Market Microstructure Quote Driven Markets

Stefano Lovo

HEC, Paris

HEC, Paris

《口》 《國》 《注》 《注》 [注]

900

Traders

Customers

- Institutional Investors: •
- Individual Investors: ۲
- Dealers
- Intermediaries
 - Brokers: Match customer orders when possible; otherwise, they transmit traders' orders to the market. Brokers do not trade for their own accounts.
 - **Specialists:** (NYSE) Agents responsible for providing liquidity and maintaining orderly trading in designated securities.
 - Market Makers: Agents who continuously buy and sell securities at their bid and ask prices, supplying liquidity.

DQ P

Types of Markets

- Order-Driven Markets (or Pure Auction Markets): Investors are represented by brokers and trade directly without market-maker intermediation. (e.g., Island, Paris Bourse)
 - <u>Call Auction Markets</u>: Trading occurs at specific times (e.g., at market open or fixing). Investors place orders (prices and quantities), which execute at a single clearing price that maximizes trade volume.
 - <u>Continuous Auction Markets</u>: Investors trade against resting orders submitted earlier by other investors (or floor brokers, if applicable). (e.g., Euronext, Toronto Stock Exchange, ECNs)

- Quote-Driven Markets
- Hybrid Markets

- Order-Driven Markets
 - <u>Call Auction Markets</u>
 - <u>Continuous Auction Markets</u>

- Quote-Driven Markets: Dealers post bid and ask quotes at which public investors can trade (e.g., Bond Markets MTS, FX markets, London Stock Exchange). In this case, dealers are also called market makers.
- Hybrid Markets: Call auction markets open to dealers and specialists (e.g., NYSE). Dealer markets where traders' limit orders are also posted (e.g., Nasdaq).

(日) (日) (日)

Quote-Driven Market

😹 MB Tr	ader			ELTR	- 🗆 ×
Name	Bid	Size	Name	Ask	Size
MLCO	18 1/4	10	LEHM	18 3/8	20
GSCO	18 1/4	20	MASH	18 1/2	10
PRUS	18 1/4	30	AGED	18 5/8	17
BEST	18 1/8	10	SHWD	18 5/8	10
TSC0	18 1/16	10	TSCO	18 3/4	50

- **Bid Price**: The price at which a market maker is willing to buy a given quantity of the asset.
- Ask Price: The price at which a market maker is willing to sell a given quantity of the asset.
- **Inside Spread**: The difference between the lowest ask price and the highest bid price.
- Market Depth: The maximum volume of trade available at the same price.
- Tick Size: The minimum allowable price increment for quotes.

 \vdash \rightarrow \equiv \vdash

DQ P

• Round Lot: The standard trading unit.

Key Questions Addressed in This Course

- What factors influence price levels?
- Why do bid and ask prices differ?
- What determines the inside spread?
- What affects market depth?
- How can informed speculators best exploit their private information?
- What information is embedded in trading prices?
- What information is contained in trading volume?

SOR

Normal-CARA Mathematical Preliminaries

Let $\tilde{x} \sim N(m_x, \sigma_x^2)$ and $\tilde{y} \sim N(m_y, \sigma_y^2)$ with $Cov(\tilde{x}, \tilde{y}) = \sigma_{xy}$. Then:

$$E\left[\tilde{x}|\tilde{y}=y\right] = m_x + (y-m_y)\frac{\sigma_{xy}}{\sigma_y^2} \tag{1}$$

If \tilde{z} follows $f(\tilde{z}|x) \sim N(x, \sigma_z^2)$, then:

$$f(\tilde{x}|\tilde{z}=z) \sim N\left(\frac{\frac{m_{x}}{\sigma_{x}^{2}} + \frac{z}{\sigma_{z}^{2}}}{\frac{1}{\sigma_{x}^{2}} + \frac{1}{\sigma_{z}^{2}}}, \frac{1}{\frac{1}{\sigma_{x}^{2}} + \frac{1}{\sigma_{z}^{2}}}\right)$$
(2)

For a Constant Absolute Risk Aversion (CARA) utility function :

$$U(w) = -e^{-\gamma w} \tag{3}$$

1

2

where γ is the risk aversion coefficient. Then:

$$E[U(x)] = E\left[-e^{-\gamma \tilde{x}}\right] = -e^{-\gamma \left(m_x - \gamma \frac{\sigma_x^2}{2}\right)}$$
(4)

Stefano Lovo, HEC Paris

Auctions

Rodamp: Quote-Driven Markets and Static Models

Inventory Model

- Informed Traders
 - Non-strategic informed traders (Glosten and Milgrom (1985))

