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1 Bidders interdependent valuations

Let consider an auction for an item whose fundamental value depends on some
common value component, such as for example the quality of manufacturing, and
some private value component that depends on the idiosyncrasies of the bidder, for
example the colour and aesthetics of the object. In situation like this, each bidder
might possess information regarding its own idiosyncratic taste but also about the
intrinsic quality of the object. When this happens we says that bidder’s valuations
are interdependent.

Milgrom and Weber (1982) modelled situations like this as follows:

1. There are N bidders.

2. There are N random variables x̃1, x̃2, ..., x̃N drawn from the same interval
[0, 1]. These random variables are affiliated.

3. Each bidder i privately observes the realization xi of a random variable x̃i but
does not observe the realization of the other random variables. We interpret
xi as a private information that the bidder has received and that is helpful
for the bidder to better estimate his valuation for the object.
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4. A bidder actual valuation for the object depends on the realization of all
random variables. Namely, let xi be the realization of x̃i and let x−i =

{x̃1, . . . , x̃i−1, x̃i+1, . . . , x̃N} denote the vector with the realization of the other
N − 1 random variables. Then the value of the item to bidder i is equal to

vi = u(xi, x−i) (1)

where the function u(·) satisfies the following properties

(a) u(·) is bounded nondecreasing in all its variables and twice continuously
differentiable.

(b) u(·) is symmetric in the last N − 1 components. This means that if
x−i is the vector with the realizations of the N − 1 random variables
different from x̃i and x′−i is a permutation of x−i, i.e., x−i and x−i have
the same numbers but in a different order, then

u(xi, x−i) = u(xi, x
′
−i)

(c) We normalize u(0, 0) = 0, that is if all bidder’s signals realization equal
0, then the item is worth 0 to all bidders.

That is bidder i’s valuation vi is increasing in his and in the other bidder’s sig-
nals. However the other bidder’s signals can be interchanged without affect-
ing bidder i’s valuation, or in other words, the information of all comptetitors
of i are equally relevant for i to determine his own valuation. Below some
examples:

u(xi, x−i) = αxi + β
∑
j 6=i

xj

u(xi, x−i) = xαi (Πj 6=ixj)
β

u(xi, x−i) = exp[αxi]βmax
j 6=i

xj

with α, β > 0.

Fix bidder i and let Ỹ1 denote the highest realization of the the random variables
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different from x̃i. That is,
Ỹ1 = max

j 6=i
x̃j (2)

let

v(x, y) = E
[
u(x̃i, x̃−i)|x̃i = x, Ỹ1 = y

]
(3)

This is the expected value of the object to bidder i conditionally on the realization
of bidder i signal being x and on the realization of the highest of other bidder’s
signal being y.

In what follows we will consider the equilibrium bidding strategies in different
auction formats when bidders valuation are interdependent. We will assume that
the random variable x̃1, x̃2, . . . , xN representing the N bidders’ private signals are
affiliated and continuously distributed on [0, 1].

2 Symmetric equilibrium of the second price sealed-

bid auction

Let consider first a second price sealed bid auction. We will focus on the sym-
metric equilibrium that is defined by a continuously increasing and differentiable
function βII : [0, 1] → R, with the interpretation that if a bidder i private signal
realization is x̃i = x, then it is an equilibrium for this bidder to bid βII(x) in a
second price auction. Then we have

Proposition 1 In a symmetric equilibrium of a second price auction:

βII(x) = v(x, x)

Recall the meaning of the function v(x, y) given in (3). The proposition states
that after observing a private signal x̃i = x, it is an equilibrium for a bidder i in
a second price auction to bid an amount equal to the expected value of the object
conditionally on his signal being x and the highest of his competitors signal being
also equal to x.
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Proof: Fix any bidder i and suppose he expects that all other bidders will bid
according to the bidding function βII(·). Observe that because βII(x) = v(x, x)

another bidder j’s bid is a continuously increasing differentiable function of that
bidder’s private signal realization. Becuase x̃j ∈ [0, 1], all other bids are included
between βII(0) = v(0, 0) = 0 and βII(1) = v(1, 1). Clearly it is optimal for bidder
i to bid at least βII(0) and at most βII(1). This because by bidding less than
βII(0) he is certain to lose the auction, and he can achieve the same outcome by
bidding v(0, 0) = 0, whereas by bidding more than βII(1) he is certain to win the
auction and pay at most βII(1), but then he can achieve the same outcome by
bidding βII(1). So our bidder i has to choose a bid b between βII(0) and βII(1).
Now, because βII(·) is a strictly increasing function, this is equivalent to choosing
a type z ∈ [0, 1] and then bid βII(z), that is to bid like another bidder with signal
z would bid.

