Quote Driven Market: Dynamic Models

Stefano Lovo

HEC, Paris

《 ㅁ 》 《 쿱 》 《 쿱 》 《 쿱 》 — 콜

Market Informational Efficiency

- Does the price system aggregate all the pieces of information that are dispersed among investors?
- How does the trading technology affect financial markets informational efficiency?

Definition

- Weak form efficiency: Trading prices incorporate all past public information.
- Semi-Strong form efficiency: Trading prices incorporate all present and past public information.
- Strong form efficiency: Trading prices incorporate all public and private information available in the economy.

Detecting Informational Efficiency

Empirical Evidence

- Financial market is weak form efficient.
- Financial market is semi-strong form efficient.
- Financial market is not strong form efficient.

ヘロン 不得 とくほう 不良という

Dynamic Glosten and Milgrom model

- *t* = 0, 1, 2, ...
- At time t = 0 Nature determines the asset fundamental value:

 $\tilde{\mathbf{v}} = \tilde{\mathbf{V}} + \tilde{\varepsilon}$

with $\tilde{V} \in \{V_1, V_2\}$, $\Pr(\tilde{V} = V_2) = \pi$, $V_1 < V_2$, $E\left[\tilde{\varepsilon}|\tilde{V}\right] = 0$, $Var(\tilde{\varepsilon}|\tilde{V}) \ge 0$.

- In every period t
 - Uninformed competitive MMs set their bid and ask quotes.
 - 2 A trader (informed or liquidity) arrives and decides whether to buy sell or not trade

q shares of the security.

- 3
- All MMs observe the trading decision and update their beliefs about $\tilde{\nu}.$
- ④ The trader leaves the market.

イロン (通) イヨン (ヨン) ヨー わらの

• With exogenous probability μ , time *t* trader is informed and receives private signal $\tilde{s} \in \{l, h\}$ with

$$\Pr(\tilde{s} = I | V_1) = \Pr(\tilde{s} = h | V_2) = r \in \left(\frac{1}{2}, 1\right)$$

• With exogenous probability $1 - \mu$ time *t* trader is a liquidity trader. A liquidity trader will buy or sell with probability $\frac{1}{2}$

Public and private beliefs

Public beliefs:

- Let *h_t* denote the history of trade preceding period *t*. This is observed by all market participants.
- Let π_t := Pr(V
 = ν₂|h_t) denote the public belief at the beginning of period *t* that V
 = ν₂.
- Informed traders' beliefs:

Let $\pi_t^s := \Pr(\tilde{V} = v_2 | h_t, s)$ denote the belief of an informed trader who received signal $s \in \{I, h\}$ at the beginning of period *t*:

$$\pi_t^{\prime} = \frac{\pi_t(1-r)}{\pi_t(1-r) + (1-\pi_t)r} < \pi_t$$
$$\pi_t^{h} = \frac{\pi_t r}{\pi_t r + (1-\pi_t)(1-r)} > \pi_t$$

Public and private beliefs

Informed traders valuation for the asset:

What can traders and MM learn?

- Fundamental value: $\tilde{\mathbf{v}} := \tilde{\mathbf{V}} + \tilde{\varepsilon}$
- Informed traders only have information about \tilde{V} .
- No market participant has information about $\tilde{\varepsilon}$

Definition

The market is **informational efficient in the long run** if all private information is eventually revealed: $E[\tilde{V}|h_t]$ tends to \tilde{V} as *t* goes to infinity.

くロン 不良 とくほう 不良 とうほう

An asset whose fundamental value is \tilde{v} is worth

- v to informed traders.
- $\theta \tilde{\mathbf{v}} + \eta$ to MMs.

Equilibrium: In every period *t* MMs set their bid and ask quotes at

 $\begin{aligned} a_t &= \theta E[\tilde{v}|h_t, \text{trader buys}] + \eta \\ b_t &= \theta E[\tilde{v}|h_t, \text{trader sells}] + \eta \end{aligned}$

<ロ> < 同> < 同> < 三> < 三> < 三) のへの

The Glosten and Milgrom case: $\theta = 1 \eta = 0$

- No matter h_t , an informed trader will buy (sell) iff s = h (resp. (s = l).
- The statistic of the order flow is sufficient to learn market \tilde{V} .
- The market is efficient.

Ξ

Stefano Lovo, HEC Paris Quote Driven Market: Dynamic Models 12/83

<ロ> <四> <注> <注> 三注

Definition

(Avery and Zemisky (1998)) An **information cascade** occurs at time *t* if the order flow ceases to provide information about \tilde{V} :

 $\Pr(\tilde{V} = V_2 | h_t, \text{trader buys}) = \pi_t$

 $\Pr(\tilde{V} = V_2 | h_t, \text{trader sells}) = \pi_t$

 $\Pr(\tilde{V} = V_2 | h_t, \text{no trade}) = \pi_t$

<ロ> < 同> < 同> < 三> < 三> < 三) のへの

Definition

(Avery and Zemisky (1998))

- A trader engages in buy herd behavior if:
 - Initially he strictly prefers not to buy.
 - 2 After a positive history *h_t*, i.e., π_t > π, he strictly prefers buying.
- A trader engages in sell herd behavior if
 - Initially he strictly prefers not to sell.
 - 2 After a negative history h_t, i.e., π_t < π, he strictly prefers selling.</p>

Bikhchandani, Hirshleifer and Welch (1992): $\theta = 0$ $V_1 < \eta < V_2$

- Herding eventually occurs.
- The market cannot learn \tilde{V} .

Stefano Lovo, HEC Paris

Quote Driven Market: Dynamic Models 15/83

ヘロト 人間 とくせい 人口

 \exists

Price under-reaction:

$heta \in (0, 1); \eta > \in (0, V_2 - V_1)$

- Herding eventually occurs.
- The market cannot learn \tilde{V} .

Stefano Lovo, HEC Paris

Quote Driven Market: Dynamic Models 16/83

《口》《聞》《臣》《王》

 \exists

Stefano Lovo, HEC Paris Quote Driven Market: Dynamic Models 17/83

<ロ> <四> <注> <注> 三注

Contrarian behavior

Definition

(Avery and Zemisky (1998))

- A trader engages in buy contrarian behavior if:
 - Initially he strictly prefers not to buy.
 - 2 After a negative history h_t, i.e., π_t < π, he strictly prefers buying.</p>
- A trader engages in sell contrarian behavior if
 - Initially he strictly prefers not to sell.
 - 2 After a positive history h_t, i.e., π_t > π, he strictly prefers selling.

=

Price over-reaction:

 $heta<0;\,\eta<0$

- Contrarian behavior eventually occurs.
- The market cannot learn \tilde{V} .