ヨトィヨト

SOR

• Strategic informed traders (Kyle (1985))

Informed Market Makers

A Simple Model of Quote-Driven Markets

- We consider a market where a risky asset (security) is exchanged for a risk-free asset (money). The fundamental value of the risky asset is represented by the random variable \tilde{v} .
- Trading Rules:
 - Market makers <u>simultaneously</u> post bid and ask prices at which they are willing to buy or sell, respectively, a predefined quantity *q* of the security.
 - 2 Traders decide whether to buy or sell the risky asset (submit market orders):
 - If they want to sell, they sell *q* shares of the risky asset to the market maker posting the highest bid price.
 - If they want to buy, they buy *q* shares of the risky asset from the market maker posting the lowest ask price.

DQ P

Price competition among market makers can be modeled as two first-price sealed-bid auctions within a common value framework:

• Bid prices result from bidding strategies in a first-price auction to buy the risky asset.

• Ask prices result from bidding strategies in a first-price procurement auction to sell the risky asset.

Benchmark: Risk-Neutral Market Makers with No Information Asymmetry

Lemma

If market makers are risk-neutral, then:

Ask price = Bid price = $E[\tilde{v}]$

Proof: Bertrand competition.

Implications: When market makers are risk-neutral and share a common distribution for \tilde{v} , the inside spread is zero, minimizing transaction costs.

Inventory Model

- Informed Traders
 - Non-strategic informed traders (Glosten and Milgrom (1985))
 - Strategic informed traders (Kyle (1985))

Informed Market Makers

The Economy

- Fundamental Value of the Asset: $\tilde{v} \sim N(V, \sigma^2)$
- Liquidity Traders: Experience liquidity shocks requiring them to either sell *q* units of the risky asset or buy *q* units.
- Market Makers: Agents responsible for clearing traders' market orders. The post-trade utility function for market maker *i* is:

$$u(C_i+I_i\tilde{v}-q(P-\tilde{v}))$$

伺 ト イヨ ト イヨ トー

DQ P

- CARA utility function: $u(w) = -e^{-\gamma w}$
- Market maker *i*'s cash endowment: *C_i*
- Market maker *i*'s initial inventory: *I_i*
- Trading price: P
- Traded quantity: q

Definition

• The **bid reservation quote** *rb_i* for market maker *i* is the maximum price they are willing to pay for *q* additional units of the risky asset:

 $E[u(C_i + I_i \tilde{v})] = E[u(C_i + I_i \tilde{v} - q(rb_i - \tilde{v}))]$

• The ask reservation quote *ra_i* for market maker *i* is the minimum price at which they are willing to sell *q* units of the risky asset:

 $E[u(C_i + I_i \tilde{v})] = E[u(C_i + I_i \tilde{v} + q(ra_i - \tilde{v}))]$

・ 同 ト ・ ヨ ト ・ ヨ ト

うせん 叫 ふぼや 4 叫 マネクマ

Reservation Quotes

Lemma

Given the CARA normal setup:

$$egin{aligned} rb_i &= V - rac{\gamma\sigma^2}{2}(q+2I_i) \ ra_i &= V + rac{\gamma\sigma^2}{2}(q-2I_i) \end{aligned}$$

- Reservation quotes increase with V.
- Reservation quotes decrease with I_i.
- $rb_i < ra_i$.
- $ra_i rb_i = \gamma \sigma^2 q$ increases with γ and σ .

Proof: Recall that for $\tilde{x} \sim N(m_x, \sigma_x^2)$, we have:

$$E[U(x)] = E\left[-e^{-\gamma \tilde{x}}\right] = -e^{-\gamma \left(m_x - \gamma \frac{\sigma_x^2}{2}\right)}$$

 Each market maker (MM) knows their own initial portfolio (C_i, I_i) but not those of others.

• MMs' inventories are independently and identically distributed (i.i.d.).

・ 同 ト ・ ヨ ト ・ ヨ ト

SOR

Computing the Optimal Quoting Strategy

$$\begin{aligned} &W_i(0) &:= C_i + I_i \tilde{v} \\ &W_i(b) &:= W_i(0) + q(\tilde{v} - b). \end{aligned}$$

Note that:

$$E[u(W_i(b))] = E[u(W_i(0))e^{-\gamma(rb_i-b)q}]$$

$$\simeq E[u(W_i(0))] + E[u(W_i(0))]\gamma q(b-rb_i)$$

In the bid auction, MM *i* sets b_i^* such that:

 $b_i^* \in \arg \max_b (E[u(W_i(b))] - E[u(W_i(0))]) \Pr(b_{-i} < b_i)$ $\simeq \arg \max_b (rb_i - b) \Pr(b_{-i} < b_i)$ $b_i^* \simeq E[\tilde{rb}_{-i}^{(1)} | \tilde{rb}_{-i}^{(1)} \le rb_i]$

Note that rb_i is decreasing in l_i .

