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a b s t r a c t 

We analyze security price formation in a dynamic setting in which long-lived dealers re- 

peatedly compete for the opportunity to trade with short-lived retail traders. We charac- 

terize equilibria in which dealers’ pricing strategies are optimal irrespective of the private 

information that each dealer may possess. Thus, our model’s predictions are robust to dif- 

ferent specifications of the dealers’ information structure. These equilibria reconcile, in a 

unified and parsimonious framework, price dynamics that are reminiscent of well-known 

stylized facts: excess price volatility, price to trading flow correlation, stochastic volatility 

and inventory-related trading. 

© 2017 Elsevier B.V. All rights reserved. 
1. Introduction 

In this paper, we consider a class of market microstruc- 

ture models in which some long-lived market participants 

(dealers) repeatedly trade a risky asset with short-lived 
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market participants (traders). We characterize price forma- 

tion equilibria that are robust to all possible specifications 

of information asymmetries across dealers, irrespective 

of how simple or complex these asymmetries could be. 

We show that these equilibria can explain, in a single 

parsimonious model, a number of well-known stylized 

facts concerning stock price dynamics. 

Since Glosten and Milgrom (1985) and Kyle (1985) , 

one of the most common assumptions in the financial 

market microstructure literature is that the equilibrium 

price of an asset results from Bertrand competition among 

dealers, who share identical information about the asset 

fundamentals and the motivation that leads a trader to 

supply or demand the asset. While the assumption of 

equally uninformed dealers leads to tractable models, little 

is known about the equilibrium price dynamics if this 

assumption is dropped. This is an important issue for two 

reasons. First, because actual dealers have access to dif- 

ferent sources of information, they are unlikely to possess 

https://doi.org/10.1016/j.jfineco.2017.11.004
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identical information ( Ellis, Michaely, and O’Hara, 2002 ).

Second, because information asymmetries are not directly

observable, assess the extent to which a model’s in-

formational assumptions capture real-life situations is

impossible. 

We take an agnostic approach concerning the dealers’

information and knowledge. Instead of specifying an ad

hoc information structure and then solving for an equi-

librium, we characterize dealers’ strategies that form an

equilibrium irrespective of each dealer’s information and

beliefs about the fundamentals of the economy. That is,

we make virtually no assumption about whether and how

dealers are asymmetrically informed. We will refer to these

equilibria as belief-free equilibria (henceforth, BFE). 1 

Our approach is particularly suited to certain markets,

such as the bond market. At any time, each dealer could

have some private information about the motivations of

his clients. This translates into private information con-

cerning the bond’s fundamental value. When setting his

public quotes, each dealer takes his own private informa-

tion into account. Because different dealers have access to

different pieces of information, observing his competitors’

quotes further affects a dealer’s beliefs about the bond’s

value. In a dynamic setting, in which the same dealers

repeatedly meet over time, a dealer’s quotes affect not

only the dealer’s current profit but also his competitors’

beliefs. These quotes alter his competitors’ future behavior

and, hence, the dealer’s future profits. Assuming that

dealers are uninformed does not fit such markets. The

standard approach requires specifying dealers’ information

structure and solving for a Bayesian equilibrium given this

structure. Unfortunately, except for very simple informa-

tion structures, this approach leads to intractable models. 2

Moreover, nothing guarantees that the equilibrium strategy

computed for a hypothetical information structure remains

an equilibrium if the actual information structure is dif-

ferent. By contrast, in a BFE, each dealer’s strategy is ex

post optimal, i.e., independent of the actual fundamental

value of the bond. Ex post optimality guarantees that, no

matter the dealers’ information structure and their beliefs,

the strategy profile remains optimal and forms a subgame

perfect Nash equilibrium of the underlying complete infor-

mation game. A BFE remains an equilibrium even in those

markets in which private information differs across dealers

and varies over time. In addition, a BFE also remains a

subgame perfect Nash equilibrium under the informational

assumption that dealers themselves are agnostic with

respect to other dealers’ beliefs about fundamentals. That

is, in a BFE, to find the optimal quoting strategy, dealers

merely need to follow a simple Markovian mapping from

the public history of quotes and trades. Because this

mapping is independent of the true asset value, in such

equilibria, knowing what other dealers believe is neither

necessary nor useful to maximize a dealer’s profit. 
1 See Hörner and Lovo (2009) , Fudenberg and Yamamoto (2010) , and 

Hörner, Lovo, and Tomala (2011) for the general definition and analysis of 

belief-free equilibria in repeated games of incomplete information. 
2 The most common ways to recover tractability are to assume either 

that dealers have no private information or that whatever private infor- 

mation a dealer has at a given time becomes obsolete at all later times. 

 

 

 

 

 

 

 

We first illustrate the mechanism behind BFE within

the framework of a Glosten and Milgrom economy. A fi-

nite number of long-lived risk-neutral dealers make a mar-

ket for a population of short-lived mean-variance traders.

The fundamental value of the asset is ˜ W = ̃

 v + ̃  e , where

˜ v ∈ { v 1 , v 2 } and ˜ e has zero mean and positive variance.

Traders know the realization of ˜ v but not the realization of

˜ e . Compared with the standard Glosten and Milgrom econ-

omy, we remain agnostic with respect to each dealer’s pri-

vate information about ˜ W . The purpose is to focus on BFE

that are as tractable as the standard zero-profit equilib-

rium. To this purpose, first we characterize five necessary

conditions that a price formation strategy must satisfy to

form a BFE. 

(1) Because a BFE must be an equilibrium even when

dealers are uninformed, dealers’ strategies must be

measurable with respect to the public information,

namely, the information that results from the obser-

vation of the traders’ order flow ( Lemma 3 ). 

(2) Each dealer can always guarantee zero profit by

abstaining from trade. Thus, in every BFE and re-

gardless of the asset true value, each dealer makes

strictly positive profit over time. That is, dealers can

lose money in the short run, but their average long-

run profit must be strictly positive, independently of

the asset value ˜ W ( Lemma 4 ). 

(3) Because no large inventory comes at zero cost, a

large inventory necessarily translates into a nega-

tive profit, under certain beliefs regarding asset fun-

damentals. To guarantee that, no matter what a

dealer’s believes about ˜ W , the dealer expects to

make a positive profit, in every BFE, dealers main-

tain balanced inventories even if they are risk-

neutral. In other words, dealers’ inventories are

mean-reverting. The smaller the average trading vol-

ume and the larger the residual uncertainty con-

cerning the asset value, the tighter are the bounds

on dealers’ inventories ( Lemma 5 ). 

(4) In a BFE, and even if market participants are truly

Bayesian, equilibrium quotes cannot reflect Bayesian

beliefs about fundamentals. That is, price sensitivity

to trading volume does not fade as public informa-

tion accumulates. Thus, long-term price volatility re-

mains large even without exogenous shocks to fun-

damentals ( Lemma 7 ). 

(5) Although price volatility does not decline over time,

most trading occurs at quotes that are close to ˜ v ,
the expected asset value after aggregating traders’

private information ( Lemma 6 ). This, together with

necessary condition (4), implies that quotes recur-

rently diverge from the fundamental value of the as-

set. 

Second, we show that, if dealers are patient, the follow-

ing Markov strategy for dealers forms a BFE. In essence, the

strategy has two components, which correspond to explor-

ing and exploiting phases. Exploring phases are periods in

which dealers’ quotes are set to probe traders’ demand to

learn 

˜ v , that is, what traders know about the true asset

value. Exploiting phases are periods in which dealers ex-

ploit the information from the exploring phases and make
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4 According to International Swaps and Derivatives Association (ISDA) 

surveys, in 2010 , the 14 largest global derivatives dealers accounted for 
profits through the intermediation of traders’ demand and 

supply. The Markov variable governing the dealers’ quotes 

and the phase transition process is what we call the mar- 

ket measure (a probability measure over the possible val- 

ues of ˜ v ). The market measure is updated based on the ob- 

servation of how traders react to dealers’ quotes. We say 

that a market measure points to a given v ∈ { v 1 , v 2 } when

it attaches a sufficiently large probability to v . Whenever 

the market measure points to a given v , an exploiting 

phase starts, and dealers’ bid and ask quotes straddle v , 
such that, if ˜ v = v , then dealers profitably intermediate 

traders’ demand while maintaining balanced inventories. 

When the market measure is not concentrated on any sin- 

gle v ∈ { v 1 , v 2 } , dealers set quotes to prompt informative 

order flows from traders. When this occurs, we say that 

dealers are in an exploring phase. Crucially, how the mar- 

ket measure is updated does not reflect Bayesian updating. 

Instead, the updating rule is such that, irrespective of the 

past trading history, the market measure indicates the true 

˜ v relatively quickly and with high probability. 

Why is this quoting strategy a BFE if dealers are suffi- 

ciently patient? First, regardless of a dealer’s belief about 

the true ˜ W and of the past history, how the market mea- 

sure is updated leads each dealer to expect equilibrium 

quotes to move relatively rapidly toward those that pre- 

vail during the exploiting phase, corresponding to the true 

state. Therefore, each dealer expects future profits to be 

strictly positive whatever his current beliefs and past his- 

tory. To prevent dealers from deviating, we specify contin- 

uation strategies after a deviation such that the deviating 

dealer is punished while other dealers are rewarded. 3 

In the the paper, we also generalize the trading proto- 

col and the nature of uncertainty. Our general model em- 

beds different trading mechanisms, including quote-driven 

markets and limit-order markets. Furthermore, it embeds 

situations in which dealers face uncertainty over both the 

fundamental value of the asset and the composition of the 

population of traders. We show that similar necessary and 

sufficient conditions apply for a strategy profile to form a 

BFE in this more general model. 

1.1. Applications and empirical implications 

Under what market structures are these equilibria plau- 

sible? Very little is required for a market microstructure 

economy to admit at least one BFE. First, there must be 

room for trade across traders to avoid the no-trade theo- 

rem, a condition present in all market microstructure mod- 

els. Second, the discount rate between two trading rounds 

must be small, which is a condition naturally satisfied by 

market microstructure economies in which, depending on 

the type of asset, the trading frequency is between days 

and milliseconds. Third, the number of long-lived dealers 

must be finite. 

Thus, from a theoretical perspective, virtually all market 

microstructure economies that have long-lived and short- 

lived market participants admit a BFE. In these equilib- 

ria, dealers share the surplus coming from intermediation 
3 Because dealers make positive profits and deviations are deterred by 

punishment phases, one can regard a BFE as a collusive equilibrium. 
of traders’ demand. In practice, these equilibria are more 

plausible in those markets in which a small number of 

dealers intermediate the largest fraction of trades. Whereas 

this was formerly the case in the NASDAQ ( Ellis, Michaely, 

and O’Hara, 2002 ), which displayed anti-competitive prac- 

tices ( Christie and Schultz, 1994; Christie, Harris, and 

Schultz, 1994; Weston, 20 0 0 ), the structure of this market 

has changed as dealers faced more direct competition from 

traders’ limit orders. By contrast, in markets for corporate 

bonds, municipal bonds, off-the-run Treasuries, and credit 

default swaps, a small number of dealers make up 90% 

of the market. 4 Atkeson, Eisfeldt and Weill (2013) demon- 

strate theoretically how in over-the-counter markets few 

banks endogenously emerge as dealers and trade mainly 

to provide intermediation services. 

What are the empirical implications of belief-free equi- 

libria? Our model is parsimonious (especially the general 

model of Section 6 ), yet it supports a variety of stylized 

facts. Although some of these facts can be explained by 

existing models, we are not aware of a model that would 

deliver them all at once. 

First, as in the standard zero-profit equilibrium, pub- 

lic news and trading volume are the main drivers of 

price changes. The relation between trading volume and 

prices has been extensively documented in several mar- 

kets. See, for instance, Chordia, Roll, and Subrahmanyam 

(2002) , and Boehmer and Wu (2008) for the stock market, 

Pasquariello and Vega (2005) for the bond market, Evans 

and Lyons (2002) for the currency market, and Fleming, 

Kirby, and Ostdiek (2006) for weather-sensitive commodity 

markets. 

Second, whereas canonical market microstructure mod- 

els predict that, absent exogenous shocks, equilibrium 

quotes converge to fundamentals and quote volatility van- 

ishes, quote volatility cannot vanish in a BFE. Even after 

an arbitrarily long trading history, quotes recurrently drift 

away from the asset value, although they are close to it in 

expectation. This generates an endogenous pattern of al- 

ternating regimes. The economy recurrently switches back 

and forth between a high-volatility, high-mispricing regime 

(exploring phases) and a low-volatility, low-mispricing 

regime (exploiting phases). This prediction is consistent 

with the phenomenon of excess and stochastic regime shift 

in price volatility. The first papers providing empirical ev- 

idence that stock price volatility does not coincide with 

commensurate volatility in corporations’ fundamentals are 

Shiller (1981) , and LeRoy and Porter (1981) . In the asset 

pricing literature, results reveal that introducing stochastic 

price volatility in the underlying price process or regime 

shifts in volatilities helps explain actual derivative prices 

(see, for example, Heston, 1993 , and Calvet and Fisher, 

2004 ). 

In addition, the BFE provides a new testable implica- 

tion relating the switch in volatility regime to the trading 
82% of the total combined notional amount outstanding of interest rate, 

credit, and equity derivatives. In 2013 , the 15 largest dealers accounted 

for approximately 97%. We thank an anonymous referee for highlighting 

this point. 
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5 The same results hold if the frequency of trading is high compared 

with the frequency with which the state of nature changes. 
volume. A switch from the low to the high price volatility

regime is preceded by periods of increasing order imbal-

ance. The switch from high to low volatility should be pre-

ceded by a stabilization of dealers’ inventories and small

order imbalance. 

Third, in contrast to the canonical market microstruc-

ture models that imply zero profits, BFE pricing im-

plies that dealers make strictly positive profits. This is

consistent with the evidence provided for the NASDAQ

( Christie and Schultz, 1994; Christie et al., 1994; Huang

and Stoll, 1996; Kandel and Marx, 1997; Weston, 20 0 0;

Ellis, Michaely, and O’Hara, 2002 ), the corporate bond

market ( Bessembinder and Maxwell, 2008; Goldstein and

Hotchkiss, 2007 ) and the municipal bond market ( Harris

and Piwowar, 2006; Green, Hollifield, and Schüroff, 2007;

Green, Li, and Schüroff, 2010; Li and Schüroff, 2014 ). 

Fourth, in a BFE, dealers’ inventories are mean-

reverting. This is true even when dealers are risk-neutral

and not subject to institutional constraints on inventory

size. Evidence of mean-reverting inventories is provided

by Madhavan and Smidt (1993) , Hasbrouck and Sofianos

(1993) , Hansch, Naik, and Viswanathan (1998) , Reiss and

Werner (1998) , Naik and Yadav (2003) , and more recently,

Hendershott and Menkveld (2014) . 

Fifth, a BFE implies a positive relation between a

dealer’s average inventory and trading volume. That is, the

larger the trading volume that a dealer is expected to in-

termediate, the larger the inventory he can maintain. This

is consistent with the findings of Li and Schüroff (2014) for

the municipal bond market, demonstrating that peripheral

dealers intermediate few deals and hold small inventories,

whereas central dealers account for a larger intermedia-

tion volume and hold larger inventories. A BFE also im-

plies a positive relation between the average profitability

of a deal and the dealer’s maximum inventory size. This

is in line with the findings of Bessembinder and Maxwell

(2008) and Goldstein and Hotchkiss (2007) , who show that

dealers’ average inventory decreased following the reduc-

tion in dealers’ profits caused by an increase in trans-

parency in the corporate bond market. 

1.2. Related literature 

The applications of repeated games to market mi-

crostructure that are closest to our work are Dutta, , and

Madhavan (1997) , Benveniste, Marcus, and Wilhelm (1992) ,

Desgranges and Foucault (2005) and Carlin, Lobo, and

Viswanathan (2007) . These papers assume either no in-

formation asymmetry or short-lived information asymme-

tries. They construct trigger-strategy equilibria in which a

monopolistic optimum is sustained by the threat of revert-

ing to the static Nash equilibrium. Episodically, the short-

run stakes can be so large that the threat is not effective

and, thus, a punishment phase emerges on the equilibrium

path. These equilibria are not belief-free because both the

monopolistic optimum and the static Nash equilibrium de-

pend on market participants’ beliefs. Clearly, these would

not be equilibria in the presence of long-lived asymmet-

ric information. In this paper, instead, the state of nature

is perfectly persistent and, thus, asymmetric information
is long-lived. 5 Nevertheless, the idea of sustaining posi-

tive profits through the threat of punishment phases is

common to these papers and our BFE. Compared with the

standard trigger-strategy equilibrium, a BFE differs through

the on-path alternation of exploring and exploiting phases.

