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Research question

Fact: Artificial intelligence (AI) algorithms based on reinforcement
learning play an increasingly important role in many sectors of the
economy

▶ General question: Do economic theory predictions based on
Bayesian Nash equilibria concept hold when it is AI algorithms
who interact rather than rational Bayesian agents.

▶ This paper ’s focus: Do ‘classical’ theories predictions about
price formation in the stock market hold when it is AI
algorithm who set stock prices?



AI in Securities Markets



What we do

▶ We consider a standard market-making game (≈
Glosten-Milgrom (1985)) but we assume that quotes are set
by Q-learning algorithms (“algo-MMs) with no prior
knowledge about the environment i.e. algorithms only know
the set of actions.

▶ We run experiments (a large number of interactions between
algo-MMs, holding their clients’ demand function constant) to
study how Algo-MMs learn from experience and set their
prices.

▶ We benchmark the observations to the predictions of the
Nash equilibrium of the model (standard Bertrand equilibrium
with zero expected profits for market makers).



Questions

▶ Adverse selection. Can algo MMs learn to price “adverse
selection”? (e.g., iBuyers in the real estate market; Seru et al
(2020))

“Zillow may simply have realized before anyone else that
adverse selection is intractable. If so,other iBuyers will
eventually fail, too.”
(The Washington Post, November 2021)

▶ Competition. Can algos learn to be competitive (undercut
when profitable to do so)? Major concern in online product
markets.

▶ Price discovery. Can algos learn asset values (“discover
fundamentals”)?



Main New Findings

▶ Algo-MMs learn not to be adversely selected: Their
average realized spreads are positive.

▶ Algo-MMs do not learn to undercut: They eventually
settle on prices less competitive than the least competitive
Nash equilibrium of the environment.

▶ Algo-MMs set prices that that are more competitive when
adverse selection increases .

▶ Algo-MMs behave similarly to Bayesian learner (discover
asset values) even though they are not coded to be Bayesian.



Literature-Economics

▶ Burgeoning literature (e.g., Calvano et al. (2020), Asker et
al.(2021), Banchio and Skrzypack (2022)) on algo pricing in
product markets.

1. Studies how algos choose prices in simulated environments.

2. Key result: Standard reinforcement algorithms can “learn” to
play ”collusive outcomes”.

▶ Securities markets ̸= Product markets: Adverse selection
is central to price formation in securities markets.

▶ We consider a market making game with no room for
tacit collusion and yet Algo-MMs set non competitive prices.

▶ We find that adverse selection has a bright side: It makes
Algo-MMs more competitive.



Literature - Finance

▶ Wou, Goldstein and Ji (2023) Consider Kyle (1985) when
informed investors use Q-learning.

▶ Cartea et al. (2022a) and Cartea et al. (2022b): Which
reinforcement algorithms converge to Nash behavior in
market-making environment (without adverse selection) and
the role of tick size.

1. Our approach is different. We do not take convergence as a
goal in itself and look at what a standard algorithm does.
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The market making game

▶ A risky asset with payoff ṽ ∈ {vH , vL} with Pr(ṽ = vH) = 0.5, E [ṽ ] = µ,
Var [ṽ ] = ∆

▶ A client considers buying one share of the asset. Her valuation for the asset is:

ṽC = w̃C + L̃,

where

▶ “fundamentals information ”: w̃C ∈ {vH , vL}
▶ “liquidity shock”:L̃ ∼ N (0, σ2) let Φ(x) := Pr(L̃ < x)

▶ 2 Market Makers (MMs) X and Y simultaneously quote selling prices aX and
aY , not knowing ṽ and ṽC .

▶ The client observes amin = min
i∈{X ,Y}

ai and buys if vC ≥ amin.

▶ If a trade occurs, the aggregate profit of dealers posting the best quote is

(amin − ṽ)

▶ Dealers who do not post the best quote get 0.



The Client’s Demand

▶ The client’s realized demand is either 1 (buy) or 0 (no trade).

▶ Conditional on wC , the likelihood of a trade is:

D(amin,wC ) = Pr(wC + L̃︸ ︷︷ ︸
ṽc

≥ amin) = 1− Φ(amin − wC ).

▶ It decreases with amin and it increases with wC .

▶ The unconditional likelihood of a trade is:

D̄(amin) =
1

2
D(amin, vL) +

1

2
D(amin, vH).



Probability of a Trade
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Economic Environment

▶ Two Cases:

1. With adverse selection: w̃C = ṽ .
▶ ⇒ The client is more likely to buy when the asset payoff is

high than when it is low:

∆D(amin) = D(amin, vH)− D(amin, vL) > 0.

