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Multidimensional Uncertainty and Herd Behavior
in Financial Markets

By CHRISTOPHER AVERY AND PETER ZEMSKY *

We study the relationship between asset prices and herd behavior, which occurs
when traders follow the trend in past trades. When traders have private information
on only a single dimension of uncertainty (the effect of a shock to the asset value ),
price adjustments prevent herd behavior. Herding arises when there are two dimen-
sions of uncertainty (the existence and effect of a shock ), but it need not distort prices
because the market discounts the informativeness of trades during herding. With a
third dimension of uncertainty (the quality of traders’ information), herd behavior
can lead to a significant, short-run mispricing. (JEL G12, G14, D83, D84)

In standard models of general equilibrium,
the simultaneous execution of a large number
of trades produces efficient outcomes, presum-
ing that the Walrasian auctioneer has set prices
correctly. As a challenge to these results and
the associated view that decentralized markets
tend to be efficient, an explosion of papers in
the last several years argue that imitative or

herd-like behavior can impede the flow of in-

formation in an economy when consumers act
sequentially rather than concurrently. [ Abhijit
Banerjee (1992), Sushil Bikhchandani et al.
(1992), Christophe Chamley and Douglas
Gale (1992), Andrew Caplin and John Leahy
(1993, 1994), and Jeremy Bulow and Paul
Klemperer (1994)]. With sequential actions,
the earliest decisions can have a dispropor-
tionate effect over long-run outcomes in the
economy. A slight preponderance of pub-
lic information is sufficient to induce all
agents to follow the lead of the market, com-
pletely ignoring their private information.
Bikhchandani et al. (BHW) describe that sit-
uation as an ‘‘informational cascade.”’ In
BHW and Banerjee’s models, an informa-
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Anat Admati, Darrell Duffie, Glenn Ellison, Drew
Fudenberg, Jim Hines, Allan Kleidon, Paul Pfleiderer,
Lones Smith, Peter Sorensen, Xavier Vives, Richard
Zeckhauser, and especially Paul Milgrom.
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tional cascade occurs in finite time with prob-
ability 1. That is, social learning completely
breaks down as all consumers from some time
forward make the same choice and reveal no
new information. Because that choice is wrong
with strictly positive probability, the equilib-
rium of these sequential market games is in-
efficient, even in the long run.

The herding literature recalls a once-
prominent view of asset markets as driven by
“‘animal spirits,”” where investors behave like
imitative lemmings. While the rational actor
approach has largely driven this view from
mainstream research in financial economics, it
is far from gone. Both market participants and
financial economists reportedly still believe
that imitative behavior is widespread in finan-
cial markets (Andrea Devenow and Ivo
Welch, 1996). This has led some researchers
to assert that market participants engage in
nonrational herd behavior (e.g., Andrei
Shleifer and Lawrence H. Summers [1990];
Alan Kirman [1993]).

We investigate the relationship between ra-
tional herd behavior and asset prices. Past
work on rational herding is not well suited to
address this relationship because, in almost all
cases, herding models fix the price for taking
an action ex ante, retaining that price inflexibly
under all circumstances.! We address the fol-

" An exception is Bulow and Klemperer’s model, but
it still fixes the price after each purchase for a sufficient
period to produce herding.
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lowing questions: Can there be informational
cascades in financial markets? Can herd be-
havior lead to the long-run mispricing of as-
sets? Does it produce bubbles and crashes?
Might it offer an explanation for excess vola-
tility? We begin our analysis with an example
which motivates a final question.

I. A Simple Example

Our model retains the basic features of the
simplest model considered by BHW (p. 996),
with the notable addition of a price mecha-
nism. It is useful to review that model and to
consider what happens when prices are al-
lowed to vary over time in response to agents’
actions.” In BHW, agents face a choice of
whether or not to adopt a new technology, and
the cost of adoption is fixed at ¢ = '/,. The
value of the new technology, denoted V, is ei-
ther 1 or 0. Each agent gets an independent,
imperfect signal about V, denoted x € {0, 1},
where P (x = V) = p > '/,. Agents act se-
quentially and observe H,, the history of ac-
tions up until time . Let 7} = P (V = 1|H,).
The choice made by an agent depends on
whether the expected value of adopting is
greater than c. Consider the expected value of
an agent with bad news (the value for an agent
with good news is similar):

Vi(x=0)=E[V|x=0,H]

= L-p i,
(1 -p)mi +p(l — )

Assuming all prior agents have acted in accord
with their signal, 7} increases with the differ-
ence between the number of prior agents who
adopted and those who did not. Indeed, when-
ever there are two more adopters than non-
adopters, it is the case that V' (x = 1) >
V' (x = 0) > ',. Then agents at time ¢ adopt
regardless of their signal and an informational
cascade begins.

Now suppose that the agents are traders in
a financial market and that their choice is

2 We use notation consistent with the rest of this paper.
In comparing our results to those in BHW, our reference
is to the simple model described here.
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whether to buy or sell a unit of an asset where
the true value of the asset is given by V. Fur-
ther, suppose that the financial market is in-
formationally efficient in that the cost of a unit
of the asset reflects all publicly available
information:

¢=E[V|H]=P(V=1lH) =

The key observation from this simple exercise
is that

Vix=1)>¢> Vi (x=0).

The asset price adjusts precisely so that there
is no herding and agents always trade in accord
with their signal! Reflecting on Adam Smith’s
invisible hand, it is not too surprising that an
arbitrary fixed price leads to herd behavior and
the persistence of inefficient decisions in an
economy. We conclude that whether or not
herd behavior affects asset prices, asset prices
can certainly affect herd behavior. In this ex-
ample, they completely eliminate it. Given the
reported prevalence of herd behavior in finan-
cial markets, this raises the important question
of whether herd behavior is consistent with a
market composed of rational traders.

II. Overview of the Paper

In Section III we describe a general model
and define terms. Of particular importance, we
define herd behavior as a trade by an informed
agent which follows the trend in past trades
even though that trend is counter to his initial
information about the asset value.

In Section IV, we show that there are limits
to the distortions that can arise in a financial
market where informed traders are rational ac-
tors and prices incorporate all publicly avail-
able information. We show that informational
cascades are impossible: at any point in time
there is always the possibility that new infor-
mation reaches the market. Consistent with
this steady flow of information, prices always
converge to the true value. Hence, herd be-
havior can cause no long-run mispricing of as-
sets. We show that the ex ante expected
volatility in prices is determined by funda-
mentals, which means that herd behavior can
not be the source of excess volatility. Finally,
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we generalize the example from Section I by
stating a monotonicity condition on private
signals such that herding is impossible. With
monotonic signals, there is only a single di-
mension of uncertainty confronting the mar-
ket, which we term value uncertainty.

In Section V we exhibit a plausible infor-
mation structure in which herding does occur,
by adding event uncertainty to value uncer-
tainty. With event uncertainty, the market is
uncertain as to whether the value of the asset
has changed from its initial expected value.
We show that any amount of event uncertainty
produces the possibility of herd behavior. As
event uncertainty becomes extreme (i.e., the
probability that the asset has not changed
value goes to 1), there is an arbitrarily long
period of herd behavior when the asset value
changes. This herd behavior is similar to the
informational cascade of BHW in that the mar-
ket does not learn about whether the asset
value is high or low as all informed traders
either buy or sell. Surprisingly, this extreme
herd behavior has little effect on asset prices.
We show that the movement in the asset price
is bounded and that this bound can be small.
Finally, we argue that herd behavior is not
clearly at odds with optimal social learning in
financial markets.

Given the above results, one might expect
that we find no connection between herd be-
havior and market crashes. However, this is
not the case. In Section VI we investigate the
combination of event uncertainty with what
we term composition uncertainty, which
means that there is uncertainty as to the aver-
age accuracy of traders’ information. We are
then able to identify certain (highly unlikely)
states of the world in which herd behavior can
lead to a price bubble and crash. In these
states, market participants have a mistaken,
but rational, belief that most traders possess
very accurate information. Then, market par-
ticipants have trouble differentiating between
a market composed of well-informed traders
and one with poorly informed traders who are
herding: in each case, there is a preponderance
of activity on one side of the market. The re-
sulting confusion allows uninformative herd
behavior to have dramatic effects on prices.
Our theory of price bubbles resembles the ex-
planation advanced by Sanford J. Grossman
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(1988) and Charles J. Jacklin et al. (1992) for
the stock market crash of 1987: traders under-
estimated the prevalence of noninformative
computer-based insurance trading.

Based on these results, we conclude that de-
spite the significant constraints imposed by a
rational financial market, herd behavior is ro-
bust to the operation of the price mechanism.
In particular, as the number of dimensions of
uncertainty with which the price mechanism
must contend increase, herding becomes prev-
alent and extreme effects based on herd be-
havior occur in identifiable (but unlikely)
states of the world.

In Section VII we consider the converse of
herding, ‘‘contrarian behavior,”” where agents
ignore their private information about value
uncertainty to trade against the trend in past
trades. We show that composition uncertainty
can give rise to such behavior. The existence
of herd and contrarian behavior rationalizes
the observed practice of price charting. Sec-
tion VIII concludes.

III. The General Model
A. Description

We begin by specifying a general model; we
will add further assumptions in later sections.
The market is for a single asset with true value
V, which is restricted to be in [0, 1]. Prices are
set by a competitive market maker who inter-
acts with an infinite sequence of individuals
chosen from a continuum of traders. Each
trader is risk neutral and has the option to buy
or sell one unit of stock or to refrain from trad-
ing. The sequence of traders is indexed by ¢ =
0, 1,2, --- . We denote by H, the publicly
observable history of trades up until time 7.