One of the implications of our model is that, if one recog-

nizes that non-trivial information asymmetries across deal-

ers matter, then equilibria in which dealers’ profits are

positive are the only equilibria that are independent of the

dealers’ information. In these situations, zero-profit com-

petitive equilibria should be regarded as the exception, not

the norm. 

Few theoretical papers analyze the effect of asymmet-

ric information among dealers. Even fewer do so within

a dynamic framework. Some static models in which deal-

ers or, more generally, liquidity providers are asymmet-

rically informed are Roëll (1988) , Bloomfield and O’Hara

(20 0 0) , De Frutos and Manzano (2005) , and Boulatov and

George (2013) . Within a dynamic framework, Moussa Saley

and De Meyer (2003) and Calcagno and Lovo (2006) study

the case of one better-informed price maker. De Meyer

(2010) considers the case of two-sided incomplete infor-

mation. However, in none of these papers the construc-

tions is belief-free, to the extent that it relies on the spe-

cific assumptions made on the dealers’ information struc-

ture. The results obtained by Du and Zhu (2012) are closer

in spirit to our work. Within the framework of a double

auction, they show that for a specific additive functional

form of bidders’ values, the static auction has an ex post

equilibrium and that this property extends to the repeated

auction, giving rise to an almost belief-free equilibrium. 

This paper is organized as follows. Section 2 in-

troduces the baseline model. Section 3 describes the

benchmark zero-profit equilibrium for the baseline model.

Section 4 defines BFE, examines the necessary condition

that a BFE must satisfy, and presents a simple “Markov”

BFE. Section 5 offers simulations of the BFE and its empir-

ical implications. Section 6 presents the general model and

studies its BFE. Section 7 discusses extensions to imperfect

monitoring of dealers’ actions, non-stationary states of na-

ture, and dealers’ strategies based on private information.

Section 8 concludes. Appendix A contains the proofs for

the baseline model, and Appendix B has the proofs for the

general model. 

2. A model of price formation 

In this section, we illustrate the definition, the logic,

and the main features of a BFE in a simple, well-known

financial market microstructure framework Glosten and

Milgrom (1985) . In Section 6 , we generalize the model

and illustrate how the equilibrium construction must be

amended to account for some institutional features of real

markets that are not captured by this simple model. 

A risky asset is exchanged for money over an infinite

number of periods t = 1 , 2 , . . . At time 0 and once and for

all, nature randomly choses the state ω from some finite



346 J. Hörner et al. / Journal of Financial Economics 127 (2018) 342–365 

W

 

 

 

 

 

6 Allowing for a stochastic discount factor complicates the exposition 

but does not affect results as long as the expected discount factor is close 

enough to one. 
set �. We denote by W ( ω) the fundamental value of the 

asset in state ω. Assume that 

 (ω) = v (ω) + e (ω) . (1) 

That is, the asset’s fundamental value is a random variable 
˜ W = ̃

 v + ̃  e , where ˜ v , ̃  e are two independent random vari- 

ables. We assume that ˜ v ∈ { v 1 , v 2 } and that ˜ e takes a value 

in the finite set E ⊂ [ −e , e ] , i.e., e > 0 and −e are the max- 

imum and the minimum possible values that ˜ e can take. 

The random variable ˜ e has zero mean and strictly posi- 

tive variance σ 2 (given mean-variance preferences, noth- 

ing more is needed). As in Back and Baruch (2004) , a pub- 

lic release of information occurs at a random time τ and, 

conditional on this not yet having occurred, the probabil- 

ity that it occurs in the next period is constant over time. 

After the public announcement, all positions are liquidated 

at price W ( ω). 

Market participants fall into two groups. The first con- 

sists of professional financial intermediaries, such as deal- 

ers, market makers, and brokers. There are finitely many 

of them, and they consistently monitor and participate in 

the market. We call this group of market participants deal- 

ers modelled as n infinitely lived risk-neutral agents. The 

second group consists of households, fund managers, and 

institutional investors that occasionally participate in the 

market to rebalance their portfolios or to exploit some pri- 

vate information that they possess about asset fundamen- 

tals, or both. We call this group traders modelled as an in- 

finite sequence of short-lived, risk-averse agents. 

In every period, trade unfolds as follows. Dealers si- 

multaneously set their bid and ask quotes, at which each 

dealer stands ready to buy and sell one unit of the asset. 

Then, a randomly selected trader comes to the market, ob- 

serves the dealers’ quotes and chooses whether to buy one 

unit, sell one unit, or not to trade. The trader’s market or- 

der is executed against the best quotes from dealers and 

then the trader leaves the market. We denote by αt 
i 

and βt 
i 

the ask and bid quotes set, respectively, by dealer i in pe- 

riod t . Quotes belong to an interval G := [0, M ], where M is 

finite and can be arbitrarily large relative to v 2 + e . More- 

over, we denote by a t := { αt 
i 
, βt 

i 
} i =1 , ... ,n the set of dealers’ 

quotes at time t . Thus, A := ×i =1 , ... ,n G 

2 is the compact set 

of all possible profiles of bid and ask quotes, and �A de- 

notes the set of probability distributions over the set A . 

For any given a t in A , we denote by α(a t ) := min i α
t 
i 

and 

β(a t ) := max i β
t 
i 

the best ask and bid quotes in period t . 

Let s ∈ S := {−1 , 0 , 1 } be a trader’s market order. We adopt

the convention that s = 1 corresponds to the trader selling. 

Traders are short-lived mean–variance investors with 

utility E[ ̃ x ] − γ
2 Var [ ̃ x ] , where ˜ x is a trader’s post-trade 

wealth. Traders differ only in their initial inventory y . We 

denote by Z ( x ) the probability that the time t trader’s in- 

ventory is less than x . We assume that y is uniformly dis- 

tributed on the interval [ −φ
2 , 

φ
2 ] , with φ > 1. 

Suppose time t trader’s inventory is y . His wealth re- 

sulting from a market order s ∈ S , given dealers’ quotes 

a ∈ A , is ˜ x (a, s, y ) = (y − s ) ̃  W + s 
(
β(a )1 { s =1 } + α(a )1 { s = −1 } 

)
, 

where 1 {.} is the indicator function. The trader chooses the 

order s that solves 

max 
s ∈ S 

E 

t [ ̃  x (a, s, y )] − γ

2 

Var t [ ̃  x (a, s, y )] , (2) 
where E t and Var t stand for the expectation and variance, 

respectively, computed using the trader’s beliefs about ˜ W . 

Because dealers are long-lived, we distinguish between 

the profit or loss made in a single trading round, which 

we call the “reward,” and the discounted sum of the se- 

quence of current and future rewards, which we call the 

“payoff.” Suppose that, at time t , the dealers’ action is a ∈ A 

and the trader’s order is s ∈ S . Then, dealer i buys (sells)

the asset if his bid is the highest (ask is the lowest) and 

the trader sells (buys). In state ω, this translates into a re- 

ward for dealer i equal to 

u i (ω, a, s ) = (v (ω) + e (ω) − βi )1 { βi = β(a ) ,s =1 } ηβ(a ) 

+ (αi − v (ω) − e (ω))1 { αi = α(a ) ,s = −1 } ηα(a ) , 

(3) 

where ηβ > 0 and ηα > 0 are exogenous tie-breaking rules 

applied in the event that more than one dealer sets the 

best bid or ask, respectively. The rewards of the dealers are 

discounted at the common factor δ < 1, and the payoff is 

the average discounted sum of rewards. The discount factor 

δ accounts for both the dealer’s impatience and the pos- 

sibility that public information is released in the current 

period. 6 Thus, in state ω, an infinite sequence of quotes 

and orders h = { a t , s t } ∞ 

t=0 
translates into a payoff for dealer

i equal to 

V i (ω, h ) = 

∞ ∑ 

t=0 

(1 − δ) δt u i (ω, a t , s t ) . (4)

We assume that traders know the realization of the 

˜ v component of the asset value ˜ W but not the realiza- 

tion of the ˜ e component. They commonly share some be- 

lief about ˜ e . No correlation exists between the distribu- 

tion of traders’ inventory and ˜ e . This implies that infor- 

mation about a trader’s inventory is useless for learning 

˜ e . Thus, ˜ e can be interpreted as the residual uncertainty 

over the fundamental asset value after aggregating all pos- 

sible information from the population of traders, whereas ˜ v 
is what traders collectively know about the fundamentals. 

More formally, traders’ initial information partition over 

the possible states � is ˆ � := { ̂  ω v 1 , ˆ ω v 2 } , where ˆ ω v := { ω ∈
� | v (ω) = v } . 

The main contribution of this paper consists in pro- 

viding predictions that do not rely on specific assump- 

tions regarding dealers’ information about ω. Here, we de- 

part from the canonical approach in the microstructure lit- 

erature that consists in, first, assuming that dealers are 

equally uninformed and, second, focusing on the zero- 

profit Bayesian equilibrium consistent with this assump- 

tion. 

Our purpose is to find a price formation strategy that 

is a Bayesian equilibrium for all possible specifications 

of information asymmetries across dealers, irrespective of 

whether these asymmetries are present and of how simple 

or complex these asymmetries could be. That is, we focus 

on a strategy profile for dealers that forms a Bayesian equi- 

librium regardless of what each individual dealer knows 
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about the fundamentals and whether other dealers are in-

formed. Each dealer could have specific private information

about the state of nature ω, i.e., about ˜ e , ˜ v , or both. Infor-

mation about one or the other component makes no differ-

ence in a BFE. 7 At any time, he could be uncertain about

whether other dealers have received some private informa-

tion. Nevertheless, each dealer finds it optimal to use the

same pricing strategy. This type of equilibria is known as

belief-free equilibria. In a BFE, each dealer’s strategy must

be a best-response, regardless of the true state ω. Hence, it

is optimal no matter what each dealer’s believes about ω. 

3. The canonical equilibrium (CE) 

As useful benchmark, we begin by describing the text-

book canonical equilibrium that is obtained by, first, as-

suming that dealers start from a common prior belief

about the fundamental value of the asset and that no

dealer ever receives any private information and, sec-

ond, focusing on a Bayesian equilibrium in which, in each

period, each dealer’s expected reward is nil because of

Bertrand competition. 

Regarding traders’ behavior, traders know the ˜ v compo-

nent of ˜ W but not the ˜ e component. If dealers have no pri-

vate information, then no market participant has any infor-

mation about ˜ e . Hence, if the state is ω, a time t trader’s

inventory is y , and dealers’ quote profile is a , then the

trader’s expected utility from order s is equal to 

E 

t [ ̃  x (a, s, y )] − γ

2 

Var t [ ̃  x (a, s, y )] 

= (y − s ) v (ω) + s (β(a )1 { s =1 } + α(a )1 { s = −1 } ) 

− γ

2 

(y − s ) 2 σ 2 . (5)

This expression does not depend on time or on the value

of e ( ω). Denote by F ( ω, a, s ) the probability that a time

t trader’s order is s , conditional on the state being ω and

time t dealers’ quotes being a ∈ A . Lemma 1 follows. 

Lemma 1 . If dealers have no private information and their

quote profile is a, then in state of nature ω, at any time t,

the distribution of a time t trader’s order is 

F (ω, a, 1) 

= 

⎧ ⎨ 

⎩ 

0 f or β(a ) < v (ω) − ρ
ρ+ β(a ) −v (ω) 

φγσ 2 f or v (ω) − ρ ≤ β(a ) ≤ v (ω) + ρ φ+1 
φ−1 

1 f or β(a ) > v (ω) + ρ φ+1 
φ−1 

, 

(6)

and 

F (ω, a, −1) 

= 

⎧ ⎨ 

⎩ 

1 f or α(a ) < v (ω) − ρ φ+1 
φ−1 

ρ+ v (ω) −α(a ) 
φγσ 2 f or v (ω) − ρ φ+1 

φ−1 
≤ α(a ) ≤ v (ω) + ρ

0 f or α(a ) > v (ω) + ρ, 

(7)
7 This is not necessarily the case in a standard Bayesian equilibrium, in 

which best-replies depend on beliefs and hence on each dealer’s specific 

information about ˜ v and ˜ e . 

 

 

 

as well as 

F (ω, a, 0) = max { 1 − F (ω, a, 1) − F (ω, a, −1) , 0 } , (8)

where ρ := (φ − 1) γ σ 2 / 2 > 0 . 

That is, the probability of observing a buy (sell) order

decreases in the ask price (increases in the bid price) and

increases (decreases) in v ( ω). The probability of a buy or-

der is strictly positive, as long as the best ask price does

not exceed v ( ω) by more than ρ . Similarly, a sell order oc-

curs with positive probability if the best bid is larger than

v (ω) − ρ . In other words, the greater the traders’ risk aver-

sion γ , their dispersion of their inventories φ, and the un-

certainty over ˜ e , σ 2 , the greater the potential for trade be-

tween traders and dealers. 

Because F ( ω, ·, ·) depends on the realization of ˜ v but

not on the realized ˜ e , we can focus on the function F ( v , a,

s ) that is equal to F ( ω, a, s ) when ω is such that v (ω) = v .
That is, at any time t , traders’ behavior depends only on

v ( ω) and dealers’ current quotes. If the state is ω and time

t quotes are a , then, the probability that dealer i buys in

period t is 

Q 

+ 
i 
(v (ω) , a ) := F (v (ω) , a, 1)1 { βi = β(a ) } ηβ(a ) , (9)

the probability that dealer i sells in period t is 

Q 

−
i 
(v (ω) , a ) := F (v (ω) , a, −1)1 { αi = α(a ) } ηα(a ) , (10)

and the expected net cash flow for dealer i in t is 

P i (v (ω) , a ) := −βi Q 

+ 
i 
(v (ω) , a ) + αi Q 

−
i 
(v (ω) , a ) ≤ v (ω) + ρ,

(11)

where the inequality follows from Lemma 1 , that is, the

fact that, in state ω, no trader ever pays more than v (ω) +
ρ for the asset. We can re-write dealer i ’s reward in period

t by taking expectations with respect to the traders’ order.

Dealer i ’s expected reward in state ω if the current dealers’

quote is a is equal to 

u i (ω, a ) := 

∑ 

s ∈ S 
u i (ω, a, s ) F (v (ω) , a, s ) 

= W (ω)(Q 

+ 
i 
(v (ω) , a ) − Q 

−
i 
(v (ω) , a )) 

+ P i (v (ω) , a ) . (12)

That is, dealer i ’s time t reward in state ω from quotes a

is equal to the fundamental value of the asset, times the

expected change in the dealer’s inventory at time t , plus

the expected net cash flow at time t . 

The canonical equilibrium relies on the assumption that

all dealers are uninformed about ˜ W . Let h t denote the pub-

lic history of past trades and quotes up to time t . Let H 

t

denote the set of all public histories of length t . Given a

public history h t ∈ H 

t , let p t denote the dealers’ common

belief that ˜ v = v 2 given h t . Then, p t evolves according to

Bayes’ rule: 

p t+1 =ψ B (p t , a t , s t ) := 

p t F (v 2 , a t , s t ) 
p t F (v 2 , a t , s t ) + (1 −p t ) F (v 1 , a t , s t ) 

.

(13)

Given traders’ beliefs at time t , in the canonical equilib-

rium, each dealer’s expected profit at time t is nil. That is,

at any time t , bid and ask quotes are βt = E 
[

˜ W | h t , s t = 1 
]
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9 The occupation measure is not just the simple long-run frequency 

with which actions are played but the discounted frequency. That is, ce- 

teris paribus, actions that are played earlier have more weight in the oc- 

cupation measure than actions played later. 
10 In a perfect Bayesian equilibrium, dealers’ strategies satisfy 

σ ∗
i ∈ argmax σi 

E 
[
V i (ω, σi , σ

∗
−i | h t ) | I i 

]
, 
and αt = E 
[

˜ W | h t , s t = −1 
]
, respectively. To avoid the triv- 

ial case in which all traders’ information is disclosed at the 

first order, we assume that ρ > v 2 − v 1 . 8 Lemma 2 follows. 