If he bids βII(z), then he wins only if the highest of his competitor bid is not
larger than βII(z), that occurs if and only if the highest of his competitors’ signals
is not larger than z. That is, using the notation in (2), bidder i wins only if
Ỹ1 < z. Let denote with G(·|x) and with g(·|x) the the c.d.f. and the density of of
Ỹ1 conditional on x̃i = x, respectively. That is, G(z|x) is the probability that the
highest of bidder i’s competitors’ signal is not larger than z conditional on bidder
i’s signal being x.

Suppose the bidder i bids βII(z), he wins and he pays βII(y), what is in this
case the expected value of the object to bidder i? This is the expectation of u(·)
conditionally on his signal being equal to x and the highest of his competitor’s
signal being equal to y, that is precisely v(x, y) by expression (3).

We can now determine Π(z, x) that is the expected payoff of bidder i from
bidding βII(z) given that the realization of his private signal x̃i is equal to x.

Π(z, x) =

∫ z

0

(v(x, y)− βII(y))g(y|x)dy

=

∫ z

0

(v(x, y)− v(y, y))g(y|x)dy

Bidder i chooses the z that maximizes Π(z, x). By taking the derivative of
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Π(z, x) with respect to z we have

∂Π(z, x)

∂z
= v(x, z)− v(z, z)

Because v(·) is increasing in the two argument the above expression is positive nil
for z = x, it is positive for z < x and it is negative for z > x. But this implies
that Π(z, x) is maximized for z = x. Another way to see that z = x maximize our
bidders expected payoff is to verify that Π(z, x) is quasi-concave. In facts,

∂2Π(z, x)

∂x∂z
=
∂v(x, z)

∂x
> 0

Thus, is if all other bidders bid according to βII(·), the the best bidder i can do
given his signal x is to bid precisely b = βII(x) = v(x, x). Q.E.D.

3 Symmetric equilibrium of the first price sealed-

bid auction

Let consider now the symmetric equilibrium of the first price sealed bid auction.
And let denote with βI : [0, 1]→ R the equilibrium bidding strategy. Then,

Proposition 2 In a symmetric equilibrium of a first price auction:

βI(x) =

∫ x

0

v(y, y)dL(y|x)

where
L(y|x) = exp

(
−
∫ x

y

g(t|t)
G(t|t)

dt

)
Proof: As for the proof for the previous proposition let denote with Π(z, x)

the expected payoff of bidder i given that all other bidders use strategy βI(·), he
has signal x and bids βI(z). As long as βI(·) is a strictly increasing function, we
have

Π(z, x) =

∫ z

0

(v(x, y)− βI(z))g(y|x)dy =

∫ z

0

v(x, y)g(y|x)dy − βI(z)G(z|x)
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Observe that in equilibrium the expected value of the object given that a bidder
with signal x wins is v(x, x) so a bidder will never bid more than v(x, x) that is
v(x, x)− βI(x) ≥ 0 for all x. Hence from v(0, 0) = 0, we have βI(0) = 0.

Let’s take the derivative of Π(z, x) with respect to z :

∂Π(z, x)

∂z
= v(x, z)g(z|x)− βI(z)g(z|x)− βI ′(z)G(z|x)

For βI to be the equilibrium bidding strategy, it must be optimal for bidder i
to bid βI(x), and hence the first order condition ∂Π(z,x)

∂z

∣∣∣
z=x

= 0 must be satisfied.
This leads to the following differential equation:

βI
′
(x) + βI(x)

g(x|x)

G(x|x)
= v(x, x)

g(x|x)

G(x|x)
(4)

That together with the initial condition βI(0) = 0 provides the expression of βI

given in the proposition.
Namely, take the function µ(x) such that µ′(x) = µ(x) g(x|x)

G(x|x)
. Then multiplying

both sides of (4) by µ(x), we get:

µ(x)βI
′
(x) + βI(x)µ′(x) = v(x, x)

g(x|x)

G(x|x)
µ(x)

Taking the integral on both side one has

[
µ(z)βI(z)

]x
0

=

∫ x

0

v(y, y)
g(y|y)

G(y|y)
µ(y)dy

Considering that βI(0) = 0 the previous inequality can be rearranged as follows

βI(x) =

∫ x
0
v(y, y) g(y|y)

G(y|y)
µ(y)dy

µ(x)
(5)

It remains to determine the function µ(·). From µ′(x) = µ(x) g(x|x)
G(x|x)

it follows that

µ(x) = µ(0) exp

(∫ x

0

g(z|z)

G(y|z)
dz

)
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so replacing ths expression in (5) and simplifying, we get

βI(x) =

∫ x

0

v(y, y)
g(y|y)

G(y|y)
exp

(
−
∫ x

y

g(z|z)

G(z|z)
dz

)
dy (6)

Considering the definition of L(·) given in the proposition, the above expression is
precisely βI of the proposition.

To complete the proof that bidding βI(x) is the best bid for a bidder with signal
x we have to show that

∂Π(z, x)

∂z

∣∣∣∣
z<x

> 0

and
∂Π(z, x)

∂z

∣∣∣∣
z>x

< 0

Let rewrite ∂Π(z,x)
∂z

as follows

∂Π(z, x)

∂z
= G(z|x)

[
(v(x, z)− βI(z))

g(z|x)

G(z|x)
− βI ′(z)

]
Take z < x, then v(x, z) > v(z, z) and because of affiliation, G(z|x) stochastically
dominate in the sense of the reverse hazard rate G(z|z). That is,

g(z|x)

G(z|x)
≥ g(z|z)

G(z|z)
.

Hence
∂Π(z, x)

∂z
> G(z|x)

[
(v(z, z)− βI(z))

g(z|z)

G(z|z)
− βI ′(z)

]
= 0

Take z > x, then v(x, z) < v(z, z) and because of affiliation, G(z|z) stochastically
dominate in the sense of the reverse hazard rate G(z|x), that is

g(z|z)

G(z|z)
>

g(z|x)

G(z|x)

Hence
∂Π(z, x)

∂z
< G(z|x)

[
(v(z, z)− βI(z))

g(z|z)

G(z|z)
− βI ′(z)

]
= 0

Q.E.D.
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4 Symmetric equilibrium of the English auction

In first price and second price sealed-bid auctions the only action a bidder has
to take is to choose his bid. Once the bidder has bid, he or she only has to wait for
the outcome of the auction and, if he or she wins, pay his/her own bid in the first
price auction, and the highest of his competitor’s bid in the second price auction.
In an English auction bidders are in the same room, see each other declaring
bids and can react. So, a priori any bidder can declare any bid as a reaction to
a competitor’s announcement. In this section we will focus on a variant of the
English auction, also known as the Japanese auction whose rules are as follows:

1. All bidders are in the same room.

2. The auctioneer starts with a price of 0 and gradually and continuously in-
creases the price.

3. When a bidder deems that the price reached a level that is too high for
him/her, he or she exits the room.

4. Bidders who exit are not allow to come back in the room.

5. As soon as there is only one remaining bidder in the room, the auctioneer
stops increasing the price, the bidder left is the winner and pays that price.

In a Japanese auction each bidder has to choose when to leave the room. The
item is sold at the price at which the one before the last bidder exited the room
and the winner of the auction is the last bidder left in the room. Because bidders
in the room observe the prices at which the other bidders leave, they might deduce
the exiting bidders’ opinion about the value of the item, and hence adapt their
exiting price accordingly.