DQ P

うせん 叫 ふぼや 4 叫 マネクマ

Lemma

In a symmetric equilibrium, MM i sets their bid and ask quotes as:

 $b(I_i) \simeq E[rb_i(\tilde{I}_{-i}^{(l)})|\tilde{I}_{-i}^{(l)} > I_i]$ $a(I_i) \simeq E[ra_i(\tilde{I}_{-i}^{(h)})|\tilde{I}_{-i}^{(h)} < I_i]$

where $\tilde{I}_{-i}^{(I)}$ and $\tilde{I}_{-i}^{(h)}$ are the lowest and highest inventories among MM i's competitors, respectively.

Empirical Implications

- The MM who wins the bid auction has the smallest inventory.
- The MM who wins the ask auction has the largest inventory.
- The larger an MM's inventory, the lower their bid and ask quotes.
- Transaction costs, measured as the inside spread:
 - Decrease with the number of MMs.
 - Increase with MMs' risk aversion γ .
 - Increase with the intrinsic asset risk σ^2 .

lame	Bid	Size	Name	Ask	Size
1LC0	18 1/4	10	LEHM	18 3/8	20
GS CO	18 1/4	20	MASH	18 1/2	10
PRUS	18 1/4	30	AGED	18 5/8	17
BEST	18 1/8	10	SHWD	18 5/8	10
ISC0	18 1/16	10	TSCO	18 3/4	50

San

- Inventory Model
- Informed Traders
 - Non-strategic informed traders (Glosten and Milgrom (1985))

DQC2

• Strategic informed traders (Kyle (1985))

- Informed Intermediaries
 - Informed brokers
 - Informed market makers

Informed Non-Strategic Traders (Glosten and Milgrom JFE 1985)

The Economy: Agents from three groups trade the security for money:

- **Risk-Neutral Market Makers**: Provide liquidity to the market by trading the risky asset with other agents at their bid and ask prices.
- Risk-Neutral Informed Speculators (Informed Traders): Risk-neutral traders with some private information about the liquidation value of the risky asset.
- Liquidity (or Noise) Traders: Participate in the market for reasons other than speculation (e.g., liquidity needs, portfolio hedging, etc.); their excess demand is exogenous and random.

The trader population consists of a proportion μ of informed traders and $(1 - \mu)/2$ buyer liquidity traders and $(1 - \mu)/2$ seller liquidity traders.

DQ P

Security Fundamentals and Information Structure

• Security Fundamental Value:

 $\tilde{\mathbf{v}} = \tilde{\mathbf{V}} + \tilde{\varepsilon}$

where $\tilde{V} \in \{V_1, V_2\}$, $\Pr(\tilde{V} = V_2) = \pi$, $V_1 < V_2$, $E\left[\tilde{\varepsilon}|\tilde{V}\right] = 0$, and $Var(\tilde{\varepsilon}|\tilde{V}) \ge 0$.

• Informed Traders' Information: Each informed trader receives a private signal $\tilde{s} \in \{I, h\}$, with

$$\Pr(\tilde{s} = l | V_1) = \Pr(\tilde{s} = h | V_2) = r \in \left(\frac{1}{2}, 1\right)$$

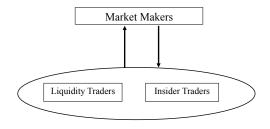
Signals are independent across informed traders and uncorrelated with $\tilde{\varepsilon}.$

 $V_1 \leq E\left[\tilde{v}|I
ight] < E\left[\tilde{v}
ight] < E\left[\tilde{v}|h
ight] \leq V_2$

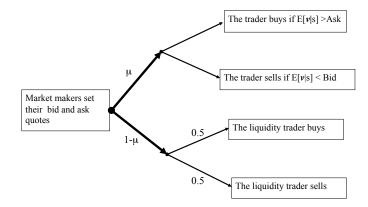
• Market makers have no private information about \tilde{v} .

Trading Mechanism

- 1 Market makers submit bid and ask prices.
- Informed traders and liquidity traders submit anonymous orders.



