Financial Markets 2022/23 - Quiz 2 - Solution

$$
\begin{aligned}
& P_{0}=\frac{C}{(1+y)}+\frac{C}{(1+y)^{2}}+\ldots+\frac{C+N}{(1+y)^{T}}=\frac{C}{y}\left(1-\frac{1}{(1+y)^{T}}\right)+\frac{N}{(1+y)^{T}}, \text { where } \mathrm{y}=\text { yield-to-maturity } \\
& P_{0}=\frac{C}{\left(1+r_{1}\right)}+\frac{C}{\left(1+r_{2}\right)^{2}}+\ldots+\frac{C+N}{\left(1+r_{T}\right)^{T}}, \text { where } \mathrm{rt}=\mathrm{t} \text {-year interest rate } \\
& \left(1+r_{T}\right)^{T}=\left(1+r_{t}\right)^{t} \times\left(1+f_{t \rightarrow T}\right)^{(T-t)} \text { where } \mathrm{T}>\mathrm{t} \text {, and } \mathrm{f} \rightarrow \mathrm{~T}=\mathrm{T} \text { forward rate from year } \mathrm{t} \text { to year } \mathrm{T}
\end{aligned}
$$

Question 1:

Consider a government coupon-paying bond with a maturity of exactly $T=3$ years from now, annual coupon payments of 14 euros once a year, a par (face) value of 1000 euros. The relevant termstructure of interest rates is such that $r_{1}=3$ percent (per annum) for year $1, r_{2}=5$ percent (per annum) for year 2 , and $r_{3}=8$ percent (per annum) for year 3 . The bond has face value $N=1000$ euros. Determine the price of this bond today (i.e., at date $t=0$). If your answer is 1234.56789 , enter it as 1234.57 with two digits after the decimal point. Round your answer to 2 decimal places.

Answer:

$P_{0}=\frac{C}{1+r_{1}}+\frac{C}{\left(1+r_{2}\right)^{2}}+\frac{C+N}{\left(1+r_{3}\right)^{3}}=\frac{14}{1+0.03}+\frac{14}{(1+0.05)^{2}}+\frac{14+1000}{(1+0.08)^{3}}=831.24$

Question 2:

A government zero-coupon bond Z has a par (face) value of $N=1000$ euros and it is exactly 14-years away from maturity. What is the yield-to-maturity (y) of this zero-coupon bond if its market price today (at $\mathrm{t}=0$) is equal to $\mathrm{Z}_{0}=524$ euros ? If your answer is, for ex., 0.0500 , then enter your answer with four-digits after the decimal point as 0.0500 (but do not enter 5.00%, or 5% or $5,00 \%$ or 0,0500 , or "five percent", etc.) Round your answer to 4 decimal places.

Answer:

$Z_{0}=\frac{1000}{\left(1+r_{T}\right)^{T}} \Rightarrow r_{T}=\left(\frac{1000}{Z_{0}}\right)^{\left(\frac{1}{T}\right)}-1=\left(\frac{1000}{524}\right)^{\left(\frac{1}{14}\right)}-1=0.0472$

Question 3:

The yield curve based on government zero-coupon bonds is completely flat. The price of a government coupon-paying bond B with a face (par) value of 1000 euros, coupon-payment frequency of one per year, and with exactly 50 years until maturity, is equal to 1000 euros today. If this bond B has an annual coupon with a rate of 6 percent per annum, what must be the 21-year government zero-coupon bond rate on a per annum basis? If your answer is 1 percent per year, enter your answer as 0.0100 with four digits after the decimal point. Round your answer to 4 decimal places.

Answer: flat yield curve at $6 \% \rightarrow r_{1}=r_{2}=\ldots=r_{21}=\ldots=r_{50}=6 \% \rightarrow r_{21}=6 \%$

Question 4:

Today (at $\mathrm{t}=0$) the 1-year spot rate is 4 percent (per annum), while the 7 -year spot rate is 6 percent (per annum). What is, as of date $t=0$, on a per-annum basis, the forward interest rate f that is expected to prevail between dates 1 and 7 ? If your answer is 12.34 percent, enter it as 0.1234 using four digits after the decimal point. Round your answer to 4 decimal places.

Answer:

$\left(1+r_{7}\right)^{7}=\left(1+r_{1}\right)^{1} \times\left(1+f_{1 \rightarrow 7}\right)^{6}$
$\Rightarrow f_{1 \rightarrow 7}=\left(\frac{\left(1+r_{7}\right)^{7}}{\left(1+r_{1}\right)^{1}}\right)^{\left(\frac{1}{6}\right)}-1=\left(\frac{(1+0.06)^{7}}{(1+0.04)^{1}}\right)^{\left(\frac{1}{6}\right)}-1=0.0634$

Question 5:

Find the price at $t=0$ of a government coupon-paying bond that matures in exactly 15-years from today ($t=0$), with a coupon rate of 7 percent per year, annual coupon payments, and a yield-tomaturity of 5 percent per year. Par (face) value is 1000 euros. If your answer is 1234.56789 , enter it as 1234.57 with two digits after the decimal point. Round your answer to 2 decimal places.

Answer:

$P_{0}=\frac{C}{y}\left(1-\frac{1}{(1+y)^{T}}\right)+\frac{N}{(1+y)^{T}}=\frac{70}{0.05}\left(1-\frac{1}{(1+0.05)^{15}}\right)+\frac{1000}{(1+0.05)^{15}}=1207.59$