There are two broad classes of traders. In-
formed traders receive private information and
maximize expected profit at the market
maker’s expense, while noise traders act for
exogenous motives and without regard for ex-
pected profit.* Let 4 < 1 be the probability of
an informed trader arriving in any given pe-

* Without the presence of noise traders, the no-trade
theorem of Paul Milgrom and Nancy Stokey (1982) ap-
plies and the market breaks down.
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riod; 1 — p is the probability of a noise trader
arriving. For convenience, we assume that
noise traders buy, sell, and do not trade with
equal probability y = (1 — p)/3.

Informed traders receive private informa-
tion x, € [0, 1], where x4 is drawn from the
distribution fy( xy| V) and 6 is a trader’s type.*
We assume a finite number of possible types
and we denote the probability that a trader of
type 6 arrives by py > 0. The expected value
of an informed trader is denoted Vj(x) =
E[V|H,, x, = x]. The market maker’s ex-
pected value for the asset given public infor-
mation is denoted V!, = E[V|H,], which we
shall sometimes refer to as the price.’

We assume that there is always a minimal
amount of ‘‘useful”’ information in the mar-
ket. That is, as long as past trading does not
identify the value perfectly, then there is
strictly positive probability that some trader
has an assessed value that differs from the
market maker’s (by a nontrivial amount).
More precisely, we assume that if there does
not exist a v such that P (V = v|H,) = 1, then
there exists at least one ¢ and set of signal
realizations R C [0, 1] with P(x, € R|H,) >
0 such that Vj(xy) # Vi, for x, € R. Moreover,
if |V, — V| = 6 > 0 then for some
€(8) > 0, |Vy(xy) — Vi, | > e(6).

The market maker allows for adverse selec-
tion by setting a (bid-ask) spread between the
prices at which he will sell and buy a unit of
stock. Perfect competition among market mak-
ers restricts the market maker to zero profits at
both the bid and ask prices. That is, the trader
who arrives in period ¢ faces a bid, B’, and an
ask, A, which satisfy:

Bt = E[V'hx = S7 HI]’

A'=E[V|h,=B,H],

“Thus, a trader potentially has rwo pieces of private
information to trade on—the value of x, € [0, 1] and his
type 6. A trader’s type constitutes private information if
there is uncertainty about the composition of the market.
See Section VI for details.

* We do this when we want to abstract from the exis-
tence of the bid-ask spread in interpreting our results.
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where h, is the action taken by the trader who
arrives in period ¢, with A, = B indicating a buy,

, = S indicating a sell, and 4, = NT indicating
no trade. Finally, we define the market maker’s
assessed distribution for the possible values as
w, = P (V = v|H,). By Bayes’ theorem, these
priors respond to trade as follows:

P(h,lV: v, H,)
1 [ t
(1) L ™ Hy

where P(h,, H) ==, n) P(h,|V = v, H,).

Our model is a special case of the model
developed by Lawrence Glosten and
Milgrom (1985) with the notable simplifi-
cation that our noise traders have completely
inelastic demand. Because our noise traders
are willing to absorb any amount of losses,
the market never breaks down due to adverse
selection and zero profit equilibrium prices
always exist.

PROPOSITION 1: In each period t there ex-
ist unique bid and ask prices which satisfy
B'=V, = A'. V. and 7} are martingales with
respect to H,.

PROOF:
See Appendix.

The market maker accounts for the infor-
mation which is contained in buy and sell or-
ders in setting prices. Thus, A’ = V}, and B' =
Vi, - Vi, and w} are expectations based on all of
the information contained in the prior history
of trade, H,. Therefore, they are martingales
with respect to H,; if this were not the case,
then the market maker’s assessment of V?, and
7}, would be systematically mistaken in a man-
ner which should be predictable to him.

B. The Definition of Herd Behavior

We differentiate between an inforrnational
cascade and herd behavior. In the example of
Section I, herd behavior always implies an in-
formational cascade. With the simple infor-
mation structure used there, no information
reaches the market when traders with bad sig-
nals (x = 0) and those with good signals (x =
1) are taking the same action. However, in a
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more general model, imitative behavior need
not imply an informational cascade.

Definition 1: An informational cascade oc-
curs in period ¢ when

P(h|V,H,) = P(h|H) VYV, h,.

In an informational cascade, no new infor-
mation reaches the market because the dis-
tribution over the observable actions is
independent of the state of the world. In par-
ticular, this happens when the actions of all
informed traders are independent of their pri-
vate information, such as when they are all
buying (in all states of the world).

Definition 2: A trader with private informa-
tion x, engages in herd behavior at time ¢ if he
buys when V§(x,) < V95 < Vi, or if he sells
when V)(x,) > V9 > V!.; and buying (or sell-
ing) is strictly preferred to other actions.

Herd behavior by a trader satisfies three
properties, which we discuss for the case of
herd buying. First, it must be that initially (be-
fore the start of trade) a trader’s information
leads him to be pessimistic about the value
of the asset so that he is inclined to sell:
Vi(xs) < VO. Second, the history of trading
must be positive: V9 < V',. Finally, the trader
must want to buy given this positive history
and his signal, which implies that V;, = A’ <
Vi (xs). These three properties demonstrate the
extreme nature of herd behavior. Initially, the
trader’s signal constitutes negative informa-
tion, causing him to reduce his assessment of
the asset’s value. Yet, after observing the trad-
ing history, the signal constitutes positive
information, causing him to increase his as-
sessment of the asset’s value from V/,.

In our definition, herd behavior occurs when
agents imitate the prior actions (buying or sell-
ing) of others. An alternative approach is to
define herding as a socially inefficient reliance
on public information (see Xavier Vives,
1997) .5 In contrast, we start with a behavioral

© In settings where agents learn from the actions of oth-
ers, an informational externality naturally arises in that
future agents benefit when earlier agents take actions that
reveal their private information. Hence the connection be-
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definition of herding and then study the extent
to which such behavior leads to distortions and
inefficiencies.

1V. Bounds on the Effect of Herd Behavior

Asset prices have a profound effect on herd
behavior. As suggested by our earlier example,
the price mechanism eliminates the possibility
of informational cascades.

PROPOSITION 2: An informational cascade
never occurs in market equilibrium.”

PROOF:
See Appendix.

Our assumption of minimal useful infor-
mation implies that there is always private in-
formation in the economy. As long as private
information exists, some traders must base
their trading strategy on that information, but
this assures that the distribution over observed
actions is not independent of the state. Hence,
an informational cascade is impossible. Like
several of our results, Proposition 2 relies on
a basic intuition about our model: informed
trade is driven by information asymmetries be-
tween traders and the market maker.

Proposition 2 requires limited frictions in
the market. Otherwise, trade and the flow of
information can stop. In Ho Lee (1995) shows
that informational cascades arise if there are
transaction costs. Over time, the expected
profit of informed traders declines to zero as
the asset price becomes more accurate. If there
are transaction costs to trading, informed trad-
ers will (almost surely) stop trading at some
point. Then, no new information reaches the
market. Similarly, in the original Glosten and

tween efficiency and herd behavior, which can obscure
private information. There are two drawbacks to using an
efficiency based definition of herd behavior for studying
financial markets. First, it requires a welfare benchmark,
which is generally lacking in asymmetric information
models of asset markets. Second, traders can place a very
high weight on public information without exhibiting the
sort of strongly imitative behavior studied here (see the
work of Vives, 1995, 1997).

" We are very grateful to an anonymous referee for sug-
gesting this result.
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Milgrom paper, informational cascades arise
if the market breaks down due to adverse
selection.

Consider the following restriction on the
private information in the economy.

Definition 3: A signal x, is monotonic if there
exists a function v(x,) such that Vj(x,) is al-
ways (weakly) between v(x,) and V;, for all
trading histories H,.

Monotonic signals are particularly well be-
haved. Given any public information, they al-
ways move a trader’s expected value towards
some fixed valuation, v(x,). Monotonic sig-
nals are pervasive in the literature on asym-
metric information in financial markets. For
instance, the signals in the example of Section
I, which are often used in Glosten-Milgrom
style models, are monotonic because V'(x) €
[x, V,.]. In addition, noisy rational expecta-
tions models (e.g. Grossman and Joseph E.
Stiglitz, 1980) require monotonic signals for
tractability. We now show that it is the ubiq-
uitous assumption of monotonic signals that
explains the absence of herd behavior in the
received literature on the microstructure of fi-
nancial markets.

PROPOSITION 3: A trader with a mono-
tonic signal never engages in herd behavior.

PROOF:

Suppose a trader with a monotonic signal x,
engages in herd buying at time ¢. Then
Vi(xy) > A' = V.. Since the signal is mono-
tonic, this implies that v(x,) > V,,. But then
Vi (xy) > V5, and the trader was not originally
pessimistic. This is a contradiction. Similarly,
herd selling never occurs.

With monotonic signals, a trader who wants
to buy when the price has risen must also want
to buy initially, which assures that any buying
is not herding.® If we abstract from the exis-

& Vives (1995) develops a dynamic noisy rational ex-
pectations model which complements our analysis. Con-
sistent with Proposition 3 and his use of monotonic
signals, traders in Vives’ model never engage in herd be-
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tence of a bid-ask spread (as when g is small),
agents with monotonic signals have particu-
larly simple trading strategies. They buy if
v(xy) is above the price, V},, and sell if it is
below that. Then, traders need not concern
themselves with the trading history at all! This
rules out herd behavior, since it leaves no
room for the trend in the trading history to in-
fluence trading. When traders have monotonic
signals, we say that there is only a single di-
mension of uncertainty in the market. Our mo-
tivation is that a scalar, V’,, can summarize for
traders all the information they need to extract
from the trading history. We label this single
dimension of uncertainty as value uncertainty,
as it relates directly to the underlying value of
the asset.’