Trading Mechanism



Theorem

In equilibrium, all market makers' bid and ask prices satisfy:

$$b^* = E\left[ilde{v} | trader \ sells \ at \ b^*
ight] = V_1 + \pi^S(\pi, \mu, r)(V_2 - V_1)$$
 (5)

$$a^* = E\left[ilde{v} | trader \ buys \ at \ a^*
ight] = V_1 + \pi^B(\pi,\mu,r)(V_2 - V_1)$$
 (6)

where

$$\pi^{S}(\pi,\mu,r) = \frac{(\mu(1-r) + (1-\mu)/2)\pi}{(1-\mu)/2 + \mu((1-r)\pi + r(1-\pi))}$$
$$\pi^{B}(\pi,\mu,r) = \frac{(\mu r + (1-\mu)/2)\pi}{(1-\mu)/2 + \mu(r\pi + (1-r)(1-\pi))}$$

프 + + 프 + - -

< □ > < 同 > <

nac

1

うせん 叫 ふぼや 4 叫 マネクマ

- If $\mu > 0$ and r > 1/2, then the bid-ask spread is positive despite market makers being risk-neutral.
- The bid-ask spread increases with μ, the proportion of informed traders in the market.
- The bid-ask spread increases with *r*, the quality of informed traders' signals.
- The bid-ask spread increases with the relevance of traders' information, as measured by:

$$Var[\tilde{V}] = \pi (1 - \pi) (V_2 - V_1)^2$$

伺下 イヨト イヨト

A Generalization of Glosten and Milgrom

The fundamental value of the asset is given by: $\tilde{v} = \tilde{V} + \tilde{\varepsilon}$, where $\tilde{V} \in [V_1, V_2]$ with density f(.), and $E[\tilde{\varepsilon}|\tilde{V}] = 0$, with $Var(\tilde{\varepsilon}) \ge 0$

- Risk-neutral market makers.
- Informed, risk-averse investors who buy with probability D(a, V) and sell with probability S(b, V).
 - D(.) is continuous and increasing in V and decreasing in a.
 - S(.) is continuous and decreasing in V and increasing in b.

Market maker's expected payoff:

$$W^b_{MM}(b) := E\left[(ilde{V} - b)S(b, ilde{V})
ight]$$

Bertrand competition should lead MMs to set b such that

$$E\left[(\tilde{V}-b)S(b,\tilde{V})
ight]=0$$

- ∃ ⊢

SOR

- Do we know this equation has a solution in b?
- What if there is more than one solution?

Existence of zero-profit equilibrium

• Supposes that there exists $\delta > 0$, such that $S(V - \delta, V) > 0$, Then

$$E\left[(\tilde{V}-b)S(b,\tilde{V})\right]\Big|_{b=V_1-\delta}>0$$

Note that

$$E\left[\left(\tilde{V}-b\right)S(b,\tilde{V})\right]\Big|_{b=E[\tilde{V}]} = \left(\int_{V_1}^{V_2} vS(E[\tilde{V}],v)f(v)dv - E[\tilde{V}]\int_{V_1}^{V_2} S(E[\tilde{V}],v)f(v)dv\right) < 0$$

because

$$E[\tilde{V}] = \int_{V_1}^{V_2} vf(v) dv > \int_{V_1}^{V_2} vf(v) \left(\frac{S(E[\tilde{V}], v)}{\int_{V_1}^{V_2} f(z)S(E[\tilde{V}], z) dz} \right) dv$$

イロト イポト イヨト イヨト

SQR

• Hence $E\left[(\tilde{V}-b)S(b,\tilde{V})\right]$ is nil for some $b \in (V_1 - \delta, E[\tilde{V}])$

うせん 叫 ふぼや 4 叫 マネクマ

Theorem

An equilibrium always exists. Market makers' expected profit is zero, and bid and ask prices satisfy:

 $b < E[\tilde{V}] < a$

The spread a - b increases with $\frac{\partial (D(a,V) - S(b,V))}{\partial V}$.

- Investors have a CARA utility function with risk aversion parameter γ .
- Investors hold an initial inventory / of the risky asset.
- The cumulative distribution of investor inventories is denoted by: $G(I) = \Pr(\text{Investor } i\text{'s inventory is less than } I)$.
- The fundamental value of the asset follows: $\tilde{v} = \tilde{V} + \tilde{\varepsilon}$, where

 $\tilde{V} \sim N(V, \sigma_V^2)$ $\tilde{\varepsilon} \sim N(0, \sigma_c^2)$

• Investors observe the realization of \tilde{V} , but not the realization of $\tilde{\epsilon}$.