Without loss of generality, we can call time 0 the beginning of the auction and
assume that at time t the auctioneer announces a price equal to t. So the bidders’
exiting times correspond to their bid. Suppose that initially there are N bidders
and that, by time t, n < N bidders have left the room. Bidders still in the room
have observed the exiting time p1 ≤ p2, · · · ≤ pn ≤ t and now each one of them
has to decide a time t∗ ≥ t at which he will exit the room if by that time no other
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bidder has left. In this framework a bidding strategy βJ answers the following
question: given the realization x of my signal, the bidders who have exited and
the time at which they have exited, at what time do I want to exit the room?

Take a bidder i and recall that if the realization of bidder i’s signal is xi, and
the realization of the other bidder’s signal is x−i = {x1, . . . , xi−, xi+1, . . . , xN}, then
bidder i’s valuation for the object is

vi = u(xi, x−i)

Let denote with u(x, x) the value of the object to bidder i if all bidders have received
the same signal x as bidder i. Let u(x, (x, x1)) the value of the object to bidder
i 6= 1 if bidder 1’s signal is x1 and all other bidder’s signal is identical and equal to
x. We can define recursively in the same way u(x, (x, x1, x2)), u(x, (x, x1, x2, x3))

and so on and so forth until u(x, x−i).
We can now describe the strategy βJ in a symmetric equilibrium of the Japanese

auction from the moment the auction starts until the moment the winner is deter-
mined.

1. As long as all bidders are in the room, a bidder with signal x stays if the
price is below u(x, x) and exits as soon as the price reaches u(x, x). Two
observation follows from the fact that u(·) is a strictly increasing function:

(a) The first bidder to exit the room is the bidder with the lowest private
signal.

(b) By observing the time p1 at which the first bidder exited, all bidders
can deduce the exiting bidder’s private signal x1. Namely x1 must be
such that

u(x1, x1) = p1.

2. As long as only one bidder has already exited and his signal is x1, then a
bidder with signal x > x1 stays if the price is below u(x, (x, x1)) and exits as
soon as the price reaches u(x, (x, x1)). Two observation follows from the fact
that u(·) is a strictly increasing function:
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(a) The second bidder to exit the room is the bidder with the second lowest
private signal.

(b) By knowing x1 and observing the time p2 at which the second bidder
exited, all bidders can deduce that the exiting bidder’s private signal
x2. Namely x2 must be such that

u(x2, (x2, x1)) = p2.

. . .

n. Suppose that n−1 ≤ N −2 bidders have exited and from their exiting times
all bidders have deduced the exited bidders signals’ x1 < x2 < x3 < · · · <
xn−1. Then a bidder in the room with signal x > xn−1 stays if the price
is below u(x, (x, x1, x2, x3, . . . , xn−1)) and exits as soon as the price reaches
u(x, (x, x1, x2, x3, . . . , xn−1)).Two observation follows from the fact that u(·)
is a strictly increasing function:

(a) The n-th bidder to exit the room is the bidder with the n-lowest private
signal.

(b) By knowing x1, . . . , xn−1 and observing the time pn of the n-th exit, all
bidders can deduce the exiting bidder’s private signal xn. Namely xn
must be such that

u(xn, (xn, x1, x2, x3, . . . , xn−1)) = pn.

. . .

N-1. The wining bidder is the bidder with the highest signal and he pays the price

pN−1 = u(xN−1, (xN−1, x1, x2, x3, . . . , xN−2)) = u(xN−1, (x1, x2, x3, . . . , xN−1)).

where the second equality follows from the fact that u(·) is symmetric in its
last N − 1 arguments. Hence if the winner’s signal is x, his or her payoff is

u(x, (x1, x2, x3, . . . , xN−1))− u(xN−1, (x1, x2, x3, . . . , xN−1)) > 0 (7)
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where the inequality follows from the fact u(·) is strictly increasing and x >
xN−1.

Proposition 3 The strategy βJ is a symmetric equilibrium of the Japanese auc-
tion.

