Limit Order Markets

- All market participants have the choice between submitting limit orders and market orders.
- Quotes must belong to a grid with a minimum tick.
- Cumulative depth on the bid side at price **b**:= maximum amount of share one can sell for at least b.
- Cumulative depth on the ask side at price a:= maximum amount of share one can buy for at most a.

Stefano Lovo, HEC Paris

Order Driven Markets: Static Models

A simple model of limit order market

- Impatient traders (IT): submit market orders.
 F(Q): (exogenous) probability the quantity Q
 demanded by IT is less than Q. (Q > 0 meaning trader buys)
- Patient riks neutral traders (PT): submit limit orders.
- Limit order quotes must belong to a grid P with tick ϵ :

 $P = \{p_k\}_{k=0,1,...}$

$$p_k = \epsilon k$$

- Limit order submission has a cost c.
- Symmetric information.

くロン 不良 とくほう 不良 とうほう

Timing

- PT submit their limit orders.
- IT submit their market orders.
- 3 Limit orders are executed on the basis of price priority (and time priority).
- ④ The asset value \tilde{v} is realized.

Stefano Lovo, HEC Paris

Order Driven Markets: Static Models

3/23

Marginal Profit from limit Orders

Let Y_k be the cumulative depth of the bid side for bid $b = p_k$

What is the expected marginal profit for the PT offering to buy the Y_k -th share?

$$\Pi^{\mathit{bid}}_k(Y_k) = \mathsf{Pr}(ilde{Q} \leq -Y_k)(E[ilde{v}| ilde{Q} \leq -Y_k] - b) - c$$

Let Y_j be the cumulative depth of the ask side for ask $a = p_j$

What is the expected marginal profit for the PT offering to sell the Y_i -th share?

$$\Pi^{ask}_j(\mathit{Y}_j) = \mathsf{Pr}(ilde{\mathcal{Q}} \geq \mathit{Y}_j)(\mathit{a} - \mathit{E}[ilde{arphi} | ilde{\mathcal{Q}} \geq \mathit{Y}_j]) - \mathit{c}$$

<ロ> < 同> < 同> < 三> < 三> < 三) < のへの

Zero Profit condition

What is the equilibrium depth of the market for a given level of price if there is no asymmetric information?

 PT's marginal utility from offering to buy one extra share at price p_k is nil:

$$\mathsf{Pr}(ilde{Q} \leq -Y_k) = rac{c}{E[ilde{v}] - p_k}$$

 PT's marginal utility from offering to sell one extra share at price p_i is nil:

$$\mathsf{Pr}(ilde{Q} \geq Y_j) = rac{c}{p_j - E[ilde{v}]}$$

〈ロ〉〈同〉〈ミ〉〈ヨ〉 三日

Example

Probability of a buy market order of at most Q shares = Probability of a sell market order of at most Q shares =

 $\frac{1}{2}F(Q):[0,\infty]\to[0,1]$

Take bid price *b* on the grid such that $b < E[\tilde{v}] - 2c$, then Y_k solves

 $F(Y_k) = 1 + \frac{2c}{b - E[\tilde{v}]}$

Fix ask price *a* on the grid such that $a_k > E[\tilde{v}] + 2c$, then Y_j solves

$$F(Y_j) = 1 + \frac{2c}{E[\tilde{v}] - a}$$

< ロ > < 同 > < 三 > < 三 > 、 三 ・ つ へ の

Stefano Lovo, HEC Paris Order Driven Markets: Static Models 7/23

・ロト ・ 聞 ト ・ 言 ト ・ 言 ・ うへで

Limit Order Book

bid	bid quantity	bid depth	ask	ask quantity	ask depth
$b_0 = E[v]$	$bq_0 = 0$	$Y_0 = q_0$	$a_0 = E[v]$	$aq_0 = 0$	$aY_0 = aq_0$
$b_1 = E[v] - \epsilon$	bq ₁	$bY_1 = bq_1 + bY_0$	$a_1 = E[v] + \epsilon$	aq ₁	$aY_1 = aq_1 + aY_0$
$b_2 = E[v] - 2\epsilon$	bq ₂	$bY_2 = bq_2 + bY_1$	$a_2 = E[v] + 2\epsilon$	aq ₂	$aY_2 = aq_2 + aY_1$
$b_k = E[v] - k\epsilon$	bq _k	$bY_k = bq_k + bY_{k-1}$	$a_k = E[v] + k\epsilon$	aq _k	$aY_k = aq_k + aY_{k-1}$

Market order Q uniformly distributed on [0, M]: $F(Q) = \frac{Q}{M}$

$$\frac{bY_k}{M} = F(bY_k) = 1 + \frac{2c}{\underbrace{b_k}_{E[v]-k\epsilon}} = 1 - \frac{2c}{k\epsilon} \Rightarrow bY_k = M\left(1 - \frac{2c}{k\epsilon}\right)$$

$$aY_k = M\left(1 - \frac{2c}{k\epsilon}\right)$$

・ロット 中マット ボット モーション シャーション

Example

Implications:

Minimum bid-ask spread is 4c even without asymmetric information and with infinitesimal small unit of trade.

