Financial Economics

Problem Set 4

Problem 1:

Consider an economy with two risky assets $S = \{s_1, s_2\}$. Asset s_1 expected return rate is $E(r_1)=20\%$ and the standard deviation of its rate of return is $\sigma_1=30\%$. Asset s_2 expected return rate is $E(r_2)=10\%$ and the standard deviation of its rate of return is $\sigma_2=10\%$. The correlation coefficient between the return rates of s_1 and s_2 is $\rho_{1,2} = 0.6$.

- a) What is the composition of the minimum variance portfolio, its expected return and the standard deviation of its rate of return?
- b) Represent in the Risk/Expected-Return plane the two risky assets, the minimum variance portfolio and the set of portfolios you can obtain with the two risky assets.
- c) On the same graph clearly indicate the region where you have to short sell asset s_1 and the region where you have to short sell asset s_2 .

Now, suppose that a risk-free asset F with return of 3% is introduced in this economy, i.e. set of assets S available is now $S=\{s_1, s_2, s_F\}$. Let the expected return of the tangency portfolio be $E[r_T] = 11.20\%$ and its standard deviation be $\sigma_T = 11.33\%$.

- d) What is the composition of the tangency portfolio?
- e) Represent the Capital Allocation Line and the tangency portfolio in your graph.
- f) Would it ever be efficient to short sell one of the two risky assets?

Your aunt Anna is a mean-variance investor with utility function:

$$U(E[r_p],\sigma_p^2) = E[r_p] - \frac{A}{2}\sigma_p^2$$

where A= 10. Her financial advisor proposes to buy portfolio D whose composition is $X_D = \{x_1^D = 0.3, x_2^D = 0.2, x_F^D = 0.5\}.$

- g) Is portfolio D efficient? Explain briefly (no explanation, no points).
- h) What is the exact composition $\{x_1, x_2, x_F\}$ of the portfolio that maximizes Anna's utility function?

Problem 2:

Consider an economy E with two risky assets A and B. The characteristics of the risky assets are provided below:

<u>Asset</u>	<u>E(r)</u>	σ	<u> 0</u> A, B
А	20%	10%	
В	25%	20%	+1

a. If short-sales are allowed in economy E, draw the feasible set of portfolios. Draw your graph to scale.

- * Indicate the minimum-variance portfolio MV1 on your graph.
- * What is the composition of MV1?
- * What are the expected return and standard deviation of MV1?

- **b.** Suppose now that short-sales are no longer allowed in the economy E. <u>In a new graph</u>, draw the feasible set of portfolios (again, please draw the graph to scale).
 - * Now, what is the composition of the minimum-variance portfolio MV2?
 - * Indicate MV2 on your graph.
- **c.** Now, we introduce the risk-free asset F with $r_F = 5\%$ into the economy E. Short-sales are still <u>not</u> allowed in E. On the graph of part (b) above, draw the set of efficient portfolios.
- d. In a new graph depict how your answer to part (c) would change, if short-sales are allowed, <u>but only up</u> to 30% (that is, you cannot short-sell more than 30% of any asset). What is the composition of the minimum variance portfolio MV3 that is composed of only risky assets if short-sales are allowed up to 30%?

Problem Set 4 – SOLUTION KEY

Problem 1:

d) $E[r_T] = 0.1120 = x_1^T 0.20 + (1 - x_1^T) 0.10 \Rightarrow x_1^T = 0.1200, x_2^T = 0.8800 \& x_F^T = 0$

f) N0, because in this case I would not be combining the risk-free asset with the tangency portfolio.

- g) portfolio D is <u>not</u> efficient as the weights of the risky assets are not multiples of the weights of the tangency portfolio.
- h) The weight of the tangency portfolio in aunt Anna's optimal portfolio is :

 $x_T^* = (0.1120 - 0.0300) / [10 * 0.1133^2] = 0.6388$

Hence her optimal portfolio will be:

Problem 3:

- **a.** If short-sales are allowed in economy E, <u>draw</u> the feasible set of portfolios. Please draw your graph to scale.
 - * Indicate the minimum-variance portfolio MV1 on your graph.
 - * What is the composition of MV1?
 - * What are the expected return and standard deviation of MV1?

$$x_{A}^{MV1} = \frac{\sigma_{B}^{2} - \rho_{A,B}\sigma_{A}\sigma_{B}}{\sigma_{A}^{2} + \sigma_{B}^{2} - 2\rho_{A,B}\sigma_{A}\sigma_{B}} = \frac{0.2^{2} - 1 \times 0.1 \times 0.2}{0.1^{2} + 0.2^{2} - 2 \times 1 \times 0.1 \times 0.2} = \frac{0.02}{0.01} = +2 = 200\%$$
$$x_{B}^{MV1} = 1 - x_{A}^{\text{min-var.}} = -1 = -100\%$$

$$E(r_{MV1}) = 2 \times E(r_A) - 1 \times E(r_B) = 2 \times 0.20 - 0.25 = 0.15 = 15\%$$

$$\sigma_{MV1} = 0 = 2 \times 0.10 - 1 \times 0.20$$

Note : Many of you forget to draw the portion of the line with a negative slope. This is necessary since the question is "draw the **feasible** set". The feasible set is the set of **all** risk/return combinations that can be obtained with a portfolio combining A and B (not just the efficient portfolios).

- **b.** Suppose now that short-sales are no longer allowed in the economy E. <u>In a new graph</u>, draw the feasible set of portfolios (again, please draw the graph to scale).
 - * Now, what is the composition of the minimum-variance portfolio MV2?

The feasible set is simply the line in between A and B. Other risk return combinations require to shortsale either A or B. Hence, they are not feasible when short-sales are forbidden. Obviously A is the minimum variance portfolio in this case. Hence:

$$x_A^{MV2} = 1 = 100\%$$
 and $x_B^{MV2} = 1 - x_A^{MV2} = 0$

c) Now, we introduce the risk-free asset F with $r_F = 5\%$ into the economy E. Short-sales are still <u>not</u> allowed in E. On the graph of part (b) above, draw the set of efficient portfolios. Answer : The efficient set is the dotted line + the portion of line in between points A and B (see graphic). Obviously, this portion of line remains feasible when there is a riskless security. Moreover it is efficient as short-sales of the riskless security would be required to obtain a larger expected rate of return than the expected rate of return of a portfolio on the segment [A,B]. The dotted line are efficient portfolios obtained by combining the riskless security (without short-sales) and the tangency portfolio, which obviously here is A.

d. In a new graph depict how your answer to part (c) would change, if short-sales are allowed, <u>but only up</u> to 30% (that is, you cannot short-sell more than 30% of any asset). What is the composition of the minimum variance portfolio MV3 that is composed of only risky assets if short-sales are allowed up to 30%?

This was the toughest part of question 4. The correct answer is as follows:

