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What is the common feature of the following things?
Flowers
Diamonds
Artworks
Wine
Company subsidiaries
Houses
Electricity
Treasury bills
Common shares
Copyrights
Drilling rights for minerals
UMTS licenses
Access to railroad interconnection points

All of these are sold, or have been sold in the past, through
auctions.
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Why auctions?

Auctions are used in several sectors of economic activity.
A huge volume of economic transactions is conducted
through auctions.
Auctions provide a simple, well-defined, and intensively
studied economic environment.
The logic of competitive bidding is at the core of many
financial transactions.
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Core Questions in Auction Theory
How should buyers bid in the auction? Example: What is
the limit order price?

What is the seller’s expected revenue? Example: What is
a market order’s expected profit?

How can we relate the selling price to:
Auction mechanisms (e.g., market mechanisms)
Number of bidders (e.g., market liquidity)
The amount and nature of asymmetry in information (e.g.,
market efficiency)

How should the seller choose the auction mechanism?
Example: Financial intermediation, market regulation,
competition among markets.
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The Seller’s Problem

You own a valuable good.
You know there are N > 1 potential buyers for this good.
You do not know exactly how much each potential buyer
values the good:

Pr [Ṽi < z] = Fi(z)

where Ṽi is potential buyer i ’s valuation for the object.
You want to sell:

At the maximum possible price
Quickly
In a transparent way

How?
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Solution 1: Posted Price
The seller announces a non-negotiable price and hopes that
someone willing to pay that price will appear.

Y : Seller’s valuation of the object.

1 − G(p): Probability that at least one buyer values the object at
p or more.

max
p

(p − Y )(1 − G(p))

First-order condition:

1 − G(p) = G′(p)(p − Y )

Drawbacks:

Tie-break rule: multiple buyers

Waiting cost: no buyer

Pareto optimality: does the object go to the highest-valuation
buyer?
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Solution 2: Auction

Definition
An auction is a bidding mechanism defined by a set of rules
specifying:

How the winner is determined
How much the winner and other bidders must pay

Advantages:
Speed of sale
Information revelation about buyers’ valuations
Equal chances for all potential buyers
Prevents dishonest dealings between the seller’s agent
and buyers
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Some Standard Auction Formats

First-price sealed bid auction: Bidders submit sealed
bids simultaneously. The highest bidder wins and pays
their bid. Applications: Divestitures, market-making

competition in decentralized markets, mineral rights,
telecom licenses, antiques.

Second-price sealed bid auction: Bidders submit sealed
bids simultaneously. The highest bidder wins and pays the
second-highest bid.
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Some Standard Auction Formats

English auction: The auctioneer starts with a low price.
Bidders successively bid higher amounts until no one is
willing to bid more. The highest bidder wins and pays their
bid. Applications: Mergers, centralized market-making

competition, artworks, used cars, houses, radio
communication licenses, Internet auctions.

Dutch auction: The auctioneer starts with a high price
and gradually lowers it. The first bidder to accept the price
wins and pays that amount.
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Some Other Auction Formats
Japanese auction: The price continuously increases on a
“wheel” in front of the bidders until all but one bidder leaves
the room. The last bidder remaining wins the object and
pays the price at which the wheel stopped.
E-bay auction: Bidders submit sealed bids during a
bidding period. Throughout the period, bidders observe the
second-highest bid. The highest bidder wins the object and
pays the second-highest bid.
All-Pay auction: Bidders submit increasing bids until no
one is willing to bid higher. The highest bidder wins the
object and all bidders pay the amount of their last bid.
Uniform price auction: Bidders submit demand functions.
The good is sold at a price where demand equals supply.
Survival auction: The auction consists of multiple rounds
of sealed bids. At each round, the lowest bidder exits, and
the minimum bid for the following round is set equal to the
lowest bid from the previous round.
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Formal Description of an Auction Mechanism

1 A set N of bidders.
2 For each bidder i , a set of available actions Xi :

X := ×i∈NXi

3 Allocation rule:
Winning function: Probability of each bidder winning given
x ∈ X :

Q : X → ∆N

Payment function: Cash transfer to each bidder given
x ∈ X :

P : X → ∆RN
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Examples
Let x ∈ X , and define:

x−i := {x1, x2, . . . , xi−1, xi+1, xN}

Indicator function: 1{a} equals 1 if a is true and 0 otherwise.
First-price auction: Xi = R+, Qi(x) = 1{xi=max(x)},
Pi(x) = −Qi(x)xi .
Second-price auction: Xi = R+, Qi(x) = 1{xi=max(x)},
Pi(x) = −Qi(x)max(x−i).
All-pay auction: Xi = R+, Qi(x) = 1{xi=max(x)},
Pi(x) = −xi .
Survival auction: Xi = (R+)N−1,
Qi(x) = 1{x j

i >min(x j ),∀j<N−1}1{xN−1
i =max(xN−1)},

Pi(x) = −Qi(x)max(xN−1
−i ).
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Auction as a Bayesian Game

Bidders compete in a non-cooperative game with
incomplete information.

There are N risk-neutral bidders.
Let Vi be bidder i ’s valuation for the object.
If bidder i wins the object and pays p, his ex-post payoff is:

Vi − p
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Private Value or Common Value?

Private value framework: Each bidder’s valuation is
independent of others.

Each bidder knows how much they value the object.
Vi does not depend on other bidders’ information.

Common value framework: The object has the same
value for all bidders, but they may have different
information about it.

Vi = V ,∀i

Interdependent value framework: Each bidder’s
valuation depends on both private and common
components, leading to correlation:

Vi ̸= Vj , Cov(Vi ,Vj) ̸= 0, ∀i , j
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Independent Private Value
Assumptions:

1 Private value framework:
Each bidder i knows exactly Vi .
Vi does not depend on what the other bidders know.

2 Independently and identically distributed (i.i.d.) valuations.
For any j ̸= i , bidder j believes that:

Pr[Ṽi < z] = F (z)

where Ṽi ∈ [0,1].

3 The bidders are risk-neutral: if bidder i wins the object and
pays p, then his ex-post payoff is:

Vi − p.
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Probability Preliminaries

Let {Ṽi}i=1,...,N be N i.i.d. random variables with cumulative distribution F (.)
and density f (.) = F ′(.).

Let Ṽ (1,N) and Ṽ (2,N) be the highest and the second-highest elements of
{Ṽi}i=1,...,N .

Let F (1,N) and F (2,N) be the cumulative distribution functions of Ṽ (1,N) and
Ṽ (2,N), respectively.

Then:

F (1,N)(z) = F (z)N , (1)

f (1,N)(z) = Nf (z)F (z)N−1, (2)

F (2,N)(z) = F (z)N + NF (z)N−1(1 − F (z)), (3)

f (2,N)(z) = N(N − 1)f (z)F (z)N−2(1 − F (z)). (4)
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Bidder’s Strategies and Expected Payoffs
Fix the auction format (X ,Q,P).

If bidder i chooses action xi ∈ Xi and the other bidders’
action profile is x−i , then bidder i ’s payoff is:

ViQi(xi , x−i) + Pi(xi , x−i).

A bidder’s (pure) strategy bi maps a bidder’s valuation Vi
into an action:

bi : [0,1] → Xi .

If bidder i chooses action x ∈ Xi and the others’ strategies
are b−i , then bidder i ’s expected payoff is:

ViE [Qi(x ,b−i(Ṽ−i))] + E [Pi(x ,b−i(Ṽ−i))].
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Bayesian Nash Equilibrium

Definition
A Bayesian Nash equilibrium specifies a bidding strategy
b∗

i (.) for each bidder i , such that each bidder maximizes their
own expected payoff given their valuation and the other players’
strategies:

b∗
i (Vi) ∈ argmax

x∈Xi
ViE [Qi(x ,b∗

−i(Ṽ−i))] + E [Pi(x ,b∗
−i(Ṽ−i))].

In a symmetric framework, a symmetric equilibrium satisfies:

b∗
i (·) = b∗(·), ∀i .
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Strategic Equivalence 1

Proposition
The Dutch auction and the first-price auction are strategically
equivalent.

Proof:
1 First-price auction: Xi = R+, Qi(x) = 1{xi=max(x)},

Pi(x) = −Qi(x)xi .
2 Dutch auction: Xi = R+, Qi(x) = 1{xi=max(x)},

Pi(x) = −Qi(x)xi .
3 The information available to a bidder when placing a bid,

and conditional on winning, is the same in both auctions.
An equilibrium strategy profile of the Dutch auction is an
equilibrium if and only if it is an equilibrium of the first-price
auction.

Stefano Lovo, HEC Paris Auctions 19 / 71



Introduction
Auction Formats

Independent Private Values
Auction with interdependent values

Strategic Equivalence
Second-Price Auction
First price auction
Revenue Equivalence Theorem

Strategic Equivalence 2

Proposition
Under Assumptions 1-3, the second-price sealed bid auction
and the Japanese auction (as well as the survival auction) are
strategically equivalent.

Proof:
1 Second-price auction: Xi = R+, Qi(x) = 1{xi=max(x)},

Pi(x) = −Qi(x)min(x−i).
2 Japanese auction: Xi = R+, Qi(x) = 1{xi=max(x)},

Pi(x) = −Qi(x)min(x−i).
3 The relevant information available to a bidder when setting

a bid, and conditional on winning, is the same in both
auctions.

In the independent private value framework, an equilibrium
strategy profile of the Japanese auction is an equilibrium if and
only if it is also an equilibrium of the second-price auction.
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Strategic Equivalence 3

Proposition
Every Bayesian Nash equilibrium of the Japanese auction
induces a Bayesian Nash equilibrium of the English auction.

Proof:
1 Let b∗

i (Vi) be the equilibrium exiting times in the Japanese
auction for bidder i .

2 In the English auction, all bidders placing bids equal to the
standing high bid plus an arbitrarily small bid increment in each
round, and stopping bidding according to these exiting times,
constitutes an (arbitrarily close) Bayesian Nash equilibrium of
the English auction.
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Equilibrium of the Second-Price Auction

Fix bidder i .
Let z̃ ≥ 0 be bidder i ’s competitors’ highest bid.
Bidder i believes that Pr[z̃ < z] = G(z).
Bidder i ’s expected payoff from bidding x is∫ x

0
(Vi − z)dG(z)

.
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Equilibrium of the Second-Price Auction

Proposition
(Truth-telling equilibrium) Under Assumptions 1-3, in the
second-price sealed bid auction, bidding one’s own valuation is
a weakly dominant strategy for all bidders.
The strategy profile:

bi(Vi) = Vi ,∀i

is a Bayesian Nash equilibrium in undominated strategies of
the second-price sealed bid auction.
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Equilibrium of the Second Price Auction

Corollary
In the truth-telling equilibrium of the second price auction:

1 The winner of the object is the bidder with the highest
valuation.

2 The ex-ante expected payoff for a bidder with valuation V
is: ∫ V

0
F (z)N−1dz

3 The seller’s expected revenue is:

E [Ṽ (2,N)] = N
∫ 1

0

(
z − 1 − F (z)

f (z)

)
F (z)N−1f (z)dz
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Derivation of Symmetric Equilibrium

Consider an auction format where:

B = R,

Qi (x) = 1{xi=max(x)},

Pi (x) = P(xi ,max(x−i )).

Consider a symmetric equilibrium such that:

bi = b, ∀i ,

b : [0, 1] → R,

b is increasing and differentiable.

Then, if bidder i chooses to behave like a bidder of type w , his expected payoff is:

Π(Vi ,w) := Vi G(w)−
∫ 1

0
P(b(w), b(z))dG(z)

where G(z) = F (z)N−1.
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Derivation of Symmetric Equilibrium: First Order
Condition

∂Π(V ,w)

∂w

∣∣∣∣
w=V

= 0

This typically provides a differential equation in b(.) that can be
solved by imposing the condition:

b(0) = 0

Stefano Lovo, HEC Paris Auctions 26 / 71



Introduction
Auction Formats

Independent Private Values
Auction with interdependent values

Strategic Equivalence
Second-Price Auction
First price auction
Revenue Equivalence Theorem

Derivation of Symmetric Equilibrium: Second Order
Condition

Quasi-concavity of the objective function:

∂Π(V ,w)

∂w
> 0 for w < V ,

∂Π(V ,w)

∂w
< 0 for w > V .

Thus, it is sufficient to show that:

∂2Π(V ,w)

∂w∂V
> 0
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Quasi-Concavity and Comparative Statics

Remark:
Let xi (V ) = b(w) where w solves:

max
w∈[0,1]

Π(V ,w) := VG(w)−
∫ 1

0
P(b(w), b(z))dG(z)

Let κ be a parameter of the model and suppose:

∂2Π(V ,w)

∂w∂κ
> 0 (resp. < 0)

Then xi (V ) is an increasing (resp. decreasing) function of κ.
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Symmetric equilibrium of the first price auction

Π(V ,w) =

∫ w

0
(V − b(w))dG(z) = (V − b(w))G(w)

First order condition:

∂Π(V ,w)

∂w

∣∣∣∣
w=V

= (V − b(V ))g(V )− b′(V )G(V ) = 0

Thus,
b(V )g(V ) + b′(V )G(V ) = Vg(V )

with b(0) = 0 one has

b(v) =
∫ V

0
z

g(z)
G(V )

dz = E
[
Ṽ (1,N−1)|Ṽ (1,N−1) ≤ V

]
= V −

∫ V

0

(
F (z)
F (V )

)N−1
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Symmetric equilibrium of the first price auction

Second order condition:

∂2Π(V ,w)

∂x∂V
= g(w) > 0
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Revenue Equivalence Theorem

Theorem

Under assumptions 1-3, given any auction mechanism:
If in equilibrium:

1 The bidder who has the highest valuation for the object is certain to win the
object.

2 A bidder who values the object at its lowest possible level has an expected payoff
of 0.

Then:
1 The expected profit for a bidder with valuation V is

∫ v
0 F (z)N−1dz.

2 The revenue generated for the seller is the expected value of the object to the
second highest evaluator:

E [Ṽ (2,N)] = N
∫ 1

0

(
z −

1 − F (z)
f (z)

)
F (z)N−1f (z)dz

.

Stefano Lovo, HEC Paris Auctions 31 / 71



Introduction
Auction Formats

Independent Private Values
Auction with interdependent values

Strategic Equivalence
Second-Price Auction
First price auction
Revenue Equivalence Theorem

Revenue Equivalence Theorem: Proof 1/4
Take any equilibrium and consider a bidder i of type V .
Let:

Equilibrium probability that bidder i wins:

Q∗
i (V ) := E

[
Qi (b∗

i (V ), b∗
−i (Ṽ−i ))

]

Equilibrium expected payment to bidder i :

P∗
i (V ) := E

[
Pi (b∗

i (V ), b∗
−i (Ṽ−i ))

]

Equilibrium expected payoff for bidder i :

Πi (V ) := VQ∗
i (V ) + P∗

i (V )
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Revenue Equivalence Theorem: Proof 2/4
Revelation principle:

1 Suppose bidder i chooses to behave as if his type was w , then his payoff would
be VQ∗

i (w) + P∗
i (w)

2 In equilibrium, it must be that maxw VQ∗
i (w) + P∗

i (w) = Πi (V )

3 First order condition gives:

∂VQ∗
i (w) + P∗

i (w)

∂w

∣∣∣∣
w=V

= 0 ⇒ VQ∗′
i (V ) + P∗′

i (V ) = 0

.
4 Differentiating Πi (V ):

Π′
i (V ) = VQ∗′

i (V ) + P∗′
i (V )︸ ︷︷ ︸

=0

+Q∗
i (V ) = Q∗

i (V )

.
5 Hence:

Πi (V ) = Πi (0) +
∫ V

0
Q∗

i (z)dz
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Revenue Equivalence Theorem: Proof 3/4
The theorem’s hypotheses are:

1 The bidder who has the highest valuation for the object is
certain to win the object:

Q∗
i (V ) = F (V )N−1, ∀i

2 Bidders who value the object at its lowest possible level
have an expected payoff of 0:

Πi(0) = 0, ∀i

Hence:

Πi(V ) = Πi(0) +
∫ V

0
Q∗

i (z)dz =

∫ V

0
F (z)N−1dz
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Revenue Equivalence Theorem: Proof 4/4
Bidder i expected payment to the seller is

−P∗
i (V ) = VQ∗

i (V )− Πi(V ) = Q∗
i (V )V −

∫ V

0
F (z)n−1dz

Bidder i ex-ante expected payment to the seller is

−
∫ 1

0
P∗

i (v)f (v)dv =

∫ 1

0
vQ∗

i (v)f (v)dv −
∫ 1

0

∫ v

0
Q(z)f (v)dzdv

=

∫ 1

0
vQ∗

i (v)f (v)dv −
∫ 1

0

∫ 1

z
Q∗

i (z)f (v)dvdz =

∫ 1

0
Q∗

i (z)zf (z)dz −
∫ 1

0
Q∗

i (z)(1 − F (z))dz

=

∫ 1

0
Q∗

i (z)

(
z −

1 − F (z)

f (z)

)
f (z)dz =

∫ 1

0

(
z −

1 − F (z)

f (z)

)
f (z)F (z)N−1dz

Considering that there are N bidders, the seller’s expected
revenue is

N
∫ 1

0

(
z − 1 − F (z)

f (z)

)
f (z)F (z)N−1dz
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Implications, Caveats, and Use of the Revenue
Equivalence Theorem

In the independent private value framework, bidders and
sellers are indifferent among different auction mechanisms.
This applies only in equilibria where the hypotheses are
met. However, auctions might have other equilibria that do
not satisfy the Revenue Equivalence Theorem (RET)
hypothesis.
The Revenue Equivalence Theorem can be used to derive
equilibria.
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Deriving Equilibria: First Price Auction

Consider an equilibrium satisfying the RET Hypothesis. Then:
1 The equilibrium probability that Bidder i wins: Q∗

i (V ) = F (V )N−1.

2 Bidder i ’s equilibrium payoff: Πi (v) = VQ∗
i (V ) + P∗

i (V ) =
∫ V

0 F (z)N−1dz.

3 Bidder i ’s expected payment: −P∗
i (v) = VF (V )N−1 −

∫ V
0 F (z)N−1dz.

4 In an FPA: −P∗
i (V ) = bFPA(V )F (V )N−1.

5 Equations 2 and 3 give:

bFPA(V ) = V −
∫ V

0

(
F (z)
F (V )

)N−1
dz = E [Ṽ (1,N−1)|Ṽ (1,N−1) ≤ V ]

.

Remarks:
In a first price auction, bidders bid less than their valuation.

When N increases to infinity, competition rises, and underbidding diminishes to
zero.
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Deriving Equilibria: All-Pay Auction

Consider an equilibrium satisfying the theorem hypothesis. Then:

1 Bidder i ’s expected payment: −P∗
i (v) = VF (V )N−1 −

∫ V
0 F (z)N−1dz.

2 In an APA: −P∗
i (V ) = bAPA(V ).

3 Equations 1 and 2 give:

bAPA(V ) = VF (V )N−1 −
∫ V

0
F (z)N−1dz = bFPA(V )F (V )N−1

.

Remarks:
In an all-pay auction, bidders bid less than in an FPA.

As N increases to infinity, competition rises, the probability of winning decreases,
and bids approach zero.
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Reserve Price

Definition
A reserve price, denoted r , is the lower bound of acceptable
bids.

If r is positive, then all bidders with valuation V < r will not
bid. Hence:

Q∗
i (V ) = F (V )N−11{V≥r}

Πi(V ) =

(∫ V

r
F (z)N−1dz

)
1{V≥r}.
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Optimal Reserve Price

Suppose the seller values Y the object. What is the reserve price maximizing the
seller’s expected payoff?

1 Expected payment from bidder i of type V :

−P∗
i (V ) =

(
VQ∗

i (V )−
∫ V

r
F (z)N−1dz

)
1{V≥r}

.
2 Seller’s expected revenue:

N

(∫ 1

r
vQ∗

i (v)f (v)dv −
∫ 1

r
Q∗

i (v)(1 − F (v))dv

)
.
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Summary

Definition of standard auction formats: FPA, SPA, EA, JA,
APA, SA.
Strategic equivalences.
Common Value vs. Private Value.
Within PV framework:

Equilibrium of SPA.
Symmetric equilibrium.
Revenue Equivalence Theorem.
Equilibrium of FPA, APA.
Optimal reserve price.
Reserve price and entry fees.
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Bidding in a FPA with reserve price

If Vi < r , then do not bid.
If Vi ≥ r , then

−P∗
i (V ) = σ(V )F (z)N−1 = VQ∗

i (V )− Πi(V )

Q∗
i (V ) = F (V )N−1

Πi(V ) =

∫ V

r
F (z)N−1dz

Hence

σ(V ) = V −
∫ V

r

(
F (z)
F (V )

)N−1

dz

Remark: When r increases, the ex ante probability of bidding
decreases but the bids of those who bid increase.
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i (V ) − Πi (V )
)

1{V≥r} =

(
VQ∗

i (V ) −
∫ V

r
F (z)N−1dz

)
1{V≥r}

2 Ex-ante expected revenue from bidder i

−
∫ 1

0
P∗

i (v)f (v)dv =

∫ 1

r
vQ∗

i (v)f (v)dv −
∫ 1

r

∫ v

r
F (z)N−1f (v)dzdv

=

∫ 1

r
vQ∗

i (v)f (v)dv −
∫ 1

r

∫ 1

z
F (z)N−1f (v)dvdz
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r
vQ∗

i (v)f (v)dv −
∫ 1

r
Q∗

i (v)(1 − F (v))dv
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Optimal Reserve Price

Seller’s expected payoff

ΠS(r) = N

(∫ 1

r
vQ∗

i (v)f (v)dv −
∫ 1

r
Q∗

i (v)(1 − F (v))dv

)
+YF (r)N

First order condition:

NQ∗
i (r)(1−F (r)+ (Y − r)f (r)) = 0 ⇒ 1−F (r∗) = f (r∗)(r∗ −Y )

Observe that
r∗ > Y because ∂ΠS(r)

∂r

∣∣∣
r=Y

= NQ∗
i (Y )(1 − F (Y )) > 0

r∗ equal the price a monopoly would post if facing a single
buyer.
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FPA with entry fee and reserve price
An entry fee, denote by c, is an amount a bidder must pay in order to submit a
bid.
A reserve price, denote by r , is the lower bound of acceptable bids.

If c and/or r are positive, then there is V ≥ 0 such that all bidders with valuation V < V
will not bid. Hence, for V ≥ V :

Πi (V ) = VQ∗
i (V ) + P∗

i (V ) =

∫ V

V
F (z)N−1dz

−P∗
i (V ) = VF (V )N−1 −

∫ V

V
F (z)N−1dz = Q∗

i (V )σ(V ) + c

Thus,

σ(V ) = V −
∫ V

V

(
F (z)
F (V )

)N−1
dz −

c
F (V )N−1

and V ≥ 0 solves

σ(V ) = V −
c

F (V )N−1
= r
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Definition of standard auction formats: FPA, SPA, EA, JA,
APA, SA

Strategic equivalences.

Common Value vs. Private Value.

Within PV framework:
Equilibrium of SPA.
Symmetric equilibrium.
Revenue Equivalence Theorem.
Equilibrium of FPA, APA.
Optimal reserve price.
Reserve price and entry fees.
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First order stochastic dominance
Let denote with F and G the c.d.f of random variables x̃ and ỹ , respectively.

Definition

c.d.f F first order stochastically dominates c.d.f. G, iff

∀x ∈ R,F (x) ≤ G(x)

Theorem

Take any increasing differentiable function γ : R → R, then

E [γ(x̃)] ≥ E [γ(ỹ)]
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Hazard rate dominance

Definition

Given a continuous differentiable c.d.f F . Let define the hazard rate as the
function

λF (x) =
f (x)

1 − F (x)
.

We say that F dominates G in terms of the hazard rate if for any real number x
one has

λF (x) ≤ λG(x)

Theorem

If F hazard rate dominates G, then F first order stochastically dominates G.
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Hazard rate dominance

Definition

Given a continuous differentiable c.d.f F . Let define the reverse hazard rate as
the function

bF (x) =
f (x)
F (x)

.

We say that F dominates G in terms of the reverse hazard rate if for any real
number x one has

bF (x) ≥ bG(x)

Theorem

If F reverse hazard rate dominates G, then F first order stochastically dominates G.
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Likelihood ratio dominance

Definition

The c.d.f. F is said to dominates c.d.f. G in terms of the likelihood ratio if for any
x < y one has

f (x)
g(x)

≤
f (y)
g(y)

(5)

or equivalently f (x)/g(x) is non-decreasing in x .

Theorem

If F likelihood ration dominates G, then F hazard-rate and reverse-hazard-rate
dominates G.
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Affiliated random variables
Let x ∈ RN and y ∈ RN .

Definition

The component-wise maximum of x and y is

x ∨ y = {max(x1, y1),max(x2, y2), . . . ,max(xN , yN)}

The component-wise minimum of x and y is

x ∧ y = {min(x1, y1),min(x2, y2), . . . ,min(xN , yN)}

Consider the random variables x̃1x̃2 . . . , x̃N . Let f : D → R+ be the joint density
function. The variables x̃1, x̃2 . . . , x̃N are said to be affiliated if for all x , y ∈ D

f (x ∨ y)f (x ∧ y) ≥ f (x)f (y)
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Affiliated random variables: some properties

Proposition

Let x̃ = {x̃1, x̃2, . . . , x̃N} be affiliated random variables, then
1 If x̃ and ỹ are affiliated then for any x ′ ≥ x, on has that F (y |x ′) dominates

F (y |x) in terms of likelihood ratio.
2 E [x̃i |x̃j = xj ] is an increasing function of xj .

3 If γ is an increasing function from D to R, then

E [γ(x̃)|x̃1 ≤ x1, x̃2 ≤ x2 . . . , x̃N ≤ xn]

Is an increasing function of x1, x2, . . . , xN

4 Let b1(·), b2(·), . . . , bN(·) strictly increasing function. Then
b1(x̃1), b2(x̃2), . . . , bN(x̃N) are affiliated random variables.

5 Fix x̃1 and let x̃ (1,N), x̃ (2,N), x̃ (N−1,N) denote the highest, second highest and so
on up to the (N − 1)-th highest realization of x̃2, x̃2, . . . , x̃N . Then
x̃ (1,N), x̃ (2,N), x̃ (N−1,N) are affiliated random variables.

Stefano Lovo, HEC Paris Auctions 53 / 71



Introduction
Auction Formats

Independent Private Values
Auction with interdependent values

Stochastic orders and affiliation
Auctions with affiliated random variables

Stefano Lovo, HEC Paris Auctions 54 / 71



Introduction
Auction Formats

Independent Private Values
Auction with interdependent values

Stochastic orders and affiliation
Auctions with affiliated random variables

Milgrom Weber Econometrica (1982)

1 There are N bidders in an auction.
2 There are N random variables x̃1, x̃2, ..., x̃N drawn from the same interval [0, 1].

These random variables are affiliated.
3 Each bidder i privately observes x̃i but does not observe the realization of the

other random variables.
4 A bidder actual valuation for the object is

vi = u(xi , x−i ) (6)

x−i = {x̃1, . . . , x̃i−1, x̃i+1, . . . , x̃N} and u(·) satisfies:
u(·) is bounded nondecreasing in all its arguments and twice continuously
differentiable.
u(·) is symmetric in the last N − 1 components.
u(0, 0) = 0
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Some examples for u(.)

u(xi , x−i ) = αxi + β
∑
j ̸=i

xj

u(xi , x−i ) = xα
i
(
Πj ̸=i xj

)β
u(xi , x−i ) = exp[αxi ]βmax

j ̸=i
xj

with α, β > 0.
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My expected valuation given the highest of my
competitors’ type

Let
Ỹ1 = max

j ̸=i
x̃j

G(x |xi) := Pr [Ỹ1 ≤ x |x̃i = xi ]

g(x |xi) :=
∂G(x |xi)

∂x

v(x , y) = E
[
u(x̃i , x̃−i)|x̃i = x , Ỹ1 = y

]
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Symmetric equilibrium of the second price auction

Proposition
In a symmetric equilibrium of a second price auction:

βII(x) = v(x , x)
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Symmetric equilibrium of the second price auction
Proof:

Π(x , z)︸ ︷︷ ︸
expected payoff fo a type x bidder bidding βII (z)

=

∫ z

0
(v(x , y)− βII(y))g(y |x)dy

=

∫ z

0
(v(x , y)− v(y , y))g(y |x)dy

f.o.c.
∂Π(x , z)

∂z
= (v(x , z)− v(z, z))g(z|x)|z=x = 0

s.o.c.
∂2Π(x , z)
∂x∂z

=
∂v(x , z)

∂x
> 0
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Symmetric equilibrium of the first price auction

Proposition

In a symmetric equilibrium of a first price auction:

βI(x) =
∫ x

0
v(y , y)dL(y |x)

where

L(y |x) = exp

(
−
∫ x

y

g(t |t)
G(t |t)

dt
)
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Symmetric equilibrium of the first price auction
Proof 1/7

expected payoff fo a type x bidder bidding βI (z)︷ ︸︸ ︷
Π(x , z) =

∫ z

0
(v(x , y)− βI(z))g(y |x)dy

=

∫ z

0
v(x , y)g(y |x)dy − βI(z)G(z|x)

f.o.c.: ∂Π(x,z)
∂z |z=x = 0

βI ′(x) + βI(x)
g(x |x)
G(x |x)

= v(x , x)
g(x |x)
G(x |x)

(7)

multiplying both sides of (7) by a function µ(x) satisfying µ′(x) = µ(x) g(x|x)
G(x|x) :

µ(x)βI ′(x) + βI(x)µ′(x) = v(x , x)
g(x |x)
G(x |x)

µ(x)

Stefano Lovo, HEC Paris Auctions 62 / 71



Introduction
Auction Formats

Independent Private Values
Auction with interdependent values

Stochastic orders and affiliation
Auctions with affiliated random variables

Symmetric equilibrium of the first price auction
Proof 1/7

expected payoff fo a type x bidder bidding βI (z)︷ ︸︸ ︷
Π(x , z) =

∫ z

0
(v(x , y)− βI(z))g(y |x)dy

=

∫ z

0
v(x , y)g(y |x)dy − βI(z)G(z|x)

f.o.c.: ∂Π(x,z)
∂z |z=x = 0

βI ′(x) + βI(x)
g(x |x)
G(x |x)

= v(x , x)
g(x |x)
G(x |x)

(7)

multiplying both sides of (7) by a function µ(x) satisfying µ′(x) = µ(x) g(x|x)
G(x|x) :

µ(x)βI ′(x) + βI(x)µ′(x) = v(x , x)
g(x |x)
G(x |x)

µ(x)

Stefano Lovo, HEC Paris Auctions 62 / 71



Introduction
Auction Formats

Independent Private Values
Auction with interdependent values

Stochastic orders and affiliation
Auctions with affiliated random variables

Symmetric equilibrium of the first price auction
Proof 1/7

expected payoff fo a type x bidder bidding βI (z)︷ ︸︸ ︷
Π(x , z) =

∫ z

0
(v(x , y)− βI(z))g(y |x)dy

=

∫ z

0
v(x , y)g(y |x)dy − βI(z)G(z|x)

f.o.c.: ∂Π(x,z)
∂z |z=x = 0

βI ′(x) + βI(x)
g(x |x)
G(x |x)

= v(x , x)
g(x |x)
G(x |x)

(7)

multiplying both sides of (7) by a function µ(x) satisfying µ′(x) = µ(x) g(x|x)
G(x|x) :

µ(x)βI ′(x) + βI(x)µ′(x) = v(x , x)
g(x |x)
G(x |x)

µ(x)

Stefano Lovo, HEC Paris Auctions 62 / 71



Introduction
Auction Formats

Independent Private Values
Auction with interdependent values

Stochastic orders and affiliation
Auctions with affiliated random variables

Symmetric equilibrium of the first price auction
Proof 1/7

expected payoff fo a type x bidder bidding βI (z)︷ ︸︸ ︷
Π(x , z) =

∫ z

0
(v(x , y)− βI(z))g(y |x)dy

=

∫ z

0
v(x , y)g(y |x)dy − βI(z)G(z|x)

f.o.c.: ∂Π(x,z)
∂z |z=x = 0

βI ′(x) + βI(x)
g(x |x)
G(x |x)

= v(x , x)
g(x |x)
G(x |x)

(7)

multiplying both sides of (7) by a function µ(x) satisfying µ′(x) = µ(x) g(x|x)
G(x|x) :

µ(x)βI ′(x) + βI(x)µ′(x) = v(x , x)
g(x |x)
G(x |x)

µ(x)

Stefano Lovo, HEC Paris Auctions 62 / 71



Introduction
Auction Formats

Independent Private Values
Auction with interdependent values

Stochastic orders and affiliation
Auctions with affiliated random variables

Symmetric equilibrium of the first price auction
Proof 1/7

expected payoff fo a type x bidder bidding βI (z)︷ ︸︸ ︷
Π(x , z) =

∫ z

0
(v(x , y)− βI(z))g(y |x)dy

=

∫ z

0
v(x , y)g(y |x)dy − βI(z)G(z|x)

f.o.c.: ∂Π(x,z)
∂z |z=x = 0

βI ′(x) + βI(x)
g(x |x)
G(x |x)

= v(x , x)
g(x |x)
G(x |x)

(7)

multiplying both sides of (7) by a function µ(x) satisfying µ′(x) = µ(x) g(x|x)
G(x|x) :

µ(x)βI ′(x) + βI(x)µ′(x) = v(x , x)
g(x |x)
G(x |x)

µ(x)

Stefano Lovo, HEC Paris Auctions 62 / 71



Introduction
Auction Formats

Independent Private Values
Auction with interdependent values

Stochastic orders and affiliation
Auctions with affiliated random variables

Symmetric equilibrium of the first price auction
Proof 1/7

expected payoff fo a type x bidder bidding βI (z)︷ ︸︸ ︷
Π(x , z) =

∫ z

0
(v(x , y)− βI(z))g(y |x)dy

=

∫ z

0
v(x , y)g(y |x)dy − βI(z)G(z|x)

f.o.c.: ∂Π(x,z)
∂z |z=x = 0

βI ′(x) + βI(x)
g(x |x)
G(x |x)

= v(x , x)
g(x |x)
G(x |x)

(7)

multiplying both sides of (7) by a function µ(x) satisfying µ′(x) = µ(x) g(x|x)
G(x|x) :

µ(x)βI ′(x) + βI(x)µ′(x) = v(x , x)
g(x |x)
G(x |x)

µ(x)

Stefano Lovo, HEC Paris Auctions 62 / 71



Introduction
Auction Formats

Independent Private Values
Auction with interdependent values

Stochastic orders and affiliation
Auctions with affiliated random variables

Symmetric equilibrium of the first price auction
Proof 1/7

expected payoff fo a type x bidder bidding βI (z)︷ ︸︸ ︷
Π(x , z) =

∫ z

0
(v(x , y)− βI(z))g(y |x)dy

=

∫ z

0
v(x , y)g(y |x)dy − βI(z)G(z|x)

f.o.c.: ∂Π(x,z)
∂z |z=x = 0

βI ′(x) + βI(x)
g(x |x)
G(x |x)

= v(x , x)
g(x |x)
G(x |x)

(7)

multiplying both sides of (7) by a function µ(x) satisfying µ′(x) = µ(x) g(x|x)
G(x|x) :

µ(x)βI ′(x) + βI(x)µ′(x) = v(x , x)
g(x |x)
G(x |x)

µ(x)

Stefano Lovo, HEC Paris Auctions 62 / 71



Introduction
Auction Formats

Independent Private Values
Auction with interdependent values

Stochastic orders and affiliation
Auctions with affiliated random variables

Symmetric equilibrium of the first price auction
Proof 2/7

µ(x)βI ′(x) + βI(x)µ′(x) = v(x , x)
g(x |x)
G(x |x)

µ(x)

integrating both sides for z ∈ [0, x ]

[
µ(z)βI(z)

]x

0
=

∫ x

0
v(y , y)

g(y |y)
G(y |y)

µ(y)dy

using βI(0) = 0

βI(x) =

∫ x
0 v(y , y) g(y|y)

G(y|y)µ(y)dy

µ(x)
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∫ x
0 v(y , y) g(y|y)

G(y|y)µ(y)dy

µ(x)
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Symmetric equilibrium of the first price auction
Proof 3/7

βI(x) =

∫ x
0 v(y , y) g(y|y)

G(y|y)µ(y)dy

µ(x)

Note that

µ(x) = µ(0) exp
(∫ x

0

g(z|z)
G(y |z)

dz
)

⇒ µ′(x) = µ(x)
g(x |x)
G(x |x)

βI(x) =

∫ x
0 v(y , y)

µ′(y)=µ(0) g(y|y)
G(y|y) exp

(∫ y
0

g(z|z)
G(y|z) dz

)
︷ ︸︸ ︷
g(y |y)
G(y |y)

µ(y) dy

µ(x)︸︷︷︸
µ(0) exp

(∫ x
0

g(z|z)
G(y|z) dz

)
=

=

∫ x

0
v(y , y)

g(y |y)
G(y |y)

exp

(
−
∫ x

y

g(z|z)
G(z|z)

dz
)

dy
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Symmetric equilibrium of the first price auction
Proof 4/7

βI(x) =
∫ x

0
v(y , y)

g(y |y)
G(y |y)

exp

(
−
∫ x

y

g(z|z)
G(z|z)

dz
)

dy

We set

L(y |x) = exp

(
−
∫ x

y

g(t |t)
G(t |t)

dt
)

⇒ βI(x) =
∫ x

0
v(y , y)dL(y |x)
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Symmetric equilibrium of the first price auction
Proof 5/7

Second order condition:
∂Π(x , z)

∂z

∣∣∣∣
z<x

> 0

∂Π(x , z)
∂z

∣∣∣∣
z>x

< 0

∂Π(x , z)
∂z

= G(z|x)
[
(v(x , z)− βI(z))

g(z|x)
G(z|x)

− βI ′(z)
]
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Symmetric equilibrium of the first price auction
Proof 6/7

Second order condition:
∂Π(z, x)

∂z

∣∣∣∣
z<x

> 0

∂Π(z, x)
∂z

= G(z|x)

(v(x , z)︸ ︷︷ ︸
>v(z,z)

−βI(z))
g(z|x)
G(z|x)︸ ︷︷ ︸
>

g(z|z)
G(z|z)

βI ′(z)


> G(z|x)

[
(v(z, z)− βI(z))

g(z|z)
G(z|z)

− βI ′(z)
]

︸ ︷︷ ︸
=0, because of f.o.c.

Stefano Lovo, HEC Paris Auctions 67 / 71



Introduction
Auction Formats

Independent Private Values
Auction with interdependent values

Stochastic orders and affiliation
Auctions with affiliated random variables

Symmetric equilibrium of the first price auction
Proof 7/7

Second order condition:
∂Π(z, x)

∂z

∣∣∣∣
z>x

< 0

∂Π(z, x)
∂z

= G(z|x)

(v(x , z)︸ ︷︷ ︸
<v(z,z)

−βI(z))
g(z|x)
G(z|x)︸ ︷︷ ︸
<

g(z|z)
G(z|z)

βI ′(z)


< G(z|x)

[
(v(z, z)− βI(z))

g(z|z)
G(z|z)

− βI ′(z)
]

︸ ︷︷ ︸
=0
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Japanese auction

1 All bidders are in the same room.
2 The auctioneer starts with a price of 0 and gradually and

continuously increases the price.
3 When a bidder deems that the price reached a level that is

too high for him/her, he or she exits the room.
4 Bidders who exit are not allow to come back in the room.
5 As soon as there is only one remaining bidder in the room,

the auctioneer stops increasing the price, the bidder left is
the winner and pays that price.
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Symmetric equilibrium of the English and the
Japanese auction

Preliminaries: Let

J(x , x) := u(x , x , . . . , x)

J(x , (x , x1)) := u(x , x , . . . , x , x1)

J(x , (x , x1, x2)) := u(x , x , . . . , x , x1, x2)

. . .

J(x , (x , x1, x2, . . . , xm)) := u(x , x , . . . , x , x1, x2, . . . , xm)

Remark: J(·) is strictly increasing. In particular it is invertible in x .
Let xm(p, x1, x2, · · · , xm−1) be the x such that

J(x , (x , x1, x2, . . . , xm)) = p
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Symmetric equilibrium of the English and the
Japanese auction

Proposition

The following strategy form an equilibrium of the Japanese auction: For bidder of type
x

As long as no bidder exits, stay until the price reaches J(x , x), and then exit.

If the first bidder exited at price p1, stay until the price reaches J(x , (x , x [1])),
and then exit. Where J(x [1], x [1]) = p.

If the first bidder exited at price p1 and the second at price p2, stay until the price
reaches J(x , (x , x [1], x [2])), and then exit. Where J(x ′′, (x ′′, x ′) = p2.

. . .

When there only are two bidders and the other exited at time p1, p2, . . . pN−2,
stay until the price reaches J(x , (x , x [1], . . . , x [N2])
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Proof:

If all other bidders follow this strategy bidder i can deuce the type of exiting
bidders. That is x [m] = x̃m i.e. the signal of the m-th bidder to exit.

If all bidders follows this strategy, the highest type wins and get a payoff of

u(x , xN , xN−1, . . . x2, x1)− u(xN−1, xN , xN−1, . . . x2, x1)︸ ︷︷ ︸
Price the winners pays

> 0︸︷︷︸
Because x≥XN−1

(8)

If a bidder deviates either
Has not the highest type and wins: and get a payoff

u(x , xN , xN−1, . . . x2, x1)− u(xN−1, xN , xN−1, . . . x2, x1)︸ ︷︷ ︸
Price the winners pays

< 0︸︷︷︸
Because x<XN−1

Has not the highest type and does not win: and get a payoff 0.
Has the highest type and wins: and get a payoff (8)
Has the highest type and does not win: and get a payoff 0
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