▶ ⇒ Dealers are exposed to adverse selection (more likely to sell
when the asset payoff is high than low).

2. Without adverse selection: w̃C and ṽ are i.i.d. The
likelihood that a client buys is D̄(amin) whether the asset
payoff is high or low.



Dealers’ Expected Profits

▶ Π̄(ai , a−i ): Dealer i ’s expected profit if dealer i posts ai and the other dealer
posts a−i for i ∈ {X ,Y }.

▶ Let

I (ai , a−i ) =


1 if ai < a−i
1
2
if ai = a−i

0 if ai > a−i

▶ Adverse Selection Case:

Π̄(ai , a−i ) = I (ai , a−i )(
1

2
D(ai , vH)(ai − vH) +

1

2
D(ai , vL)(ai − vL)),

⇔

Π̄(ai , a−i ) = I (ai , a−)D̄(ai )

(ai − E(ṽ))−
Cov(D(ai , v), v)

D̄(ai )︸ ︷︷ ︸
AdverseSelection Cost

 ,

where Cov(D(ai , v), v) =
∆×∆D

2
> 0.

▶ No Adverse Selection Case: Cov(D(amin, v), v)) = 0 because the likelihood of
a buy does not vary with v .



Benchmark

▶ Competitive price: a∗ such that Π(a∗, a∗) = 0

▶ Nash equilibrium with at least 2 MMs:

1. Without adverse selection: All MM play a∗ = E(ṽ).
Independent of the risk of the asset ∆ and the standard
deviation of L (σ).

2. With adverse selection: a∗ = E(ṽ | Buy) > E(ṽ) (No regret
quotes, as in Glosten and Milgrom (1985)).

▶ Empiricists often use two measures of illiquidity.

1. Dealers’ average quoted spread: a∗ − E(ṽ).

2. Dealers’ average realized spread: E(a∗ − ṽ | Buy).
3. Dealers’ total expected profit = Likelihood of a trade ×

Average realized spread.



Experimental Hypotheses

1. H.1. Dealers’ average quoted spread

a∗ − E(ṽ)

is strictly larger with adverse selection.

2. H.2. Dealers’ average quoted spread declines with σ and
increases with ∆ if adverse selection. Without adverse
selection, these parameters have no effect on the quoted
spread.

3. H.3. Dealers’ average realized spreads is zero with and
without adverse selection.

▶ Are these (very standard) hypotheses satisfied when prices are
set by Algo MMs?



Effects of exposure to adverse selection

ṽ ∈ {0, 4}
σ 0.5 1 3 5 7

Quoted Spread 2.00 2.00 1.24 0.68 0.47
Prob.Trade 25% 25% 37% 45% 47%

Cov(D̃, ṽ) 0.5 0.49 0.45 0.3 0.22
Realized Spread (expected payoff) 0 0 0 0 0

σ = 5
∆v 0 2 4 6 8

Quoted Spread 0 0.16 0.68 1.65 3.02
Prob.Trade 50% 48% 45% 39% 32%

Cov(D̃, ṽ) 0 0.07 0.3 0.64 0.99
Realized spread (expected payoff) 0 0 0 0 0
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Why Reinforcement Learning

▶ The theory assumes that the market makers (MMs) know
Π̄(ai , a−i ).

▶ This requires a lot of knowledge on the environment: (i) The
distribution of client’s valuation (vC ), (ii) the distribution of
the asset payoff, (iii) the number of competitors etc.

▶ An alternative approach: Algo MMs: They have no prior
knowledge about the environment and learn to play the market
making game via “trial and errors” (“reinforcement learning”).

▶ We focus on the simplest type of reinforcement learning
algorithm: Q-learning.



Clarifying our question

▶ We ask: If this standard market microstructure game is
played by standard AI learning algorithms, do the resulting
prices differ from those in the Nash equilibrium?

▶ We DO NOT ask: How to design the AI so that machines
play the Nash equilibrium?



Q-Learning Algorithm - Description

▶ We restrict to a finite set of possible prices: the price grid A.

▶ Holding parameters (∆ and σ) fixed, the market making game is repeated over
T different episodes ( i.i.d. realization of the asset payoff ṽ and clients type ṽc
across episode).

▶ Q-Matrix:A → R, Qit(a) is AMM i ’s assessment, at the beginning of episode t,
of the payoff resulting from playing price a.

