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1 Some probability theory preliminaries

1.1 Stochastic Order

Consider two lotteries A and B. Lottery A pays a random amount x̃ and lottery
B pays a random amount ỹ. If the price for one lottery ticket is the same for
lotteries A and B, which lottery would you prefer? Because today the amount
paid by each lottery ticket is unknown, it is difficult to say whether A is better
than B, or viceversa. This can be known with certainty only after the outcome
of both lotteries has realized. However, in some cases, lotteries can be compared
from an ex-ant perspective.

1.1.1 First order stochastic dominance

Let denote with F and G the c.d.f of random variables x̃ and ỹ, respectively.
Suppose that for any real number x the probability that lottery B pays less then
x is weakly larger than the probability that lottery A pays less than x. Then,
intuitively, from an ex-ante perspective, one would prefer A to B, as for any fixed
amount x, it is more likely to gain less then x with lottery B than with lottery A.

In situations like this, we say that c.d.f F first order stochastically domi-

nates c.d.f. G, that is
∀x ∈ R, F (x) ≤ G(x) (1)
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Now, take any increasing and differentiable function γ mapping real number
into another real number. Let γ(x̃) associate to any realization x of the random
variable x̃ the number γ(x). Then if x̃ first order stochastically dominates ỹ the
expected value of γ(x̃) is larger than the expected value of γ(ỹ). In facts for x̃ and
ỹ continuously distributed with density f and g, respectively, one has:

E[γ(x̃)]− E[γ(ỹ)] =

∫ +∞

−∞
γ(z)(f(z)− g(z))dz

= −
∫ +∞

−∞
γ′(z)(F (z)−G(z))dz ≥ 0

where the second equality is obtained by integrating by parts and the inequality
follows from γ′ ≥ because γ is non-decreasing and F (z)−G(z) ≥ 0 because of (1).

1.1.2 Hazard rate dominance

Consider a continuously distribute random variable with c.d.f F . Let define
the hazard rate as the function

λF (x) =
f(x)

1− F (x)
.

We say that F dominates G in terms of the hazard rate if for any real number x
one has

λF (x) ≤ λG(x) (2)

Proposition 1 If F hazard rate dominates G, then F first order stochastically
dominates G.

Proof:

F (x) = 1− exp

(
−
∫ x

−∞
λF (z)dz

)
≤ 1− exp

(
−
∫ x

−∞
λG(z)dz

)
= G(x).

Q.E.D.
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1.1.3 Reverse hazard rate dominance

Consider a continuously distribute random variable with c.d.f F . Let define
the reverse hazard rate as the function

σF (x) =
f(x)

F (x)
.

We say that F dominates G in terms of the reverse hazard rate if for any real
number x one has

σF (x) ≥ σG(x) (3)

Proposition 2 If F reverse hazard rate dominates G, then F first order stochas-
tically dominates G.

Proof:

F (x) = exp

(
−
∫ ∞
x

σF (t)dt

)
≤ exp

(
−
∫ ∞
x

σG(t)dt

)
= G(x)

Q.E.D.

1.1.4 Likelihood ratio dominance

Take two random variables x̃ and ỹ. Let denote with F and G their c.d.f,
respectively, and with f and g their densities, respectively.

The c.d.f. F is said to dominates c.d.f. G in terms of the likelihood ratio

if for any x < y one has
f(x)

g(x)
≤ f(y)

g(y)
(4)

or equivalently f(x)/g(x) is non-decreasing in x.
Observe that likelihood ratio dominance implies hazard rate dominance. In
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facts, condition (4) is equivalent to

∀x < y ⇒ f(y)

f(x)
≥ g(y)

g(x)
⇒∫ ∞

x

f(y)

f(x)
dy ≥

∫ ∞
x

g(y)

g(x)
dy

⇒
1− F (x)
f(x)

≥ 1−G(x)
g(x)

⇒

λF (x) ≤ λG(x)

It can also be shown that likelihood ratio dominance implies reverse hazard
rate dominance. In facts,

∀x < y ⇒ f(x)

f(y)
≤ g(x)

g(y)
⇒∫ y

−∞

f(x)

f(y)
dx ≤

∫ y

−∞

g(x)

g(y)
dx

⇒
F (y)

f(y)
≤ G(y)

g(Y )
⇒

σF (x) ≥ σG(x)

We can conclude that likelihood dominance implies hazard rate dominance and
reverse hazard rate dominant, that in turn imply first order stochastic dominance.

