HEC Paris

SOLUTION

Consider the following bonds

	Face (Par) value (in $€$	Maturity	Frequency of coupon	Coupon rate	Yield to maturity (per year)	Price (in $€$) at $t=0$
Bond A	10,000	6 months	-	0%		9,900
Bond B	100	12 months	-	0%	2%	
Bond C	100	18 months	-	0%		97
Bond D	100	24 months	-	0%	3%	
Bond E	100	36 months	-	0%		92
Bond F	200	24 months	1 year	5%		

a) On the timeline write down the dates and cashflows of Bond F
b) What is the (annualized) 6-month interest rate $\mathrm{r}(0.5)$?
$r(0.5 y r s)=r_{6 m o . s}=\left(\frac{10,000}{9,900}\right)^{\frac{1}{0.5}}-1=0.0203$
c) What is the current price of bond D ?
$P_{0}^{D}=\frac{100}{(1+0.03)^{2}}=94.26$

- $€ 90.12$
- $€ 93.56$
- $€ 94.26$
- € 96.60
- € 98.04
- 3.44%
- 4.01%
- 4.51%
- 5.44%
- 5.58%

```
    2.03%
- \(2.05 \%\)
- \(3.03 \%\)
- \(3.05 \%\)
- \(5.00 \%\)
```

$r(1 Y, 2 Y)=f_{1 \rightarrow 2}=\frac{(1+0.03)^{2}}{(1+02)}-1=0.0401$
e) Let G be a convertible zero-coupon bond with maturity 36 months and a face value of $100 €$ (and the same default risk as the other bonds in the table above). What can you say about the price of Bond G at $\mathrm{t}=0$?

$$
\Rightarrow \text { See course slides }
$$

d) What is the one-year forward rate between $\mathrm{t}=1$ and $\mathrm{t}=2$, i.e., $\mathrm{r}(1 \mathrm{Y}, 2 \mathrm{Y})$?

- $\mathrm{P}_{\mathrm{G}}<92$
- $\mathrm{P}_{\mathrm{G}}=92$
- $\mathrm{P}_{\mathrm{G}}>92$
- $\mathrm{P}_{\mathrm{G}}=97$
- $\quad P_{G}>P_{F}$
@ $\mathrm{t}=12$ months $\mathrm{C}=10 €$
@ $\mathrm{t}=24$ months $\mathrm{C}=10 € \& \mathrm{~N}=200 €$

HEC Paris

SOLUTION

Consider the following bonds

	Face (Par) value (in $€$)	Maturity	Frequency of coupon	Coupon rate	Yield to maturity (per year)	Price (in $€$) at $t=0$
Bond A	10,000	6 months	-	0%		9,900
Bond B	100	12 months	-	0%	2%	
Bond C	100	18 months	-	0%		97
Bond D	100	24 months	-	0%	3%	
Bond E	100	36 months	-	0%	3.5%	
Bond F	200	24 months	1 year	10%		

a) On the timeline write down the dates and cashflows of Bond F
@ $\mathrm{t}=12$ months $\mathrm{C}=20 €$
@ $\mathrm{t}=24$ months $\mathrm{C}=20 € \& \mathrm{~N}=200 €$
b) What is the (annualized) 18 -month interest rate, $\mathrm{r}(1.5)$?

$$
r(1.5 y r s)=r_{18 m o . s}=\left(\frac{100}{97}\right)^{\frac{1}{1.5}}-1=0.0205
$$

- 2.03%
- 2.05%
- 3.03%
- 3.05%
- 5.00%
- $€ 90.12$
- $€ 93.56$
- $€ 94.26$
- € 96.60
- $€ 98.04$
d) What is the one-year forward rate between $t=2$ and $t=3$, i.e., $\mathrm{r}(2 \mathrm{Y}, 3 \mathrm{Y})$?
$r(2 Y, 3 Y)=f_{2 \rightarrow 3}=\frac{(1+0.035)^{3}}{(1+0.03)^{2}}-1=0.0451$
e) Let G be a callable bond with the same maturity, coupon, face value, frequency and default risk as Bond F. What can you say about the price of Bond G at $t=0$?

$$
\Rightarrow \text { See course slides }
$$

- 3.44%
- 4.01%
- 4.51%
- 5.44%
- 5.58%
- $\mathrm{P}_{\mathrm{G}}=92$
- $\mathrm{P}_{\mathrm{G}}<\mathrm{P}_{\mathrm{F}}$
- $\mathrm{P}_{\mathrm{G}}=\mathrm{P}_{\mathrm{F}}$
- $\mathrm{P}_{\mathrm{G}}<97$
- $\mathrm{P}_{\mathrm{G}}>\mathrm{P}_{\mathrm{F}}$

HEC Paris

SOLUTION

Consider the following bonds:

	Face (Par) value (in $€$	Maturity	Frequency of coupon	Coupon rate	Yield to maturity (per year)	Price (in $€$) at $t=0$
Bond A	10,000	6 months	-	0%		9,900
Bond B	100	12 months	-	0%	2%	
Bond C	100	18 months	-	0%		97
Bond D	100	24 months	-	0%	3%	
Bond E	100	36 months	-	0%		92
Bond F	200	24 months	1 year	5%		

a) On the timeline write down the dates and cashflows of Bond F
b) What is the (annualized) 36 -month interest rate, $\mathrm{r}(3 \mathrm{Y})$?
$r(1.5 y r s)=r_{18 m o . s}=\left(\frac{100}{92}\right)^{\frac{1}{3}}-1=0.0282$
c) What is the current price of bond B?
$P_{0}^{B}=\frac{100}{(1+0.02)^{1}}=98.04$
d) What is the yield to maturity of Bond F as of date $t=0$?

Bond F's yield to maturity (y) has to be $\mathrm{r}_{2}=2 \%<\mathrm{y}<\mathrm{r}_{3}=3 \%$ since:
$P_{0}=\frac{20}{\left(1+r_{1}\right)}+\frac{210}{\left(1+r_{2}\right)^{2}}=\frac{20}{(1+y)}+\frac{210}{(1+y)^{2}}$
e) Let G be a callable zero coupon bond with maturity of 36 months and a face value of $100 €$ (and the same default risk as the other bonds in the table above). What can you say about Bond G's price at $\mathrm{t}=0$?

$$
\Rightarrow \text { See course slides }
$$

@ $\mathrm{t}=12$ months $\mathrm{C}=10 €$
@ $\mathrm{t}=24$ months $\mathrm{C}=10 € \& \mathrm{~N}=200 €$

- 1.92%
- 2.05%
- 2.82%
- 3.24%
- 4.51%
- 90.15
- 93.18
- 94.26
- 95.64
- 98.04
- 1.95%
- 2.00%
- 2.95%
- 3.00%
- 5.00%
- $\mathrm{P}_{\mathrm{G}} \leq 92$
- $\mathrm{P}_{\mathrm{G}}=\mathrm{P}_{\mathrm{F}}$
- $\mathrm{P}_{\mathrm{G}}>92$
- $\mathrm{P}_{\mathrm{G}}=97$
- $P_{G}>P_{F}$

HEC Paris

SOLUTION

Consider the following bonds:

	Face (Par) value (in $€$)	Maturity	Frequency of coupon	Coupon rate	Yield to maturity (per year)	Price (in €) at t=0
Bond A	10,000	6 months	-	0%		9,900
Bond B	100	12 months	-	0%	2%	
Bond C	100	18 months	-	0%		97
Bond D	100	24 months	-	0%	3%	
Bond E	100	36 months	-	0%	3.5%	
Bond F	300	24 months	1 year	10%		

a) On the timeline write down the dates and cashflows of Bond F
b) What is the (annualized) 18 -month interest rate $\mathrm{r}(1.5)$?
$r(1.5 y r s)=r_{18 m o . s}=\left(\frac{100}{97}\right)^{\frac{1}{1.5}}-1=0.0205$
c) What is the current price of bond E ?
$P_{0}^{E}=\frac{100}{(1+0.035)^{3}}=90.19$
d) What is the yield to maturity of Bond F as of date $t=0$?

Bond F's yield to maturity (y) has to be $\mathrm{r}_{2}=2 \%<\mathrm{y}<\mathrm{r}_{3}=3 \%$ since:
$P_{0}=\frac{30}{\left(1+r_{1}\right)}+\frac{330}{\left(1+r_{2}\right)^{2}}=\frac{30}{(1+y)}+\frac{330}{(1+y)^{2}}$
e) Let G be a convertible zero coupon bond with maturity of 18 months and a face value of $100 €$ (and the same default risk as the other bonds in the table above). What can you say about Bond G's price at $\mathrm{t}=0$?

$$
\Rightarrow \text { See course slides }
$$

- 1.95%
- 2.00%
- 2.95%
- 3.00%
- 10.00%
@ $\mathrm{t}=12$ months $\mathrm{C}=30 €$
@ $\mathrm{t}=24$ months $\mathrm{C}=30 € \& \mathrm{~N}=300 €$
- 1.92%
- 2.05%
- 2.82%
- 3.24%
- 4.51%
- 89.18
- 90.19
- 94.26
- 96.45
- 98.04
- $\mathrm{P}_{\mathrm{G}} \leq 92$
- $\mathrm{P}_{\mathrm{G}}<97$
- $\mathrm{P}_{\mathrm{G}}=97$
- $\mathrm{P}_{\mathrm{G}}>97$
- $\quad \mathrm{P}_{\mathrm{G}}>\mathrm{P}_{\mathrm{F}}$

