SOLUTION

Consider the following bonds

	Face (Par)	Maturity	Frequency of	Coupon rate	Yield to	Price
	value		coupon		maturity	(in €)
	(in €)				(per year)	at t=0
Bond A	10,000	6 months	-	0%		9,900
Bond B	100	12 months	-	0%	2%	
Bond C	100	18 months	-	0%		97
Bond D	100	24 months	-	0%	3%	
Bond E	100	36 months	-	0%		92
Bond F	200	24 months	1 year	5%		

a) On the timeline write down the dates and cashflows of Bond F

@ t=12 months C=10 €

□ € 90.12

 € 93.56

 € 94.26

 € 96.60

 € 98.04

ⓐ t=24 months C=10 € & N=200 €

b) What is the (annualized) 6-month interest rate r(0.5)?

$$r(0.5yrs) = r_{6mo.s} = \left(\frac{10,000}{9,900}\right)^{\frac{1}{0.5}} - 1 = 0.0203$$

2.03%
2.05%
3.03%
3.05%
5.00%

c) What is the current price of bond D?

$$P_0^D = \frac{100}{(1+0.03)^2} = 94.26$$

d) What is the one-year forward rate between t=1 and t=2, i.e., r(1Y,2Y)?

$$r(1Y, 2Y) = f_{1 \to 2} = \frac{(1+0.03)^2}{(1+02)} - 1 = 0.0401$$

e) Let G be a convertible zero-coupon bond with maturity 36 months and a face value of 100€ (and the same default risk as the other bonds in the table above). What can you say about the price of Bond G at t=0?

 \Rightarrow See course slides

3.44%
<mark>4.01</mark> %
4.51%
5.44%
5.58%

 $P_G < 92$ $P_G = 92$ $P_G > 92$ $P_G > 92$ $P_G > 97$ $P_G > P_F$

Quiz 2

SOLUTION

Consider the following bonds

	Face (Par)	Maturity	Frequency of	Coupon rate	Yield to	Price
	value		coupon		maturity	(in €)
	(in €)				(per year)	at t=0
Bond A	10,000	6 months	-	0%		9,900
Bond B	100	12 months	-	0%	2%	
Bond C	100	18 months	-	0%		97
Bond D	100	24 months	-	0%	3%	
Bond E	100	36 months	-	0%	3.5%	
Bond F	200	24 months	1 year	10%		

a) On the timeline write down the dates and cashflows of Bond F

(*a*) t=12 months C=20 €

(*a*) t=24 months C=20 € & N=200 €

b) What is the (annualized) 18-month interest rate, r(1.5)?

$$r(1.5yrs) = r_{18mo.s} = \left(\frac{100}{97}\right)^{\frac{1}{1.5}} - 1 = 0.0205$$

c) What is the current price of bond B?

$$P_0^B = \frac{100}{(1+0.02)^1} = 98.04$$

2.03%
2.05%
3.03%
3.05%
5.00%

€ 90.12	
€ 93.56	
€ 94.26	
€ 96.60	
€ 98.04	

d) What is the one-year forward rate between t=2 and t=3, i.e., r(2Y,3Y)?

$$r(2Y, 3Y) = f_{2 \to 3} = \frac{(1+0.035)^3}{(1+0.03)^2} - 1 = 0.0451$$

3.44%
4.01%
<mark>4.51%</mark>
5.44%
5.58%

e) Let G be a callable bond with the same maturity, coupon, face value, frequency and default risk as Bond F. What can you say about the price of Bond G at t=0?

 \Rightarrow See course slides

$P_{\rm G} = 92$		
$P_G < P_F$		
$P_G = P_F$		
$P_{\rm G} < 97$		
$P_G > P_F$		

. .

SOLUTION

Consider the following bonds:

	Face (Par)	Maturity	Frequency of	Coupon rate	Yield to	Price
	value		coupon		maturity	(in €)
	(in €)				(per year)	at t=0
Bond A	10,000	6 months	-	0%		9,900
Bond B	100	12 months	-	0%	2%	
Bond C	100	18 months	-	0%		97
Bond D	100	24 months	-	0%	3%	
Bond E	100	36 months	-	0%		92
Bond F	200	24 months	1 year	5%		

a) On the timeline write down the dates and cashflows of Bond F

@ t=12 months C=10 €

@ t=24 months C=10 € & N=200 €

b) What is the (annualized) 36-month interest rate, r(3Y)?

$$r(1.5yrs) = r_{18mo.s} = \left(\frac{100}{92}\right)^{\frac{1}{3}} - 1 = 0.0282$$

1.92%
2.05%
<mark>2.82%</mark>
3.24%
4.51%

c) What is the current price of bond B?

$$P_0^B = \frac{100}{(1+0.02)^1} = 98.04$$

90.15
93.18
94.26
95.64
<mark>98.04</mark>

d) What is the yield to maturity of Bond F as of date t=0?

Bond F's yield to maturity (y) has to be $r_2=2\% < y < r_3=3\%$ since:

$$P_0 = \frac{20}{(1+r_1)} + \frac{210}{(1+r_2)^2} = \frac{20}{(1+y)} + \frac{210}{(1+y)^2}$$

e) Let G be a callable zero coupon bond with maturity of 36 months and a face value of $100 \in$ (and the same default risk as the other bonds in the table above). What can you say about Bond G's price at t=0?

 \Rightarrow See course slides

1.95%	
2.00%	
<mark>2.95%</mark>	
3.00%	
5.00%	

$P_G \leq 92$
$P_G = P_F$
$P_{\rm G} > 92$
$P_{\rm G} = 97$
$P_G > P_F$

...

SOLUTION

Consider the following bonds:

	Face (Par)	Maturity	Frequency of	Coupon rate	Yield to	Price
	value		coupon		maturity	(in €)
	(in €)				(per year)	at t=0
Bond A	10,000	6 months	-	0%		9,900
Bond B	100	12 months	-	0%	2%	
Bond C	100	18 months	-	0%		97
Bond D	100	24 months	-	0%	3%	
Bond E	100	36 months	-	0%	3.5%	
Bond F	300	24 months	1 year	10%		

a) On the timeline write down the dates and cashflows of Bond F

ⓐ t=12 months C=30 €

ⓐ t=24 months C=30 € & N=300 €

b) What is the (annualized) 18-month interest rate r(1.5)?

$$r(1.5yrs) = r_{18mo.s} = \left(\frac{100}{97}\right)^{\frac{1}{1.5}} - 1 = 0.0205$$

c) What is the current price of bond E?

$$P_0^E = \frac{100}{(1+0.035)^3} = 90.19$$

89.18
90.19
94.26
96.45
98.04

d) What is the yield to maturity of Bond F as of date t=0?

Bond F's yield to maturity (y) has to be $r_2=2\% < y < r_3=3\%$ since:

$$P_0 = \frac{30}{(1+r_1)} + \frac{330}{(1+r_2)^2} = \frac{30}{(1+y)} + \frac{330}{(1+y)^2}$$

e) Let G be a convertible zero coupon bond with maturity of 18 months and a face value of $100 \in$ (and the same default risk as the other bonds in the table above). What can you say about Bond G's price at t=0?

 \Rightarrow See course slides

1.95%
2.00%
<mark>2.95%</mark>
3.00%
10.00%

$P_G \leq 92$
$P_{G} < 97$
$P_G = 97$
$P_{\rm G} > 97$
$P_G > P_F$