うせん 叫 ふぼや 4 叫 マネクマ

Resulting Distribution of Buy and Sell Orders

Exercise: Show that:

$$D(a, \tilde{V}) = G\left(\frac{\tilde{V}-a}{\gamma\sigma_{\varepsilon}^{2}} - \frac{1}{2}\right)$$
$$S(b, \tilde{V}) = 1 - G\left(\frac{\tilde{V}-b}{\gamma\sigma_{\varepsilon}^{2}} + \frac{1}{2}\right)$$

▶ < 토 ▶ ...

- 4 同 ト - 4 三

SQC

Inventory Model

- Informed Traders
 - Non-strategic informed traders (Glosten and Milgrom (1985))

< ⊒ >

nac

• Strategic informed traders (Kyle (1985))

Informed Market Makers

Strategic Informed Trader (Kyle, ECT 1985)

The Economy:

Security liquidation value:

 $\tilde{v} \sim N(w, \sigma^2)$

Three types of agents trade the security for money:

 Noise traders: Trade for liquidity reasons. Their aggregate market order is a random variable m, independent of v, with

 $\tilde{m} \sim N(0, \sigma_m^2)$

- A single informed speculator: A risk-neutral trader who privately knows v but not m.
- **Risk-neutral dealers**: Provide liquidity to the market. They do not observe \tilde{v} or \tilde{m} .

《日》《圖》《臣》《臣》

Trading Protocol

- Liquidity traders and the informed trader <u>simultaneously</u> choose the quantity they want to trade. No restrictions on trade volume.
 - *m*: Quantity traded by liquidity traders.
 - x: Quantity traded by the informed trader.
- 2 Dealers observe the aggregate order q = x + m and set a price p at which they clear the market.

Informed trader's payoff:

 $\Pi_I = x(\tilde{v} - p)$

Dealers' payoff:

$$\Pi_D = (x+m)(p-\tilde{v})$$

SOR

Competition among dealers forces p to be set such that they earn zero expected profit:

 $E[\Pi_D] = E[(x+m)(p-\tilde{v})|x+m] = 0 \Rightarrow$

 $p^*(x+m) = E[\tilde{v}|x+m]$

Remark: The conditional expectation depends on the informed trader's strategy $x^*(\cdot)$.

2 The informed trader chooses the quantity x* to maximize expected profit:

$$x^*(v) \in rg\max_x E\left[x(v-p^*(x+ ilde{m}))
ight]$$

- イロト イヨト - ヨ

DQ P

Remark: The optimal x^* depends on the dealers' pricing strategy $p^*(.)$.

Linear Equilibrium

Theorem

There exists a linear equilibrium where

$$x^{*}(v) = (v - w)\beta$$
 (7)
 $p^{*}(x + m) = w + (x + m)\lambda$ (8)

with $\beta := \sqrt{\frac{\sigma_m^2}{\sigma^2}}$ and $\lambda := \frac{1}{2}\sqrt{\frac{\sigma^2}{\sigma_m^2}}$. The informed trader's ex-ante expected payoff is:

$$E[\Pi_I] = \frac{\sigma_m \sigma}{2}$$

The ex-ante transaction cost for trading z is:

 $z(\tilde{v} - E[\tilde{p}|z]) = \lambda z^2$

Empirical Implications

- The informed trader's strategy becomes more (less) aggressive as σ_m^2 (resp. σ^2) increases.
- Price sensitivity to trading volume decreases (increases) as σ_m^2 (resp. σ^2) increases.
- The informed trader's profit increases with the amount of noise trading σ_m^2 and the precision of their signal σ^2 .
- Transaction costs decrease with noise trading σ_m^2 and increase with the precision of the informed trader's signal σ^2 .

- 同下 - 三下 - 三下

Proof 1/2

• $\tilde{x} + \tilde{m} =$

<ロト < 部 ト < 注 ト < 注 ト

€ 990

Proof 1/2

•
$$\tilde{x} + \tilde{m} = x^*(\tilde{v}) + \tilde{m} =$$

Stefano Lovo, HEC Paris Auctions

Ξ

•
$$\tilde{x} + \tilde{m} = x^*(\tilde{v}) + \tilde{m} = \beta(\tilde{v} - w) + \tilde{m}$$
:

◆ロ > ◆母 > ◆臣 > ◆臣 > 善臣 - のへぐ

•
$$\tilde{x} + \tilde{m} = x^*(\tilde{v}) + \tilde{m} = \beta(\tilde{v} - w) + \tilde{m} : N(0, \beta^2 \sigma^2 + \sigma_m^2)$$

Ξ

Proof 1/2

- $\tilde{x} + \tilde{m} = x^*(\tilde{v}) + \tilde{m} = \beta(\tilde{v} w) + \tilde{m} : N(0, \beta^2 \sigma^2 + \sigma_m^2)$
- $Cov(\tilde{v}, \tilde{x} + \tilde{m}) =$

Proof 1/2

- $\tilde{x} + \tilde{m} = x^*(\tilde{v}) + \tilde{m} = \beta(\tilde{v} w) + \tilde{m} : N(0, \beta^2 \sigma^2 + \sigma_m^2)$
- $Cov(\tilde{v}, \tilde{x} + \tilde{m}) = \beta \sigma^2$.