Lemma 2 . Canonical equilibrium: Assume that ρ > v 2 − v 1 , 
and that dealers are equally uninformed. Then, there is a 

Bayesian equilibrium in which in any period t, the following 

hold: 

1. Bid and ask quotes are 

αt = α(p t ) := E[ ̃ v | h 

t ] + 

ρ

2 

−
√ 

ρ2 

4 

−Var [ ̃ v | h 

t ] , (14) 

and 

βt = β(p t ) := E[ ̃ v | h 

t ] −ρ

2 

+ 

√ 

ρ2 

4 

−Var [ ̃ v | h 

t ] , (15) 

where E[ ̃ v | h t ] = p t v 2 + (1 − p t ) v 1 and Var [ ̃ v | h t ] =
p t (1 − p t )(v 2 − v 1 ) 2 . 

2. Dealers’ common beliefs about ˜ v evolve according to 

p t+1 = ψ B (p t , a t , s t ) . 

3. Each dealer’s expected reward computed under belief p t is 

nil. 

This equilibrium has a simple Markovian structure: in 

every period t , the best bid and ask quotes depend solely 

on the dealers’ common belief p t ; the dealers’ common 

posterior belief p t+1 depends only on the common time t 

prior p t and on ( a t , s t ), the dealers’ quotes and the trader’s 

order at time t . Note that for almost any other dealer in- 

formation, these strategies would not form an equilibrium. 

If dealer i has some private information h t 
i 
� = h t such that 

E[ ̃  W | h t 
i 
] � = E[ ̃  W | h t ] , then this dealer can earn a strictly

positive profit by setting either an ask strictly lower than 

α( p t ) or a bid strictly larger than β( p t ), a profitable devia- 

tion from the canonical equilibrium. By contrast, strategies 

that form a BFE would remain an equilibrium regardless of 

h t 
i 
. 

4. Belief-free equilibrium 

Let us drop the assumption that dealers are equally un- 

informed. We are interested in the belief-free equilibria of 

the repeated game. These are Bayesian equilibria that are 

subgame perfect Nash equilibria for any possible under- 

lying state. Thus, belief-free equilibria do not rely on the 

specification of each dealer’s information about the true 

state ω. 

4.1. Equilibrium concept 

Let H := ∪ t H 

t denote the set of all public histories of 

any length. A public strategy profile (henceforth, strategy) 

is a mapping σ : H → × i �A i that associates to each public 

history h t (henceforth, history) the (possibly mixed) action 

profile that dealers play at time t . Traders’ behavior can be 

represented as a mapping F : ˆ � × H × A → �S specifying 

the probability of each market order given 

˜ v , the history, 
8 If ρ ≤ v 2 − v 1 , then one would have β1 = v 1 and α1 = v 2 , and βt = 

αt = v (ω) in all periods following the first trade. 
and the current dealers’ quote profile, where F is such that 

Eq. (2) is satisfied at all t . For any given state ω and any 

history h t , a strategy σ induces a probability distribution 

over future histories in the standard fashion and, hence, 

an occupation measure over action profiles, which we de- 

note ν(ω,σ,h t ) ∈ �(A × S) . Formally, the occupation measure 

ν(ω,σ,h t ) (a, s ) is the discounted expected frequency with 

which the action profile ( a, s ) is played after history h t , if

the dealers’ strategy is σ and the state is ω: 9 

ν(ω,σ,h t ) (a, s ) := E σ

[ ∑ 

τ≥t 

(1 − δ) δt−τ 1 { (a t ,s t )=(a,s ) } 

∣∣∣∣∣ω, h 

t 

] 

(16) 

Let V i ( ω, σ | h t ) denote dealer i ’s expected continuation pay-

off after history h t , given ω and σ . 

V i (ω, σ | h 

t ) = 

∑ 

(a,s ) ∈ A ×S 

ν(ω,σ,h t ) (a, s ) u i (ω, a, s ) (17)

We look for a dealers’ strategy profile σ such that, at 

any time t and after any history h t , for any dealer i , choos-

ing an action according to σ i ( h 
t ) is optimal, regardless of 

what the dealer believes about the true state ω. 

Definition 1 . A belief-free equilibrium is a strategy profile 

σ ∗ such that, for every state ω, σ ∗ is a subgame perfect 

Nash equilibrium of the repeated game with rewards u ( ω, 

·), that is, of the repeated game with complete information 

in which the state ω is common knowledge among dealers. 

σ ∗
i ∈ argmax σi 

V i (ω, σi , σ
∗
−i | h 

t ) , (18) 

for all players i , all states ω ∈ �, all periods t and all histo-

ries h t ∈ H 

t . 

A BFE is a perfect Bayesian equilibrium given any initial 

prior distribution of dealers’ belief about ω and any addi- 

tional private information a dealer could possess. 10 Thus, 

a BFE is a subgame perfect Nash equilibrium regardless 

of the specific dealers’ information structure. Furthermore, 

a BFE is an equilibrium regardless of whether dealers are 

Bayesian. 

4.2. Necessary conditions 

Identifying the features of dealers’ strategies that are 

necessary for these strategies to form a BFE is useful to 

distinguish the predictions of the market microstructure 

theories that do not depend on informational uncertainty 

from those that rely on specific assumptions regarding the 

dealers’ information structure. In other words, a strategy 
where expectations are taken with respect to both the possible states ω 

and the possible realizations of traders’ orders { s t } ∞ t=1 , and I i is dealer i ’s 

private information. Hence, a BFE is a perfect Bayesian equilibrium, but a 

perfect Bayesian equilibrium need not be belief-free. 
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11 From Results 1 and 2 in Lemma 1 and from Lemma 3 , if dealer i sets 

βi < v 1 − ρ and αi > v 2 + ρ, then he is certain not to trade. 
that forms a perfect Bayesian equilibrium for some spec-

ification of a dealer’s beliefs but does not satisfy at least

one of the properties described below would not form an

equilibrium for a different dealers’ information structure. 

Consider a dealers’ strategy profile that is a BFE. The

same strategy profile must remain a subgame perfect Nash

equilibrium for all possible configurations of dealers’ in-

formation. This includes the following two polar cases:

the situation in which dealers have no private information

about ω and the situation in which at least one dealer

is perfectly informed about ω; that is, he knows both 

˜ v
and ˜ e . 

If dealers are uninformed, then their quotes disclose no

additional information about ˜ W . As a consequence, traders’

behavior F must be as described in Lemma 1 . As in the

canonical equilibrium, in a BFE, the history of traders’ or-

ders and the evolution of dealers’ quotes depend on the

value of ˜ v , but not on the value of ˜ e . 

Lemma 3 . Measurability with respect to traders’ behavior: If

σ forms a BFE, then the following hold 

1. Traders’ behavior F is as described in Lemma 1 . 

2. The equilibrium occupation measure ν is such that, for

any history h t and any pair of states ω , ω 

′ ∈ �, it holds

that ν(ω,σ,h t ) � = ν(ω ′ ,σ,h t ) only if v ( ω) � = v ( ω 

′ ) . After any

history h t , the equilibrium occupation measure of future

dealers’ quotes depends only on h t and v ( ω) . 

Lemma 3 can be interpreted as follows. In a BFE, the

following statements hold. (1) Traders behave as if deal-

ers have no private information; and (2) because in two

states, ω and ω 

′ with v (ω) = v (ω 

′ ) , traders behave in the

same way, dealers’ behavior in state ω is the same as deal-

ers’ behavior in state ω 

′ . In other words, the behaviors of

both traders and dealers do not depend on the realization

of ˜ e . We denote by ˜ a (v , h t ) ∈ �A the equilibrium occupa-

tion measure of future dealers’ quotes after history h t in

all states in which v (ω) = v . We can then decompose the

continuation payoff V i ( ω, σ | h t ) in the same way that we

decompose a dealer’s reward in Eq. (12) . After history h t ,

dealer i ’s continuation payoff in state ω from strategy σ
can be decomposed as the fundamental value of the as-

set, times the expected (discounted) change in inventory

after history h t , plus the expected net (discounted) change

in cash after history h t . 

 i (ω, σ | h 

t ) = 

∑ 

a ∈ A 
˜ a (v (ω) , h 

t )(a ) u i (ω, a ) 

= W (ω)(Q 

+ 
i 
(v (ω) , h 

t ) − Q 

−
i 
(v (ω) , h 

t )) 

+ P i (v (ω) , h 

t ) , (19)

where we used result 1 in Lemma 3 and Eqs. (9) –(11) to

define 

Q 

+ 
i 
(v (ω) , h 

t ) := 

∑ 

a ∈ A 
˜ a (v (ω) , h 

t )(a ) Q 

+ 
i 
(v (ω) , a ) ∈ (0 , 1) , 

(20)

Q 

−
i 
(v (ω) , h 

t ) := 

∑ 

a ∈ A 
˜ a (v (ω) , h 

t )(a ) Q 

−
i 
(v (ω) , a ) ∈ (0 , 1) , 

(21)
P i (v (ω) , h 

t ) := 

∑ 

a ∈ A 
˜ a (v (ω) , h 

t )(a ) P i (v (ω) , a ) . (22)

The quantity Q 

+ 
i 
(v (ω) h t ) − Q 

−
i 
(v (ω) , h t ) is the expected

(discounted) change in dealer i ’s inventory in state ω after

history h t . P i ( v ( ω), h t ) is the expected (discounted) change

in dealer i ’s cash holdings in state ω after history h t . Given

Lemma 3 , the functions Q 

+ 
i 
(·, h t ) , Q 

−
i 
(·, h t ) and P i ( ·, h t ) dif-

fer in two states only if ˜ v differs for those two states. How-

ever, because W (ω) = v (ω) + e (ω) , a dealer’s continuation

payoff V i ( ω, ·) is affected by both v ( ω) and e ( ω). 

Now, let us turn to the other polar case, that is, the sce-

nario in which at least one dealer is fully informed of ω
and, hence, knows both 

˜ v and ˜ e . Observe that if a strategy

profile forms a BFE, then the same strategy profile must

remain a subgame perfect Nash equilibrium even in this

scenario. Take any state ω and any dealer i . We cannot ex-

clude the possibility that dealer i knows that the state is

ω. Regardless of the state, dealer i can guarantee a payoff

of zero by setting a large enough bid-ask spread and en-

counter no volume from traders. 11 This implies that in a

BFE, for each state ω ∈ �, each dealer’s payoff cannot be

strictly negative. Otherwise, there would be a state ω and

a dealer i who, if informed, would deviate to the no-trade

action. Thus, in a BFE, each dealer’s continuation payoff is

non-negative regardless of the fundamental value of the

asset and the past history. From Definition 1, V i ( ω, σ | h t ) is
the continuation payoff after history h t . Lemma 4 follows 

Lemma 4 . Positive dealers’ payoffs: If σ forms a BFE, then

V i ( ω, σ | h t ) ≥ 0 for all dealers i, all states ω, and all histories

h t . Moreover, if the equilibrium leads to a change in inventory

for dealer i, then his continuation payoff is nil in at most two

states and strictly positive in all other states. 

Lemma 4 is an individual rationality requirement that

is stronger than the usual Bayesian requirement. It must

hold irrespective of what belief each dealer holds and not

just in expectation. That is, each dealer must make positive

profit in each state of nature and after every history. 

In summary, Lemma 3 implies that for a given value of

˜ v ∈ { v 1 , v 2 } , the equilibrium occupation measure of deal-

ers’ quotes and traders’ orders does not depend on the

value of ˜ e . Lemma 4 implies that this single occupation

measure must lead to non-negative payoffs for all possi-

ble values of ˜ e . What are the occupation measures guar-

anteeing that for a given value of ˜ v , each dealer’s payoff

is strictly positive, regardless of the value of ˜ e ? Intuitively,

because ˜ e affects the fundamental value of the asset, but

not the traders’ behavior, one way for a dealer to make

profits regardless of ˜ e is to set bid and ask quotes across

˜ v as to intermediate traders’ demand and supply, gain the

bid-ask spread and take no position in the asset. Having no

net position in the asset, a dealer’s profit does not depend

on ˜ e . We formalize and generalize this idea. 

For any occupation measure of dealers’ quote ˜ a ∈ �A,

let u i (ω, ̃  a ) := 

∑ 

a ∈ A ˜ a (a ) u i (ω, a ) be dealer i ’s expected

continuation payoff resulting from ˜ a in state ω. Define



350 J. Hörner et al. / Journal of Financial Economics 127 (2018) 342–365 

 

 

 

 

 

 

 

 

 

 

 

12 Clearly, for e = ∞ , a BFE would not exist because Lemma 6 would 

require the mid-quote to be equal to the true ˜ v from the very first trad- 

ing round onward, which cannot hold simultaneously for both ˜ v = v 1 and 

˜ v = v 2 . For this reason, if, for example, ˜ e is assumed to be normally dis- 

tributed, then the economy has no BFE. 
A 

� ( v ) and A 

� + (v ) as the sets of ˜ a ∈ �A such that, for each

dealer i , and all ω such that v (ω) = v , one has u i (ω, ̃  a ) ≥
0 and u i (ω, ̃  a ) > 0 , respectively. That is, A 

� ( v ) and A 

� + (v )
are the sets of occupation measures over dealers’ quotes 

guaranteeing that, in all states that satisfy v (ω) = v , each 

dealer’s payoff is non-negative or strictly positive. Then, 

Lemma 3 , together with Lemma 4 , implies that in state ω, 

in a BFE, after any history h t , the equilibrium occupation 

measure ˜ a (v (ω) , h t ) must belong to A 

� ( v ( ω)). Now we can

state the implication that BFE has on dealers’ inventories. 

Lemma 5 . Bounded dealer inventories: If σ forms a BFE, then 

each dealer’s expected trading volume is relatively balanced 

and maintains bounded inventories for dealers. Formally, 

| Q 

+ 
i 
(v (ω) , h 

t ) − Q 

−
i 
(v (ω) , h 

t ) | 
≤

(
Q 

+ 
i 
(v (ω) , h 

t ) + Q 

−
i 
(v (ω) , h 

t ) 
)ρ

e 
, (23) 

for all dealers i, all states ω, and all histories h t . 

The left-hand side of inequality Eq. (23) can be in- 

terpreted as the inventory, in absolute terms, that dealer 

i expects to accumulate after history h t in state ω. The 

quantity Q 

+ 
i 
(v (ω) , σ, h t ) + Q 

−
i 
(v (ω) , σ, h t ) can be inter-

preted as the volume of traders’ orders that dealer i 

expects to execute. Inequality Eq. (23) shows that the 

larger e is, i.e., the greater the potential uncertainty re- 

sulting from the ˜ e component, and the smaller the trading 

volume between traders and dealers is, the tighter the 

bound imposed on dealers’ average inventory. The intu- 

ition is simple. Each dealer’s payoff can be decomposed 

into two components. The first is what the dealer gains 

from intermediating traders’ demand and supply without 

taking a net position in the asset. The second is what deal- 

ers gain or lose from loading on net positions in the asset 

at prices that differ from W ( ω). The first component is 

bounded from above by 
(
Q 

+ 
i 
(v (ω) , h t ) + Q 

−
i 
(v (ω) , h t ) 

)
ρ, 

that is, the trading volume times the maximum bid-ask 

spread that is consistent with traders buying and selling. 

The second component depends on 

˜ W . In particular, we 

cannot exclude the possibility that a dealer believes that 

the value of ˜ e is extreme, that is, ˜ e = −e or ˜ e = e . For 

such beliefs, the second component can result in a loss 

as large as | Q 

+ 
i 
(v (ω) , h t ) − Q 

−
i 
(v (ω) , h t ) | e . For dealers’

continuation payoff to be positive in all states, a dealer’s 

average inventory must be bounded. Because the maxi- 

mum potential loss on a net position is proportional to e , 

the larger e is, the closer to zero each dealer’s inventory 

is, on average. Moreover, an increase in ρ means that 

it is easier for dealers to buy from sellers at low prices 

and to sell at high prices. Thus, a larger ρ is associated 

with potentially larger profits for dealers. The inequality 

of Lemma 5 implies that an increase in intermediation 

profits softens the constraint on bounded inventories. 

Another important implication of Lemma 5 is that deal- 

ers’ profits come from intermediating a substantial, but 

balanced, flow of orders from traders. From Lemmas 1 

and 3 , the traders’ order flow is affected by ˜ v . Hence, to 

induce an order flow that is both substantial and balanced, 

the level of dealers’ quotes must be appropriately tuned to 

the value of ˜ v . If the bid and ask quotes straddle ˜ v , but the 

spread is too large, then the traders’ order flow is nil. If the 
bid-ask spread is small but quotes are consistently larger 

(or smaller) than 

˜ v , then there is trading volume, but deal- 

ers accumulate an inventory that is large in absolute terms, 

in excess of the bounds imposed by Lemma 5 . Thus, on 

average, the bid and ask quotes should straddle v ( ω) and 

the inside spread should not be too large. More formally, 

let m (ω, h t ) := 

∑ 

a ∈ A ˜ a (v (ω) , h t )(a ) α(a )+ β(a ) 
2 denote the av-

erage discounted mid-quote computed using the equilib- 

rium occupation measure following history h t in state ω. 

