sigma_p$

Variance of a portfolio composed of two assets, A and B: $Var(r_P) = w_A^2 \sigma_A^2 + w_B^2 \sigma_B^2 + 2w_A w_B \sigma_A \sigma_B \rho_{AB}$

Weight of asset A in the minimum variance portfolio with two assets, A and B: $w_A^{min} = \frac{\sigma_B(\sigma_B - \rho_{A,B}\sigma_A)}{\sigma_A^2 + \sigma_B^2 - 2\rho_{A,B}\sigma_A\sigma_B}$

The following applies to <u>all questions</u> below:

There are two risky assets, A and B, and one risk-free asset, r_f . $E(r_A)=15\%$, $E(r_B)=10\%$, $\sigma_A=8\%$, $\sigma_B=6\%$, $r_f=5\%$. The correlation between A and B is $\rho_{A,B}=0.1$. The tangency portfolio has the following composition: $\{w_A; w_B\}=\{0.55; 0.45\}$. Short selling is allowed.

- a) What is the standard deviation of an efficient portfolio P that has $E(r_P)=20\%$, knowing that the standard deviation of the tangency portfolio is 5.39%?
- b) Can I obtain a riskless portfolio by investing **only** in the two risky assets, A and B?
- □ 36.78% □ 15.91% □ 9.79% □ 10.43%
 - \Box Yes, by investing 100% in B and 0% in A
 - □ Yes, by short-selling A and investing more than 100% in B
 - No, such a portfolio cannot be obtained because the correlation between A and B is not -1 or +1

FIRST NAME

- No, such a portfolio cannot be obtained because assetsA and B do not have the same standard deviation
- c) Which one of the following portfolios, {w_A; w_B; w_f}, is efficient?
- $\Box \{0.3; -0.4; 1.1\} \\\Box \{0.07; 0.03; 0.9\} \\\Box \{1.24; 0.26; -0.5\} \\\Box \{0.055; 0.045; 0.9\}$
- d) What is the weight of asset A in the Minimum Variance Portfolio?

□ -0.15 □ 0		
0.79		

e) What is the weight of asset A in a portfolio P that has E(r_P)=13%, and in which the weight of the risk-free asset is 0?

$\begin{array}{c c} \hline 0.6\\ \hline 0.55\\ \hline 0.8\\ \hline -0.3 \end{array}$			