HEC, Paris Financial Markets S. Lovo

Formulae

1. Stocks

- According to the CAPM, a company i required return $=\mathrm{OCC}=k$, where

$$
k=r_{f}+\beta_{i}\left(E\left[r_{m}\right]-r_{f}\right)
$$

- If the company is expected to pay dividend D_{t} in year t from now, then today spot price of one share of the company is

$$
S_{0}=\sum_{t=1}^{\infty} \frac{D_{t}}{(1+k)^{t}}
$$

- If dividends are expected to grow at a constant rate $g<k$, then

$$
S_{0}=\frac{D_{1}}{k-g}
$$

- If in every year t the company reinvests a fraction b of its (per share) earning E_{t} to grow, and the reinvested capital generate a return of $R O E$, then
i) $g=b \times R O E$
ii) $E_{t+1}=E_{t} \times(1+g)$
iii) $D_{t+1}=D_{t} \times(1+g)$
iv) $S_{0}=\frac{E_{1} \times(1-b)}{k-b \times R O E}$
- The present value of growth opportunity is equal to $S_{0}-\frac{E_{1}}{k}$

2. Bonds

Let $c=$ bond's coupon; $N=$ bond's face value; $z=$ frequency of payments of the coupon in a year (ex. once per year, twice per year, etc.); $S_{0}=$ spot price of the bond; $t_{i}=$ the time (in years) you have to wait to receive i-th coupon; $T=$ bond's maturity, i.e. the time (in years) you have to wait to receive the last coupon and the face value.

Then:

- The bond's coupon rate $=\frac{z \times c}{N}$
- The bond's current yield $=\frac{z \times c}{S_{0}}$
- The bond's yield to maturity is the y such that

$$
S_{0}=\frac{c}{(1+y)^{t_{1}}}+\frac{c}{(1+y)^{t_{2}}}+\cdots+\frac{N+c}{(1+y)^{T}}
$$

If $t_{1}=1, t_{2}=2, \ldots, t_{i}=i, \ldots, T=n$, then

$$
S_{0}=\frac{c}{y}\left(1-\frac{1}{(1+y)^{n}}\right)+\frac{N}{(1+y)^{n}}
$$

- The yield to maturity of a zero-coupon-bond with maturity in T years from now is

$$
r_{t}=\left(\frac{N}{S_{0}}\right)^{\frac{1}{T}}-1
$$

- The forward rate for investing from time t to time $t^{\prime}>t$ is

$$
r\left(t, t^{\prime}\right)=\left(\frac{\left(1+r_{t^{\prime}}\right)^{t^{\prime}}}{\left(1+r_{t}\right)^{t}}\right)^{\frac{1}{t^{\prime}-t}}-1
$$

- The no-arbitrage spot price of a bond satisfies:

$$
S_{0}=\frac{c}{\left(1+r_{t_{1}}\right)^{t_{1}}}+\frac{c}{\left(1+r_{t_{2}}\right)^{t_{2}}}+\cdots+\frac{N+c}{\left(1+r_{T}\right)^{T}}
$$

- The yield curve is flat at r if for all dates t, one has $r_{T}=r$.
- Suppose the yield curve is flat, then a bond's duration is

$$
D=\frac{\left(t_{1} \frac{c}{(1+r)^{t_{1}}}+t_{2} \frac{c}{(1+r)^{t_{2}}}+\cdots+T \frac{N+c}{(1+r)^{T}}\right)}{S_{0}}
$$