Lemma 6 follows. 

Lemma 6 . Average information efficiency: If σ forms a BFE, 

then, for all ω and all histories h t , ∣∣m (ω, h 

t ) − v (ω) 
∣∣ < 

2 ρ2 φ

(φ − 1) e 
. (24) 

Lemma 6 states that, regardless of the past history and 

the state ω, the discounted average of future mid-quotes 

remains close enough to v ( ω). This can be interpreted as 

a form of market informational efficiency. The mid-quote 

does not differ too much, or for too long, from v ( ω), that

is, from the fair asset value, conditional on traders’ in- 

formation. How close is the average mid-quote to v ( ω) 

in a BFE? This depends on the parameters of the model. 

The level of e plays a crucial role. The larger e is, the 

closer to v ( ω) the bid and ask quotes must be. In fact,

the larger e is, the tighter the constraint on the magnitude 

of the inventory imposed by Lemma 5 , requiring the mid- 

quotes to be close enough to v ( ω) to minimize inventory 

imbalance. 12 

What differentiates this result from the prediction of 

the canonical equilibrium is that the condition must hold 

after all histories and for all states. To appreciate this dif- 

ference, consider the canonical equilibrium and suppose 

that, after a finite history h t , the dealers’ common belief 

is p t = Pr ( ̃ v = v 2 | h t ) = 1 − ε, with ε > 0. For a sufficiently

small ε, bid and ask quotes are close to v 2 . However, if the

true state is such that ˜ v = v 1 , the flow of trades eventu- 

ally moves the price toward v 1 . Under the canonical equi- 

librium, how much time is required for the quotes to ad- 

just and be close to v 1 ? The time required for this adjust- 

ment can be arbitrarily long if ε is very small. This implies 

that, in the canonical equilibrium, and after some histo- 

ries, the mid-quote takes a very long time to be close to 

v ( ω), and, hence, its discounted average can be far from 

v ( ω). This cannot occur in a BFE. If, after some history h t ,

quotes took a long time to adjust, then, for a long pe- 

riod, the order flow would be unbalanced. We cannot ex- 

clude the possibility that a dealer knows the true state 

and hence expects to make a loss due to the large inven- 

tory accumulated at the wrong prices during the long ad- 

justment period. However, this contradicts Lemma 4 : each 

dealer makes positive profit in every state and after ev- 

ery history. Lemma 6 states that in a BFE, regardless the 

past evidence from the order flow, if the true ˜ v is not 
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what past evidence suggests, it will not take long for the

mid-quote to adjust and be relatively close to the true

˜ v . Thus, in a BFE, regardless of the past history of trade,

quotes’ sensitivity to new trades does not vanish. As a

consequence, dealers’ quotes do not reflect a Bayesian ex-

pectation of ˜ v and, compared with the canonical equilib-

rium quotes, display excess volatility. To further formalize

this idea, let ˆ e := 

φ(φ−1) γ 2 σ 4 

v 2 −v 1 
. When e > ˆ e , the mid-quote

cannot be sufficiently close to both v 2 and v 1 and, thus,

A 

� (v 1 ) ∩ A 

� (v 2 ) = ∅ . In this case, quotes that would guar-

antee all dealers positive profits when 

˜ v = v 1 would gen-

erate negative profits for at least one dealer if ˜ v = v 2 . This

does not prevent the existence of a BFE. However, it re-

quires dealers to make use of the information coming from

the trading flow to tune the quotes to the true ˜ v . More for-

mally, denote by ˜ τ (ω, h t ) the additional time required by

the mid-quote to be 2 ρ2 φ
(φ−1) e 

-close to v ( ω) after history h t ,

conditional on the state being ω. 

Lemma 7 . Excess volatility: If σ forms a BFE, and e > ˆ e , then

there exists κ ∈ (0, 1) such that for all ω, after any history h t ,

for any T , 

Pr ( ̃  τ (ω, h 

t ) < T ) ≥ κ − δT 

1 − δT 
. (25)

Again, let us compare the prediction of this lemma with

that of the canonical equilibrium. If quotes follow Bayesian

beliefs, the time ˜ τ (ω, h t ) is arbitrarily long for some h t

and some ω. For any finite time T and any positive ε, one

can find a finite history h t such that Pr ( ̃  τ (ω, h t ) < T ) < ε.

Lemma 7 states that, in a BFE, the, time ˜ τ (ω, h t ) cannot

be arbitrary long, regardless of the past history h t and the

state of nature. 

4.3. Sufficient conditions for BFE pricing 

In this subsection, we establish the existence of a BFE

by constructing one. We first introduce the components of

our candidate strategy profile. We then show how to com-

bine these components to obtain a BFE. 

We are interested in constructing a BFE that maintains

the simple Markovian structure of the canonical equilib-

rium. To this end, we define a market measure π over

the partition 

ˆ � and a market measure updating rule ψ 

mapping time- t market measure, quotes and traders’ or-

ders into a time t + 1 market measure. On the equilibrium

path and in each period t , dealers’ quotes depend on π t

only. 

Specifically, recall that ˆ � = { ̂  ω 1 , ˆ ω 2 } , where ˆ ω k is the

set of states ω ∈ � such that v (ω) = v k , k = 1 , 2 . Fix some

small ε > 0, and let � := [ ε/ 4 , 1 − ε/ 4 ] . Let π t ∈ � denote

the probability that the market measure assigns to ˆ ω 2 at

time t . Fix an arbitrary π0 ∈ [ ε, 1 − ε ] as the initial market

measure. Thereafter, the market measure evolves according

to the following updating rule ψ : �× A × S → �: 

π t+1 = ψ(π t , a t , s t ) := arg min 

π∈ �

∥∥π − ψ B (π
t , a t , s t ) 

∥∥, 

(26)

where ψ B ( π
t , a t , s t ) is the Bayesian posterior as in

Eq. (13) and p t is replaced by π t . That is, ψ( π t , a t , s t ) maps
a probability π t ∈ � and a quote-order profile ( a t , s t ) onto

the probability π t+1 ∈ � that is closest to the Bayesian

posterior computed using a prior equal to π t and the in-

formation provided by a trader’s order s t , given dealers’

quotes a t . We say that π t points to state ˆ ω 2 if π t ≥ 1 − ε
and to state ˆ ω 1 if π t < ε. 

From the definition of a BFE, the market measure need

not reflect any of the dealers’ beliefs. The initial level of the

market measure, π0 , can be chosen arbitrarily in the in-

terval [ ε, 1 − ε ] , and, thereaft er, π t does not follow Bayes’

rule. Nevertheless, the level of the market measure affects

the equilibrium quotes set by rational Bayesian dealers. 

We can now define σ : �→ �A as the partial strategy

that maps, on the equilibrium path, the market measure

onto dealers’ quotes. The complete strategy for the dealers

also describes dealers’ behavior following a deviation and

is detailed in the proof of Proposition 1 . Fix d ∈ (0, ρ) and

n strictly positive weights { θ1 , θ2 , . . . , θn } , with 

∑ 

i θi = 1 .

When π t points to state ˆ ω , we say that the market is in

an exploiting phase and a t is such that the best ask and

bid quotes satisfy, respectively, 

α(a t ) = v ( ̂  ω ) + d, (27)

and 

β(b t ) = v ( ̂  ω ) − d. (28)

If ˜ v = v ( ̂  ω ) , then the dealers’ aggregate expected reward

during one period of the exploiting phase is 2 d (ρ−d ) 

φγσ 2 , which

is independent of e ( ω) and strictly positive because d ∈ (0,

ρ). When π t ∈ (ε, 1 − ε) , the market is in an exploring

phase and a t is such that the best ask and bid quotes sat-

isfy 

αt = α(π t ) + d (29)

and 

βt = β(π t ) − d, (30)

where α( ·) and β( ·) are the functions defined in

Eqs. (14) and (15) , respectively. The best bid and ask quotes

are set by dealer i a fraction θ i of the time. Thus, each

dealer i obtains the strictly positive fraction θ i of dealers’

aggregate profit and inventory. 

The (on-path) equilibrium play then can be decom-

posed into an alternation of two types of phases: exploring

phases and exploiting phases. Whenever π t ∈ [ ε, 1 − ε] ,

the market is in an exploring phase. Dealers’ quotes induce

an informative flow of trades and are sensitive to the or-

der. As time passes, the market measure attaches a grow-

ing weight to the true state ˆ ω . An exploiting phase begins

once the market measure attaches enough weight to a spe-

cific state. In an exploiting phase, the bid and ask straddle

the most likely value of ˜ v according to the market measure.

If the true ˜ v is the one that the market measure points

to, then dealers’ quotes induce a trader’s order flow that

is balanced on average over time. This allows dealers to

make profits through the non competitive bid-ask spread

2 d and keep their inventories balanced. If the market mea-

sure points does not point to the true ˜ v , then traders’ or-

der flow is not balanced, which moves the market mea-

sure back to the exploring phase. By definition, the market

measure never attaches a probability greater than 1 − 3 ε
4 
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to any state in 

ˆ �, regardless of the past history. Hence, 

the time required to move from the “wrong” exploiting 

phase to the “right” exploiting phase cannot grow without 

bound. For the same reason, the probability of temporar- 

ily passing from the right exploiting phase to an explor- 

ing phase is bounded away from zero. Because the market 

measure is never too concentrated, even in an exploiting 

phase, an unbalanced order flow of finite length is suffi- 

cient to trigger exploring. For example, suppose that the 

market measure assigns the maximum weight of 1 − ε/ 4 

to state v 1 , which happens to be the true state. A finite 

sequence of buy orders suffices to move the market mea- 

sure into the range (ε, 1 − ε) . 13 That is, irrespective of the 

past history, the probability of moving from any exploit- 

ing phase to an exploring phase is bounded away from 

zero and does not dampen over time. As a result, explor- 

ing phases recurrently emerge and the economy randomly 

switches between a regime of low volatility with quotes 

close to the true ˜ v and a regime of volatile quotes that 

temporarily drift away from 

˜ v . The price volatility does not 

dampen in subsequent exploring phases. In each exploring 

phase, quotes depend only on the level of the market mea- 

sure and the arrival of the traders’ orders, not on the total 

length of the trading history. This is illustrated in the sim- 

ulation depicted in Fig. 3 , Section 5 . 

It remains to demonstrate that this simple Markov 

strategy profile forms a BFE. For this purpose, it is useful 

to define two crucial properties of the pair ( ψ , σ ). We say 

that a strategy is ε-learning if, over many periods, the mar- 

ket measure points to the true ˆ ω with a frequency that is 

at least 1 − ε. In other words, the market measure is rarely 

far away from the truth in terms of long-run frequency. 

Formally the following hold: 

Definition 2 . The pair ( ψ , σ ) is ε - learning , for ε > 0, if for

any ˆ ω ∈ 

ˆ �, any ω ∈ ˆ ω and any π0 ∈ �, 

Pr 
ω,σ

[ 

lim inf 
T →∞ 

1 

T 

T ∑ 

t=1 

1 { π t ( ̂ ω ) > 1 −ε } < 1 − ε 

] 

< ε, (31) 

We say that a pair ( ψ , σ ) is ε-exploiting if, whenever 

the market measure points at some ˆ ω , the play is such 

that each dealer’s payoff is strictly positive in all states ω 

included in ˆ ω . Formally, we have the following: 

Definition 3 . The pair ( ψ , σ ) is ε- exploiting , for ε > 0, if, 

for all ˆ ω ∈ 

ˆ � and all h t such that π t ( ̂  ω ) ≥ 1 − ε, we have 

Pr σ
[
a t ∈ A 

� + (v ( ̂  ω )) | h t ] > 1 − ε. 

Proposition 1 shows that a pair ( ψ , σ ) that is both ε- 

exploring and ε-exploiting forms a BFE if dealers are pa- 

tient enough. 

Proposition 1 . The pair ( ψ , σ ) defined in Eqs. (26) –(30) is 

ε -learning and ε -exploiting. Furthermore, there exists δ < 1 

such that the outcome induced by σ is a belief-free equilib- 

rium outcome for all δ ∈ ( δ, 1) . 

That is, a BFE σ ∗ exists that specifies the same ac- 

tion profile as the partial strategy σ after any history after 
13 This could be because, by chance, a sequence of traders who need to 

buy for hedging come to the market. 
which no player has deviated. Observe that a pair ( ψ , σ ) 

that is both ε-exploring and ε-exploiting forms a strategy 

profile satisfying the five necessary conditions for a BFE, 

as described in Section 4.2 . First, how dealers set their ac- 

tions is clearly measurable with respect to traders’ behav- 

ior ( Lemma 3 ) because dealers’ actions at t depend only on 

π t , which is itself a function of the public history and the 

order flow. Second, this strategy leads to positive profits 

( Lemma 4 ) because the market measure frequently points 

to the right ˆ ω ( ε-exploring) and, when this happens, the 

dealers’ payoff is positive ( ε-exploiting). Third, the fact that 

dealers’ inventories are bounded ( Lemma 5 ) and average 

mid-quotes close to ˜ v ( Lemma 6 ) is a consequence of the 

fact that dealers’ payoffs remain positive for all values of 

W ( ω). Fourth, the strategy generates a sensitivity of quotes 

to the trading flow that never vanishes ( Lemma 7 ). Because 

the market measure is never too concentrated on a state, 

it remains sensitive to the trading flow regardless of the 

past history. In the proof of Proposition 1 , we show that 

dealers have no incentive to deviate. For this purpose, we 

show that there are strategies that are played after a devia- 

tion and that punish the deviating dealer while rewarding 

the other dealers. For this threat of punishment to be an 

effective deterrent, dealers should care enough about their 

future payoffs, i.e., be patient enough. 

5. Simulations and empirical implications 

To illustrate some of the empirical implications of 

belief-free equilibria and their salient differences from the 

canonical equilibrium (hereafter, CE), we simulate price be- 

havior resulting from these two equilibria. 14 

5.1. Dealers’ profits 

One of the necessary conditions for an equilibrium to 

be belief-free is that dealers’ long-term profits are strictly 

positive in all states. In a BFE, this is achieved by main- 

taining a spread that is larger than that predicted in CE. 

In the BFE, the spread remains bounded away from zero 

even when the market measure is relatively concentrated. 

As a result, while in CE, the average dealers’ aggregate per 

period profit quickly converges to zero, in a BFE, it is of 

the same magnitude as d (see Fig. 1 ). A dealer’s ex post 

profit also depends on the value of e (ω) ∈ {−e , e } . Fig. 2

represents the ex post cumulative profit for e (ω) = −e and 

e (ω) = e . In CE (panel A of Fig. 2 ), the dealers’ cumulative

profit remains negative for at least one realization of e ( ω). 

In a BFE, the dealers’ cumulative profit eventually becomes 

positive regardless of the realized e ( ω) (panel B of Fig. 2 ). 

5.2. Excess price volatility 

In Fig. 3 , we report a simulation of the two equilib- 

ria for v (ω) = v 1 in CE (panel A) and BFE (panel B). The

sequence of traders’ inventories in the two simulations 
14 For this simulation, the parameters of the fundamentals are v 1 = $36, 

v 2 = $40, e = 3 , Var [ ̃ e ] = 4 , γ = 5 , φ = 3 (thus, ρ = 15 ), and the BFE pa- 

rameters are d = $0.02, ε = 0 . 02 , and π0 = p 0 = 0 . 5 . The figures report 

the time series for ten thousand trades. 
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Fig. 1. Evolution of the average per period profit taking e (ω) = 0 in canonical equilibrium (dashed line) and in belief-free equilibrium (solid line). 