▶ Action:: In episode t, AMM i chooses her price as follows:

▶ With probability ϵt = e−βt : Explore: Pick randomly a price at ∈ A

▶ With probability (1− ϵt): Exploit: Play ait = arg max
a∈A

Qit(a).

▶ Feedback: After choosing ait , AMM i obtains her realized profit πit (and has no
further information).

▶ Learning AMM i updates the cell of the Q-matrix for ait (and ait only):

Qit+1(at) = απt + (1− α)Qit(at).

▶ Initialization: Qi0(a) is chosen randomly.



One episode t simulation

In every episode t:

1. All AMMs simultaneously set their prices:

Each AMM i choose its own price ait based on its own Q-matrix at time t,

▶ with Prob ϵt , it “explores” : random price

▶ with Prob 1− ϵt , it “exploits”: ait ∈ argmax
a

Qit(a)

2. Nature choses ṽ(t) and ṽc (t) (following the distribution function defined by
parameters vL, vH , σ).

3. Given a(t), ṽ(t) and ṽc (t), there is a trade or not and each AMM observes its
own realized payoff resulting from its own price ai (t) (with no observation of the
other AMMs prices and payoff)

4. Each AMM i updates its Q-matrix

Qit+1(at) = απt + (1− α)Qit(at).

Looping this until t = 200, 000 gives us 1 experiment. We run
10,000 experiments.



Q-Learning Algorithm - Example

▶ Parameters environment: E(v) = 2, ∆ = 4, σ = 5. Adverse
selection (w̃C = ṽ) ⇒ The competitive price is 2.68 in theory.
A = {3, 3.1}.

▶ Parameters algorithm: α = 0.5, β = 0.1.

▶ Dealer X’s price is fixed at aX = 3.1 to simplify (will not be
the case in actual experiments).

▶ Expected profits for dealer Y in theory:

Π(aY , 3.1) =

{
0.12 for aY = 3

0.075 for aY = 3.1

⇒ undercutting dealer X is optimal.

▶ Will AMM Y eventually learn to undercut if it uses a
Q-learning algorithm?



Q-Learning Algorithm - Example

▶ Initialization of the Q-matrix

QY 0 =

(
QY 0(3)
QY 0(3.1)

)
=

(
0

0.01

)
▶ t = 1: ṽ = vL = 0, ϵ1 = 0.90

Explore
a = 3
Trade occurs (vL + L̃ ≥ 3).

QY 1(3) = α× [3− vL] + (1− α)× QY 0(3) = 1.5.

QY 1(3.1) = QY 0(3.1) = 0.01



Q-Learning Algorithm - Example

▶ Reminder: Parameters algorithm: α = 0.5, β = 0.1.

QY 1 =

(
1.5
0.01

)
▶ t = 2: ṽ = vL = 0, ϵ2 = 0.82

Explore
a = 3.1
Trade occurs (vL + L̃ ≥ 3.1).

QY 2(3) = 1.5

QY 2(3.1) = α× [3.1− vL] + (1− α)× QY 1(3.1) = 1.55



Q-Learning Algorithm - Example

▶ Reminder parameters algorithm: α = 0.5, β = 0.1.

QY 2 =

(
1.5
1.55

)
▶ t = 3: ṽ = vH = 4, ϵ3 = 0.74

Explore
a = 3
Trade occurs.

QY 3(3) = α× [3− 4] + (1− α)× QY 2(3) = 1

QY 3(3.1) = 1.55



Q-Learning Algorithm - Example

▶ Parameters: α = 0.5, β = 0.1.

QY 3 =

(
1
1.5

)

▶ t = 4: ṽ = vH = 4, ϵ4 = 0.67
Exploit
a = arg maxQY 3 = 3.1
Trade does not occur,

QY 4(3) = 1

QY 4(3.1) = α× 0 + (1− α)× QY 3(3.1) = 0.75

▶ Etc T times



Convergence?

▶ Will AMMs eventually learn the true expected payoff resulting
from an action profile?

▶ Fix prices (aY , aX ), and suppose AMMs Y an X keep playing
those prices forever, then
QY ,t(aY ) does not converges to ΠY (aY , aX ) as t goes to
infinity.

‘

Lemma
Let Fa,t(x) := Pr(QY ,t(aY ) < x), then there is Fa with F ′

a(x) > 0
for all x ∈ (a− vH , a− vL) such that

limt→∞||Fa,t − Fa|| = 0
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Limit F



Intrinsic difference between rational agent and AI

▶ The rational agent payoff related to an action is a real number

▶ The AI MM payoff related to an action is a distribution



Implementation

▶ Algorithm: α = 0.01, β = 0.0008, random Q0.