In Section V we show that there exist plau-
sible nonmonotonic signals which produce
herd behavior. However, we now show that
the effect of herd behavior on prices must be
limited. The impossibility of informational
cascades implies that each period of trade re-
veals some information even if there is herd
behavior. Since there is a continual flow of
information, it is natural that the trading price
must converge to the true asset value.

PROPOSITION 4: The bid and ask prices
converge almost surely to the true value V.

PROOF:
See Appendix.

Glosten and Milgrom (1985) show that the
bid and the ask prices must converge together
as long as the market does not break down.
Hence, all private information becomes public

havior as defined here. They always buy if the value of
their signal is above the price and sell if it is below. The
amount that they buy or sell does change over time as
public information accumulates.

® We do not make precise our notion of *‘dimensions”’
of uncertainty, but leave it as an intuitive construct that
we find useful for interpreting our results. We shall speak
of the asset price as having a single dimension in our
model, even though technically there is both a bid and an
ask price. We think of multidimensional prices as arising
when there are derivative securities (such as options) that
are traded.
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over time. Convergence is then a direct con-
sequence of our assumption that a nontrivial
amount of private information always exists so
long as the true value is not yet identified by
the trading history.

While this convergence result is not new, it
has significant implications for the applicabil-
ity of results from the recent herding literature
to financial markets. Price convergence di-
rectly rules out the sort of long-run inefficien-
cies found in earlier herding papers. Further,
when coupled with the martingale property of
prices, convergence provides a bound on the
volatility of prices. We denote the change in
the market maker’s expectations from one pe-
riod to the next as AV, = V!, — Vi,

COROLLARY 1: The variance of price
paths is bounded as follows."

t=T
Var(AV:) = Var(V).

1 Mn

t

Additionally, for a fixed t,
Var(V — Vi) = Var(V) — Var(V}).

PROOF:
See Appendix.

The first part of Corollary 1 states that the
expected volatility is bounded by the funda-
mental uncertainty over V. Hence, it is not
possible to explain volatility in excess of fun-
damentals in our general model, whether or
not there is herd behavior. In addition, as time
passes, the ‘‘remaining variance’’ in the price
change process diminishes, so that V}, must be
more and more accurate over time, as implied
by the second part of the corollary. That is a
natural property with an important implica-
tion: any set of volatile price paths must either
converge quickly to the true value or (as the
next corollary emphasizes) they can only oc-
cur with small probability.

COROLLARY 2: Consider some a < V.,.
Then P(V < alH,) = (1 — V\)/(1 —a).

'"We are grateful to Paul Milgrom for suggesting this
result.
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PROOF:
See Appendix.

This result implies that high prices occur only
rarely when asset values are low. Consider a
market where V € {0, 1} as in BHW. Corollary
2 implies that P (V= 0) = 1 — V;, (i.e., as the
price V,, goes to one, the probability that V = 0
goes to zero). This result limits the probability
of a price bubble, which is a situation where the
asset value moves far away from its true value.
In general, there is an inverse relationship be-
tween the magnitude of a price bubble and the
probability with which it occurs. In particular,
extreme price bubbles, where the asset incor-
rectly attains its maximum possible value, are
zero probability events.

V. Event Uncertainty and Herd Behavior
A. Existence of Herd Behavior

Proposition 3 poses a puzzle. How do we
reconcile the reported prevalence of herd be-
havior with its absence in a rational financial
market with monotonic signals? A closely re-
lated puzzle is the existence of price ‘‘chart-
ing,”” where traders use detailed charts of price
histories in their trading strategies (David
Brown and Robert Jennings, 1989). Charting
is puzzling because the trading history plays
at most a limited role in a trader’s strategy
when he has a monotonic signal. For any his-
tory, the set of potential buyers (traders who
are more optimistic then the market maker) is
given by the condition v(x,) > A’, while the
set of potential sellers is given by the condition
U(Xy) <B t.“

While it is certainly not difficult to specify
nonmonotonic signals, the more interesting
question is whether such signals are likely to
be common in financial markets. Consider

' Hence, the only role of the trading history is in help-
ing traders to assess whether their private information is
sufficiently strong to justify trading given the bid-ask
spread. We do not find this weak history dependence to
be a satisfactory theory of price charting. We seek a ra-
tionalization based on strong history dependence, where
the trading history drives a trader from buying to selling,
as occurs under our definitions of herd and contrarian
behavior.
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then, that many shocks to an asset’s value are
not publicly known, at least initially. For ex-
ample, a trader might learn from a contact who
works at a company that there will be a change
in management, that a new product has been
developed, or that a merger is being consid-
ered—all before a public announcement.
Then, the trader has private information about
two ‘‘dimensions’’ of uncertainty. In addition
to information related to value uncertainty —
is it a good or a bad merger?—the trader has
private information that there has been a shock
to the underlying value of the asset. We follow
the finance literature and refer to this second
dimension as event uncertainty (David Easley
and Maureen O’Hara, 1992). We offer the fol-
lowing formalization of event uncertainty.

Definition 4: There is event uncertainty when
1>P{WV=V%>0"

We now extend the simple BHW information
structure used in our introductory example to in-
corporate event uncertainty. Traders are informed
if there is an information event (ie., V # V9)
and if there is, then traders have signals as in
BHW. Formally, information structure I (IS 1) is
defined as follows. The true value of the asset is
V € {0, '/, 1} with initial priors satisfying
7%, >0and 79 =7 > 0. Then, V% = !/, and
there is event uncertainty. There is a single
type of informed trader with signal x, where

P(x=3|V) L=
x=-— =
2 0 ifVi%,
ifvV=1,
P(x=1|V) = P
1—p ifV=0,
p ifv=0,
P(x=0|V) = .
1—-p ifV=1,

1 = p > '},. If there were no event uncertainty

'2 The event uncertainty that we study satisfies the ad-
ditional property that informed traders know whether or
not an information event has occurred. That is, P (V =
Vi lx) € (0, 1}.
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(ie., 9, = 0), then the above signals are
monotonic. The addition of event uncertainty
in this way makes signals nonmonotonic and
herd behavior possible. '

PROPOSITION 5: Under IS 1, price paths
with herd behavior occur with positive prob-
ability for p < 1. They do not occur for p =
1. Herd behavior is misdirected with positive
probability."*

PROOF:
See Appendix.

In BHW, a preponderance of one action
chosen by earlier agents leads others to believe
that the action is a good one, regardless of their
own private information. Similarly, a suffi-
cient excess of buys over sells in our model
leads a trader to believe that the asset value is
more likely to have gone up rather than down,
regardless of his signal. However, with infor-
mationally efficient prices, rational individuals
only act based on information asymmetries be-
tween themselves and the market maker. The
history of trades can only be the source of
asymmetric information if it is interpreted dif-
ferently by the market maker and the informed
traders. With only value uncertainty, there is
only a single interpretation of the history of
trade and hence herd behavior is impossible.

With the addition of event uncertainty, in-
formed traders know that an information event
has occurred, while the market maker does
not. This information asymmetry gives the
traders an advantage in interpreting the history
of trades. They are quicker to adjust their
valuation to the trend in past trades than the

"It is possible to have event uncertainty while pre-
serving the monotonicity of signals. For example, if V €
{0,'h, 1},P(x=V)=p,P(x=1|V=")=P(x =
0lVv="% = -p)2,P(x="%hlV=1)=P(x=
'h|V=0)=gq,andp > g = (1 — p)/2, then x is mono-
tonic. Note that such a signal precludes informed traders
from knowing with certainty whether or not an informa-
tion event has occurred, which we find to be a natural
feature of event uncertainty.

'* Easley and O’Hara (1992) study IS I for the special
case where p = 1. Their focus is on how the market maker
learns that an information event has occurred.
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market maker, who must consider the possi-
bility that there has been no change in the un-
derlying value of the asset and the trend is due
to noise traders. Thus, event uncertainty dulls
price adjustment in the short run.

PROPOSITION 6: Consider IS 1 and some
trading history H, that results in priors ), =
P (V =v|H,). For ' = wl, there is no herd
behavior. For ©' + w4, there exists a critical
value for the precision of traders’ signals p( s,
mh, Th) such that traders engage in herd be-
havior in period t if and only if p < p. This p
decreases with u and increases with m',
(holding =\ /7 constant). If ©'| > w§, then
any herd behavior involves buying and p in-
creases with w' /7, (holding 71,, constant). If
wy < g, then any herd behavior involves sell-
ing and p increases with wo/m' (holding 71,
constant).

PROOF:
See Appendix.

Proposition 6 identifies the three forces that
produce herd behavior. First, herd behavior re-
sults when the weight of information in the
history of trade overwhelms an individual’s
private information about value uncertainty. A
reduction in p reduces the information con-
tained in a private signal about value uncer-
tainty, while an increase in |7} — mj]
increases the amount of information contained
in the history. Either change makes it easier
for the trading history to overwhelm the in-
formation about value uncertainty in private
signals and thus makes it easier for herding to
arise. Second, herding occurs when prices be-
come sufficiently unresponsive to the trading
history. As the probability of an information
event decreases (i.e., 7, increases), prices
respond less to the trading history and thus
more of the information in the trading history
is private."” Third, herding requires that the
bid-ask spread not deter potential herders from

'> Note that the information gleaned by informed trad-
ers from observing the trading history is fixed by 7{/7g
regardless of the value of 7{,, because they know whether
or not an information event has occurred.
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trading. A decrease in u reduces adverse se-
lection and leads to a tighter bid-ask spread.