Panel A: Dealers’ cumulative profits in CE
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Fig. 2. Evolution of dealers’ cumulative profits in canonical equilibrium and belief-free equilibrium for e (ω) = 0 (dashed middle line), e (ω) = e (solid line) 

and e (ω) = −e (dotted line). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is identical. However, the resulting sequences of equilib-

rium quotes differ substantially. In both BFE and CE, quote

changes are correlated with the trading flow. In CE, quotes’

sensitivity to trades vanishes over time, but this is not the

case for BFE. As a result, in a BFE, quotes are intrinsically

more volatile than they are in CE. In CE, dealers’ quotes re-

flect the common Bayesian belief, which eventually assigns

a probability arbitrarily close to one to the true value of v .
This leads to a vanishing volatility and bid-ask spread, with

quotes that remain arbitrarily close to v . This cannot hap-

pen for the BFE market measure, which is never too con-

centrated on a given state and hence remains unstable. The
market measure’s and quotes’ sensitivity to trading volume

never vanish, and the economy exhibits stochastic regime

shifting between exploring and exploiting phases. As a re-

sult, while the bid-ask spread generally straddles the true

v ( ω), quotes recurrently diverge from it. 

5.3. Volatility clustering 

The recurrence of exploring and exploiting phases

gives rise to price volatility clusters. In exploring phases,

dealers attract an informative and unbalanced order flow

from traders. In exploiting phases, dealers make profits
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Fig. 3. Evolution of bid quotes (black dots) and ask quotes (gray dots) in canonical equilibrium (panel A) and belief-free equilibrium (panel B). 
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Fig. 4. Market measure and dealers’ inventory in an exploiting phase (panels A and C) and an exploring phase (panels B and D). 
from intermediating a relatively balanced order flow. In 

exploring phases, quotes react more sharply to the trading 

volume. Thus, quotes’ volatility is higher in exploring than 

in exploiting phases. The volatility clustering effect is 

apparent in the Panel A of Fig. 3 . The alternation of these 

phases endogenously generates price volatility regime 

shifts, a pattern that has been extensively documented in 

the asset-pricing literature. Price sensitivity to the order 

flow in exploiting and exploring phases is illustrated in 
Fig. 4 , which shows how the market measure reacts to the 

trading volume in an exploiting phase (panel A) and in 

an exploring phase (panel B). Volatility regime shifts are 

anticipated by precise patterns in the order flow and evo- 

lution of dealers’ inventory. A shift from low to high price 

volatility tends to be preceded by consistent imbalances 

in the traders’ order flow and significant changes in deal- 

ers’ inventory. The transition from high to low volatility 

phases follows the fading of traders’ order imbalance and 
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Fig. 5. Evolution of dealers’ aggregate inventory in canonical equilibrium (gray line) and in belief-free equilibrium (black line). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a stabilization of dealers’ inventory. In a BFE, the volatility

regime shift is completely endogenous and occurs in the

absence of news. Furthermore, the total length of the trad-

ing history affects neither the quotes’ volatility during an

exploiting phase nor the frequency of these phases. This

is very different from the canonical equilibrium, which

predicts that, in the absence of news, price volatility is

bound to fade away (See panel A of Fig. 3 ). 

5.4. Quote volatility vs. trading flow, bid-ask spread and 

profits 

Belief-free equilibria are associated with bid-ask

spreads that are larger than those that would emerge in

a CE, in which beliefs correspond to the market measure.

However, this spread need not be as large as the spread

that would emerge in the presence of a monopolistic

dealer. For example, take our numerical example for the

case in which 

˜ v is perfectly known to all dealers. In a

CE, the spread would be nil, and in the presence of a

monopolistic dealer, it would be ρ/ 2 = 10 . In our numer-

ical example, it is 2 d = 0 . 04 . That is, belief-free equilibria

predict spreads that are larger than the competitive spread

and do not require spreads to be as large as a monopolistic

dealer model would predict. Such a Markovian BFE has

some interesting implications regarding the correlation

among price volatility, liquidity (measured by the bid-ask

spread), dealers’ aggregate inventory, and profits. In an

exploring phase, orders are more informative. Compared

with exploiting phases, exploring phases are associated
with larger bid-ask spreads, price volatility and aggregate

inventory, as well as lower profits. This is consistent with

the empirical regularities observed by Comerton-Frode,

Hendershott, Jones, Moulton, and Seasholes (2010) : liq-

uidity is negatively correlated with dealers’ profits and

inventories, as well as with price volatility. 

5.5. News and volatility 

Although this benchmark model does not explicitly al-

low for exogenous information shocks, extending it to al-

low for the exogenous arrival of public news concerning

fundamentals is straightforward. Our BFE can accommo-

date this by having the market measure depend on all pub-

lic information, i.e., on public news and on the order flow.

Unexpected news arriving when the market is in an ex-

ploiting phase moves the market measure and can trigger

an exploring phase. As a result, upon receiving news, price

volatility increases. This can generate price overshooting or

undershooting, or both, with respect to the level of quotes

that is reached once a new exploiting phase begins. 

5.6. Dealers’ inventories 

A strictly positive profit in all states can be achieved

only when the aggregate inventory does not grow un-

boundedly. For this reason, in BFE, dealers’ inventory must

remain bounded. This is not required in CE. For exam-

ple, in the simulation, v (ω) = v 1 , and thus traders tend to

sell rather than buy the asset. Fig. 5 reports the evolution
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15 This step is without loss of generality because the short-lived trader 

would cancel his order and dealers can immediately post just-canceled 

limit orders at the beginning of the following trading round. 
of aggregate inventory in CE (gray curve) and BFE (black 

curve). 

6. A general model of price formation 

In this section, we generalize the model of 

Section 2 along two dimensions. First, we have a richer 

set of states of nature that can affect both the asset’s 

fundamental value and the distribution of the traders’ 

characteristics. Second, we consider a more general trad- 

ing protocol to encompass a wider range of trading 

systems. We then show that, at least qualitatively, the 

properties of the BFE derived in the simple model also 

hold in the general model. 

6.1. Set-up 

At time 0, nature chooses a state ω from an arbitrary 

set �. The state affects the fundamental value of the asset 

(fundamental uncertainty) or the composition of the pop- 

ulation of traders (non-fundamental uncertainty), or both. 

Formally, the fundamental value of the asset is written 

as W (ω) = v (ω) + e (ω) and is assumed to take bounded 

values, i.e., v (ω) ∈ [ v , v ] , and e (ω) ∈ [ −e , e ] , with v − e ≥ 0

and v + e being finite. The composition of the population 

of traders is denoted Z ( ω) ∈ ��, where � is a compact set, 

and an element θ ∈ � describes a trader’s utility function 

and initial holdings of cash and the asset. We assume that 

nature chooses ω in � according to a probability distri- 

bution such that ˜ e is orthogonal to ˜ v and 

˜ Z (i.e., E[ ̃ e | ̃ v ] = 

E[ ̃ e | Z] = 0 ) and is such that E[ ̃ e ] = 0 , Var [ ̃ e ] = σ 2 > 0 . 

In each period t = 1 , 2 , . . . , n trading unfolds as follows. 

Risk-neutral long-lived dealers first choose an action pro- 

file from the finite set A . A short-lived trader then reacts 

by choosing an action from the finite set S . Dealers’ actions 

and traders’ reactions are publicly observable. For a given 

action-reaction profile ( a, s ) ∈ A × S , let q j ( a, s ) and p j ( a, s )

be the resulting amounts of the risky asset and money that 

other market participants transfer to agent j . That is, if the 

state of nature is ω, an action-reaction profile ( a, s ) leads 

to a change in agent j ’s wealth given by 

 (ω) q j (a, s ) + p j (a, s ) . (32) 

We assume that the trading protocol is such that no 

agent is forced to trade. 

This trading protocol generalizes that of Section 2 and 

encompasses most trading protocols analyzed in the liter- 

ature. We provide two examples below. 

First, for the quote-driven market analyzed in Biais, 

Martimort, and Rochet (20 0 0) , the set of actions available 

to each dealer is a trade schedule T ( ·), which specifies his 

willingness to trade q shares of the asset against the trans- 

fer of cash T ( q ). Quantities and prices belong to some finite 

sets G q and G . The set of actions is A i = [ G ] M q , where M q 

denotes the cardinality of G q . The trader observes the deal- 

ers’ schedules and chooses how many shares to trade with 

each dealer. Thus, S = [ G q ] 
n . 

Second, no agreed-upon way exists to model limit or- 

der markets (see, for example, Foucault, 1999; Goettler, 

Parlour, and Rajan, 2005 and Goettler, Parlour, and Rajan, 

2009; Foucault, Kadan, and Kandel, 2005; Rosu, 2009 ). We 
present one possible specification that captures the func- 

tioning of a limit order market. In each period t , each 

dealer first submits a limit order that enters the book at 

the specified price. These limit orders form the initial book. 

The trader then chooses whether to submit a market order 

that trades against the initial book or a limit order that 

enters the book, or both. This transforms the initial book 

into the interim book. Each dealer subsequently submits a 

market order that trades against the interim book. All limit 

orders that are not executed are cancelled. 15 

Traders know the realization of ˜ v but have no infor- 

mation about ˜ e . Because a trader does not learn anything 

about ˜ e by knowing his type θ , if the state is ω and 

no public information about ˜ e is available, then a type θ
trader’s reaction to dealers’ action a is given by 

D (ω, a, θ ) := argmax s ∈ S E[ g θ ((v (ω) + 

˜ e )(q T r (a, s ) + y θ ) 

+ p T r (a, s ) + c θ )] , (33) 

where we set j = T r for the trader, and ( g θ , c θ , y θ ) is

the triple describing the trader’s utility function and initial 

cash and asset holdings. The function D : �× A ×�→ �S 

and the distribution of types Z ( ω) ∈ �� induce the proba- 

bility with which the time t trader chooses the reaction s 

to the dealers’ action profile a , if the state of nature is ω 

and no information about ˜ e is available. This probability is 

F (ω, a, s ) := Pr 
[
D (ω, a, ˜ θ ) = s 

]
. (34) 

The exact shape of the distribution F : �× A → �S depends 

on the specification of Z , � and the distribution of ˜ e . 

It is easy to see that, as long as the set � of traders’ 

types includes risk-averse traders with positive inventories 

and risk-averse traders with negative inventories, the func- 

tion F satisfies the following properties: 

Room for trade (RFT) There are ρ ≥ ρ > 0 such that for 

all ω ∈ �, 

1. If ( a, s ) translates into the trader buying at price x >

v (ω) + ρ, then F (ω, a, s ) = 0 . 

2. If ( a, s ) translates into the trader selling at price x <

v (ω) − ρ, then F (ω, a, s ) = 0 . 

3. If ( a, s ) translates into the trader buying at price x <

v (ω) + ρ, then F ( ω, a, s ) > 0 . 

4. If ( a, s ) translates into the trader selling at price x >

v (ω) − ρ, then F ( ω, a, s ) > 0 . 

Properties 1 and 2 state that traders never buy the as- 

set at a price that is too high or sell at a price that is too

low relative to v ( ω). Properties 3 and 4 state that a posi-

tive probability always exists that the time t trader is will- 

ing to buy or sell as long as the trading price is not too

far from v ( ω). In other words, if traders were to meet si-

multaneously in the market, there would be room for trade 

in all states ω. The RFT property is satisfied in the market 

microstructure literature and guarantees that the no-trade 

theorem ( Milgrom and Stokey, 1982 ) does not apply. 

Dealers are risk-neutral long-lived agents. In state ω, 

dealer i ’s reward given an action-reaction profile ( a, s ) 
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is u i (ω, a, s ) = W (ω) q i (a, s ) + p i (a, s ) . With abuse of nota-

tion, we denote 

q i (ω, a ) := 

∑ 

s ∈ S 
F (ω, a, s ) q i (a, s ) , (35)

and 

p i (ω, a ) := 

∑ 

s ∈ S 
F (ω, a, s ) p i (a, s ) , (36)

and let 

u i (ω, a ) := W (ω ) q i (ω , a ) + p i (ω, a ) . (37)

Thus, u i ( ω, a ) is dealer i ’s reward in state ω, given the

dealers’ action profile a and provided that the traders’ be-

havior is described by F . Rewards are discounted at the

common discount factor δ < 1. 16 

We make no assumption regarding what each individ-

ual dealer knows about the true state ω. We assume that

traders know the ˜ v component but not ˜ e . We are inter-

ested in the partition of � that corresponds to what deal-

ers can statistically learn from a long-run observation of

how traders react to their quotes. For any pair of states ω,

ω 

′ ∈ �, we denote by A ( ω , ω 

′ ) ⊆�A the set of action pro-

files a satisfying F ( ω, a ) � = F ( ω 

′ , a ). A state ω can be statis-

tically distinguished from ω 

′ only if A ( ω , ω 

′ ) � = ∅ . In fact,

by consistently choosing their actions a t in A ( ω , ω 

′ ) and

observing the distribution of traders’ reactions, dealers can

distinguish between the two states. Let ˆ � be the partition

of � induced in this way. That is, ω , ω 

′ ∈ ˆ ω if and only if

A (ω , ω 

′ ) = ∅ . We assume that ˆ � is finite with cardinality

M and denote by ˆ ω (ω) the element of ˆ � containing ω ∈ �.

6.2. Properties of the one-shot trading round 

In a situation in which dealers have no private infor-

mation, the traders’ behavior is given by the function F de-

fined in Eq. (34) , and each dealer’s reward function in state

ω given by action profile a is u i ( ω, a ), as defined in Eq.

(37) . We are interested in an economy in which u i ( ω, a ) is

regular, as defined below. 

Definition 4 . The dealer’s reward function u i ( ω, a ): �→ �A

is regular if, for any given ˆ ω ∈ 

ˆ �, the following four

proeprties hold: 

1. Positive maximum payoffs : There exists a non-empty set

A 

� + ( ̂  ω ) ⊆ �A such that u i ( ω, a ) > 0, for all a ∈ A 

� + ( ̂  ω ) ,

ω ∈ ˆ ω and dealer i . 

2. Negative minimum payoffs : There exists an action profile

a ( ̂  ω ) ∈ �A such that u i (ω, a ( ̂  ω )) < 0 , for all ω ∈ ˆ ω and

dealer i . 

3. Non-positive expected payoffs : For any dealer i and

probability measure μ ˆ ω ∈ � ˆ ω , there exists a i −i ( μ ˆ ω ) ∈
× j � = i �A j such that 

max 
a i 

∑ 

μ ˆ ω (ω ) u i 

(
ω , a i , a 

i 
−i ( μ ˆ ω ) 

)
≤ 0 . 
ω∈ ̂ ω 

16 As in the example from Section 1 , δ can be interpreted as a measure 

of both time preference and the probability that no public announcement 

disclosing ω is made within the period. 
4. Non-equivalent payoffs : There exist n action profiles

{ a 1 ( ̂  ω ) , . . . , a n ( ̂  ω ) } ∈ [ �A ] 
n such that u i (ω, a i ( ̂  ω )) <

u i (ω, a j ( ̂  ω )) for all i � = j and ω ∈ ˆ ω . 

Let u � = min i min ω min A � + ( ̂ ω ( ω ) ) u i ( a, ω ) > 0 denote a

lower bound on payoffs from actions in A 

� 
(

ˆ ω 

)
. Roughly

speaking, the properties Positive maximum payoff and

Negative minimum payoff properties guarantee that, for

each statistically distinguishable state ˆ ω , there are action

profiles providing each dealer with at least u � > 0 and

action profiles leading to strictly negative payoffs. Non-

positive expected payoffs property guarantees that each

dealer can be punished in each state. Non-equivalent pay-

offs property states that, for each ˆ ω , one can find as many

action profiles as there are dealers, such that dealer i ’s

least favorite action profile is the i th profile. 

Lemma 8 . If � and Z are such that RFT properties are satis-

fied, then the dealer’s reward function is regular. 

A dealer’s payoff function in state ω, given a strategy

profile σ and history h t , can be decomposed as 

 i (ω, σ | h 

t ) = w (ω ) Q i (ω , h 

t ) + P i (ω, h 

t ) , (38)

where, as in Section 4.2 , Q i ( ω, h t ) is the expected dis-

counted change in inventory for dealer i . In turn, this

can be decomposed as the difference between the ex-

pected purchase volume Q 

+ 
i 
(ω, h t ) and the sales vol-

ume Q 

−
i 
(ω, h t ) for dealer i . The quantity P i ( ω, h t ) is

the expected discounted change in cash for dealer i . Let

Q 

+ (ω, h t ) := 

∑ 

i Q 

+ 
i 
(ω, h t ) and Q 

−(ω, h t ) := 

∑ 

i Q 

−
i 
(ω, h t )

be, respectively, dealers’ aggregate expected purchase and

sales volume. 17 

The definition of BFE for this general model does not

change from that in Section 4.1 . Hence, we focus directly

on the necessary and sufficient conditions for a dealer’s

strategy to form a BFE when the reward function is regular.