Stefano Lovo, HEC Paris

Quote Driven Market: Dynamic Models 19/83

ヨン・モヨン・

Э

Stefano Lovo, HEC Paris Quote Driven Market: Dynamic Models 20/83

<ロ> <四> <注> <注> 三注

Market efficiency with competitive MM (Decamps and Lovo, JME (2006))

Theorem

In a sequential trading set-up, if

- MMs set quotes to make zero expected profit,
- Traders and MM differs in their valuation for the asset,
- Agents exchange discrete quantities,

Then,

long run informational efficiency is impossible.

Ξ

Risk aversion and Information cascades

- *t* = 0, 1, 2, ...
- At time t = 0 Nature determines the asset fundamental value:

$$\tilde{\mathbf{v}} = \tilde{\mathbf{V}} + \tilde{\varepsilon}$$

with $\tilde{V} \in \{V_1, \ldots, V_n\}$, $V_i < V_{i+1}$, for any V_i : $E[\tilde{\varepsilon}|V_i] = 0$, $Var(\tilde{\varepsilon}|V_i) \ge 0$.

- Uninformed risk neutral market makers.
- Risk averse informed traders.
- Traders private signals s̃ ∈ {s₁,...s_m}, conditionally i.i.d., with

$$\Pr(\tilde{\boldsymbol{s}} = \boldsymbol{s}_i | \tilde{\boldsymbol{V}} = \boldsymbol{V}_j\} > \epsilon > \boldsymbol{0}, \forall i, j$$

only regards \tilde{V} .

<ロ> <同> <同> < 三> < 三> < 三 > < ○<

Trading Protocol

At time t a trader arrives and submits market order

$q_t \in Q$

- 2 Market makers observe q_t and compete in price to fill the order.
- ③ Trading occurs and time *t* trader leaves the market.

with

- Q is a finite and discrete set of tradeable quantities.
- $F(\theta) : \Theta \to [0, 1]$ be the probability that time *t* trader is of type θ .
- Let u_{θ} denote the increasing and concave utility function of type θ trader and C_{θ} , I_{θ} its initial amount of cash and risky asset, respectively.
- A price schedule P_t(q) defines the price at which the market order of size q ∈ Q, will be executed by market makers.

Equilibrium Concept

Definition

In Equilibrium

• If time t trader is of type θ and received signal s, then chooses

 $q_t =$

 $q^*_{\theta}(P_t(.), h_t, s) \in \arg\max_q E[u_{\theta}(C_{\theta} + \tilde{v}(I_{\theta} + q) - qP_t(q))|h_t, \tilde{s}]$

• A time *t*, MMs price schedule satisfies:

 $P_t(q_t) = E[\tilde{v}|h_t, q_t]$

《口》《聞》《臣》《臣》 [] 臣

Definition

Type θ trader is said to submit a **non-informative order** whenever

$$\boldsymbol{q}^*_{\theta}(\boldsymbol{P}_t(.),\boldsymbol{h}_t,\boldsymbol{s}) = \boldsymbol{q}^*_{\theta}(\boldsymbol{P}_t(.),\boldsymbol{h}_t,\boldsymbol{s}')$$

for all signals s, s'

Long run informational inefficiency

- All traders submit non informative orders.
- $P_{\tau}(q_{\tau}) = E[\tilde{v}|h_t], \forall q \tau \in Q, \tau \geq t$
- An information cascade occurs and order flows provides no information.

Sketch of the proof

Strong past history overwhelms private imperfect signals: Because $\Pr(\tilde{s} = s_i | \tilde{V}_i) > 0$ for all i, j, then $\forall \varepsilon > 0, \exists \alpha$ such that

 $\textit{Var}[\tilde{\textit{V}}|\textit{h}_{t}] \leq \alpha \Rightarrow \max_{\textit{s}_{i},\textit{s}_{j}} ||\textit{E}[\tilde{\textit{V}}|\textit{h}_{t},\textit{s}_{i}] - \textit{E}[\tilde{\textit{V}}|\textit{h}_{t},\textit{s}_{j}]|| < \varepsilon$

Sketch of the proof

Strong past history overwhelms private imperfect signals: Because $\Pr(\tilde{s} = s_i | \tilde{V}_i) > 0$ for all *i*, *j*, then $\forall \varepsilon > 0, \exists \alpha$ such that

 $Var[\tilde{V}|h_t] \leq \alpha \Rightarrow \max_{s_i,s_i} ||E[\tilde{V}|h_t,s_i] - E[\tilde{V}|h_t,s_j]|| < \varepsilon$

 $Var[\tilde{V}|h_t] < \alpha \Rightarrow ||P_t(q) - E[\tilde{V}|h_t]|| < \varepsilon, \forall q \in Q$

< ロ > < 同 > < 三 > < 三 > < 三 > の への > <

Sketch of the proof

Strong past history overwhelms private imperfect signals: Because $\Pr(\tilde{s} = s_i | \tilde{V}_i) > 0$ for all *i*, *j*, then $\forall \varepsilon > 0, \exists \alpha$ such that

 $Var[\tilde{V}|h_{l}] \leq \alpha \Rightarrow \max_{s_{i},s_{i}} ||E[\tilde{V}|h_{l},s_{i}] - E[\tilde{V}|h_{l},s_{j}]|| < \varepsilon$

 $Var[\tilde{V}|h_t] < \alpha \Rightarrow ||P_t(q) - E[\tilde{V}|h_t]|| < \varepsilon, \forall q \in Q$

3 Flat pricing schedule and weak private signals leads to non-informative orders: If for all $q \in Q$, $P_t(q) \simeq E[\tilde{V}|h_t]$, then for all s and θ , $Var[\tilde{V}|h_t] < \alpha$ implies

 $\arg\max_{q} E[u_{\theta}(m_{\theta} + \tilde{v}(l_{\theta} + q) - p(q)q)|h_{t}, s] = -l_{\theta}$

Because u_{θ} is increasing and concave, $E[\tilde{\varepsilon}|h_t] = 0$ and $Var[\tilde{\varepsilon}|h_t] > 0$.