B. Existence of Pronounced Herd Behavior

Proposition 5 shows that herding is possible
for any p < 1 and 7,,, > 0. We now show that
as event uncertainty becomes extreme, herd
behavior becomes pronounced, resembling the
cascades of BHW.

PROPOSITION 7: Consider IS 1 withp < 1
and suppose that an information event occurs.
In the limit as the probability of an information
event becomes arbitrarily small (i.e., ©9,, >
1), the probability that there is some herd be-
havior in the trading history goes to 1. More-
over, the trading history almost surely takes
the following form: (i) a finite, initial period
of trading during which herd behavior does
not occur, (ii) an arbitrarily long period of
herd behavior of one type (i.e., always buy or
always sell). This herd behavior is in the
wrong direction with a strictly positive
probability,

(1-p)’
A _— 1 - .
e{pu(l—pf p]

In the limit as yp — 0, the probability of herd
behavior in the wrong direction goes to 1 — p.

PROOF:
See Appendix.

When an information event is very surpris-
ing (i.e., m,, close to 1), the market maker
discounts almost completely the informative-
ness of trading. The price remains fixed at the
initial expected asset value of '/, for an arbi-
trarily long period of time. With a fixed price,
our model almost recreates the BHW model
and hence it is not surprising that cascade-like
behavior arises. The only difference with
BHW is the existence of noise traders.'

' The main effect of noise traders is to increase some-
what the probability of herding in the wrong direction. In
BHW it takes two more adopters than nonadopters to start
an informational cascade. Here the imbalance between
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There is an important distinction between
the herding of Proposition 7 and an informa-
tional cascade, which cannot occur in equilib-
rium. In an informational cascade, no new
information reaches the market. Under the
conditions of Proposition 7, behavior resem-
bles a cascade when there has been an infor-
mation event. For a very long interval, all
informed traders act as buyers (or sellers).
However, new information still reaches the
market. Had there been no information event,
informed traders would not be trading and the
volume of trade and the imbalance in trade
would both be less. Hence, the market maker
is learning that there was an information event.
After a sufficient period of time, the market
maker learns enough about event uncertainty
that prices adjust, which ends herding.

The addition of event uncertainty makes
herd behavior possible and even extreme.
However, herd behavior in IS I-—no matter
how extreme —does not distort the asset price.
Herding keeps information about the new asset
value from entering the market and rational
actors (including the market maker) account
for this.

PROPOSITION 8: Consider 1S 1. During
any interval of trading in which there is herd
behavior, the movement in the asset price is
less than

3up —3)
24+ u

In the limit as either u—~>0o0rp— "5, A =0.

buys and sells necessary to start herd behavior depends on
the probability of a noise trader. The greater the probabil-
ity of noise traders, the greater the imbalance required.
However, the key statistic for a cascade—the probability
that it is in the wrong direction—is very similar. In BHW,
the probability of a wrong direction cascade is the prob-
ability that two agents have the wrong signal (1 — p)?/
(p® + (1 — p))2. Here \ is between the probability that
two traders have the wrong signal and the probability that
just one trader has the wrong signal.
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PROOF:
See Appendix.

Herding is triggered when the information
contained in a trade pushes the value of an
informed trader past the bid or the ask. How-
ever, during the entire interval of herding that
follows, the valuations of traders are fixed be-
cause they realize that no new information
about value uncertainty is being revealed.
Therefore, as soon as the price moves by more
than the information contained in the last trade
prior to herding, herd behavior stops. In some
circumstances, the information contained in a
single trade is small. In particular, for a small
probability u of an informed trader arriving or
for low-precision signals, each trade conveys
little information and the price movement dur-
ing herding is small. In conclusion, no one is
fooled by herd behavior in IS I. Any price rise
during periods with herding results only from
information about the new value which was
contained in trading prior to herding. All that
is learned during herding is that an information
event has occurred.

C. Information Aggregation and
Herd Behavior

We now explore the effect of herd behavior
on the aggregation of dispersed private infor-
mation in a financial market. A useful bench-
mark is Vives (1997), who studies the effect
of imitative behavior on the efficiency of in-
formation revelation in a fixed-price setting.
He considers an economy where a sequence of
agents make the same, irreversible decision
and have monotonic private signals about the
optimal decision. Vives proposes as a welfare
benchmark a team solution which assigns
agents decision rules that minimize the mean
decision error. He finds that in the decentral-
ized economy, agents put too much weight on
the decisions of others relative to the welfare
benchmark. Agents do not internalize the neg-
ative externality on later agents caused by their
imitative behavior, which obscures their pri-
vate information.

Vives’ approach does not transfer well to
financial markets. In an asset market, the nat-
ural team solution would be to maximize the
profits of the informed traders. However,
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trading profits based on asymmetric informa-
tion have no clear link to social welfare. What
would seem more important is the information
revealed in the trading history—especially the
information reflected in the asset price. It is
such information which is likely to affect
decision-making in the real economy. With
event uncertainty, there are potentially two
pieces of information to be revealed: first,
whether an information event has occurred,
and then if it has, whether it is a positive or
negative event.

PROPOSITION 9: Consider 1S 1. A period of
herding reveals more information about the
existence of an information event than a
period in which agents trade based on their
information about value uncertainty. Specifi-

cally, herding is more effective at decreasing
E[mih' |V #'h, H]."

PROOF:
See Appendix.

While herding is costly in that it obscures
information about value uncertainty, it has a
benefit. It is more effective at revealing the
existence of an information event. By focusing
the trade of the informed on a single action
when there is an event, herding reduces the
effect of noise trading. For example, with herd
buying, a sell order must come from a noise
trader and a buy order becomes a strong signal
that there has been an information event. We
now consider how well a decentralized market
trades off these costs and benefits of herd
behavior.

PROPOSITION 10: Consider 1S 1 and sup-
pose that an information event occurs. In the
limit as p — 0, the choice of informed traders
between herding and trading based on their
information about value uncertainty minimizes

7 Note that since E[7'},' |H,1 =P (V="L)E[x}}' |V =
'h, H] + P (V = 'h)E[7'5' |V #= 'h, H,], minimizing
E[m'%'|V % 'h, H] is equivalent to maximizing
E[n'},' |V =4, H,]. Hence Proposition 9 also establishes
that herding is more effective at revealing that an infor-
mation event has not occurred, should this be the case.
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the deviation of the asset price from its new
value. That is, the trading strategy of the in-
Sformed approaches the trading strategy which
minimizes E[| V)1 — V||V = '}, H].

PROOFEF:
See Appendix.

The decentralized economy can come arbi-
trarily close to maximizing the movement of
the asset price towards its new value."® We
conclude that the incentives of self-interested
traders with private information do not diverge
from social interests as much as the fixed-price
herding literature suggests. We now recon-
sider the incentives for informed traders to
herd, as identified in Proposition 6, to see why
they are consistent with maximal information
revelation (via the price). Traders herd when
they have sufficiently low-precision signals,
but then the information lost from herd behav-
ior is small. They do not herd when 7| =
74, but then information that an event has oc-
curred has no impact on prices since there is
no public information as to whether the event
is good or bad. Conversely, traders herd when
there is already good information about the
new asset value (i.e., |7} — w§| large), but
this is when the additional information from
more trading based on value uncertainty is
small. They herd when there is little awareness
of an information event (7, large), but then
price does not respond strongly to new infor-
mation about value uncertainty.

Proposition 10 is a fitting end to Sections I'V
and V, which sing the praises of information-
aly efficient financial markets populated by ra-
tional traders.

VI. Herd Behavior and Price Bubbles

Herd behavior in a financial market is of
particular interest because of the possibility
that it might offer an explanation for price bub-
bles and excess volatility. Because price is a

'8 However, Proposition 10 only addresses information
revelation in one period of trade. An analysis of optimal
information revelation over longer time horizons is be-
yond the scope of this paper.
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martingale that converges to the true value, it
is not possible to have volatility in excess of
fundamentals in our general model (Corollary
1), nor can price bubbles be both likely to oc-
cur and extreme (Corollary 2). However, it
still may be possible to identify (unlikely) cir-
cumstances which consistently produce highly
volatile price paths. Here we investigate
whether herd behavior can produce an unsus-
tainable run-up in price that results in a crash.
In the previous section, we saw that herd be-
havior need not distort prices at all. In IS 1T,
herding produces an imbalance in trading, but
market participants understand that this is due
to herd behavior and hence prices and valua-
tions do not respond. We now consider
whether herding is always likely to be so
transparent.

A. Uncertainty About the Composition
of the Market

When a trader learns of an information
event, his assessment of its impact on the asset
value is sometimes precise and sometimes im-
precise. For example, a trader may or may not
be confident in his ability to predict the effect
on profits of a change in a firm’s product mix
or of a merger decision, depending on whether
he has complementary pieces of information,
such as detailed information about the merger
partner. For the market as a whole, some in-
formation events will have a high proportion
of well-informed traders, while others will
have only a few. If the market is uncertain ex
ante about the proportion of different types
of traders, we have a third dimension of
uncertainty.