> $0 \le F(bY_k) = 1 - \frac{2c}{k\epsilon} \Rightarrow \varepsilon k \ge 2c$ $\Rightarrow \text{ bid } \le E[v] - 2c, \text{ bid } \ge E[v] + 2c$

- Depth decreases with limit order cost c.
- If the F first order stochastically dominates G, then depth for F is larger than depth for G ⇒ Depth increases with average market order size.

< ロ > < 同 > < 三 > < 三 > 、 三 ・ つ へ の

Informed IT

- $\tilde{v} \in \{v_1, v_2\}$
- Price tick size $\epsilon \to 0$.
- round lot q > 0 shares.
- A fraction 1μ of IT are liquidity traders (LIT):

```
Pr(LIT \text{ sells } 2q) = Pr(LIT \text{ sells } 1q) = \frac{1}{4}Pr(LIT \text{ buys } 1q) = Pr(LIT \text{ buys } 2q) = \frac{1}{4}
```

- A fraction μ of IT know \tilde{v} (IIT):
 - IIT buys all that sells for less than \tilde{v}
 - IIT sells all that trades for more than $\tilde{\nu}$
- PT are risk neutral and not informed.

<ロ> < 同> < 同> < 三> < 三> < 三) < のへの

Stefano Lovo, HEC Paris Order Driven Markets: Static Models 11/23

・ロト ・ 聞 ト ・ 言 ト ・ 言 ・ うへで

PT's zero profit condition

bid side: $\Pr(\tilde{Q} \le -Y_k)(E[\tilde{v}|\tilde{Q} \le -Y_k] - b) - c = 0$ ask side: $\Pr(\tilde{Q} \ge Y_i)(a - E[\tilde{v}|\tilde{Q} \ge Y_i]) - c = 0$

• IIT equilibrium behaviour:

- IIT buys all that sells for less than \tilde{v}
- $\circ~$ IIT sells all that trades for more than $\tilde{\nu}$

《日》《聞》《臣》《臣》 []]

Informed IT: bid side equilibrium

Let $b \in [v_1, v_2]$ $\Pi^{bid}(-3) = q(\pi(v_2 - b) * 0 + (1 - \pi)(v_1 - b)\mu) - c$ $\Pi^{bid}(-2) = q\left(\pi(v_2 - b)\frac{1 - \mu}{4} + (1 - \pi)(v_1 - b)\left(\frac{1 - \mu}{4} + \mu\right)\right) - c$ $\Pi^{bid}(-1) = q\left(\pi(v_2 - b)\frac{1 - \mu}{2} + (1 - \pi)(v_1 - b)\left(\frac{1 - \mu}{2} + \mu\right)\right) - c$

Let

$$b(Y_k) = E[ilde{
u} | ilde{Q} \leq -Y_k] - rac{c}{q \operatorname{\mathsf{Pr}}(ilde{Q} \leq -Y_k)}$$

Then $E[v] > b(1) > b(2) > v_1 > b(3)$ and the bid side book consists of

- A buy limit order for *q* share at price *b*(1)
- A buy limit order for *q* share at price *b*(2)

<ロ> <同> <同> < 三> < 三> < 三 > < ○ <

Event	Probability given $\tilde{V} = V_1$	Probability given $\tilde{V} = V_2$
trader sells at least 1 unit		
trader sells at least 2 unit		
trader sells at least 3 unit		
trader buys at least 1 unit		
trader buys at least 2 unit		
trader buys at least 3 unit		

Let

$$a(Y_k) = E[ilde{
u} | ilde{Q} \geq Y_k] + rac{c}{q \operatorname{\mathsf{Pr}}(ilde{Q} \geq Y_k)}$$

Then $E[v] < a(1) < a(2) < v_2 < a(3)$ and the ask side book consists of

- A sell limit orders for *q* share at price *a*(1)
- A sell limit orders for q share at price a(2)

<ロ> < 同> < 同> < 三> < 三> < 三) < のへの

LOB with informed IT: implications

The depth of the LOB decreases with the informativeness of the order flow

• b(Y) is decreasing in μ

• a(Y) is increasing in μ

• The bid depth of the LOB decreases with the ex-ante uncertainty $\pi(1 - \pi)$.

- The ask depth of the LOB decreases with the ex-ante uncertainty $\pi(1 \pi)$.
- Minimum bid ask spread is positive even when c = 0 even for arbitrarily very small size of the round lot q.

< ロ > < 同 > < 三 > < 三 > 、 三 ・ つ へ の