- $\tilde{x} + \tilde{m} = x^*(\tilde{v}) + \tilde{m} = \beta(\tilde{v} w) + \tilde{m} : N(0, \beta^2 \sigma^2 + \sigma_m^2)$
- Cov(ṽ, x̃ + m̃) = βσ².
 Recall that: if ỹ ~ N(m_y, σ_y²), z̃ ~ N(m_z, σ_z²), and Cov(ỹ, z̃) = σ_{yz}, then

$$E\left[\tilde{y}|\tilde{z}=z\right] = m_y + (z-m_z)\frac{\sigma_{yz}}{\sigma_z^2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

- $\tilde{x} + \tilde{m} = x^*(\tilde{v}) + \tilde{m} = \beta(\tilde{v} w) + \tilde{m} : N(0, \beta^2 \sigma^2 + \sigma_m^2)$ • $Cov(\tilde{v}, \tilde{x} + \tilde{m}) = \beta \sigma^2.$
- Recall that: if $\tilde{y} \sim N(m_y, \sigma_y^2)$, $\tilde{z} \sim N(m_z, \sigma_z^2)$, and $Cov(\tilde{y}, \tilde{z}) = \sigma_{yz}$, then

$$E\left[\tilde{y}|\tilde{z}=z\right] = m_y + (z-m_z)\frac{\sigma_{yz}}{\sigma_z^2}$$

(日) (古) (코) (코) (코) (코)

500

1 Given the informed trader's strategy $x^*(\tilde{v}) = \beta(\tilde{v} - w)$, the dealer's price is:

$$p^*(x+m) =$$

- $\tilde{x} + \tilde{m} = x^*(\tilde{v}) + \tilde{m} = \beta(\tilde{v} w) + \tilde{m} : N(0, \beta^2 \sigma^2 + \sigma_m^2)$ • $Cov(\tilde{v}, \tilde{x} + \tilde{m}) = \beta \sigma^2.$
- Recall that: if $\tilde{y} \sim N(m_y, \sigma_y^2)$, $\tilde{z} \sim N(m_z, \sigma_z^2)$, and $Cov(\tilde{y}, \tilde{z}) = \sigma_{yz}$, then

$$E\left[\tilde{y}|\tilde{z}=z\right] = m_y + (z-m_z)\frac{\sigma_{yz}}{\sigma_z^2}$$

(日) (古) (코) (코) (코) (코)

500

1 Given the informed trader's strategy $x^*(\tilde{v}) = \beta(\tilde{v} - w)$, the dealer's price is:

$$p^*(x+m) = E[\tilde{v}|\tilde{x}+\tilde{m}=x+m]$$

=

• $\tilde{x} + \tilde{m} = x^*(\tilde{v}) + \tilde{m} = \beta(\tilde{v} - w) + \tilde{m} : N(0, \beta^2 \sigma^2 + \sigma_m^2)$ • $Cov(\tilde{v}, \tilde{x} + \tilde{m}) = \beta \sigma^2$. • Recall that: if $\tilde{y} \sim N(m_y, \sigma_y^2)$, $\tilde{z} \sim N(m_z, \sigma_z^2)$, and $Cov(\tilde{y}, \tilde{z}) = \sigma_{yz}$, then

$$E\left[\tilde{y}|\tilde{z}=z\right]=m_y+(z-m_z)\frac{\sigma_{yz}}{\sigma_z^2}$$

1 Given the informed trader's strategy $x^*(\tilde{v}) = \beta(\tilde{v} - w)$, the dealer's price is:

$$p^{*}(x+m) = E[\tilde{v}|\tilde{x}+\tilde{m}=x+m]$$
$$= w+(x+m)\underbrace{\left(\frac{\beta\sigma^{2}}{\beta^{2}\sigma^{2}+\sigma_{m}^{2}}\right)}_{\lambda}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 の ()