1.2 Affiliated random variables

Consider the random variables x̃1x̃2 . . . , x̃N . Let Di be the domain of random
variable x̃i, let D = ×iDi, that is the product of the domains, and let f : D → R+

be the joint density function. The variables x̃1, x̃2 . . . , x̃N are said to be affiliated

if for all x, y ∈ D
f(x ∨ y)f(x ∧ y) ≥ f(x)f(y) (5)
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Where
x ∨ y = {max(x1, y1),max(x2, y2), . . . ,max(xN , yN)}

is the component-wise maximum of x and y, and

x ∧ y = {min(x1, y1),min(x2, y2), . . . ,min(xN , yN)}

is the component-wise minimum of x and y.
If the density function f is strictly positive twice continuously differentiable in

D, then affiliation is equivalent to having for any i 6= j,

∂2 ln f

∂xi, ∂xj
≥ 0.

That is, the derivative of the log of f with respect to a variable xi is increasing in
any other variable xj.

Affiliation has an important implication when computing conditional distri-
butions. Suppose two random variable x̃ and ỹ are affiliated. Suppose that you
observe the realization of x̃ but not the realization of ỹ. How does the realization
of ỹ affect the distribution of x̃?

Namely what can we say about how the F (y|x), that is the c.d.f. of ỹ condi-
tionally on observing x̃ = x, is affected by the value of y?

Proposition 3 If x̃ and ỹ are affiliated then for any x′ ≥ x, one has that F (y|x′)
dominates in term of the likelihood ratio F (y|x).

Proof: Because x̃ and ỹ are affiliated for any x′ > x and y′ > y it must be
that

f(x, y′)f(x′, y) ≤ f(x, y)f(x′, y′)

or equivalently
f(x, y′)

f(x, y)
≤ f(x′, y′)

f(x′, y)
(6)

Now recall that from Baye’s rule we have that that

f(y|x) = f(y, x)

fx̃(x)
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where fx̃(x) =
∫
Dy
f(x, y)dy is the the unconditional marginal density of x. Or

equivalently,
f(x, y) = f(y|x)fx̃(x)

Replacing this expression for x, y, x′y′ in (6), we get

f(y′|x)fx̃(x)
f(y|x)fx̃(x)

≤ f(y′|x′)fx̃(x′)
f(y|x′)fx̃(x′)

simplifying and rearranging

f(y|x′)
f(y|x)

≤ f(y′|x′)
f(y′|x)

Because this is true for all y′ ≥ y and x′ > x, we can conclude that the likelihood
ratio

f(·|x′)
f(·|x)

is increasing and hence F (·|x′) dominates F (·|x) in terms of the likelihood ratio.
As we have seen in the section on stochastic order, this dominance implies the
other forms of stochastic dominance. Q.E.D.

Affiliated random variable also satisfy a number of other properties that we
will not prove here. These properties are:

Proposition 4 Let x̃ = {x̃1, x̃2, . . . , x̃N} be affiliated random variables, then

1. If x̃ and ỹ are affiliated then for any x′ ≥ x, on has that F (y|x′) dominates
F (y|x) both in terms of the hazard rate rate and in terms of the reverse
hazard rate.

2. E[x̃i|x̃j = xj] is an increasing function of xj.

3. If γ is an increasing function from D to R, then

E[γ(x̃)|x̃1 ≤ x1, x̃2 ≤ x2 . . . , x̃N ≤ xn]

Is an increasing function of x1, x2, . . . , xN
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4. Let b1(·), b2(·), . . . , bN(·) strictly increasing function. Then b1(x̃1), b2(x̃2), . . . , bN(x̃N)
are affiliated random variables.

5. Fix x̃1 and let ỹ1, ỹ2, ỹN−1 denote the highest, second highest and so on up to
the (N − 1)-th highest realization of x̃2, x̃2, . . . , x̃N . Then x̃1, ỹ1, ỹ2, ỹN−1 are
affiliated random variables.
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