< ロ > < 同 > < 三 > < 三 > 、 三 ・ つ へ の

Herding and contraria behaviour with risk neutral agents (Park and Sabourian (Econometrica 2011))

- $\tilde{V} \in \{V_1, V_2, V_3\}$
- $\pi_0^1 = \pi_0^2 = \pi_0^3 = 1/3$
- 1μ liquidity traders: buy, sell or do no trade with probability 1/3.
- μ risk neutral informed traders receive private signal $s \in S := \{s_1, s_2, s_3\}$
- Non informed risk-neutral market makers set quotes at

 $a_t = E[ilde{V}|h_t, ext{buy order}]$ $b_t = E[ilde{V}|h_t, ext{sell order}]$

<ロ> < 同> < 同> < 三> < 三> < 三) のへの

Take a signal $s \in S$ then we say that:

Definition

- s is increasing if $\Pr(s|V_1) < \Pr(s|V_2) < \Pr(s|V_3)$
- s is decreasing if $\Pr(s|V_1) > \Pr(s|V_2) > \Pr(s|V_3)$
- s is U-shaped if $\Pr(s|V_1) > \Pr(s|V_2) < \Pr(s|V_3)$
- s is \cap -shaped if $\Pr(s|V_1) < \Pr(s|V_2) > \Pr(s|V_3)$
- s has positive biased if $Pr(s|V_1) < Pr(s|V_3)$
- s has negative biased if $\Pr(s|V_1) > \Pr(s|V_3)$

《日》《圖》《日》《王》 王

Sketch of the proof:

1 If there is $s \in S$ such that $E[\tilde{V}|h_t, s] \neq E[\tilde{V}|h_t]$, then there are is $s', s'' \in S$ such that $E[\tilde{V}|h_t, s'] < E[\tilde{V}|h_t] < E[\tilde{V}|h_t, s'']$

Sketch of the proof:

- 1 If there is $s \in S$ such that $E[\tilde{V}|h_t, s] \neq E[\tilde{V}|h_t]$, then there are is $s', s'' \in S$ such that $E[\tilde{V}|h_t, s'] < E[\tilde{V}|h_t] < E[\tilde{V}|h_t, s'']$
- 2 If no informed type buys, then $a_t = E[\tilde{V}|h_t]$ but then s'' would buy, hence a contradiction.

Sketch of the proof:

1 If there is $s \in S$ such that $E[\tilde{V}|h_t, s] \neq E[\tilde{V}|h_t]$, then there are is $s', s'' \in S$ such that $E[\tilde{V}|h_t, s'] < E[\tilde{V}|h_t] < E[\tilde{V}|h_t, s'']$

- 2 If no informed type buys, then $a_t = E[\tilde{V}|h_t]$ but then s'' would buy, hence a contradiction.
- 3 If no informed type sells, then $b_t = E[\tilde{V}|h_t]$ but then s' would sell, hence a contradiction.

<ロ> <同> <同> < 三> < 三> < 三 > < ○ <

Herding or contraria behavior are impossible if signals are monotonic

A trader with increasing (decreasing) signal will never buy (sell)

Sketch of the proof:

 $1 b_t \leq E[\tilde{V}|h_t] \leq a_t$

2 Take a a buyer with decreasing signal s then

 $E[\tilde{V}|h_t,s] < E[\tilde{V}|h_t]$

hence he will not buy for at

3 Take a a buyer with increasing signal s then

 $E[\tilde{V}|h_t,s] > E[\tilde{V}|h_t]$

hence he will not sell for bt
Herding or contraria behavior are possible with U shaped and \cap -shaped signals

If μ is small enough, then:

	∪-shaped	∩-shaped
positive bias	sell herding	sell contrarian
negative bias	buy herding	buy contrarian

《口》《聞》《臣》《臣》 [] 臣

Herding or contrarian behavior are possible with U shaped and \cap -shaped signals

Sketch of the proof: Let *s* be U-shaped with negative bias. We want to prove buy herding is possible.

- 1 For $i \in \{1, 2, 3\}$, let $\pi_t^i := Pr(\tilde{V} = V_i | h_t)$
- 2 U-shaped + negative bias implies $E[\tilde{V}|s] < E[\tilde{V}]$, thus type s does not buy at time 0.
- (3) Take $\pi_t^1 \simeq 0$, then $E[\tilde{V}|h_t] \simeq V_2 \pi_t^2 + V_3 \pi_t^3 > E[\tilde{V}]$
- 4 Because s be U-shaped, $\Pr(s|V_2) < \Pr(s|V_3)$ hence $E[\tilde{V}|h_t, s] > E[\tilde{V}|h_t]$.
- 5 if μ is small enough $a_t \simeq [\tilde{V}|h_t] < E[\tilde{V}|h_t, s]$ and the trader with signal s will buy.

If market makers are equally uninformed and in perfect competition then the price at which quantity x_t is trade is :

 $p_t(x_t) = E[\tilde{V}|h_t, x_t]$

Main findings using the standard 0-profits approach.

- Market makers make zero profit in equilibrium
- The trading price equals the expected value of the asset given all past public information
- Price volatility reflects beliefs volatility
- In a risk neutral world price eventually converge to fundamentals.

《日》《聞》《臣》《臣》 []]

Market Microstructure Theory: The classical approach

- Model of an economy where agents meet over time and exchange a financial asset whose fundamental value is unknown.
- 2 Assume:
 - Trading protocol
 - Agents preferences
 - Structure of information asymmetry
- 3 Solve for a Bayesian equilibrium.
- ④ Derive empirical implications.

Some issues of the standard 0-profits approach.

Real life vs Models

- (1) Actual trading protocol: observable \Rightarrow the model can fit it.
- 2 Actual agents preferences: not observable, but most theory predictions are robust to changes in risk preferences.
- 3 Actual information structure: not observable. Are theory predictions robust to changes in information structure?

イロト イポト イラト イヨト 一日

Strengths and weakness of this approach.

Issues

- Which one of the above results rely on the simplifying nonrealistic assumption that all market makers share the exact same information?
- What predictions are robust to changes in the assumptions about information asymmetries across market makers?
- What would be a realistic assumption about asymmetries of information, given that information structures are not observable?

<ロ> < 同> < 同> < 三> < 三> 三 三

Real life vs models

In the real world, the structure of information....

... is not observable.

(日) (四) (三) (三) (三)

Real life vs models

In the real world, the structure of information....

... is not observable.

- Impossible to say whether a model's assumptions capture actual information asymmetries.
- Actual information structures are too complex to lead to tractable models.
- Microstructure theory is silent about robustness of its predictions to changes in information structure.

くロン 不得 とくほ とくほ とうほ

The belief-free approach (Horner, Lovo, Tomala JFE 2018)

- Provide a price formation model whose predictions are robust to changes in information structure.
- Provide a set of necessary conditions that a price formation equilibrium needs to satisfy to be robust.
- Provide a set of sufficient conditions guaranteeing that a price formation equilibrium is robust.
- Keep the model as general and as tractable as possible.

《日》《聞》《臣》《臣》 []]

Belief-free: The same dealers' strategy profile forms a sub-game perfect equilibrium no matter the state of Nature.

A belief-free equilibrium remains an equilibrium

- No matter each dealers' information about the state of Nature and the hierarchies of beliefs.
- No matter whether dealers are fully bayesian or not.
- No matter whether dealers are ambiguity averse or not.