• $\tilde{x} + \tilde{m} = x^*(\tilde{v}) + \tilde{m} = \beta(\tilde{v} - w) + \tilde{m} : N(0, \beta^2 \sigma^2 + \sigma_m^2)$ • $Cov(\tilde{v}, \tilde{x} + \tilde{m}) = \beta \sigma^2$. • Recall that: if $\tilde{y} \sim N(m_y, \sigma_y^2)$, $\tilde{z} \sim N(m_z, \sigma_z^2)$, and $Cov(\tilde{y}, \tilde{z}) = \sigma_{yz}$, then

$$E\left[\tilde{y}|\tilde{z}=z\right]=m_y+(z-m_z)\frac{\sigma_{yz}}{\sigma_z^2}$$

1 Given the informed trader's strategy $x^*(\tilde{v}) = \beta(\tilde{v} - w)$, the dealer's price is:

$$p^{*}(x+m) = E[\tilde{v}|\tilde{x}+\tilde{m}=x+m]$$
$$= w+(x+m)\underbrace{\left(\frac{\beta\sigma^{2}}{\beta^{2}\sigma^{2}+\sigma_{m}^{2}}\right)}_{\lambda}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 の ()

Proof 2/2

1 The informed trader's maximization problem, given $p^*(x + m) = w + \lambda(x + m)$:

Proof 2/2

1 The informed trader's maximization problem, given $p^*(x + m) = w + \lambda(x + m)$:

$$\max_{x} \quad E\left[x(v - (w + \lambda(x + \tilde{m})))\right] =$$

Proof 2/2

1 The informed trader's maximization problem, given $p^*(x + m) = w + \lambda(x + m)$:

$$\max_{x} \quad E\left[x(v - (w + \lambda(x + \tilde{m})))\right] = \max_{x} x(v - w) - \lambda x^{2}$$

$$\Rightarrow x^*(v) =$$

Proof 2/2

2

1 The informed trader's maximization problem, given $p^*(x + m) = w + \lambda(x + m)$:

$$\max_{x} \quad E\left[x(v - (w + \lambda(x + \tilde{m})))\right] = \max_{x} x(v - w) - \lambda x^{2}$$
$$\Rightarrow \quad x^{*}(v) = \underbrace{\left(\frac{1}{2\lambda}\right)}_{\beta}(v - w) = \beta(v - w)$$

$$\lambda = \frac{\beta \sigma^2}{\beta^2 \sigma^2 + \sigma_m^2}$$
$$\beta = \frac{1}{2\lambda}$$

《曰》《卽》《臣》《臣》

E 99€

Proof 2/2

2

(1) The informed trader's maximization problem, given $p^*(x + m) = w + \lambda(x + m)$:

$$\max_{x} \quad E\left[x(v - (w + \lambda(x + \tilde{m})))\right] = \max_{x} x(v - w) - \lambda x^{2}$$
$$\Rightarrow \quad x^{*}(v) = \underbrace{\left(\frac{1}{2\lambda}\right)}_{\beta}(v - w) = \beta(v - w)$$

$$\lambda = \frac{\beta \sigma^2}{\beta^2 \sigma^2 + \sigma_m^2}$$
$$\beta = \frac{1}{2\lambda}$$

which is satisfied for:

$$\beta = \sqrt{\frac{\sigma_m^2}{\sigma^2}}$$

and

$$\lambda = \frac{1}{2} \sqrt{\frac{\sigma^2}{\sigma_m^2}}$$

Main Implications from Glosten & Milgrom and Kyle

- Uninformed dealers compete in quotes to attract traders' market orders.
- 2 Traders can be either informed or uninformed about \tilde{V} .
- 3 Semi-strong form informational efficiency: The transaction price at which an order x is executed satisfies:

 $p(x) = E[\tilde{V}|x]$

 $E[p(\tilde{x})] = E[\tilde{V}]$

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

San

④ Price sensitivity to volume increases with:

- Adverse selection: The probability of facing an informed trader.
- $Var(\tilde{V})$: The significance of the informed trader's information.
- 5 Market makers/dealers earn zero expected profit.

- Inventory model
- Informed traders
 - Non-strategic informed traders
 - Strategic informed traders

Informed market makers

Informed Market Makers (Calcagno and Lovo, REStud 2006)

Economy:

- Fundamental asset value : $\tilde{v} = \tilde{V} + \tilde{\varepsilon}$, with $\tilde{V} \in \{V_1, V_2\}$, $\Pr(\tilde{V} = V_2) = \pi$, and $E[\tilde{\varepsilon}|\tilde{V}] = 0$.
- Market participants :
 - Risk-neutral market makers :
 - MM1 : A market maker who knows \tilde{V} .
 - MM2 : One or more uninformed market makers.
 - μ informed speculators who know \tilde{V} .
 - 1μ liquidity (or noise) traders who buy or sell with probability 1/2.