Definition 5: There is composition uncer-
tainty when the probability of traders of dif-
ferent types, py, is not common knowledge.

Composition uncertainty complicates learn-
ing for market participants, especially in the
presence of herd behavior. Note that trading
patterns in a market with many poorly in-
formed traders and herding mimic the trading
patterns in a market with well-informed trad-
ers. In a poorly informed market, a sequence
of buy orders is natural because of herding. In
a well-informed market, a sequence of buy or-
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ders is also natural because the agents tend to
have the same (very informative) private sig-
nal. Without knowledge of the composition of
the market, it can then become difficult to dis-
tinguish whether a sequence of buy orders re-
veals a large amount of information about
value uncertainty (because the market is well
informed) or almost none at all (because the
market is poorly informed and informed trad-
ers are herding). We specify a new informa-
tion structure in order to show that this
confusion can lead to extreme short-run price
effects due to herding.

Information structure IT (IS II) adds com-
position uncertainty to IS I. The true value of
the asset is still V € {0, '/, 1}. The signals of
informed traders take the same form, but now
there are two types of trader with 6 € { H,L}.
The difference between the two types of trad-
ers is the precision of their information when
there is an information event. In particular,

V=1,
Py=1m=1{" "
1—py ifV=0,
ifV =0,
Py=0[vy=47"
1-py, ifV=1,

and py = 1 while 1 > p, > '/,. Hence H types
are perfectly informed (i.e., E[V|x,] = V),
while L types have noisy signals when the as-
set value changes.

The level of information in the market is
indexed by I € {W, P}. The difference be-
tween a well-informed market (/ = W) and a
poorly informed market (I = P) is in the pro-
portions of each type of informed trader. Let
ph be the probability of a type € trader in a
type I market. For example, u}} is the proba-
bility of a high-precision trader in a well-
informed market. We assume that there is a
fixed probability of an informed trader (uf +
pi = w) and that there are more H types in a
well-informed market than in a poorly in-
formed market (u}i > uk). The state of the
world is given by the combination of the
asset’s underlying value and the amount of in-
formation available: (V, I). The market-
maker’s assessed probabilities conditional on
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the trading history prior to time ¢ are denoted
Ty

B. An Example of a Price Bubble

We now show how price bubbles can arise
in IS II by means of a simulation.'® The initial
priors for the simulation are 7§, = 0.9999,
7owlmdp = 99. The true state is (V, I) = (0,
P). These prior probabilities strongly suggest
that the market is well informed and that an
information event is unlikely, but we assume
that a negative information event occurs (V =
0) and that the market is poorly informed. We
focus on extreme event uncertainty as in Sec-
tion V, subsection B. The rest of the parame-
ters are: p, = 0.51, vy = 0.25, plf = 0.125,
w! =0.125, u; = 0, and p; = 0.25. With these
parameters, a poorly informed economy has
no well-informed traders (u}; = 0) and hence
there is very little information about value un-
certainty in any trade (since p; = 0.51). De-
spite the lack of information in this economy,
typical simulated price paths, such as the one
shown in Figure 1, are highly volatile.”® Figure
2 shows the 20-period moving average of the
probability of a buy and of no trade (the prob-
ability of a sell is the residual).

With extreme event uncertainty, the price
remains close to '/, for the first 30 periods.
During this initial interval, however, Figure 2
shows a large buildup of buy orders, which is
due to herding. Three of the first five traders
buy and this is enough to prompt L types to
engage in herd buying. Herd buying lasts from
period 5 to period 56. As in the case of event
uncertainty alone, the market maker continu-
ally increases his prior on an information event
as buy orders continue to arrive at a high rate.
However, unlike the case of event uncertainty

' The analysis of price paths is a nontrivial exercise.
The stochastic process that generates prices is especially
complex with herding. In any period the history takes one
of three possible values and, depending on the history up
until that period, there can be any one of six different
distributions over those values. This is why we resort to a
simulation at this point in the analysis.

0 The price path in Figure 1 is typical in that most price
paths take on extreme values and then return to prices of
around '4. It is approximately equally likely that the ex-
treme value is 0 or 1.
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alone, the price moves dramatically during the
interval with herding (from 0.5 to 0.94) as the
market maker concludes that there has been an
information event. For comparison, the maxi-
mum price rise during an interval with herding
if the composition of the market were known
is A = 0.03, from Proposition 8.

Since it is impossible to distinguish be-
tween well-informed and poorly informed
economies during herding, both individual
traders and the market maker must rely on
their initial assessments. Because the initial
assessments are that a well-informed econ-
omy is relatively more likely than a poorly
informed one, the market maker increases
the price and L types increase their valua-
tions throughout the period of herding al-
most as if the market were well informed.
Eventually, the market maker ends herding
by increasing the price and the spread suffi-
ciently in period 57. Figure 2 shows the ef-
fect of the end of herding. There is a fall in
buying and a rise in no trade as the bid/ask
spread forces L types out of the market. This
drop in trading volume signals (over time)
that previous actions were due to herding
rather than to trading by H types. Note the
similarity in the two flat spots in the price
path. In periods 1-40, the market maker
takes time to learn that there has been a
change in fundamentals, while in periods
55-100, he takes time to learn that the mar-
ket is poorly informed. In each case, the
market maker is slow to respond because he
has extreme beliefs.

Once it becomes apparent that the market is
poorly informed, the price naturally has to
drop, for there simply is not as much infor-
mation in previous trading as had been as-
sumed. This brings us back to the case of event
uncertainty alone: the price should only have
adjusted according to the information content
of one poorly informed signal rather than to
that of many well-informed trades. As a result,
the price falls to near '/, before any further
informed trading takes place. Around period
220, the probability of no trade declines as L
types reenter the market— this time trading on
their information about the new asset value.
The market is only learning about one dimen-
sion of uncertainty at a time. At first, the mar-
ket learns that an information event has
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FIGURE 1. AN EXAMPLE OF A PRICE BUBBLE

occurred. Then it learns that the market is
poorly informed. Only when these first two di-
mensions are sufficiently resolved, does the
market begin to aggregate information about
value uncertainty. The price bubble arises
because the market mistakenly thinks that it
is learning about both event and value
uncertainty.

C. Discussion and Connections
to Prior Research

It is possible to formalize the above ex-
ample to show that price bubbles consis-
tently occur under certain identifiable, but
unlikely, conditions. There are three key fea-
tures of the example. First, an information
event is very unlikely, w9, = 1. This assures
that the price is fixed for a long period of
time, so that a substantial amount of herd
behavior occurs. Second, itis very likely that
the market is well informed, w8 /72, = 1.
This assures that at first the market maker
completely discounts the possibility that the
market is poorly informed and that the sub-
stantial imbalance in trade is due to herding.
Third, all informed traders are of type L in a
poorly informed market, uf; = 0. Then a
poorly informed market with herd behavior
behaves exactly like a well-informed market
and nothing is learned about composition
uncertainty if there is herding. These effects
combine to create highly volatile prices

when the market is poorly informed about an
information event. In particular, the price
tends arbitrarily close to an extreme value,
then returns to '/4,. The extreme value can be
either 0 or 1.%'

The existence of price bubbles in IS II for
extreme parameters is consistent with a general
intuition. The combination of event and com-
position uncertainty leads herd behavior to dis-
tort asset prices. So long as the market maker
can not completely distinguish between a well-
informed market and a poorly informed market
during periods of herding, the herd behavior that
arises from event uncertainty will distort prices.
The more the market maker is surprised that the
market is poorly informed, the more prices will
respond to the herd behavior.

Our conclusion that rational herding can ex-
plain price bubbles and crashes contrasts with
several papers which argue implicitly that
herding and crashes, specifically the stock
market crash of 1987, cannot be explained in
models of rational trading (Robert J. Shiller
[1989] gives a collection of papers to this ef-
fect; Allan W. Kleidon [1992] summarizes
and criticizes this line of thought). For ex-
ample, several papers explain the failure of
markets to produce effective prices as the

2! We formalize this result in an earlier version of this
paper (available from the authors), where we make some
additional simplifying assumptions.
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result of unsophisticated strategies and sub-
optimal behavior by market participants (e.g.,
Gerard Gennotte and Hayne Leland, 1990;
Shleifer and Summers, 1990).

Of prior work, Jacklin et al. (1992) and David
Romer (1993) come closest to providing a ra-
tional actor theory of price bubbles. Both papers
have two dimensions of uncertainty: value un-
certainty and composition uncertainty. We be-
lieve that our use of three dimensions of
uncertainty (value, event, and composition un-
certainty) provides a more complete theory of
price bubbles. Romer studies a noisy rational ex-
pectations model with a form of composition un-
certainty very much like that in IS II. His theory
explains how price corrections can occur without
contemporaneous changes in fundamentals: when
markets learn about the composition of the mar-
ket, they reevaluate the information contained in
past trades. However, his theory relies on the
exogenous mispricing of assets®” and on the
exogenous arrival of information about the

22 Tn Romer’s model, mispricing is driven by noise trad-
ing and an assumption that traders receive signals which
are inaccurate even when perfectly aggregated. Similarly,
Lee’s (1995) theory of sudden market corrections does
not explore the mechanisms by which asset prices become
mispriced, beyond noise trading or the arrival of many
misinformed traders.

composition of the market. In contrast, mispric-

ing in our model arises endogenously through the
interaction of herd behavior and composition un-
certainty and composition uncertainty is endoge-
nously resolved through the pattern of trade.