《日》《聞》《臣》《臣》 []]

Main results

Dealers=Long-lived agents

Traders=Short-lived agents

《口》《聞》《臣》《臣》 [] 臣

1 lf

- There is room for trade
- Dealers are patient enough

Then there are belief-free equilibria.

Dealers=Long-lived agents

Traders=Short-lived agents

《日》《聞》《臣》《臣》 []]

1 lf

- There is room for trade
- Dealers are patient enough

Then there are belief-free equilibria.

2 A strategy profile forms a belief-free equilibrium only if:

- Over time, dealers make positive profits no matter the economy fundamentals.
- Dealers' inventories remain bounded.
- Stock price volatility exceeds the volatility of the Bayesian expectation of the stock fundamental value.

Dealers=Long-lived agents

Traders=Short-lived agents

=

If

- There is room for trade
- Dealers are patient enough

Then there are belief-free equilibria.

2 A strategy profile forms a belief-free equilibrium only if:

- Over time, dealers make positive profits no matter the economy fundamentals.
- Dealers' inventories remain bounded.
- Stock price volatility exceeds the volatility of the Bayesian expectation of the stock fundamental value.
- 3 If
- A strategy profile is ε-exploring and ε-exploiting
- dealers are patient enough

Then the strategy forms a belief-free equilibrium.

- Set-up
- Necessary Conditions
- Sufficient Conditions
- Example
- Extension
- Conclusion

Sequential trading (t = 1, 2, ...) of a risky asset for cash across

- *n* long-lived risk-neutral agents (dealers).
- A sequence of short-lived agents (traders).
- At time 0, once for all, Nature chooses the state $\omega \in \Omega$ finite.
- $W(\omega) \in \mathbb{R}$: Asset fundamental value in state ω .
- $Z(\omega) \in \Delta\Theta$: Distribution of traders type θ in state ω .

《日》《聞》《臣》《臣》 []]

Information about the asset fundamental value

- We assume
 W(ω) = v(ω) + e(ω)
 with ẽ ⊥ ṽ, ẽ ⊥ θ̃ and W̃ bounded.
- Traders observe $v(\omega)$ but not $e(\omega)$ and believe $E[e(\tilde{\omega})] = 0$.
- No assumption regarding what each dealer knows about ω .

《日》《聞》《臣》《臣》 []]

In every period *t*:

<ロト < 同 > < 三 > < 三 > < 三 > < 回 > < 回 > <

In every period *t*:

Dealers choose their actions $a := \{a_i\}_{i=1}^n \in A := \times_i A_i$ No-trade action: $\emptyset \in A$

Example: bid-ask quotes and quantities, limit orders, market orders, inter-dealer orders, etc.

In every period *t*:

 Dealers choose their actions a := {a_i}ⁿ_{i=1} ∈ A := ×_iA_i No-trade action: Ø ∈ A Example: bid-ask quotes and quantities, limit orders, market orders, inter-dealer orders, etc.

2 A trader arrives and chooses his reaction s ∈ S to dealers' actions a. No-trade action: Ø ∈ S

Example: market orders, limit orders, etc.

In every period *t*:

 Dealers choose their actions a := {a_i}ⁿ_{i=1} ∈ A := ×_iA_i No-trade action: Ø ∈ A Example: bid-ask quotes and quantities, limit orders, market orders, inter-dealer orders, etc.

2 A trader arrives and chooses his reaction s ∈ S to dealers' actions a. No-trade action: Ø ∈ S Example: market orders, limit orders, etc.

3 Trades take place according to a protocol specifying:

- $Q_i(a, s)$:= transfer of asset to agent *i* given (a, s).
- $P_i(a, s)$:= transfer of cash to agent *i* given (a, s).

$$\sum_{i} Q_i(a,s) = \sum_{i} P_i(a,s) = 0$$

In every period *t*:

 Dealers choose their actions a := {a_i}ⁿ_{i=1} ∈ A := ×_iA_i No-trade action: Ø ∈ A Example: bid-ask quotes and quantities, limit orders, market orders, inter-dealer orders, etc.

2 A trader arrives and chooses his reaction s ∈ S to dealers' actions a. No-trade action: Ø ∈ S Example: market orders, limit orders, etc.

3 Trades take place according to a protocol specifying:

- $Q_i(a, s)$:= transfer of asset to agent *i* given (a, s).
- $P_i(a, s)$:= transfer of cash to agent *i* given (a, s).

$$\sum_{i} Q_i(a,s) = \sum_{i} P_i(a,s) = 0$$

Illustrative example

(ロ) (同) (三) (三) (三) (○)

Stage trading round: Traders

 $z(\omega, \theta) := \Pr(\text{time } t \text{ trader's type is } \theta | \omega),$

exogenous.

- **Trader's type:** $\theta \in \Theta$ specifies his utility function u_{θ} , his initial inventory l_{θ} and cash c_{θ} .
- Type θ trader's optimal reaction to a given ω :

 $s(\omega, \theta, a) := \arg \max_{s \in S} = E[u_{\theta}((v(\omega) + \tilde{e})(l_{\theta} + Q_{T}(a, s)) + P_{T}(a, s) + c_{\theta})]$

• Distribution of traders' reactions to a given ω :

$$\Pr(s|a,\omega) = F(\omega, a, s) = \sum_{\theta \in \Theta} z(\omega, \theta) \mathbf{1}_{\{s(\theta, \omega, a) = s\}}$$

Illustrative example: dynamic Glosten and Milgrom

- *t* = 0, 1, 2, . . .
- At time t = 0 Nature determines the state $\omega \in \Omega$ Asset fundamental value:

 $V(\omega) = V(\omega) + e(\omega)$

with $\forall \omega \in \Omega$, $V \in \{V_1, V_2\}$, $V_1 < V_2$, and $e(\omega) > -V_1 \Rightarrow V(\omega) > 0$,

< ロ > < 同 > < 三 > < 三 > 、 三 ・ つ へ の

Illustrative example: dynamic Glosten and Milgrom

- *t* = 0, 1, 2, . . .
- At time t = 0 Nature determines the state $\omega \in \Omega$ Asset fundamental value:

 $\mathbf{v}(\omega) = \mathbf{V}(\omega) + \mathbf{e}(\omega)$

with $\forall \omega \in \Omega$, $V \in \{V_1, V_2\}$, $V_1 < V_2$, and $e(\omega) > -V_1 \Rightarrow V(\omega) > 0$,

- market participants
 - 1 N finite risk neutral long lived MMs
 - 2 Mass μ trader informed of $V(\omega)$ and believing $E[e|V(\omega) = 0]$
 - 3 Mass $(1 \mu)/2$ liquidity traders willing to buy
 - 4 Mass $(1 \mu)/2$ liquidity traders willing to sell