- 母 ト - ヨ ト - ヨ ト -

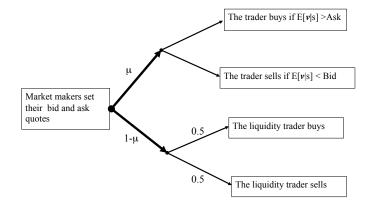
- (a) Market makers simultaneously post bid and ask prices at which they are willing to buy or sell a fixed institutional amount q = 1 of the security.
- 2 Traders decide whether to buy or sell the risky asset (submit market orders):
 - If they wish to sell, they sell q = 1 shares to the market maker offering the highest bid.

・ 同 ト ・ ヨ ト ・ ヨ ト -

SOR

• If they wish to buy, they buy q = 1 shares from the market maker quoting the lowest ask price.

Trading Mechanism



Э

First-price sealed-bid and ask auctions in a common value framework with one informed bidder and adverse selection from traders.

• MM1's expected payoff for a given $\tilde{V} \in \{V_1, V_2\}$:

イロト イポト イヨト イヨト

= nac

First-price sealed-bid and ask auctions in a common value framework with one informed bidder and adverse selection from traders.

• MM1's expected payoff for a given $\tilde{V} \in \{V_1, V_2\}$:

$$\begin{aligned} &(a_1 - V_1) \Pr(a_2 > a_1) \frac{1-\mu}{2} + (V_1 - b_1) \Pr(b_2 < b_1) \frac{1+\mu}{2} &, \quad \tilde{V} = V_1 \\ &(a_1 - V_2) \Pr(a_2 > a_1) \frac{1+\mu}{2} + (V_2 - b_1) \Pr(b_2 < b_1) \frac{1-\mu}{2} &, \quad \tilde{V} = V_2 \end{aligned}$$

MM2's expected payoff:

イロト イポト イヨト イヨト

= nac

First-price sealed-bid and ask auctions in a common value framework with one informed bidder and adverse selection from traders.

• MM1's expected payoff for a given $\tilde{V} \in \{V_1, V_2\}$:

$$\begin{aligned} &(a_1 - V_1) \operatorname{Pr}(a_2 > a_1) \frac{1 - \mu}{2} + (V_1 - b_1) \operatorname{Pr}(b_2 < b_1) \frac{1 + \mu}{2} &, \quad \tilde{V} = V_1 \\ &(a_1 - V_2) \operatorname{Pr}(a_2 > a_1) \frac{1 + \mu}{2} + (V_2 - b_1) \operatorname{Pr}(b_2 < b_1) \frac{1 - \mu}{2} &, \quad \tilde{V} = V_2 \end{aligned}$$

MM2's expected payoff:

$$(1 - \pi)(a_2 - V_1) \operatorname{Pr}(a_1 > a_2 | V_1) \frac{1 - \mu}{2} + \pi(a_2 - V_2) \operatorname{Pr}(a_1 > a_2 | V_2) \frac{1 + \mu}{2} + (1 - \pi)(V_1 - b_2) \operatorname{Pr}(b_1 < b_2 | V_1) \frac{1 + \mu}{2} + \pi(V_2 - b_2) \operatorname{Pr}(b_1 < b_2 | V_2) \frac{1 - \mu}{2}$$

イロト イポト イヨト イヨト

= nac

Lemma

The equilibrium quoting strategy is in mixed strategies , fully revealing (MM1's quotes reveal \tilde{V}), and unique.

- If $\tilde{V} = V_2$, it is profitable to buy :
 - 1 MM1 randomizes its bid in V_1, b^* .
 - 2 MM1 sets $a_1 = V_2$.
- If $\tilde{V} = V_1$, it is profitable to sell :
 - 1 MM1 sets $b_1 = V_1$.
 - 2 MM1 randomizes its ask in $]a^*, V_2]$.
- MM2 does not know whether it is profitable to buy or sell:

nac

- 1 MM2 randomizes its bid in $[V_1, b^*]$.
- ⁽²⁾ MM2 randomizes its ask in $[a^*, V_2]$.

 a^* and b^* are the bid and ask prices in Glosten and Milgrom.

- Biais (1993): "Price Formation and Equilibrium Liquidity in Fragmented and Centralized Markets", Journal of Finance.
- Calcagno and Lovo (2006): "Bid-Ask Price Competition with Asymmetric Information between Market Makers", Review of Economic Studies.
- Glosten and Milgrom (1985): "Bid, Ask, and Transaction Prices in a Specialist Market with Heterogeneous Informed Traders", *Journal of Financial Economics.
- Kyle (1985): "Continuous Auctions and Insider Trading", Econometrica.