Jacklin et al. consider a market with a class of
insurance traders who buy stock when the price
rises and sell when it declines. They show that
such insurance trading creates a positive feed-
back loop which can produce bubbles and
crashes when the market is surprised by the ex-
tent of insurance trading. While such insurance
trading has some desirable properties when in-
vestors hold a diverse portfolio of stock, Jacklin
et al. take the use of these strategies as exoge-
nously given. In contrast, the herding strategy
that produces our bubble is endogenous.

VII. Contrarian Behavior

In Section V, subsection A, we began to ad-
dress the puzzle of price charting. We show

23 There is a further limitation to Romer’s theory. Our
results in Section VII below suggest that in a sequential
trading model, there is a countervailing force that opposes
price bubbles when there is composition uncertainty but
no event uncertainty. Composition uncertainty creates an
incentive for poorly informed traders to trade against the
trend in prices. This should limit the formation of price
bubbles.
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there that an agent’s trading strategy can be
strongly based on the history of past trades. In
particular, we show that with event uncertainty
a trader may ignore his private information about
value uncertainty in order to trade with the trend
in past trades. However, such herd behavior is
only one of two possible types of strongly
history-dependent behavior. The other possibil-
ity is trade which opposes the trend in past trades
at the expense of private information about value
uncertainty. We start with a formal definition of
such contrarian behavior.

Definition 6: A trader with private information
Xy engages in contrarian behavior at time ¢ if
either he buys when V§(x,) < V9 and v(x,) <
V! < V% or he sells when V9(x,) > V9 and
T(x,) > Vi, > VO, where U(x,) is defined as
follows:

(x,) = lim E[V |n draws from the

n—w

distribution f,(- | V) all have
the value x,].

The definition of contrarian behavior is the
analogue of herd behavior with the additional
requirement that the trend in past trades does
not overshoot the ‘‘limit value’” v(x,) of the
signal. To see why such an addition is neces-
sary, consider a trader who knows that V =
3/, and who trades in a market where V9,
= !/,. Initially, the trader wants to buy. If the
trend in past trades pushes the price above “/,,
he will sell. This is not history-dependent be-
havior. The trading strategy depends only on
the price and the signal value (e.g., buy if and
only if the asking price is less than */,). In de-
fining contrarian behavior, we seek to exclude
situations where the trader reverses his behav-
ior simply because the trend in past trades has
become more positive (or negative) than the
trader’s information about value uncertainty.
With IS II, v(x,) = x,, so that there is con-
trarian selling if a trader with x; = 1 sells when
the trend in trade is positive Vi, > V{,.

PROPOSITION 11: A trader with a mono-
tonic signal never engages in contrarian
behavior.
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PROOF:

Suppose a trader with monotonic signal x,
engages in contrarian buying at time ¢. Then
Vi(xp) = A' = V,,. Since the signal is mono-
tonic, this implies that v(x,) = Vi,. But since
U(xy) = v(xy), this contradicts contrarian buy-
ing. Similarly, contrarian selling never occurs.

Monotonicity is sufficient to rule out contrar-
ian behavior. Thus, Propositions 3 and 11 dem-
onstrate that an assumption of monotonic signals
is inconsistent with strongly history-dependent
behavior of both the herd and contrarian variety.
While event uncertainty can produce herd be-
havior, we now show that composition uncer-
tainty can produce contrarian behavior.

PROPOSITION 12: Consider 1S 11 without
event uncertainty (i.e., 79, = 0). A sufficient
condition for L types to engage in contrarian
behavior with positive probability is

R
ML PL Y tup
ur 1—po)\y+ ufh

PROOF:
See Appendix.

‘When there is composition uncertainty (and
no event uncertainty ), traders of type L place
less weight on previous trades than does the
market maker. Why? By definition, an in-
formed trader is more likely to get a low-
precision signal in a poorly informed market
than in a well-informed market (i.e., pf >
pt’). Hence, an L type trader assigns a higher
probability to I/ = P than does the market
maker: “‘If this is such a well-informed mar-
ket, why did I receive such poor informa-
tion?”’ In a poorly informed market, a given
imbalance between buys and sells is less in-
formative than in a well-informed market.
Hence, with composition uncertainty, the mar-
ket maker adjusts his expected value more in
response to past trading than does a trader of
type L.**

** We suspect that composition uncertainty can also
create herd behavior. Note that H types believe the market
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The sufficient condition in Proposition 12
has three parts. The left-hand side is a measure
of the amount of information L types have
about the composition of the market. The term
p./(1 — p.) on the right-hand side is a measure
of the amount of information that L types have
about the new asset value. The second right-
hand-side term results from the existence of
the bid-ask spread: as y — 0, the bid-ask spread
goes to zero and (y + w)/(y + ul) — 1.
Hence, contrarian behavior due to composition
uncertainty is shown to be possible when the
information of L’s about the composition of
the market is large relative to their information
about value uncertainty and relative to the bid-
ask spread.

With event uncertainty, herd behavior is
possible for any imperfect signal (see Propo-
sition 5), but here contrarian behavior only oc-
curs if signals are sufficiently imprecise. The
difference arises because with event uncer-
tainty, informed traders know that some states
are impossible (i.e., V # '/,), while with com-
position uncertainty, L’s only believe that
some states are less likely than the market
maker. Note that with uf’ = 0, L types know
for sure that the market is poorly informed and
the sufficient condition is satisfied for p, < 1,
which parallels the result for event uncertainty
and herd behavior. We draw the following
general conclusion. The existence of history-
dependent behavior (in either its herd or con-
trarian form) requires (i) that there exist
multiple dimensions of uncertainty, and (ii)
that traders’ asymmetric information about
value uncertainty be sufficiently poor relative
to their information about one of the other di-
mensions of uncertainty.

Multidimensional uncertainty provides a
justification for the phenomena of price chart-
ing (Easley and O’Hara [1992] and Lawrence
Blume et al. [1994] reach similar conclu-
sions). A trader who wants to make optimal

is more likely well informed than does the market maker.
Hence, they put higher weight on the history of trade than
does the market maker. Because we assume H types have
a perfect signal about value uncertainty (py = 1), their
signal always drives their trading. However, if their signal
were imperfect then their private information about market
composition might lead them to engage in herd behavior.
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use of all dimensions of his information needs
to know more about the trading history than
just the price.”

VIII. Conclusion

We reexamined the role of the price mech-
anism in the aggregation of dispersed private
information in an economy when trade is se-
quential rather than simultaneous. In our gen-
eral model, the price mechanism assures that
long-run choices are efficient and with simple
information structures, it assures that herd be-
havior is impossible. However, we show that
more complex information structures can lead
to herd behavior and that a sufficiently com-
plex information structure makes price bub-
bles possible. Price is a single-dimensional
instrument and it only assures that the econ-
omy learns about a single dimension of un-
certainty at one time. As a result, multiple
dimensions of uncertainty can ‘‘overwhelm’’
the price mechanism during some stretches of
trading. Then, interesting short-run behavior—-
such as herding, price bubbles, and contrarian
behavior—become possible.

Our results are consistent with the litera-
ture on trading and common knowledge. Re-
peated communication leads all agents to
agree in their assessments of the true value:
they cannot ‘‘agree to disagree’’ (John D.
Geanakoplos and Heraklis M. Polemarchakis,
1982). In the simplest examples discussed by
Geanakoplos (1992), a single round of com-
munication causes agents to unite in their be-
liefs; a richer set of possible outcomes
necessitates further rounds of communication
before the agents agree in their assessments.
Adding a new dimension of uncertainty in our
model is analogous to enriching the set of out-
comes in a common knowledge game. Our re-
sults show that communication need not

* Adding simple aggregate statistics such as the
trading volume or the imbalance of the market maker’s
sales need not produce a sufficient statistic for the com-
plete history. The meaning of a buy or sell at time ¢
depends on the extent of herd and contrarian behavior
at that time.
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happen uniformly in a financial market. The
market may only be learning about one di-
mension of uncertainty at a time and with a
sufficient number of dimensions, this can lead
to highly volatile price paths.

We have investigated whether herding
might allow an arbitrageur to profitably ma-
nipulate the market’s learning process. Con-
sider an arbitrageur who buys in hopes of
generating herd buying so as to sell at a later
period for a profit. We show elsewhere
(Avery and Zemsky, 1998) that such simple
trading strategies can not be profitable for a
trader with the same information as the mar-
ket maker.

We close with some ideas for future work.
First, we hypothesize that herding and bub-
bles are less pronounced when prices have
multiple dimensions. A natural source of
multidimensional prices is derivative secu-
rities such as options. Second, while excess
volatility can not be explained in our general
model, our results demonstrate that volatility
concentrates in certain identifiable situa-
tions. Our identification of conditions under
which price bubbles arise is but a first step
in investigating the pooling of variance.
Third, we have not fully explored the topic
of multidimensional uncertainty. For exam-
ple, we look at a market where there is either
one or no information events. In an economy
in which information events arrive stochas-
tically, the market might be uncertain as to
how many information events are unfolding
at any given time. Empirically, it would be
useful to know more about how traders use
price history in their trading strategies.

APPENDIX

PROOF OF PROPOSITION 1:

We prove existence and uniqueness of an
equilibrium ask price. The proof is similar
for bid prices. Let h, = B, the event that
there is a buy order at time #. An equilib-
rium ask price satisfies E[V |H,, A', h,] —
A" = 0. The conditional expected value
given a buy order is the weighted average
of two terms: the weighted expected value
of informed buyers whose assessments sat-
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isfy Vy(x,) = A’, and the assessment of a
noise trader Vi,.