6.3. Necessary conditions 

In this subsection we show that, qualitatively, the nec-

essary conditions for a strategy profile to be a BFE in the

baseline model ( Section 4.2 ) also apply to our general set

up. 

Proposition 2 . Let σ form a BFE and ˆ ω be an element of ˆ �.

Then, for all ω ∈ ˆ ω and all histories h t , five properties are sat-

isfied: 

1. Measurability with respect to traders’ behavior: A time t

trader’s equilibrium behavior corresponds to the function

F given in Eq. (34) . The equilibrium occupation measure

ν(ω,σ,h t ) ∈ �(A × S) is the same for all ω ∈ ˆ ω . 

2. Positive dealer’s payoffs: For each ω ∈ ˆ ω , each dealer’s

continuation payoff V i ( ω, σ | h t ) is non-negative. Moreover,

if Q i ( ̂  ω , h t ) � = 0 , then dealer i’s continuation payoff is nil

for at most one ω ∈ ˆ ω . 
17 Because the state can affect both v ( ω) and the distribution of dealer 

types, Q i and P i do not depend on v ( ω) only, as was the case for the 

simpler model of Section 2 . We do not exclude the possibility that there 

are states in which ˜ v is the same but ˜ Z differs. 
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3. Bounded dealers’ aggregate inventory: Dealers’ aggregate 

inventory and trading volume satisfy 

| Q 

+ (ω, h 

t ) − Q 

−(ω, h 

t ) | ≤ (
Q 

+ (ω, h 

t ) + Q 

−(ω, h 

t ) 
)ρ

e 
. 

(39) 

4. Average information efficiency: There is a level of l( ̂  ω ) and 

of ψ( e ) , decreasing in e , such that the average transac- 

tion price is ψ( e ) -close to l( ̂  ω ) . 

5. (Excess volatility) The expected time required for the 

transaction prices to be ψ( e ) -close to l( ̂  ω ) is bounded, 

regardless of the past history. 

The interpretation of these properties is the same as 

those in Lemmas 3 –7 . 

6.4. Sufficient conditions 

The following generalizes the construction of 

Section 4.3 . 

We begin by defining a market measure π . Let � ⊆ � ˆ �

be a closed set of probability distributions over ˆ � and π
denote an element in �. Let π( ̂  ω ) denote the probability 

that π attaches to ˆ ω . Let ψ : �× A × S → � be a probability 

updating rule, i.e., π t+1 = ψ(π t , a t , s t ) . We are interested 

in simple strategies such that, on the equilibrium path and 

in each period t , dealers’ actions depend on π t (and pos- 

sibly on s t−1 ) only. We want the partial strategy to be ε- 

learning and ε-exploiting in the sense of Definitions 2 and 

3 . To be ε-exploiting, the actions that allow one to distin- 

guish the true ˆ ω from the other state in 

ˆ �, must be played 

with strictly positive frequency, regardless the level of the 

market measure π . Formally, ( ψ , σ ) must be exploratory 

in the sense that ∀ ω ∈ �, ∀ ̂  ω 

′ ∈ 

ˆ � such that ˆ ω 

′ � = ˆ ω (ω) , 

and for any π0 ∈ �, 

Pr 
ω,σ

[ 

lim inf 
T →∞ 

1 

T 

T ∑ 

t=0 

1 { a t ∈ A ( ̂ ω ′ , ̂ ω (ω)) } > 0 

] 

= 1 . (40) 

With this modification, one can construct a BFE quali- 

tatively similar to that in Section 2 . 

Theorem 1 . Suppose dealers’ reward functions are regular. 

There exists ε̄ > 0 such that for any ε < ε̄ , if ( ψ , σ ) is ε-

learning and ε- exploiting , then there exists δ < 1 such that 

the outcome induced by σ is a BFE outcome, for all δ ∈ ( δ, 1) . 

That is, there exists a BFE ˆ σ that specifies the same ac- 

tion profile as the partial strategy σ , after any history after 

which no player has deviated. 

7. Discussion 

Our environment is restrictive on several dimensions. In 

particular, dealers’ actions are observed by all other deal- 

ers. Furthermore, the state of the world that determines 

the fundamentals is fixed permanently at time 0. Also, in 

equilibrium, long-term market participants are unable to 

exploit their private information. Finally, we assume that 

the set of states, the set of actions, and the asset’s funda- 

mental value are bounded. Here, we sketch how the model 
can be extended and the analysis adapted to accommodate 

such features. 

The assumption that dealers’ actions are observable 

perhaps is not realistic for some opaque markets, for in- 

stance, when dealers’ quotes are anonymous or when 

some dealers privately execute the orders of some of their 

clients. Imperfect monitoring of actions makes it more dif- 

ficult to detect a dealer’s deviation from the mutually prof- 

itable collusive-type strategy. This reduces the threat of 

punishment and complicates the implementation of collu- 

sive behavior. However, this does not eliminate the deal- 

ers’ ability to sustain a BFE, as long as equilibrium strate- 

gies are built in a way that make deviations (at least 

statistically) detectable. For example, Christie and Schultz 

(1994) and Christie et al. (1994) show how Nasdaq dealers 

used to quote only on even-eight quotes. Deviations from 

such a collusive scheme can be easily detected even when 

quotes are anonymous. More generally, imperfect monitor- 

ing of players’ actions is not an issue for the existence of a 

BFE (as demonstrated in Fudenberg and Yamamoto, 2011 . 

The intuition is relatively simple. Consider what is publicly 

observed by dealers. This could be their public quotes or 

the previous trades. Then, building a strategy mapping this 

public history onto dealers’ actions that guarantees posi- 

tive profits is possible. The construction is amended to rec- 

ognize that the only deviations that can be punished are 

those that impact the public history and are hence de- 

tectable. That is, imperfect monitoring of dealers’ actions 

might impose further restrictions on the type of equilib- 

rium strategies that can be sustained in a BFE. 

Allowing for fluctuations in the value of the asset raises 

no difficulty, as long as these fluctuations take place at a 

much slower rate than does the learning process. That is, 

in the definition of ( ψ , σ ) to have ε-learning, we must ac- 

count for the fact that ˆ ω (ω t ) depends on time t . Hence, 

the learning requirement is considerably stronger. We must 

think of learning the fundamental value as occurring at an- 

other time scale than the fluctuations of the value itself. 

Perhaps the learning occurs within a day of trading, an in- 

terval of time over which the fluctuations in the funda- 

mental value are sufficiently small to be considered neg- 

ligible. If trading periods are at high frequency (say, mil- 

liseconds), fundamentals hardly change from one such pe- 

riod to the next. However, we have in mind that the flow 

of trade itself does not affect fundamentals. The verifica- 

tion that σ is a BFE follows exactly the same steps as in 

the main proof. 

Another restriction is that long-term market partici- 

pants do not exploit their private information, if any. This 

is an implication of our definition of BFE, which requires 

optimality for any possible information structure. What 

matters is that dealers can identify the set of quotes that 

balance supply and demand coming from the mass of in- 

vestors. As these quotes can be ultimately learned from the 

observation of the trading flow, dealers’ private informa- 

tion is not crucial. The fact that, in our equilibrium, dealers 

do not exploit their private information could be counter- 

intuitive, but there is no difficulty in redefining our model 

to accommodate such behavior without abandoning the 

belief-free assumption. Instead of taking the asset value as 

a primitive that determines a distribution over the players’ 
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private signals, one can regard the players’ private signals

as a primitive that determines the asset’s value. In that

case, we can redefine a strategy profile to be belief-free if

it is the case that, for every player, given his private sig-

nal, his strategy (that can depend on his private signal) is

optimal independent of the other players’ possible strate-

gies. That is, given a player’s signal, there is a set of sig-

nal profiles of his opponents that are consistent with his;

for each such signal profile, his opponents play some strat-

egy profile. Belief-freeness requires the player’s strategy to

be optimal in response to all these profiles. In fact, it is

clear that we do not need to impose that the players’ com-

bined signals specify the value of the asset. Rather, it spec-

ifies a set of possible values, with respect to all of which

the best-reply property must hold. This provides a natu-

ral extension of the definition of BFE that allows dealers

to exploit their private information. Whereas such belief-

free equilibria can be characterized, they are unlikely to

exist under very broad conditions. They can help to explain

price formation only for those actual cases in which only

few specific forms of information asymmetries are likely.

We believe that such an extension raises interesting ques-

tions and technical challenges that should motivate further

study. 

While the assumption that the asset value ˜ W is

bounded could be realistic, it is not innocuous. A dealer

who believes that the asset’s fundamental value is arbitrar-

ily large can expect to make arbitrarily large profits from

a single deviation. In this case, equilibria may not exist

for fixed δ < 1. However, the boundedness of action pro-

files is not restrictive, if the asset’s value is bounded, in the

sense that equilibrium quantities and prices are necessarily

bounded. 

8. Conclusion 

This paper considers market microstructure models in

which long-lived dealers interact with short-lived traders.

We characterize equilibrium price formation strategies that

do not depend on dealers’ beliefs about fundamentals.

Belief-free equilibria feature two key ingredients. First,

dealers collectively learn the value of those fundamentals

that affect traders’ demand. Second, for any given value of

these fundamentals, dealers generate positive profits from

intermediating traders’ demand. This has three implica-

tions that contrast with those delivered by canonical mi-

crostructure models relying on the assumption of equally

uninformed competitive dealers. First, dealers’ long-term

profit is strictly positive, independent of the asset’s fun-

damental value. This profit is obtained through intermedi-

ating traders’ demand. Second, the trading price need not

reflect any of the dealers’ beliefs and is generally more

volatile than prices that reflect the evolution of Bayesian

beliefs. Third, dealers’ inventories tend to be balanced even

in the absence of risk aversion or institutional constraints.

Given that belief-free equilibrium is more stringent than

traditional solution concepts, it might be surprising that so

much flexibility remains could be surprising. In particular,

the equilibrium is not unique. Hence, we focus on a belief-

free equilibrium with a simple Markovian structure. When

applied to a version of the Glosten and Milgrom model, it
explains well-documented stylized empirical facts. For spe-

cific microstructure games, it could then be sensible to fo-

cus on belief-free equilibria that satisfy further criteria. For

example, depending on the specific trading model consid-

ered, one could analyze equilibria that maximize the deal-

ers’ aggregate payoff, and that minimize the expected time

required for the market measure to point at the true state,

that even minimize the aggregate cost of learning, or more

generally, strategies that form a belief-free equilibrium for

the largest range of dealers’ discount rates. 

Appendix A 

A.1. Proof of Lemma 1 

We provide the proof for F ( ω, a , 1). The proof for

F (ω, a, −1) is analogous. 

If the state is ω, the profile of dealer quotes is a , and

no information about ˜ e is available, then a trader with in-

ventory y prefers selling to not trading if 

(y − 1) v (ω) + β(a ) − γ

2 

(y − 1) 2 σ 2 ≥ y v (ω) − γ

2 

y 2 σ 2 . 

(41)

This is true for y not smaller than the threshold 

1 
2 +

v (ω) −β(a ) 

γ σ 2 . Thus, the probability that trader t sells is the

probability that his inventory y is above this threshold,

that is, 1 − Z 

(
1 
2 + 

v (ω) −β(a ) 

γ σ 2 

)
. The expression for F follows

from the fact that Z ( ·) is the distribution function of a uni-

form distribution on the interval [ −φ/ 2 , φ/ 2] . �

A.2. Proof of Lemma 2 

We provide the proof for the bid price. The proof for

the ask price is analogous. Consider a dealer whose beliefs

are such that Pr ( ̃ v = v 2 ) = p and E[ ̃ e ] = 0 . His expected

profit from buying the asset at price β ∈ [ v 1 , v 2 ] is 

p(v 2 − β) F (v 2 , a, 1) + (1 − p)(v 1 − β) F (v 1 , a, 1) , (42)

where a is such that β(a ) = β . The expression for β( p ) is

obtained by, first, replacing F ( ·) with the expression given

in Lemma 1 , considering that β ≥ v 1 and the assumption

ρ > v 2 − v 1 , and, second, finding the β that makes the

dealer’s expected payoff equal to zero. �

A.3. Proof of Lemma 3 

A BFE must be an equilibrium even when dealers have

no private information about ω. In this case, first, the be-

havior of traders is given by Lemma 1 . Second, if v (ω) =
v (ω 

′ ) , then traders’ behavior is the same in states ω and

ω 

′ . Thus, no agent in the economy can distinguish between

these two states, so all agents’ behavior, quotes, and orders,

must be the same in the two states. �

A.4. Proof of Lemma 4 

To see that the equilibrium payoff cannot be negative,

suppose that for some state ω, dealer i , and history h t , we

have V ( ω, σ ∗| h t ) < 0. Then, if dealer i believes that the
i 
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true state is ω, he would be better off by setting βτ
i 

< 

v 1 − ρ and ατ
i 

> v 2 + ρ in all periods τ > t . This guaran- 

tees that he never trades and hence obtains zero continu- 

ation payoff. Thus, σ ∗ cannot be a BFE. Let show that if a 

dealer trades, then his equilibrium payoff is nil in at most 

two states and is strictly positive in all other states, take 

any v ∈ { v 1 , v 2 }. For all ω such that v (ω) = v , because of

Lemma 3 , one has 

 i (ω, σ ∗ | h 

t ) = (v + e (ω)) Q i (v , σ ∗ | h 

t ) + P i (v , σ ∗ | h 

t ) . 

(43) 

Suppose that Q i ( v, σ ∗| h t ) � = 0 and take two different states 

ω , ω 

′ with v (ω ) = v (ω 

′ ) = v and e ( ω) � = e ( ω 

′ ). Then, it

must be that V i ( ω, σ ∗| h t ) � = V i ( ω 

′ , σ ∗| h t ). Because V i ( ω,

σ ∗| h t ) cannot be strictly negative, it can be nil for at most 

one of the states ω ∈ ˆ ω v 1 and is strictly positive for all 

other states in ˆ ω v 1 . The same argument applies for ˆ ω v 2 . �

A.5. Proof of Lemma 5 

From Lemma 1 and Lemma 3 , dealers cannot purchase 

the asset for less than v (ω) − ρ or sell it for more than 

v (ω) + ρ . Fix v ∈ { v 1 , v 2 }. For all ω satisfying v (ω) = v , we

have 

 i (ω, σ | h 

t ) 

≤ Q 

+ 
i 
(v , h 

t )(W (ω) − v + ρ) 

+ Q 

−
i 
(v , h 

t ))(v + ρ − W (ω)) (44) 

= (Q 

+ 
i 
(v , h 

t )(e (ω) + ρ) + Q 

−
i 
(v , h 

t ))(ρ − e (ω)) , 

which is non-negative only if 

e (ω)(Q 

+ 
i 
(v , h 

t ) −Q 

−
i 
(v , h 

t )) > −ρ(Q 

+ 
i 
(v , h 

t ) + Q 

−
i 
(v , h 

t )) . 

(45)

Because in a BFE we cannot exclude the case in which 

dealer i believes that e (ω) = e or the case in which he 

believes e (ω) = −e , the above inequality must be satisfied 

for the two extreme levels of ˜ e and, as a consequence, for 

all possible values of e (ω) ∈ [ −e , e ] . This implies inequality 

(23) . �

A.6. Proof of Lemma 6 

Let ˜ a ∈ A 

� (v ) . Then, for all dealers i and all states ω 

such that v (ω) = v , we have u i (ω, ̃  a ) ≥ 0 , implying ∑ 

i 

u i (ω, ̃  a ) = 

∑ 

a ∈ A 
˜ a (a )(F (ω, a, 1)(W (ω) − β(a )) 

+ F (ω, a, −1)(α(a ) − W (ω))) ≥ 0 . (46) 

Fix a state ω, and consider a quote profile a . If β(a ) > 

v (ω) + ρ φ+1 
φ−1 

, then the trader sells with probability one. 