< ロ > < 同 > < 三 > < 三 > 、 三 ・ つ へ の

Illustrative example: dynamic Glosten and Milgrom

- *t* = 0, 1, 2, . . .
- At time t = 0 Nature determines the state $\omega \in \Omega$ Asset fundamental value:

 $v(\omega) = V(\omega) + e(\omega)$

with $\forall \omega \in \Omega$, $V \in \{V_1, V_2\}$, $V_1 < V_2$, and $e(\omega) > -V_1 \Rightarrow V(\omega) > 0$,

- market participants
 - 1 N finite risk neutral long lived MMs
 - 2 Mass μ trader informed of $V(\omega)$ and believing $E[e|V(\omega) = 0]$
 - 3 Mass $(1 \mu)/2$ liquidity traders willing to buy
 - 4 Mass $(1 \mu)/2$ liquidity traders willing to sell
- Trading protocol in any given t
 - MMs Simultaneously set their bid and ask quote
 - 2 A trader arrives and choose wether to buy or sell
 - 3 Transaction occurs between the trader and the MM setting the best quote
 - 4 The trader leaves the market all MMs stay for the next period trade

<ロ> < 同> < 同> < 三> < 三> < 三) < のへの

Stage trading round: Traders

 $\Theta = \{\text{informed}, \text{liquidity buyer}, \text{liquidity seller}\}$

For all $\omega \in \Omega$:

$$z(\omega, \text{ informed}) = \mu$$

$$z(\omega, \text{ liquidity buyer}) = \frac{1-\mu}{2}$$

$$z(\omega, \text{ liquidity seller}) = \frac{1-\mu}{2}$$

MMs action profile a:= set of bid and ask quote set by all market makers.

Bid(a):= highest among bids in a
Ask(a):= lowest among the asks in a

Trader's set of possible actions $S := \{buy, sell, no - trade\}$

Example for $F(\omega, a, s)$

$$F(\omega, a, buy) = \frac{1-\mu}{2} + \mu \mathbf{1}_{\{Ask(a) \le V(\omega)\}}$$

Assumption: Elastic Traders Demand (ETD)

The distribution of traders types $Z \in \Delta \Theta$ generates $F : \Omega \times A \rightarrow \Delta S$ such that:

there is $\rho > 0$ such that for any $\omega \in \Omega$.

- If *p* ≤ *v*(ω) + ρ, then traders buy at price *p* with strictly positive probability.
- If *p* ≥ *v*(ω) − *ρ*, then traders sell at price *p* with strictly positive probability.

Stage trading round: Dealers payoffs

Dealers are risk neutral:

Dealer i's ex-post trading round payoff in state ω:

 $u_i(\omega, a, s) = W(\omega)Q_i(a, s) + P_i(a, s)$

• Dealer *i*'s expected trading round payoffs from $a \in A$ given ω :

$$u_i(\omega, a) = W(\omega) \sum_{s \in S} F(\omega, a, s) Q_i(a, s) + \sum_{s \in S} F(\omega, a, s) P_i(a, s)$$

《口》《聞》《臣》《臣》 [] 臣

Given some action outcome $\{a^t\}_{t=1}^{\infty}$, dealer *i*'s payoff in state ω is $\sum_{t=0}^{\infty} (1-\delta)\delta^t u_i(\omega, a^t)$

where $\delta \in (0, 1)$ is the discount factor.

(ロ) (理) (ヨ) (ヨ) (ヨ) (の)

Repeated game strategy

- Public history $h^t = \{a^{\tau}, s^{\tau}\}_{t=1}^{t-1}$
- Dealer *i*'s strategy: $\sigma_i : H^t \to \Delta A_i$,
- Occupation measure for $\sigma := \{\sigma_i\}_{i=1}^n$ given ω and h^t :

$$\mu^{\sigma}_{\omega,h^{t}}(\boldsymbol{a}) := \mathbb{E}_{\sigma}\left[\left. \sum_{\tau \geq t} (1-\delta) \delta^{\tau} \mathbf{1}_{\{\boldsymbol{a}^{\tau} = \boldsymbol{a}\}} \right| \omega, h^{t} \right], \boldsymbol{a} \in \boldsymbol{A}$$

 Continuation payoff in state ω after observing history h^t when player's continuation strategy follows σ:

$$V_i(\omega,\sigma|h^t) = \sum_{a\in A} \mu^{\sigma}_{\omega,h^t}(a)u_i(\omega,a)$$

《日》《聞》《臣》《臣》 []]

Definition

Sub-game perfect equilibrium: $\forall i, \forall t, \forall h_i^t$, dealer *i*'s equilibrium strategy

《日》《聞》《臣》《臣》 []]

Definition

Sub-game perfect equilibrium: $\forall i, \forall t, \forall h_i^t$, dealer *i*'s equilibrium strategy

$$\sigma_i \in \arg\max_{x_i \in A_i} \sum_{\omega \in \Omega} p_i^t(\omega) \mathbb{E}\left[V_i(\omega, x_i, \sigma_{-i} | h_i^t)\right]$$

where $p_i^t \in \Delta\Omega$ is dealer *i*'s belief about ω given h_i^t that is dealer *i*'s information (private + public).

<ロ> < 同> < 同> < 三> < 三> < 三) < のへの

Definition

Sub-game perfect equilibrium: $\forall i, \forall t, \forall h_i^t$, dealer *i*'s equilibrium strategy

$$\sigma_i \in \arg \max_{x_i \in A_i} \sum_{\omega \in \Omega} p_i^t(\omega) \mathbb{E} \left[V_i(\omega, x_i, \sigma_{-i} | h_i^t) \right]$$

where $p_i^t \in \Delta\Omega$ is dealer *i*'s belief about ω given h_i^t that is dealer *i*'s information (private + public).

Definition

Belief-free equilibrium: $\forall i, \forall t, \forall h_i^t$, dealer *i*'s equilibrium strategy solves

Definition

Sub-game perfect equilibrium: $\forall i, \forall t, \forall h_i^t$, dealer *i*'s equilibrium strategy

$$\sigma_i \in \arg\max_{x_i \in A_i} \sum_{\omega \in \Omega} p_i^t(\omega) \mathbb{E}\left[V_i(\omega, x_i, \sigma_{-i} | h_i^t)\right]$$

where $p_i^t \in \Delta\Omega$ is dealer *i*'s belief about ω given h_i^t that is dealer *i*'s information (private + public).

Definition

Belief-free equilibrium: $\forall i, \forall t, \forall h_i^t$, dealer *i*'s equilibrium strategy solves

$$\sigma_i \in \arg\max_{x_i \in A_i} \mathbb{E}\left[V_i(\omega, x_i, \sigma_{-i} | h_i^t)\right]$$

for all $\omega \in \Omega$.

What can be learned from traders' behavior?