▶ Baseline Environment: vL = 0, vH = 4, E [ṽ ] = 2, ∆ = 4, σ = 5 (baseline)

▶ Price Grid: 15 prices centered around 8, tick size δ = 0.1:
A= {0, 0.1, 0.2, ..., 8.5, 8.6..., 14}.

▶ ⇒ such game has two pure Nash equilibrium: a = 2.7 and a = 2.8.

▶ For each environment, we run K = 10, 000 “experiments”, each with
T = 200, 000 episodes (clients).

▶ We focus on the distribution of prices (mostly mean prices) across
experiments in the last episode (that is, after learning has taken place).

▶ Note: Price discreteness implies that Nash prices yield small profits and there
can be up to two pure Nash equilibria. We account for this in computing
benchmarks.



Observation 1: Prices are Not competitive
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Observation 1: AMMs’ prices are not competitive and
account for adverse selection due to ∆
Comparative statics w.r.t. ∆ = vH − vL

with adverse selection without adverse selection



Why AMM do not learn to undercut each other?
Role of finite Experimentation

▶ Because probability of exploration decade exponentially at
rate β algos stop exploring before learning to undercut.

▶ Algos can learn to undercut if they explore forever

▶ BUT exploration is costly: It implies that actions that in
fact yield low expected payoffs must be chosen for a long time
⇒ Experimenting forever is not optimal.



Experimentation is costly

LESS EXPERIMENTATION: AVERAGE PROFIT (OVER ALL EPISODES) INCREASES



Observation 2: AMMs’ profits are not competitive
Comparative statics w.r.t. ∆ = vH − vL

with adverse selection without adverse selection



Observation 3: Adverse selection resulting from low σ
makes prices more competitive
Comparative statics w.r.t. σ

with adverse selection without adverse selection



Observation 3: Adverse selection due to low σ reduces
rents
AMM profits comparative statics w.r.t. σ

with adverse selection without adverse selection



Puzzles

▶ H.1 is satisfied: AMMs charge larger spreads when there
is adverse selection.

▶ However, other hypotheses are not satisfied:

1. Realized spreads are not zero. Algo MMs do not learn to
undercut non competitive quotes.

2. Realized spreads are larger when there is no adverse
selection. Nash equilibrium lead to zero with or without
adverse selection.

3. Quoted spreads and realized spreads are larger when the
dispersion of traders’ private valuation is larger. The
theory predicts the opposite.

▶ Why does economic theory fail to explain Algo MM’s
behavior?



An Explanation: Noisy Learning

▶ Suppose dealer X plays a price aX above the least
competitive Nash equilibrium. If dealer Y undercuts this price
by a one tick, she increases her expected profit.

▶ But her actual profit (Π(aY , aX )) is uncertain. In
particular, there are always cases (e.g., no trade) such that
this profit is less than the expected profit with undercutting.

▶ This uncertainty is a source of estimation errors: The Q value
of undercutting is a noisy estimate of the true expected value
⇒ It can be low even if the expected true value of
undercutting is large ⇒ There are paths on which
undercutting does not happen.

▶ Adverse selection reduces estimation errors while an increase
in the dispersion of clients’ private valuation increases them
(next slide).



An Explanation: Noisy Learning

▶ The variance (Var) of profit (Π(aY , aX )) for dealer Y at
aY < aX is:

1. Without adverse selection:

VarWo = (aY − µ)2D(aY )(1− D(aY )) +
∆2

4
D̄(aY ).

2. With adverse selection:

VarWi = VarWo − (∆×∆D)(
∆×∆D

4
+ (a− µ)(1− D̄(aY ))

▶ Hence, VarWo > VarWi for aY < aX .

▶ Moreover both VarWi and VarWo increases with σ, holding
prices constant.

▶ New Insight: Changes in the environment that makes a
dealer’s profit at a given price less volatile makes the outcome
more competitive.



Conclusion

▶ Can algo learn to price “adverse selection”? Yes

▶ Competition. Can algos learn to be competitive (undercut
when profitable to do so)? No. BUT:
1. Uncertainty on the payoff from undercutting matters. Greater

uncertainty ⇒ Less competitive outcome
2. Adverse selection reduces this uncertainty ⇒ Generates more

competitive outcome.

3. Price discovery. Can algos learn asset values (“discover
fundamentals”)? Yes

▶ New important insight: Adverse selection makes
algo-pricers more competitive.

▶ Implication: Price makers are better-off when algorithm set
quotes rather than when playing the static Nash equilibrum,
but clients are not



Thank You!
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