However, by setting quotes such that β(a ) = v (ω) + ρ φ+1 
φ−1 

, 

the trader would sell with the same probability at a strictly 

lower price. If β(a ) < v (ω) − ρ, the trader does not sell 

and dealers would have the same reward from setting 

β(a ) = v (ω) − ρ . A similar reasoning applies to the ask 

side. In what follows, we focus on a such that β(a ) ∈ 

[ v (ω) − ρ, v (ω) + ρ φ+1 
φ−1 

] and α(a ) ∈ [ v (ω) − ρ φ+1 
φ−1 

, v (ω) +
ρ] . We have ∑ 

i 

u i (ω, a ) = F (ω, a, 1)(W (ω) − β(a )) 

+ F (ω, a, −1)(α(a ) − W (ω)) 

< e (ω)(F (ω, a, 1) − F (ω, a, −1)) 

+ ρ(F (ω, a, 1) + F (ω, a, −1)) 

< e (ω)(F (ω, a, 1) − F (ω, a, −1)) + 2 ρ

= e (ω) 
φ − 1 

ρφ

(
α(a ) + β(a ) 

2 

− v ( ω) 

)
+ 2 ρ, 

where the first inequality follows from the fact that traders 

do not sell for less than v (ω) − ρ or buy for more than 

v (ω) + ρ . The last equality comes from Lemma 3 and the 

expression for F in Lemma 1 . 

Thus, ˜ a ∈ A 

� (v ) implies that for all possible values of 

e (ω) ∈ [ −e , e ] , one has that 

0 ≤
∑ 

i 

u i (ω, ̃  a ) < e (ω) 
φ − 1 

ρφ

(
α( ̃  a ) + β( ̃  a ) 

2 

− v 
)

+ 2 ρ. 

(48)

This leads to ∣∣∣∣α( ̃  a ) + β( ̃  a ) 

2 

− v 
∣∣∣∣ < 

2 ρ2 φ

(φ − 1) e 
, (49) 

that is, the average mid-quote α( ̃ a )+ β( ̃ a ) 
2 cannot differ from 

v ( ω) for more than 

2 ρ2 φ
(φ−1) e 

, regardless of what ω is. �

A.7. Proof of Lemma 7 

Consider two states ω and ω 

′ with v (ω) = v 1 and 

v (ω 

′ ) = v 2 . Observe that if e > ˆ e , then there is no ˜ a such

that the mid-quote is 2 ρ2 φ
(φ−1) e 

-close to both v 1 and v 2 . Thus, 

A 

� (v 1 ) ∩ A 

� (v 2 ) = ∅ . By definition of A 

� , if a quote profile

˜ a / ∈ A 

� (v ) , then there is a state ω, with v (ω) = v , and a

dealer i , such that u i (ω, ̃  a ) < 0 . Thus, if e > ˆ e and ˜ a ∈ A 

� (v ) ,
then there is l < 0, a dealer i and a state ω, with v ( ω) � = v ,
such that u i (ω, ̃  a ) < l. From Lemma 6 , we also know that

˜ a ∈ A 

� (v ) requires ∣∣∣∣α( ̃  a ) + β( ̃  a ) 

2 

− v 
∣∣∣∣ < 

2 ρ2 φ

(φ − 1) e 
. (50) 

Take any history h t and let t + τ1 the first time that ∣∣∣α(a t+ τ1 )+ β(a t+ τ1 ) 
2 − v 1 

∣∣∣ < 

2 ρ2 φ
(φ−1) e 

. Then, there is a dealer i 

and a state ω , with v (ω ) = v 1 , such that, in this state, this

dealer’s continuation payoff is not larger than (1 − δτ1 ) l + 

δτ1 u , where u > 0 , finite, is such that | u i (ω, a ) | < u for all

dealers i, ω ∈ �, and a ∈ �A . This is the maximum profit a

dealer can make in one trading round and is bounded by 

e + ρ . Let z ( τ | ω, h t ) denote the equilibrium probability that

τ1 = τ conditional on the true state being ω and the past 

history being h t . Because we cannot exclude the possibil- 

ity that dealer i believes that the state is ω, this dealer’s 

equilibrium continuation payoff satisfies 
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0 
 

 i (ω, σ, h 

t ) ≤
∞ ∑ 

τ=0 

z(τ | ω, h 

t ) ( (1 − δτ ) l + δτ u ) 

= l + ( u − l) 
∞ ∑ 

τ=0 

z(τ | ω, h 

t ) δτ . (51)

Let κ := −l / ( u − l ) ∈ (0 , 1) . From V i ( ω, σ , h t ) ≥ 0, we have

that for any finite T , 

κ ≤
∞ ∑ 

τ=0 

z(τ | ω, h 

t ) δτ

≤
T −1 ∑ 

τ=0 

z(τ | ω, h 

t ) δτ + 

∞ ∑ 

τ= T 
z(τ | ω, h 

t ) δT (52)

≤
T −1 ∑ 

τ=0 

z(τ | ω, h 

t ) + δT 
∞ ∑ 

τ= T 
z(τ | ω, h 

t ) 

= Pr ( ̃  τ (ω, h 

t ) < T )(1 − δt ) + δT , 

because 
∑ T −1 

τ=0 z(τ | ω, h t ) = Pr ( ̃  τ (ω, h t ) < T ) . This implies

Pr ( ̃  τ (ω, h t ) < T ) < 

κ−δT 

1 −δT . �

A.8. Proof of Proposition 1 

Let us first show that 

Lemma 9 . The proposed Markov strategy is ε-learning. 

Proof . Let ε0 be the parameter that determines the size of

the set � := [ ε 0 / 4 , 1 − ε 0 / 4 ] in the definition of the strat-

egy. We show that, for any given ε > 0, one can set ε0 such

that the strategy is ε-learning. 

To fix notations, we assume that the true state is ˆ ω 1

and denote Pr (·) = Pr (· | ˆ ω 1 , σ ) . The (Bayesian) updated

probability of state ˆ ω 2 is denoted p t and evolves accord-

ing to the recursion p t+1 = ψ B (p t , a t , s t ) , where ψ B de-

notes Bayesian updating. The probability that the market

measure assigns to ˆ ω 2 at time t is denoted π t and evolves

according to the following updating rule: 

π t+1 arg min 

π∈ �

∥∥π − ψ B (π
t , a t , s t ) 

∥∥. (53)

We will prove the following. 

Lemma 10 . For all ε > 0, there exists a choice of 0 < ε0 < ε,

such that for all sufficiently high values of δ, 

Pr 

[∑ 

t 

(1 − δ) δt−1 1 { π t >ε} > ε 

]
< ε. (54)

Intuitively, this follows from the fact that Bayesian be-

liefs converge to the truth. We gather two properties from

standard Bayesian statistics (see, e.g., Chamley, 2004 ). 

P1: The belief p t converges to zero almost surely under

Pr (· | ˆ ω 1 , σ ) . 

P2: The likelihood ratio p t 

1 −p t 
is a martingale under Pr (· |

ˆ ω 1 , σ ) . 

We use these properties to estimate E[ 
∑ 

t (1 −
δ) δt−1 π t ] . �

Claim 1 . There is a constant c > 1 such, that for all sufficiently

high values of δ, 

E 

[∑ 

t 

(1 − δ) δt−1 π t 

]
≤ cε 0 

4 − cε 0 
+ ε 0 / 4 . (55)
Proof . From Property P1, we obtain that, after finitely many

steps, at some stage t, p t ≤ ε0 /4 and thus π t = ε 0 / 4 . Let ˆ T =
inf { t : p t ≤ ε 0 / 4 } . Property 1 implies that Pr ( ̂  T > T ) con-

verges to zero as T goes to infinity. Thus, for some T 0 ,

Pr ( ̂  T > T 0 ) ≤ ε 0 / 4 . Let us fix such a T 0 and write 

E 

[∑ 

t 

(1 − δ) δt−1 π t 

]

= 

∑ 

T 

Pr ( ̂  T = T )E 

[∑ 

t 

(1 − δ) δt−1 π t | ˆ T = T 

]
. (56)

From the choice of T 0 , 

E 

[∑ 

t 

(1 − δ) δt−1 π t 

]

≤
∑ 

T ≤T 0 

Pr ( ̂  T = T )E 

[∑ 

t 

(1 −δ) δt−1 π t | ˆ T = T 

]
+ ε 0 / 4 . (57)

For each T ≤ T 0 , 

E 

[∑ 

t 

(1 − δ) δt−1 π t | ˆ T = T 

]
≤ 1 − δT + δT X, (58)

where X := E ε 0 

[∑ 

t (1 − δ) δt−1 π t 
]

is the expected dis-

counted average of the π t , assuming that this (Markov)

process starts from π1 = ε 0 / 4 . We can choose a δ suffi-

ciently high that for all T ≤ T 0 , 1 − δT ≤ ε 0 / 4 . Then, 

E 

[∑ 

t 

(1 − δ) δt−1 π t 

]
≤

∑ 

T ≤T 0 

Pr ( ̂  T = T )(ε 0 / 4 + δT X ) + ε 0 / 4 ≤ X + ε 0 / 2 . (59)

Now, let us estimate X . Starting from π1 = ε 0 / 4 , with some

probability α, the Bayesian updating decreases. Then, π2 =
ε 0 , and the process is restarted. 

With the complementary probability 1 − α, the

Bayesian updating increases and π2 = p 2 . The next

argument establishes that Bayesian updating leads to very

small changes. Recall that from Bayes’ rule, 

p t+1 = 

p t F (v 2 , a t , s t ) 
p t F (v 2 , a t , s t ) + (1 − p t ) F (v 1 , a t , s t ) 

, (60)

and thus 

p t+1 

p t 
= 

F (v 2 , a t , s t ) 
p t F (v 2 , a t , s t ) + (1 − p t ) F (v 1 , a t , s t ) 

. (61)

Using the expressions for F ( ·) given in Lemma 1 ,

and observing that according to the proposed strategy

v 1 ≤β t ≤αt ≤ v 2 , we have that p t+1 

p t 
< 1 + 

v 2 −v 1 
ρ ∈ (1 , 2) be-

cause ρ > v 2 − v 1 . There is thus a constant c := 1 + 

v 2 −v 1 
ρ >

1 such that π2 ≤ cπ1 = cε 0 / 4 . We use now property P2,

which states that, for the Bayesian process, p t 

1 −p t 
is a mar-

tingale. That is, E 
[

p t 

1 −p t 

]
= 

p 1 

1 −p 1 
. Because p t ≤ p t 

1 −p t 
, we find

that E[ p t ] ≤ p 1 

1 −p 1 
. We conclude that in the case in which

the Bayesian process starts from p 2 ≤ c ε0 /4, the expectation

remains below 

cε 0 / 4 
1 −cε 0 / 4 

. This holds as long as the process π t

follows the Bayesian trajectory. If it declines to ε0 /4 again,

then this still holds because ε 0 / 4 ≤ cε 0 / 4 
1 −cε / 4 . If it increases



362 J. Hörner et al. / Journal of Financial Economics 127 (2018) 342–365 

 

 

 

 

 

 

 

 

 

to 1 − ε 0 / 4 , then π t ≤ p t and, thus, E[ π t ] ≤ E[ p t ] ≤ cε 0 / 4 
1 −cε 0 / 4 

. 

Therefore, this holds again. We have that if we start from 

π0 = ε 0 / 4 , then E[ π t ] ≤ cε 0 / 4 
1 −cε 0 / 4 

for all t > 0. 

Now, X satisfies the following recursion: 

X = (1 − δ) ε 0 / 4 

+ δ

(
αX + (1 − α)E π2 

[∑ 

t 

(1 − δ) δt−1 π t+1 

])
≤ (1 − δ) ε 0 / 4 

+ δ

(
αX + (1 − α) 

∑ 

t 

(1 − δ) δt−1 cε 0 
4 − cε 0 

)

= (1 − δ) ε 0 / 4 + δ
(
αX + (1 − α) 

cε 0 
4 − cε 0 

)
. (62) 

Solving for X , this yields 

X ≤ 1 − δ

1 − δ + δ(1 − α) 
ε 0 / 4 + 

δ(1 − α) 

1 − δ + δ(1 − α) 

cε 0 
4 − cε 0 

≤ cε 0 
4 − cε 0 

. (63) 

We then obtain E 
[∑ 

t (1 − δ) δt−1 π t 
]

≤ cε 0 
4 −cε 0 

+ ε 0 / 2 . �

We can now show that the proposed strategy is ε- 

exploiting. 

If at time t , the market measure points at state ˆ ω 2 , then 

α(a t ) = v 2 + d and α(a t ) = v 2 − d. The dealers’ aggregate 

payoff is ∑ 

i 

u i (ω, a ) 

= F (ω, a, 1)(W (ω) − β(a )) 

+ F (ω, a, −1)(α(a t ) − W (ω)) 

= (F (ω, a, 1) − F (ω, a, −1)) e (ω) + (F (ω, a, 1) 

+ F (ω, a, −1)) d = 

2 d (ρ − d ) 

φγσ 2 
, (64) 

which is strictly positive because 0 < d < ρ , and it does not 

depend on e ( ω). The strategy is such that this aggregate 

profit is shared across dealers. Dealer i ’s profit is θi 
2 d (ρ−d ) 

φγσ 2 , 

which is strictly positive in all states ω such that v (ω) = 

v 2 . Hence, a t ∈ A 

� + (v 2 ) . The same argument applies to ˆ ω 1 . 

We can now show that if δ is large enough, then ( σ , φ) 

describes the on-equilibrium-path behavior of a BFE. For 

this purpose, we first prove that on the equilibrium path, 

each dealer’s payoff is strictly positive. 

Let u > 0 , finite, be such that | u i (ω, a ) | < u for all deal-

ers i, ω ∈ �, and a ∈ �A . A dealer’s reward cannot be 

smaller than −u . Consider a dealer i . Because ( σ , φ) is 

ε-exploiting, dealer i ’s reward when the market measure 

points to the true ˆ ω is u � = θi 
2 d (ρ−d ) 

φγσ 2 > 0 . 

Let ω ∈ ˆ ω be the true state and π t ( ̂  ω ) the market mea- 

sure of ˆ ω at time t . Let q t be the probability that, at time 

t , the market measure satisfies π t ( ̂  ω ) > 1 − ε. Because ( φ, 

σ ) is ε-exploiting, Definition 3 implies that, with probabil- 

ity q t , dealer i ’s stage t reward is at least (1 − ε) u � − ε u .
Then, at time τ ≥ 0, dealer i ’s payoff satisfies 

V 

δ
i (ω, σ | h 

τ ) 

> (1 − δ) 
∞ ∑ 

t= τ
δt−τ

(
q t ((1 − ε) u 

� − ε u ) − (1 − q t ) u 

)

= (1 − ε)(u 

� + u )(1 − δ) 
∞ ∑ 

t= τ
δt q t−τ − u . (65) 

Because ( φ, σ ) is ε-exploring, from Definition 2 , we have 

that 

Pr 
ω,σ

[
lim 

δ→ 1 
(1 − δ) 

∞ ∑ 

t= τ
δt q t−τ > 1 − ε 

]
> 1 − ε. (66) 

Hence, 

lim 

δ→ 1 
V 

δ
i (ω, σ | h 

τ ) > (1 − ε) 3 (u 

� + u ) − (1 + ε) u . (67)

As the right hand side is strictly positive for ε = 0 , it is

also positive for all ε smaller than some ε > 0 . The con- 

tinuity of V δ
i 

in δ implies that there exists δ < 1 such that, 

for ε < ε , δ > δ, dealer i ’s continuation payoff V δ
i 
(ω, σ | h τ )

is strictly positive. 

We now turn to the off-equilibrium-path behavior. To 

do so, we need two ingredients. First, let σ i : �→ �A be a 

partial strategy that differs from σ only in terms of dealers’ 

sharing rule. Compared with partial strategy σ , in partial 

strategy σ i , dealer i receives a strictly smaller share of the 

dealers’ aggregate payoff, whereas all other dealers obtain 

a strictly larger share. Formally, θ i 
i 

< θi , whereas θ i 
j 
> θ j 

for j � = i . Second, let us define a punishment strategy. For

any given dealer i and any distribution μ∈ ��, there ex- 

ists a i −i ( μ) ∈ × j � = i �A j such that 

max 
a i 

∑ 

ω∈ �
μ(ω ) u i 

(
ω , a i , a 

i 
−i ( μ) 

)
≤ 0 . (68) 

Let v μ := E μ[ ̃  W ] be the expected value of the asset given

the belief μ. Let a i −i ( μ) consist of dealers other than i set- 

ting α = β = v μ ˆ ω 
. Then, dealer i cannot hope to trade at 

a strictly positive expected profit given his beliefs μ. This 

guarantees that we can extend the Blackwell (1956) ap- 

proachability argument to the discounted case. That is, for 

any η > 0, there is δη< 1, m 

η < ∞ and m 

η-period strategy

a −i for player −i such that if δ > δη , for any sequence 

{ a 1 
i 
, . . . , a m 

η

i 
} , player i ’s discounted payoff during these m 

η

periods is smaller than η in each ω ∈ �. This strategy is the 

ingredient for the punishment partial strategy σ i . Given 

any σ i , any ω, and any history h t , the continuation payoff

V δ
i 

(
ω, σi , σ

i 
−i 

| h t ) is such that 

lim 

δ→ 1 ,ε→ 0 
V 

δ
i 

(
ω, σi , σ

i 
−i | h 

t 
)

≤ 0 . (69) 

Let σ i consist of player i playing a fixed action a i and the 

other players using strategies σ i 
−i 

. 