Definition

Let $\hat{\Omega}$ be the partition over Ω induced by the function F. That is $\omega, \omega' \in \hat{\omega}$ iff $F(\omega, a) = F(\omega', a)$ for all $a \in A$.

Interpretation:

- Ω̂ is the information that can be statistically gathered by observing how traders react to dealers' actions.
- If two states belong the the same element ŵ ∈ Ω̂, then the distribution of traders' reaction to dealers' actions is identical in those two states.

〈ロ〉〈同〉〈ミ〉〈ヨ〉 三日

Definition

Let $\hat{\Omega}$ be the partition over Ω induced by the function F. That is $\omega, \omega' \in \hat{\omega}$ iff $F(\omega, a) = F(\omega', a)$ for all $a \in A$.

Interpretation:

• $\hat{\Omega} := {\hat{\omega}_1, \hat{\omega}_2}$ with • $\hat{\omega}_1 = {\omega \in \Omega \text{ s.t. } V(\omega) = V_1}$ $\hat{\omega}_2 = {\omega \in \Omega \text{ s.t. } V(\omega) = V_2}$

〈ロ〉〈同〉〈ミ〉〈ヨ〉 三日
Under assumption ETD, for any given $\hat{\omega} \in \hat{\Omega}$, all $\omega \in \hat{\omega}$:

1 There is $A^*(\hat{\omega}) \subset A$ such that for each dealer *i* and $a \in A^*(\hat{\omega})$:

 $u_i(\omega, a) > 0$

 $A^{\star}(\hat{\omega}_1) = \{ a \in A \text{ s.t. } bid_i = Bid(a) < V_1 < Ask(a) = ask_i, \forall i \in N \}$

<ロ> <同> <同> < 三> < 三> < 三 > < ○<

Under assumption ETD, for any given $\hat{\omega} \in \hat{\Omega}$, all $\omega \in \hat{\omega}$:

1 There is $A^*(\hat{\omega}) \subset A$ such that for each dealer *i* and $a \in A^*(\hat{\omega})$:

$u_i(\omega, a) > 0$

 $A^{*}(\hat{\omega}_{1}) = \{a \in A \text{ s.t. } bid_{i} = Bid(a) < V_{1} < Ask(a) = ask_{i}, \forall i \in N\}$ (2) $\forall i \text{ and } \mu \in \Delta\hat{\omega}, \text{ other dealers have } \underline{a}_{-i}(\mu) \in \Delta A_{-i} \text{ such that}$

$$\max_{a_i} \sum_{\omega \in \hat{\omega}} \mu(\omega) u_i(\omega, a_i, \underline{a}_{-i}(\mu)) \leq 0.$$

 $\underline{a}_{-i}(\mu) = \{ a \text{ s.t. } Ask(a) = Bid(a) = \sum_{\omega \in \hat{\omega}} \mu(\omega) W(\omega) \}$

ヘロン 不得 とくほう 不良という

Under assumption ETD, for any given $\hat{\omega} \in \hat{\Omega}$, all $\omega \in \hat{\omega}$:

1 There is $A^*(\hat{\omega}) \subset A$ such that for each dealer *i* and $a \in A^*(\hat{\omega})$:

$u_i(\omega, a) > 0$

 $A^*(\hat{\omega}_1) = \{a \in A \text{ s.t. } bid_i = Bid(a) < V_1 < Ask(a) = ask_i, \forall i \in N\}$ (2) $\forall i \text{ and } \mu \in \Delta \hat{\omega}, \text{ other dealers have } \underline{a}_{-i}(\mu) \in \Delta A_{-i} \text{ such that}$

$$\max_{a_i} \sum_{\omega \in \hat{\omega}} \mu(\omega) u_i(\omega, a_i, \underline{a}_{-i}(\mu)) \leq 0.$$

 $\underline{a}_{-i}(\mu) = \{a \text{ s.t. } Ask(a) = Bid(a) = \sum_{\omega \in \hat{\omega}} \mu(\omega) W(\omega) \}$ 3 There is $\underline{a}(\hat{\omega}) \in A$ such that for each dealer *i*:

 $u_i(\omega,\underline{\underline{a}}(\hat{\omega})) < 0$

 $bid_i > \max_{\omega} W(\omega)$

ヘロン 不得 とくほう 不良という

Under assumption ETD, for any given $\hat{\omega} \in \hat{\Omega}$, all $\omega \in \hat{\omega}$:

1 There is $A^*(\hat{\omega}) \subset A$ such that for each dealer *i* and $a \in A^*(\hat{\omega})$:

$u_i(\omega, a) > 0$

 $A^*(\hat{\omega}_1) = \{a \in A \text{ s.t. } bid_i = Bid(a) < V_1 < Ask(a) = ask_i, \forall i \in N\}$ (2) $\forall i \text{ and } \mu \in \Delta \hat{\omega}, \text{ other dealers have } \underline{a}_{-i}(\mu) \in \Delta A_{-i} \text{ such that}$

$$\max_{a_i} \sum_{\omega \in \hat{\omega}} \mu(\omega) u_i(\omega, a_i, \underline{a}_{-i}(\mu)) \leq 0.$$

 $\underline{a}_{-i}(\mu) = \{a \text{ s.t. } Ask(a) = Bid(a) = \sum_{\omega \in \hat{\omega}} \mu(\omega)W(\omega)\}$ 3 There is $\underline{a}(\hat{\omega}) \in A$ such that for each dealer *i*:

 $u_i(\omega,\underline{\underline{a}}(\hat{\omega})) < 0$

4 There is $\{a(1)(\hat{\omega}), \dots, a(n)(\hat{\omega})\} \in (\Delta A)^n$ such that

 $u_i(\omega, a(i)(\hat{\omega})) < u_i(\omega, a(j)(\hat{\omega}))$ for every $j \neq i$.

《日》《聞》《臣》《臣》 []]

Necessary conditions for σ to form a belief-free equilibria

Theorem

Let $\sigma : H \to \Delta A$ form a BFE, then

- σ is measurable with respect to $\hat{\Omega}$.
- $\forall \omega \in \Omega$, each dealer equilibrium payoff is strictly positive.
- $\forall \omega \in \Omega$, each dealer average inventory is bounded.
- Trading price volatility does not decrease with time.

〈ロ〉〈同〉〈ミ〉〈ヨ〉 三日

Measurability with respect to traders behavior

Lemma

Let $\sigma: H \to \Delta A$ form a BFE, then

$$\omega, \omega' \in \hat{\omega} \Rightarrow \sigma(\omega) = \sigma(\omega')$$

Proof:

- A BFE must remain an equilibrium even when dealers have no private information.
- In this case no agent can tell apart $\omega, \omega' \in \hat{\omega}$.
- The play must be the same in ω and ω' .