Proof: Suppose all bidders but bidder i follow the strategy βJ . If bidder i
with signal x follows the strategy, then he wins only if he has the highest signal.
Upon winning his payoff is given by (7) and is strictly positive because x > xN−1.
Suppose bidder i, deviates and eventually loses the auction. If he is not the bidder
with the highest signal he does not gain by deviating, because he would have
lost also following the equilibrium strategy. However if he is the bidder with
the highest signal, by deviating he loses the strictly positive payoff (7). Suppose
bidder i, deviates and eventually wins the auction. If he is the bidder with the
highest signal he does not gain by this deviation, because he would have also won
by following the equilibrium strategy, and would have paid the same price pN−1.
However if he is not the bidder with the highest signal then, it must be that
x < xN−1, but in this case his winner’s payoff (7) is strictly negative because u· is
strictly increasing. So the best bidder i can do is to follow βJ . Q.E.D.

5 Revenue ranking with interdependent values: the

linkage principle

We have seen that within a private value framework the seller’s expected rev-
enue does not depend on the auction mechanism as long as the equilibrium satisfies
the following two conditions. First, the bidder with the highest valuation wins the
auction with certainty, and second, a bidder whose valuation is nil has an equilib-
rium payoff of 0. From the above analysis of the symmetric equilibria of the first
price, second price and English auction with interdependent valuation, we know
that in each of these equilibria:

i. The bidder with highest signal wins the auction with certainty

ii. A bidder with signal 0 has a payoff of 0.
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Can we then deduce that also for the interdependent values case these different
auction mechanism provide the seller with the same expected revenue? To answer
this question let us make a reasoning similar to the one we used to prove the
revenue equivalence theorem for the private value case.

Take an auction mechanism and suppose that it has an equilibrium satisfying
properties i. and ii. Let denote with Π(z, x) the expected payoff for a bidder with
signal x if he bids as if his signal were z. Let denote with W (z, x) the expected
price paid by bidder i if he is the winning bidder, he is of type x but bids as if
his type were z. For example, in a first price auction W I(z, x) = βI(z) and in a
second price W II(z, x) =

∫ z
0
βII(y) g(y|x)

G(z|x)
dy. Property i. implies

Π(z, x) =

∫ z

0

v(x, y)g(y|x)dy −W (z, x)G(z|x). (8)

Let denote
W1(z, x) =

∂W (z, x)

∂z

and
W2(z, x) =

∂W (z, x)

∂x
.

In equilibrium it must be optimal for the bidder of type x to behave according
to his type. That is the first order condition must hold:

∂Π(z, x)

∂z

∣∣∣∣
z=x

= (v(x, x)−W (x, x))g(x|x)−W1(x, x)G(x|x) = 0

Or equivalently:

W1(x, x) = (v(x, x)−W (x, x))
g(x|x)

G(x|x)
. (9)

Now let consider two auction mechanisms, A and B. Suppose each mechanism has
an equilibrium satisfying i. and ii. The question is whether in these equilibria the
two mechanisms provide the same expected revenue or not. We know that because
of property i. if a bidder of signal 0 wins, all bidders must have signals 0, the value
of the item is u(0, 0) = 0, and hence because of property ii. the winning bidder
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pays exactly 0 no matter whether the mechanism is A or B. That is,

WA(0, 0) = WB(0, 0) = 0. (10)

What if the winner is of type x > 0? What is in this case the difference in what
the winner would pay in auction A compared to what the bidder would pay in
auction B? That is, what is ∆(x) := WA(x, x)−WB(x, x)?

We have
∆(x) = ∆(0) +

∫ x

0

∆′(z)dz =

∫ x

0

∆′(z)dz

where the second equality follows from (10). Now,

∆′(x) =
(
WA

1 (x, x)−WB
1 (x, x)

)
+
(
WA

2 (x, x)−WB
2 (x, x)

)
=

g(x|x)

G(x|x)
∆(x) +

(
WA

2 (x, x)−WB
2 (x, x)

)
where the second equality follows from (9). From this expression we deduce the
following proposition.

Proposition 4 Take two auction mechanisms A and B, and suppose each mech-
anism has an equilibrium such that

1. Property i. is satisfied.

2. Property ii. is satisfied.

3. For all x > 0, it results WA
2 (x, x) ≥ WB

2 (x, x).