The remainder of the proof is standard. See Fudenberg 

and Maskin (1986) . Given the partial strategy σ , define a 

strategy ˆ σ as follows. As long as no player unilaterally de- 

viates, actions are specified by σ . Once a player (say, i ) uni- 

laterally deviates, play proceeds according to σ i for T pe- 

riods (for some ε > 0, T ∈ N to be specified). If during this

i -punishment phase, some player (say, j ) unilaterally devi- 

ates from σ i , play switches to the j punishment phase, in 

which σ j is played for T periods. If T periods elapse with- 

out unilateral deviation during the i -punishment phase, 

play is then given by σ i , in which the punishing dealers 

obtain a larger share of the future profits at the expense 

of the punished dealer i . If there is a unilateral deviation 
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from σ i , ε by j , play switches to the j -punishment phase,

etc. It is now standard to show that, for a sufficiently large

T and sufficiently small ε, there exists δ ∈ ( δ, 1) such that

for all δ ∈ ( δ, 1), players do not gain from deviating. 

This construction yields a BFE. The strategy is optimal

irrespective of dealers’ beliefs about ω on and off the equi-

librium path. �

Appendix B 

This section includes the proofs regarding of the general

model analyzed in Section 6 . 

B.1. Proof of Lemma 8 

1. Positive maximum payoffs: Take any given ˆ ω , and let

us show that the set A 

� ( ̂  ω ) + is not empty. Fix dealer

i and consider two action profiles, a ( i ) and a ′ ( i ), in

which all dealers other than i select the no-trade ac-

tion. In a ( i ), dealer i chooses his action such that if a

trader trades, he can buy only at price v ( ̂  ω ) + ρ, with

0 < ρ < ρ , and he cannot sell. In a ′ ( i ), dealer i selects

his action such that a trade can consist only of the

trader selling at price v ( ̂  ω ) − ρ . Because of RTF prop-

erties 3. and 4, we have that, for all ω ∈ ˆ ω , the ex-

pected asset transfer to dealer i is equal to q i ( ̂  ω , a (i )) <

0 and q i ( ̂  ω , a ′ (i )) > 0 for action a ( i ) and a ′ ( i ), respec-

tively. Let z i := q i ( ̂  ω , a ′ (i )) / (q i ( ̂  ω , a ′ (i )) − q i ( ̂  ω , a (i ))) ∈
[0 , 1] and consider the ˜ a (i ) obtained by playing a ( i )

with probability z i and a ′ ( i ) with probability 1 − z i .

This translates into an expected profit for dealer i of

2 ρz i q i ( ̂  ω , a ′ (i )) > 0 regardless of the value of e ( ω). In

fact, in expectation, he buys z i q ( ̂  ω , a ′ (i )) shares for

v ( ̂  ω ) − ρ, and he sells the same quantity for v ( ̂  ω ) + ρ
per share. Now, consider the random strategy ˜ a ob-

tained by first selecting a dealer i with probability 1/ n

and then playing ˜ a (i ) . This guarantees that u i (ω, ̃  a ) =
2 ρz i q i ( ̂  ω , a ′ (i )) /n > 0 for every i and every ω ∈ ˆ ω , ir-

respective of the value of the e ( ω) component. Thus,

˜ a ∈ A 

� + ( ̂  ω ) . 

2. Negative minimum payoffs: Fix dealer i and consider

the action a ( i ) in which all dealers other than i select

the no-trade action. In a ( i ), dealer i chooses his action

such that if a trader trades, he can buy only at a price

strictly smaller than v ( ̂  ω ) − e and he cannot sell. Be-

cause of RTF 3., there will be a trader willing to buy at

this price, implying that dealer i ’s payoff is negative re-

gardless of the true value of ω and, hence, for all ω ∈ ˆ ω .

Consider the random strategy a ( ̂  ω ) obtained by first se-

lecting a dealer i with probability 1/ n and then playing

a ( i ). Clearly, u i (ω, a ( ̂  ω )) < 0 for all ω ∈ ˆ ω and dealer i . 

3. Non-positive expected payoffs : Fix dealer i and a distri-

bution μ ˆ ω ∈ � ˆ ω . Let W μ ˆ ω 
:= v ( ̂  ω ) + 

∑ 

ω∈ ̂ ω μ ˆ ω (ω) e (ω)

be the expected fundamental value of the asset com-

puted using probability measure μ ˆ ω . Let p 1 and p 2 be

the two points in the set G that are closest to W μ ˆ ω 
,

with p 1 ≤ W μ ˆ ω 
≤ p 2 . Define a i −i 

(μ ˆ ω ) as follows. Each

dealer j � = i selects an action such that any other mar-

ket participant can buy and sell up to the maximum

tradable quantity at price p = W μ ˆ ω 
. Consider dealer i ’s

expected payoff when his belief that the state is ω is
equal to μ ˆ ω (ω) . His expected payoff from playing a i
when the other dealers play a i −i 

(μ ˆ ω ) is ∑ 

ω∈ ̂ ω 
μ ˆ ω (ω ) u i 

(
ω , a i , a 

i 
−i ( μ ˆ ω ) 

)
= 

∑ 

ω∈ ̂ ω 
μ ˆ ω (ω)(v (ω) + e (ω)) q i (ω, a i , a 

i 
−i ) 

+ p i (ω, a i , a 
i 
−i ) 

= W μ ˆ ω 
q i ( ̂  ω , a i , a 

i 
−i ) + p i ( ̂  ω , a i , a 

i 
−i ) , (70)

where the second equality follows from the fact that,

by the definition of ˆ ω , for any ω ∈ ˆ ω and a ∈ A ,

one has v (ω) = v ( ̂  ω ) , q i (ω, a ) = q i ( ̂  ω , a ) and p i (ω, a ) =
p i ( ̂  ω , a ) . The last expression can be interpreted as the

payoff of a dealer who values the asset at exactly W μ ˆ ω 

and buys a quantity q i ( ̂  ω , a i , a 
i 
−i 

) of the asset in ex-

change for p i ( ̂  ω , a i , a 
i 
−i 

) . To see that this expression

cannot be strictly positive, note first that if a i is such

that dealer i trades with some other dealer, the other

dealers’ actions are such that he can trade only at price

x = W μ ˆ ω 
, implying that dealer i ’s profit is nil. Suppose

that a i is such that dealer i trades with the trader. Be-

cause the trader can trade any quantity at price x =
W μ ˆ ω 

from the other dealers, he trades with dealer i

only if i offers better trading conditions, that is, only

if he can buy from dealer i for less than W μ ˆ ω 
or sell for

more than W μ ˆ ω 
. In both cases, dealer i ’s payoff from

expression (70) cannot be strictly positive. 

4. Non-equivalent payoffs: Consider the strategy ˜ a (i ) de-

fined above. When dealers play ˜ a (i ) , dealer i ’s pay-

off is positive, and all other dealers’ payoffs are zero.

Let a i ( ̂  ω ) be obtained by first selecting a dealer j � = i

with probability 1 / (n − 1) and then playing ˜ a ( j) . Be-

cause, in this strategy, dealer i ’s payoff is nil, whereas

all other dealers’ payoffs are strictly positive, we have

u i (ω, a i ( ̂  ω )) < u i (ω, a j ( ̂  ω )) for all i � = j and ω ∈ ˆ ω . �

B.2. Proof of Proposition 2 

The proof of properties 1 and 2 is analogous to the

proof of Lemmas 3 and 4 and is omitted. 

For Property 3, because of RTF, traders never buy for

more than v ( ̂  ω ) + ρ or sell for less than v ( ̂  ω ) − ρ . The

dealers’ aggregate payoff cannot be greater than 

(v ( ̂  ω ) + e (ω) − (v ( ̂  ω ) − ρ)) Q 

+ ( ̂  ω , σ ∗ | h 

t ) + (v ( ̂  ω ) 

+ ρ − (v ( ̂  ω ) + e (ω))) Q 

−( ̂  ω , σ ∗ | h 

t ) , (71)

which is non-negative only if 

ρ(Q 

+ ( ̂  ω , σ ∗ | h 

t ) − Q 

−( ̂  ω , σ ∗ | h 

t )) 

> (Q 

+ ( ̂  ω , σ ∗ | h 

t ) + Q 

−( ̂  ω , σ ∗ | h 

t )) e (ω) . (72)

Because each dealer’s payoff is non-negative (see Property

2 of Proposition 2 ), so is dealers’ aggregate payoff. There-

fore, Eq. (B.72) must be positive for all realizations of e ( ω).

The result follows from the fact that Q , Q 

+ and Q 

− do not

depend on e ( ω) and that e (ω) ∈ [ −e , e ] . 

For Property 4, the proof follows the same logic as that

for the baseline model. Because of the RTF properties, for

any ˆ ω ∈ 

ˆ �, there is a transaction price l ( ω) that induces a
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trader’s order flow that is positive and balanced. To main- 

tain a balanced inventory, trading quotes cannot systemat- 

ically differ from l( ̂  ω ) . 

For Property, the proof follows the same logic as that 

for the base model. If, for some history, the time required 

in state ˆ ω for the average trading quote to be close to 

l ( ω) is too long, then in this transition period, dealers’ in- 

ventory would expand dramatically. This would contradict 

property 3 of Proposition 2 . �

B.3. Proof of Theorem 1 

Fix a game and a profile ( φ, σ ) satisfying the assump- 

tions of the theorem, and let ω be the true state. Let 

u := max ω,a,i | u i (ω, a ) | . Consider the play on the equilib- 

rium path. Let q t be the probability that at time t the 

market measure satisfies π t ( ̂  ω (ω)) > 1 − ε. Thus, follow- 

ing Definition 3 and the definitions of u � and u , with prob- 

ability q t , dealer i ’s stage- t payoff is at least (1 − ε) u � − ε u . 
At time τ ≥ 0, dealer i ’s payoff satisfies 

 

δ
i (ω, σ | h 

τ ) 

> (1 − δ) 
∞ ∑ 

t= τ
δt−τ

(
q t ((1 − ε) u 

� − ε u ) − (1 − q t ) u 

)
= (1 − ε)(u 

� + u )(1 − δ) 
∞ ∑ 

t= τ
δt q t−τ − u . (73) 

Definition 2 implies that 

Pr 
ω,σ

[
lim 

δ→ 1 
(1 − δ) 

∞ ∑ 

t= τ
δt q t−τ > 1 − ε 

]
> 1 − ε. (74) 

Hence, we have that 

lim 

δ→ 1 
V 

δ
i (ω, σ | h 

τ ) > (1 − ε) 3 (u 

� + u ) − (1 + ε) u . (75) 

As the right hand side is strictly positive for ε = 0 , it is 

also positive for all ε smaller than some ε > 0 . The conti- 

nuity of V δ
i 

in δ implies that there exists δ < 1 such that, 

for ε < ε , dealer i ’s continuation payoff V δ
i 
(ω, σ | h τ ) is 

strictly positive. 

The next step is to show that dealers have no prof- 

itable deviations. For this purpose, we first establish a sim- 

ple lemma. 

Lemma 11 . For any given ˆ ω ∈ 

ˆ �, all ω ∈ ˆ ω and any 

player i, and any a ∈ A 

� ( ̂  ω ) , there exist n action profiles 

{ ̃  a 1 ( ̂  ω ) , . . . , ̃  a n ( ̂  ω ) } ∈ [ �A ] 
n such that 

0 < u i (ω, ̃  a i ( ̂  ω )) < u i (ω, ̃  a j ( ̂  ω )) < u (ω, a ) , (76)

for all i � = j. 

Proof . Consider the convex combination 

˜ a i ( ̂  ω ) := β1 ( ̂  ω ) β2 ( ̂  ω ) a ( ̂  ω ) + β1 ( ̂  ω ) 
(
1 − β2 ( ̂  ω ) 

)
a i ( ̂  ω ) 

+ 

(
1 − β1 ( ̂  ω ) 

)
a, (77) 

for some β1 ( ̂  ω ) , β2 ( ̂  ω ) ∈ [ 0 , 1 ] , where a ( ̂  ω ) satisfies Prop- 

erty 2 in Definition 4 and a i ( ̂  ω ) is as Property 4 in 

Definition 4 . Note that 
{

˜ a i ( ̂  ω ) 
}

i =1 , ... ,n 
also satisfies Property 

4 in Definition 4 , as long as β1 ( ̂  ω ) > 0 and β2 ( ̂  ω ) < 1 . Fur-

thermore, because u 
(
ω, a ( ̂  ω ) 

)
< 0 , we can set β2 ( ̂  ω ) close 
enough to one and β1 ( ̂  ω ) close enough to zero to guaran- 

tee that all payoffs are between zero and u ( ω, a ). �

We can now define n partial strategy profiles σ i , ε as 

follows. Let A L denote a set of learning action profiles sat- 

isfying A ( ̂  ω , ˆ ω 

′ ) ∩ A L � = ∅ for each pair ˆ ω � = ˆ ω 

′ . Let L denote

the cardinality of A L and D ˆ ω denote the Dirac measure at- 

taching probability one to ˆ ω . If h t is such that 
∥∥π t − D ˆ ω 

∥∥ < 

ε, then let σ i,ε 
(
h t 

)
= ( 1 − ε ) ̃  a i ( ̂  ω ) + ( ε/L ) �a ∈ A L a . For all 

other h t , let σ i,ε 
(
h t 

)
= ( 1 /L ) �a ∈ A L a . 

In addition, define n partial punishment strategies σ i , ε

as follows. Fix any ˆ ω ∈ 

ˆ �. Lemma 8 guarantees that there 

are strategies satisfying Property 3 in Definition 4 , so, we 

can extend the Blackwell (1956) approachability argument 

to the discounted case. That is, for any η > 0, there is δη< 1,

m 

η < ∞ , and m 

η-period strategy a −i ( ̂  ω ) for player −i such

that if δ > δη , for any sequence { a 1 
i 
, . . . , a m 

η

i 
} , player i ’s dis-

counted payoff during these m 

η periods is smaller than η
for each ω ∈ ˆ ω . This Blackwell strategy is then an ingre- 

dient of the punishment partial strategy σ i , ε . If h t is such 

that, for some ˆ ω i , π
t assigns probability no more than ε to 

states outside of ˆ ω i but a probability of at least ε to all ω ∈ 

ˆ ω i , then σ i,ε 
(
h t 

)
= ( 1 − ε ) a i ( ̂  ω i )(h t ) + ( ε/L ) �a ∈ A L a, where 

a i −i 
( ̂  ω i )(h t ) as defined above and a i 

i 

(
ˆ ω i 

)
is some fixed ac- 

tion. For ε > 0, each of these strategies is exploratory. Fur- 

thermore, given any σ i , any ω, and any history h t , the con- 

tinuation payoff V δ
i 

(
ω, σi , σ

i,ε 
−i 

| h t ) is such that 

lim 

δ→ 1 ,ε→ 0 
V 

δ
i 

(
ω, σi , σ

i,ε 
−i 

| h 

t 
)

≤ 0 . (78) 

From here, the proof is standard (see Fudenberg and 

Maskin (1986) ). Given the partial strategy σ , define a strat- 

egy ˆ σ as follows. As long as no player unilaterally de- 

viates, actions are specified by σ . Once a player (say i ) 

unilaterally deviates, play proceeds according to σ i , ε for 

T periods (for some ε > 0, T ∈ N to be specified). If dur-

ing this i -punishment phase, some player (say, j ) unilat- 

erally deviates from σ i , ε , then play switches to the j - 

punishment phase, in which σ j , ε is played for T periods. 

If T periods elapse without unilateral deviations during the 

i -punishment phase, play is then given by σ i , ε . If there is 

a unilateral deviation from σ i , ε by j , then play switches to 

the j -punishment phase, etc. It is now standard to show 

that, for a large enough T and small enough ε, there ex- 

ists δ ≤ δ < 1 such that for all δ ∈ ( δ, 1), players do not gain

from deviating. 

This construction yields a BFE. The strategies are opti- 

mal regardless of dealers’ beliefs about ω on and off the 

equilibrium path. �
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