AtA'=V,,E[V|IH, A", h] = A". As A’
increases from Vi, E[V|H,, A’, h,] changes
only when A’ outstrips the assessment of some
informed traders, at which point those traders
stop buying. Consequently, E[V |H,, A’, h,] is
weakly increasing in A’ whenever A’ <
E[V|H,, A’, h,], and weakly decreasing in A"
whenever A’ > E[V|H,, A', h,].

The implication is that E[V |H,, A’, h,] —
A is strictly decreasing once it reaches zero.
If there is an equilibrium price, it is unique.
E[V|H,, A', h,] — A'is continuous in A’ ex-
cept at finitely many points, where these dis-
continuities never change the sign of E[V |H,,
A', h] — A'. In addition, E[V |H,, A’, h,] —
A'is nonpositive at A’ = V;,, where the market
maker gains nothing from noise traders, and
nonnegative at A* = 1, where the market
maker loses nothing to informed traders.
Therefore, a zero profit price must exist, and
we know from above that it is unique and that
A=V,

The market maker’s expected value for the
asset and priors are martingales with respect
to H, since H, contains all of the market
maker’s information.

PROOF OF PROPOSITION 2:

Suppose there is an informational cascade
in period ¢. In an informational cascade, the
market maker learns nothing from a trade and
hence B* = A* = V},. With noise trading, all
histories occur with strictly positive probabil-
ity in all states of the world. Hence, there does
not exists a v such that P (V = v|H,) = 1 and
there is a nontrivial set of traders with useful
information, [i.e., traders for whom Vj(x,) #
Vi.]. With B' = A" = V!,, these traders must
be buying or selling.

Suppose traders with signals xy € Ry are
buying and P(x, € Rz|H,) > 0. Since this
is an informational cascade, P(x; € R;|V,
H,) = P(x; € Rg|H,) VYV, which implies that
E[V|xy € Ry, H,] = V',. This contradicts all
types x, € R buying. Similarly, no positive
measure of informed traders can be selling.
But this contradicts a nontrivial set of traders
having useful information. We conclude that
an informational cascade is impossible.
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PROOF OF PROPOSITION 4:

This result is a direct consequence of
Proposition 4 of Glosten and Milgrom
(1985), which states that the beliefs of in-
formed traders and the market maker con-
verge over time so long as trade on both
sides of the market is bounded away from
zero. Since we assume a stationary proba-
bility that noise traders buy and sell in each
period, there is a positive probability for a
buy order and a positive probability for a sell
order in each period. Therefore, the Glosten
and Milgrom result applies and the expec-
tations of the market maker and of all the
informed traders converge over time. If ex-
pectations converge to the true value V, then
the prices must do so as well.

Suppose that the market maker’s expecta-
tion does not converge to V. Then for some
6 > 0, there is strictly positive probability in
each period that the market maker’s expecta-
tion differs from V by at least 6. But then, there
is a strictly positive probability (in each pe-
riod) that an informed trader’s assessment dif-
fers from the market maker’s assessment by at
least €(6) > 0. This contradicts the conver-
gence of these assessments.

PROOF OF COROLLARY 1:

Since V}, is a martingale, E[AV}, - AV] =
0 foreacht, # t,. Thatis, Cov(AV, AV?2) =
0. Since Vi = V° + S!=1" AV! , we can write
the variance of V), as the sum of variances of
AV Var (VD) = SiZ7 Var(AVY,). As t* —
o, VI converges almost surely to V, so
Var(V};) converges to Var(V) and the first part
of the proposition follows.

For the second part, note that Var(V}; —
Vi) = 22y Var(AV,) = Var(V}) —
Var(V}}). The result follows by taking the
limit as #, grows large.

PROOF OF COROLLARY 2:

Let m = P(V < alH,). Because V', is a
martingale converging to V,

Vi, =mE[V|V < a, H,]

+ (1 —=m)E[V|V=a, H].
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Hence,

m = E[V|V=a,H] - E[V|H]
CE[V|V=a,H]-E[V|V<a,H]’

Since E[V|V = a, H] > V!, and E[V|V <
a, H;] < a, an upper bound on m is given by
setting E[V |V =a,H]=1and E[V|V < q,
H] =a.

PROOF OF PROPOSITION 5:

Suppose p = 1. Then E[V |x, H,] = x and
signals are monotonic. Hence there is no herd
behavior.

Suppose that p < 1 and V # '/,. Because
of noise trading, any finite history occurs with
positive probability. Suppose that there is
probability O of herding in the first N trades
for each finite N. Fix ¢ > 0. Without herding
in the first N trades, each buy order increases
the expected value of the asset (with an upper
limit of 1). Choose n such that an informed
trader who observes n — 1 buy orders and a
signal x = 0 has expected value for the asset
greater than '/, + e. Note that each no trade
increases mj,, with an upper limit of 1.
Consider a history of length t = m + n < N
which consists of m no trades followed by n
buy orders, where m is sufficiently large
that 773" *! > 1 — e. Under these conditions
A"t <1, + ¢ and an informed trader with x
= 0 will buy at time m + n. Further, this his-
tory occurs with positive probability, contra-
dicting the assumption that there was no
herding at time m + n < N. A similar argu-
ment establishes that herd selling also occurs
with positive probability. Therefore, herding
in the wrong direction occurs with positive
probability.

PROOF OF PROPOSITION 6:
There is herd buying if E[V|x = 0, H,] >
A', which is equivalent to

(1 —p)mi
(1 =p)mi +pmh

%')’W'llz + 7i(y +pp)
v+ wipp + wo(l —pp
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Setting y = (1 — pw)/3and 7}, = 1 — wy —
7, the above condition is equivalent to

A(p) = mi(1 + mo — 7)) (1 — p) + 6urimh
—p((1 = w)(mi (1 + my — mh)
+ (1 + 7 — 7wh)) + R2urniny)
> 0.

We have A(1) < 0 and A('A) = (7{(1 —
w1) — wo(1 — 75))(1 — p), which is positive
if and only if 7} > w§. Hence, when 7§ >
74, there exists a unique p € (', 1) such that
A(p) = 0. Since 9A/Idp < 0, there is herd
buying for p < p(u, my, w1), where the
closed-form expression for p comes from solv-
ing A(p) = 0. It is then straightforward to
show that dp/du < 0. To show that p is in-
creasing in 7{,,, take the expression for p and
set Ty = any, w7 = an| and 7w, = 1 —
a(wh + i) and then note that 9p/0a < 0.
Finally, to show that p is increasing in
wi/mh, set my = k — 7% and note that dp/0
7w > 0. The results extend to herd selling by
symmetry.

PROOF OF PROPOSITION 7:

Suppose that in the first # periods there is no
herding and there are b buy orders and s sell
orders, where wlog b = s. In these ¢ periods,
informed traders with x = 1 submit buy orders
while those with x = 0 submit sell orders. At
time ¢t + 1, the assessment of an informed
trader with signal x = 0 is

(1 =p)pp+ )
(1 =p)pp +y)'*
+p(u(l =p)+y)

Vi (0) =

>

and V/(0) is simply a function G(b — s).
G(b — 5) > '/, whenever (b — s) is equal to
or greater than a critical value 7. Define 6, =
G(A) — 'h,and 6, = ', — G(A — 1). Gener-
ically, 6, > 0 as well.

Let 6* = min(6,, §,). Assessments of in-
formed traders always differ from '/, by at least
6* when there is an imbalance in prior trades.
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So long as prices remain in the range (', —
&%, '/, + 6*), the market behaves as if the price
were fixed at ',. We now observe that as
w9, = 1, both the bid and ask prices remain
in this range (', — &%, '/, + 6*) for an arbi-
trarily long time.

If there is no herding through period #, then the
market maker’s assessed probability of an infor-
mation event is bounded below by his assessment
after a history with ¢ consecutive trades:

77(1)/2(')’)'
() + (1L =70 (u+ )

41
T2 =

For 7/, sufficiently close to 1, this implies
that w4 },' > 1 — 26*. As a result, the bid and
ask prices must be in the range ('4 — 6%, '/, +
6*) in each period prior to z. Define t* as the
last period such that any trading history pro-
duces bid and ask prices in the range ('/, — 6%,
'/, + &%) for each period through ¢*. As
71'(])/2 d 1, t* —> oo,

Prior to time ¢*, informed traders with x =
0 sell while traders with x = 1 buy so long
as the absolute difference in buy and sell
orders is less than A. If the imbalance
reaches 7 in period g < t*, herding begins
and no new information about value uncer-
tainty reaches the market. Hence, V'(x) =
Vi(x) for t* = t = g and herding continues
until at least #*, when it becomes possible
for the price to adjust enough to break the
herd.

The imbalance between buy and sell or-
ders is a random walk with drift =2up prior
to time 7*. As t* grows large (i.e., 79, ap-
proaches 1), the law of large numbers im-
plies that the probability that the absolute
imbalance reaches 7 prior to time t* in-
creases to 1. Therefore, herding arises with
probability 1 as 79, = 1.

The probability of herding in the wrong di-
rection is

(y + uw(1 —p))’
(y + (1 =p)" + (y + pp)*
Y + up

- ([ ])
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It follows from G(7i — 1) = ', = G(#), that

2 A
23] = [55it5 ]
l-p Yy +u(l—p) I -p
Hence,

(1-p)°
el 5———"—""7=,(1 - .
>‘ [p2+<1—p>2’( P)
As p — 0, A gets arbitrarily large, G(#) —~ '/,
and A — (1 — p).