Then the seller expected equilibrium revenue in auction A is not smaller than in
auction B.

The interpretation of proposition 4 and in particular of its condition 3 is known
as the linkage principle that in words can be stated as follows:

“The more closely the winning bidder’s payment is linked to his actual type (as
opposed to his bid), the greater the expected revenue will be.”

“The more things the winning bidder’s payment depends on that are positively
correlated with his type, the greater the expected revenue will be.”
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Let us apply Proposition 4 to compare the first and the second price sealed
bid auction. For the first price auction W I(z, x) = βI(z) and so W I

2 (x, x) =

W I
2 (z, x) = 0. For the second price auction

W II(z, x) = E[v(Ỹ1, Ỹ1)|x̃i = x, Ỹ1 < z]

If signals are affiliated, then the above expression is an increasing function of x
and so

W II
2 (x, x) ≥ 0.

Thus applying the proposition we have

Corollary 1 The seller expected revenue of the symmetric equilibrium of the sec-
ond price auction is at least as large as the expected seller revenue of the symmetric
equilibrium of the first price auction.

Observe that for second price auction revenue to be strictly larger than first
price auction revenue, it is necessary thatW II

2 (x, x) > 0 and hence that the signals
are ‘strictly’ affiliated. That if signals are independent then even in the interde-
pendent framework W II

2 (x, x) = 0 = W I
2 (x, x) and so the two auctions generate

the same expected revenue.

6 Disclosing information in auctions

In this section we will use the linkage principle to understand whether publicly
disclosing information about the item value can affect the seller’s revenue. Consider
our interdependent value framework where bidder’s signals are affiliated with joint
distribution f . Suppose the seller also privately observe a signal x̃S that is affiliated
with the bidder’s signals. From an ex-ante perspective, does the seller gain or loses
by publicly disclosing his signal before the auction?

Consider an auction whose equilibrium satisfies property i. and ii. Consider
first the case where the seller does not disclose his information. For any given joint
distribution function of f of bidders affiliated signals, let βf (·) be the symmetric
equilibrium strategy and let W f (z, x) be the expected payment of a bidder of type
x if he wins by behaving as if his type was z.
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Now consider the case in which before the auction the seller disclose that his
signal xS. All bidders update their beliefs, and the resulting joint distribution
of signals conditional xS is f(·|xS) and signals are still affiliated. So a symmetric
equilibrium is played with strategy βf(·|xS)(·) that are non decreasing in xS. In fact
because of affiliation, an increase in the realization of the seller’s signals increase
all bidders expected valuation for the item and hence cannot decrease their bids.
Then also Wf(·|xS)(x) is non-decreasing in xS. From an ex-ante perspective, the
expected payment in the auction with disclosure is

WD(z, x) = E
[
W f(·|xS)(z, x)

]
=

∫ 1

0

W f(·|xS)(z, x)h(xS|x)dxS

where h(·|x) is the marginal distribution of the seller’s signal x̃S conditional on
bidder i being xi = x). Now because x̃i and x̃S are affiliated for any x′ > x

we have that h(·|x′) first order stochastically dominates h(·|x). Now intuitively
an increase in x affects WD(z, x) through two channels, it affects directly trough
W

f(·|xS)
2 (z, x) in the same way as W f

2 (z, x), but it also affect the distribution of x̃S
making high realizations of x̃S more likely and hence increasing WD. Hence we
have that

WD
2 (z, x) ≥ W f

2 (z, x)

Thus, applying Proposition 4 by committing to disclose his information the
seller increase his ex-ante expected revenue.

Let see an example for the first price auction. We have that W f (z, x) = βI(z)

whereas W f(·|xS)(z, x) = βI(z, xs) that is increasing both in z and in xS. Thus,
whereas W f (z, x) is independent of x, WD(z, x) = E[βI(z, x̃s)|x̃i = x] that is
strictly increasing in x because x̃s and x̃i are affiliated. Thus by committing to
truthfully report its signal before the auction the seller can increase his expected
revenue in a first price auction. A similar argument can be developed for a second
price auction and for a Japanese auction.
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