- If a flat yield curve suddenly shift from r to $r^{\prime}=r+\Delta$ then the spot price of the bond will move from S_{0} to S_{0}^{\prime}, where

$$
\frac{S_{0}^{\prime}-S_{0}}{S_{0}} \simeq-D \frac{\Delta}{1+r}
$$

3. Forward contracts

Consider a forward contract with maturity T. Suppose that the spot price of the underlying asset is S_{0} and that before T the underlying assets pays cashflows at time $t_{1}, t_{2}, \ldots, t_{n}<T$. Let $I_{t_{i}}$ be the cashflow paid at time t_{i}. Then the no-arbotrage forward price is

$$
F_{0, T}=\left(S_{0}-\frac{I_{t_{1}}}{\left(1+r_{t_{1}}\right)^{t_{1}}}-\frac{I_{t_{2}}}{\left(1+r_{t_{2}}\right)^{t_{2}}}-\cdots-\frac{I_{t_{n}}}{\left(1+r_{t_{n}}\right)^{t_{n}}}\right)\left(1+r_{T}\right)^{T}
$$

Remarks

- If the underling assets pays no cashflows before T, then $I_{t_{i}}=0, \forall t_{i}$, and $F_{0, T}=S_{0}\left(1+r_{T}\right)^{T}$.
- If the underlying asset is a commodity then $I_{t_{i}}<0$ and can be interpreted as the storage costs of the commodity.

4. Options

Let $K=$ the strike price of the option, $T=$ the maturity of the option, $S_{t}=$ be the spot price of the underling asset at time $t, C_{0}=$ the premium of a call option and $P_{0}=$ the premium of a put option.
Then:

- at time T
- The payoff from a long position in a Eu call option is

$$
C_{T}=\max \left\{0, S_{T}-K\right\}
$$

- The payoff from a short position in a Eu call option is

$$
-C_{T}
$$

- The payoff from a long position in a Eu put option is

$$
P_{T}=\max \left\{0, K-S_{T}\right\}
$$

- The payoff from a short position in a Eu put option is

$$
-P_{T}
$$

- Put-call parity:

$$
C_{0}=P_{0}+S_{0}-\frac{K}{\left(1+r_{T}\right)^{T}}
$$

or equivalently

$$
P_{0}=C_{0}-S_{0}+\frac{K}{\left(1+r_{T}\right)^{T}}
$$

- Arbitrage bounds: If at least one of the following inequalities is NOT satisfied, then there is an arbitrage opportunity:

$$
\begin{gathered}
\max \left\{S_{0}-\frac{K}{\left(1+r_{T}\right)^{T}}, 0\right\}<C_{0}<S_{0} \\
\max \left\{\frac{K}{\left(1+r_{T}\right)^{T}}-S_{0}, 0\right\}<P_{0}<\frac{K}{\left(1+r_{T}\right)^{T}}
\end{gathered}
$$

- Binomial model and no arbitrage price .

Suppose that at time t the spot price of the underlying asset is either $S_{T}=u \times S_{0}$ or $S_{T}=d \times S_{0}$, where $d<\left(1+r_{T}\right)^{T}<u$.
For any given option, let C_{u} be the option payoff at T if $S_{T}=u \times S_{0}$, and let C_{d} be the option payoff at T if $S_{T}=d \times S_{0}$.
For example if the option is an Eu call option $C_{u}=\max \left\{0, u \times S_{0}-\right.$ $K\}$ and $C_{d}=\max \left\{0, d \times S_{0}-K\right\}$.
Then:

- Today I can replicate the option by buying n_{S} underling asset and invest n_{B} in a ZCB with maturity T (n.b. if n_{B} is negative you short sell the ZCB). Where:

$$
\begin{gathered}
n_{S}=\frac{C_{u}-C_{d}}{(u-d) S} \\
n_{B}=\frac{u \times C_{d}-d \times C_{u}}{(u-d)\left(1+r_{T}\right)^{T}}
\end{gathered}
$$

- The no arbitrage premium of the option is

$$
\begin{aligned}
C_{0}= & \frac{C_{u}-C_{d}}{(u-d)}+\frac{u \times C_{d}-d \times C_{u}}{(u-d)\left(1+r_{T}\right)^{T}} \\
& =\frac{p \times C_{u}+(1-p) \times C_{d}}{\left(1+r_{T}\right)^{t}}
\end{aligned}
$$

where

$$
p=\frac{\left(1+r_{T}\right)^{T}-d}{u-d} \in(0,1)
$$

is the risk neutral probability.