PROOF OF PROPOSITION 8:

Suppose there is no herding in period ¢,
h, = B, and herd buying begins in period ¢ +
1 and continues through period 7. Then, V' * !
(x=0)>B'""'">B">V'(x=0) and since
wit! > w§*! for herd buying, we also have
B' > '}, Since V¥ (x =0) = V'*! (x = 0) for
t+ 1 < s =T, an upper bound on the change
in price from ¢ to T, is given by

(Al) V*'(x=0)—max{V (x=0),3}.

Defining v = V' (x = 0), we can write

v(up +v)

Vili(x=0)= .
e Y s Y g

Since 0 < VP (x =0)/Ov < 1for'f, =
vand 0 < OV'"! (x = 0)/0v for v < '/, an
upper bound on price changes is given by ex-
pression (A1) evaluated at V' (x = 0) = '/,
which simplifies to give A = 3u(p -
DI+ ).

PROOF OF PROPOSITION 9:

Let ¢, = E[n','|V = '), H,]] when in-
formed traders herd and let ¢, be the same
quantity when traders trade based on their in-
formation about value uncertainty. With herd
buying, all informed traders buy when x # '/,
and either sell or refrain from trading when
x = '/,. Then, using equation (1) we have
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b, = 7T'1/2<““‘12“—‘—
v+ u(l = 7mip)
+ )2
oyt _(_7__/0_) ,
Y T uTip

The expression for herd selling is identical. When
traders trade with their information about value
uncertainty, they buy when x = 1, sell when x =
0 and refrain from trading when x = '/,. Then,

2
(bu:?T'l/z( P Y P
vy + wpmi + (1 — p)mo)

,yZ

+
v+ uprh+ (1 = p)mh)

+ )2
L u? )
Yt umin

The difference between these two quantities
takes the following form:

¢n — b = [f(a) + f(0)] = [f(B) + f(c)],

where f(x) = (m1,y)/(y + %), a = p(1 —
i) and b + ¢ = a. The result that herding
is more effective at revealing information (i.e.,
&, > ,) follows from the convexity of f.

PROOF OF PROPOSITION 10:

Let g, = E[(|V,"' = V)|V +h H] =
i E[1 = VX' | V=1] + n{E[V,'' = 0|V =
0] when informed traders herd and let ¢, be
the same quantity when traders trade based on
their information about value uncertainty.
Wlog, suppose that herding involves buying.
We can reduce ¢, and ¢, to expressions in
P(h,|V = v) and 7! using equation (1) for
74" '(h,) and the following equations:

E[V*"V=v, H]
= E[n{"" +37ih [V =1 H],
E[m," |V =v, H]

= 2 P(hrl V=u, Hr)7rvtj+l(hr)-

hy
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When traders engage in herd buying, P (h, =
SIVY=P((h, =NT|V=+'L)=P(h,=B|V=
) = y,and P (h, = B|V = ') = P (h, =
NT|V = ') = y + u. When traders trade with
their information about value uncertainty,
Ph=S8V="%=P((h=B|V="h=
P(h, = NT|v = 'h) = vy, P (h, = NT|V =
by =y + p P(h =B|V=1)=P(h =
S|IV=0)=vy+pup,and P(h,=S|V=1)=
P(h,=B|V=0)=1vy+ u(l — p). Hence,
¢, — ¢, is a function of the exogenous param-
eters, u and p, and the current priors. In par-
ticular, one can show that ¢, — ¢, takes the
form a,u’® + asp’ + auu’, where

a, =7 (1 + 75— w)(1 - p)
+ wo(1 + 7 — 7p),

and a; and a4 are also independent of u.
Hence, as y goes to zero, the sign of ¢, — ¢,
is given by a,. As p —~ 0, A(p) = «,, where
A(p) is as defined in the proof of Proposition
6. Hence, as p becomes small, herding
occurs precisely when it serves to minimize

¢v - d)h'

PROOF OF PROPOSITION 12:

The proof shows the possibility of con-
trarian selling, the result for contrarian buy-
ing follows from symmetry. Note that v(x.) =
Xz, so that if a trader with x;, = 1 sells when
V! > V% then there is contrarian selling.
The proof proceeds in three steps. The first
shows that given (2), a sufficiently long pe-
riod of buys implies that all L types stop buy-
ing. Step 2 shows that a sufficiently long
period of buying and (2) implies that L types
all sell given a condition on the priors when
the buying started. Step 3 shows that an ini-
tial history of trading exists such that this
condition on the priors is satisfied. We say
that L types trade with their signal in some
period ¢ if those with x; = 0 sell and those
with x; = 1 buy.

Step 1: A sufficiently long sequence of buys
leads L types with x; = 1 to stop buying given
condition (2).

If L’s are trading with their signal, then the
ask at time 7 is
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A =y + plf + p'p)miw
+(y + Mf] + prp) el
= [y + i + wp)Thw
+ (y + piy + prp) e
+ (v + w (L= p))mow
+ (y + p (1 = p))whpl.
L types with a signal x, = 1 do not buy at time

tif A > Vi(1), which is equivalent to

(A2)
7"6,19 P w w
;r“,l‘P(ML(l —p)(y + pg ) — ypour)

Trt
=t (1= po) (y + i) = ypusl)
L,P

+

Tri
== (L= pu) (v + ) = Ypusi)
LW

71_l‘

— = (1= p)(y + uf) — ypoul)
Tw

> 0.

In each period where A, = B and L’s are trading
with their signal, the market maker’s priors are
updated as follows

mwor (v + pr(1 = p)) whp' Thp
- P P —1 - 4a
mhip (v + g+ pep) Thp TP

To.w _ (y + /(1 = p)) wow' -4 Tow
e (y+uh+ uip) T i

To.p _ (y + pr(1 = pr)) whp' -4 Top
mhw  (y + ol + e p) wiy
Tow (vt (1= p) mow'  mwow

= = 4
Tiw (y + Nl‘ilv + MZVPL) 71"1,WI Tw

Note that a; € [0, 1] and @; > max {a,, as, a, }.



746 THE AMERICAN ECONOMIC REVIEW

Suppose &, = B and L’s trade with their sig-
nal for § = ¢t < § + T. Condition (A2) for
period S + T can be written as

S S
T ks
aal = + azazT—-—(;’W
TP P
T p T
+ awal —— + agai ——
LW Tiw

where a, = (/J'L(l = p)(y + /J'H) -
VPLML) a, = (p'(1 = p)(y + wy) —
vpout ), etc. Hence condition (A2) is satisfied
for T sufficiently large if @, > 0. Solving
a, > 0 for (1 — p.)/(pL) gives

1-p (ui‘“ ) ( Y )
>\ =5 w >
DL M ) \7Y t+ po
which is implied by condition (2).

Step 2: Show that a sufficiently long sequence
of buys starting in period § leads to herd sell-
ing if m§, is sufficiently smaller than 7§ p.
Suppose L types sell regardless of their signal
at some time 7. Then the bid at time 7 is

(y + ML )7le+ (v + NL)”TIP
(y + p)miw+ (y + p)whp’
+ (y + w(mwow + 7op)

All L types sell at time ¢ if B' = V; (1), which
is equivalent to

(A3) B'=

(Ad) -:— (1 = p)(y + )

— pour (y + )

Tow
1
1

+

pr (1 —p)(y + wt)

P

—ppl (y + p)

p)(y + pp)

— pupr(y + W)

W(l —p)(y + liL)

= pupr(y + ) > 0.
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In each period where h, = B and no L types
are buying, the market maker’s priors are up-
dated as follows

Top Y Topr 5, Tor
P - =12
7Tr1,1> (y + pi + pip) 05" TP
t r—1 r—1
Tow _ Y Tow -b To
' t—1 Y -1
TP (7+NH+MLPL) TP U
—1 —1
To,p Y o, Top
' w —1°
miw (Y + ug + pLpL) Tw 1w
r—1 t—1
Tow To,w

Tow _ Y
= 1= 02
wo (y + vay + ,U«ZVPL) 7Tr1,wl 1w

Note that b, € [0, 1] and b, > b,.

Suppose 4, = B, and L’s are trading with
their signal for all periods ¢ such that § = ¢ <
S + T + U, where T takes on the smallest
value such that condition (A2) is satisfied.
Then condition (A4) for period S + T + U
can be written as

s o
/Blalrbu v %W
7l'1,p 7TI,P
5 S
+ Bialby T2+ Bialby T > 0,
71'1,W 71-l,W
where B = ur(1 — p)(y + NL) -

P, Ly + W, = pl (L =p)(y +pt)—
pul (v + ), etc. The condition is therefore
satisfied for U sufficiently large if 5, > 0 and
75w sufficiently small relative to 7§ ». Solv-
ing 8, > 0 for (1 — p,)/(p,) gives condition
(2).

Step 3: A trading history H exists such that
wowl s p is arbitrarily close to zero.

Consider some ¢t < S. If L types are not
trading regardless of their signal and 4, =
NT, then the market maker’s updated priors
satisfy

('y + pr )7TOP
mhp (v + ph) !

t
Tow

< 1.
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Consider some ¢ < S. If L’s are trading with
their signal in periods ¢ and ¢ + 1, 4, = B and
h;,_, = S, then the market maker’s updated
priors satisfy

mow _ (v + pr + prp)(y + p (1= pu))
mwop (v + pn+ prp)(y + pr(1 = pp))

t—2
To,p
-2

T < 1.
TP

X

Hence, one can construct an initial series of
trades which make 7§ /7§ p arbitrarily close
to zero.
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