Strictly positive dealers' profits

Lemma

Let $\sigma : H \to \Delta A$ form a BFE, then $\forall \omega \in \Omega$, each dealer equilibrium payoff is strictly positive.

Proof:

- Fix an arbitrary $\omega \in \Omega$.
- A BFE must remain an equilibrium even when a dealer is almost sure the true state is *ω*.
- No matter the true ω , each dealer can guarantee 0 by not trading.

〈ロ〉〈同〉〈ミ〉〈ヨ〉 三日

Bounded dealers' inventories

Lemma

Let $\sigma : H \to \Delta A$ form a BFE, Let $Q_i(\omega, \sigma)$ be the equilibrium level of dealer i's inventory, given ω . Let $TV_i(\omega, \sigma)$ be the equilibrium level trading volume with dealer i, given ω . Then there is k > 0 bounded such that $\forall \omega, i$,

 $\frac{|Q_i(\omega,\sigma)|}{TV_i(\omega,\sigma)} < k$

Proof: For each dealer *i*, from ETD:

$$\max_{a,s}(v(\hat{\omega})+e(\omega))Q_i(a,s)+P_i(a,s)\leq$$

 $\overbrace{(v(\hat{\omega}) + e(\omega) - \underbrace{(v(\hat{\omega}) - \rho)}_{\text{min purchase price}})Q_i^+(a,s)}^{\text{dealers buys}}$

<ロ> <同> <同> < 三> < 三> < 三 > < ○<

Bounded dealers' inventories

Lemma

Let $\sigma : H \to \Delta A$ form a BFE, Let $Q_i(\omega, \sigma)$ be the equilibrium level of dealer i's inventory, given ω . Let $TV_i(\omega, \sigma)$ be the equilibrium level trading volume with dealer i, given ω . Then there is k > 0 bounded such that $\forall \omega, i$,

 $\frac{|Q_i(\omega,\sigma)|}{TV_i(\omega,\sigma)} < k$

Proof: For each dealer *i*, from ETD:

$$\max_{a,s}(v(\hat{\omega})+e(\omega))Q_i(a,s)+P_i(a,s)\leq$$

Trading price volatility does not decrease with time.

- Suppose $\alpha^t \simeq E[\tilde{W}|h^t, buy]$ and $\beta^t \simeq E[\tilde{W}|h^t, sell]$.
- Then for any $\varepsilon > 0$ and any finite T > 0 there are finite histories h^t such that
 - $|\alpha^t \mathbf{v}_2|, |\alpha^t \mathbf{v}_2| < \varepsilon.$
 - Conditionally on $\tilde{v} = v_1$, the expected time for $\alpha^{t'}, \beta^{t'}$ to be close to v_1 is larger than *T*.
 - If $\tilde{v} = v_1$ between t and t' the dealers' inventory explode.
 - Expected profit become negative.
- Hence quotes must be more sensitive than Bayesian beliefs to the order flow.

<ロ> < 同> < 同> < 三> < 三> < 三) < のへの

BFE equilibrium construction: ingredients

- Market measure $\pi \in \Delta \hat{\Omega}$: probability over the possible $\hat{\omega} \in \hat{\Omega}$.
- Market measure updating rule φ: Market measure is only affected by the public history h^t : {a^t, s^t}^{t-1}_{τ=0}:

$$\pi^{t+1} = \phi(\pi^t, \boldsymbol{a}^t, \boldsymbol{s}^t)$$

• For a given $\varepsilon > 0$, market measure is said to point at $\hat{\omega}$ at t if

 $\pi^t(\hat{\omega}) > \mathbf{1} - \varepsilon$

• On path, dealers' actions at *t* only depend on the π^t :

 $\sigma_i: \Delta \hat{\Omega} \to \Delta A_i$

《日》《聞》《臣》《臣》 []]

If we assume equally uninformed MMs with common belief $p^t := Pr(\hat{\omega} = \hat{\omega}_2 | h^t)$, then repetition of static Bertrand competition leads to

$$\alpha^{t} = \alpha(p^{t}) := \mathbb{E}\left[\tilde{V}|h^{t-1}, s^{t} = buy\right]$$
$$\beta^{t} = \beta(p^{t}) := \mathbb{E}\left[\tilde{V}|h^{t-1}, s^{t} = sell\right]$$
$$p^{t+1} = \phi_{B}(p^{t}, a^{t}, s^{t})$$

where ϕ_B is the Bayesian updating and h^t is the history of trades until time *t*.

《日》《聞》《臣》《臣》 []]

Illustrative Example: Canonical zero profit equilibrium

Illustrative Example: Canonical zero profit equilibrium

Bid and ask quotes in GME

Illusrative Example: In BFE, Market measure replaces beliefs

Market measure

- Fix arbitrary $\pi^0 \in \Pi := [\varepsilon/4, 1 \varepsilon/4]$.
- Market measure updating rule:

$$\pi^{t+1} = \phi(\pi^t, \boldsymbol{a}^t, \boldsymbol{s}^t) := \arg\min_{\pi \in \Pi} \left\| \pi - \phi_{\boldsymbol{B}}(\pi^t, \boldsymbol{a}^t, \boldsymbol{s}^t) \right\|$$

- Bid and ask are increasing in π^t and decreasing in MMs' aggregate inventory.
- Bid-ask Spread remains bounded away from 0.

くロン 不良 とくほう 不良 とうほう

Illusrative Example: exploring and exploiting

Exploring: If $\pi^t \in [\varepsilon, 1 - \varepsilon]$:

$$\alpha^{t} = \alpha(\pi^{t}) + \mathbf{d} - \mathbf{C}\mathbf{Y}^{t}$$

$$\beta^{t} = \beta(\pi^{t}) - \mathbf{d} - \mathbf{C}\mathbf{Y}^{t}$$

Exploiting in v_1 : If $\pi^t < \varepsilon$:

$$\alpha^{t} = \mathbf{v}_{1} + \mathbf{d} - \mathbf{c}\mathbf{Y}^{t}$$
$$\beta^{t} = \mathbf{v}_{1} - \mathbf{d} - \mathbf{c}\mathbf{Y}^{t}$$

Exploiting in v_2 : If $\pi^t > 1 - \varepsilon$:

$$\alpha^{t} = \mathbf{v}_{2} + \mathbf{d} - \mathbf{c}\mathbf{Y}^{t}$$
$$\beta^{t} = \mathbf{v}_{2} - \mathbf{d} - \mathbf{c}\mathbf{Y}^{t}$$

<ロ> <同> <同> < 三> < 三> < 三 > < ○<

Equilibrium construction

- **Exploring phases**: dealers choose actions to induce informative traders' reactions. This moves the market measure.
- Transition to exploiting "â": As soon as the market measure points at â.
- Exploiting phases "ω̂": dealers choose actions to make profits given ω̂.
- **Transition to exploring phase**: As soon as the market measure ceases pointing at a state.
- IR constraint:
 - All dealers get strictly positive profits.
 - Deviations lead to temporary punishment and involving non-positive profit to the deviating dealer.

《日》《聞》《臣》《臣》 []]

BFE: Phase transitions

Illustrative Example: BFE

Bid and ask quotes in BFE

Illustrative example: Glosten and Milgrom economy

Evolution of Dealers' aggregate inventories

Canonical zero expected profit equilibrium Belief-free equilibrium

Stefano Lovo, HEC Paris Quote Driven Market: Dynamic Models

71/83

Illustrative example: Glosten and Milgrom economy

Comparison of Dealer's realized profits

MMs' Average profit: GME vs BFE

Canonical zero expected profit equilibrium Belief-free equilibrium

Why exploring and exploiting is optimal no matter dealers beliefs?

- Why dealers do not deviate?
 - All dealers get strictly positive long term profits in all states.
 - Dealers do not deviate because the others can ensure nobody profits again (in the classical repeated-game fashion with sufficiently low discount rate).
- Why exploiting cannot last forever?
 - Dealer who disagrees with the consensus asset value must be given incentives to play along and wait for play to shift towards the asset value he believes correct.
- Why exploiting require balanced inventories.
 - Knowing $\hat{\omega}$ does not imply knowing ω and hence $W(\omega)$.
 - Profit from largely imbalanced inventory depend on $W(\omega)$ and might be negative for some beliefs about $\omega \in \hat{\omega}$.

What can we explain by applying BFE to a Glosten and Milgrom model?

- Trading volume moves prices. (Chordia, Roll and Subrahmanyam (2002), Boehmer and Wu (2008)), Pasquariello and Vega (2005), Evans and Lyons (2002), Fleming, Kirby and Ostdiek (2006))
- Volatility clustering: Price sensitivity to volume is larger in exploring phases than in exploiting phases. (Cont (2001))
- Inter-dealer market is used to rebalance/share positions taken with trades.

(Hasbrouck and Sofianos (1993), Reiss and Werner (1998), (2005) Hansch, Naik and Viswanathan (1998), Evans and Lyons (2002))

• Collusive type equilibrium.

(Christie and Schultz (1994), Christie, Harris and Schultz (1994), Ellis, Michaely, and O'Hara (2003))

Conclusion

- Microstructure models where long-lived, patient enough dealers interact with short-lived traders.
- Extremely robust equilibria exist under very mild conditions.
- belief-free price formation strategies require:
 - Positive profits
 - 2 bounded inventories
 - ③ Excess price volatility
- belief-free price formation strategies can be achieved when:
 - Dealers manage to collectively learn the value of fundamentals relevant to traders.
 - ② Dealers make positive profits through intermediation.
- A single model explains some well documented stylized facts.

《日》《聞》《臣》《臣》 []]

- Auction theory and revenue equivalence theorem.
- Inventory models
- Informed non strategic traders
- Informed strategic trader.
- Informed market makers.
- Market efficeincy and herding.
- Belief-free pricing.

《日》《聞》《臣》《臣》 []]

THANK YOU!

<ロト < 同 > < 三 > < 三 > < 三 > < 回 > < 回 > <

Exploring and exploiting

The couple (ϕ, σ) are said:

- ε-Exploratory : if the true state is ω, then the market measure will frequently points at ŵ(ω), no matter π⁰.
- ② ε-Exploiting : when the market measure points at ŵ, dealers' actions lead all of them to make positive profits in all states ω ∈ ŵ, i.e., a^t ∈ A^{*}(ŵ).

Definition

1 The pair (ϕ, σ) is ε -*learning*, for $\varepsilon > 0$, if for any $\omega \in \Omega$ and any $\pi^0 \in \Pi$,

$$\Pr_{\omega,\sigma}\left[\liminf_{T\to\infty}\frac{1}{T}\sum_{t=0}^{T}\mathbf{1}_{\{\pi^t(\hat{\omega}(\omega))>1-\varepsilon\}}<1-\varepsilon\right]<\varepsilon,$$

2 The pair (ϕ, σ) is ε -exploiting, for $\varepsilon > 0$, if for all $\hat{\omega} \in \hat{\Omega}$ and all h^t such that $\pi^t(\hat{\omega}) \ge 1 - \varepsilon$, we have $\Pr_{\sigma} \left[a^t \in A^*(\hat{\omega}) | h^t \right] > 1 - \varepsilon$.

Sufficient conditions for σ to form a belief-free equilibrium

Theorem

Under assumption ETD, there exists $\overline{\varepsilon} > 0$ such that for any $\varepsilon < \overline{\varepsilon}$, if strategy profile σ is ε -learning and ε -exploiting, then there exists $\underline{\delta} < 1$ such that the outcome induced by σ is a belief-free equilibrium outcome, for all $\delta \in (\underline{\delta}, 1)$.

Proof: Constructive...

→ 〈祠 〉 〈 臣 〉 〈 臣 〉 □ 臣

Glosten and Milgrom (1985) type economy:

In every period t = 1, 2, ..., trading simultaneously occurs in:

 <u>Quote driven market</u> (QDM): where long lived dealers set bid and ask quotes and time *t* trader decides whether to buy, sell or not to trade at the best dealers' quotes.

<ロ> < 同 > < 同 > < 三 > < 三 > < 三 > の へ の

Illustrative example: trading round

Stefano Lovo, HEC Paris Quote Driven Market: Dynamic Models 81/83

<ロ> <同> <同> < 三> < 三> < 三 > < ○ <

Illustrative example: Fundamentals

Asset fundamental value

 $W(\omega) = V(\omega) + \epsilon(\omega)$

with $V(\omega) \in \{V_1, V_2\}$, $V_1 < V_2$ and $E[\epsilon] = 0$.

- Informed traders know V but do not know ϵ .
- Liquidity traders behavior is orthogonal to ω .
- Function *F*: distribution of traders' order for given dealers' quotes and state of Nature ω.
- What can be learned by observing traders behavior:

 $\hat{\Omega} = \{\hat{\omega}_1, \hat{\omega}_2\}$

where $\hat{\omega}_k := \{ \omega | V(\omega) = V_k \}$, with $k \in \{1, 2\}$

ロ > < 同 > < 三 > < 三 > 、 三 ・ へ の へ の

- With exogenous probability μ , time *t* trader is informed and receives private signal $\tilde{s} = V(\omega)$
- With exogenous probability 1μ time *t* trader is a liquidity trader. A liquidity trader will buy or sell with probability $\frac{1}{2}$

<ロ> < 同> < 同> < 三> < 三> 三 三