"Classic" models	Forecastability and Predictability	New models	Exchange rates as asset prices
00000000000	000000000	000000	00000

Behavior of nominal exchange rates

Tomasz Michalski¹

¹GREGHEC: HEC Paris

[International Macroeconomics]

"Classic" models 000000000000	Forecastability and Predictability	New models	Exchange rates as asset prices
Why do we	e care?		

- The nominal (and real) exchange rates are often the most important price in a (small, open) economy
- Surely we would like to understand what drives their behavior,
- be able to write down economic models pinning the most important forces
- and test them on readily available data !

"Classic" models	Forecastability and Predictability	New models	Exchange rates as asset prices
00000000000	0000000000	0000000	00000
Outline			

Protect Predictability and Predictability

"Classic" models	Forecastability and Predictability	New models	Exchange rates as asset prices
•0000000000	000000000	000000	00000

"Classic" models

"Classic" models	Forecastability and Predictability	New models	Exchange rates as asset prices
0000000000	0000000000	0000000	00000
Classic mode	els		

- The Purchasing Power Parity (PPP)
- Uncovered Interest Rate Parity
- The Monetary Model
- The Monetary Model with rational expectations and news.

"Classic" models	Forecastability and Predictability	New models	Exchange rates as asset prices
00000000000	0000000000	0000000	00000
The Purch	asing Power Parity		

- Assumption : there is arbitrage in the market for goods. The same goods should cost everywhere the same after converted to the same currency. No transaction costs, full information, quick adjustment.
- Absolute version :

О

$$s_t = p_t - p_t^\star \tag{1}$$

Relative version :

• A building block for many models : often assumed to hold in the long run even if not in the short run.

"Classic" models	Forecastability and Predictability	New models	Exchange rates as asset prices
0000000000	000000000	000000	00000
DDD and the	nominal exchange re	+ 0	

PPP and the nominal exchange rate

"Classic" models 0000€0000000	Forecastability and Predictability 00000000000	New models	Exchange rates as asset prices
Uncovered	Interest Rate Parity I		

- Assumption : there is costless arbitrage in the market for assets.
- In expectations, risk-neutral investors should earn the same return in assets in different currencies.

$$E_t(s_{t+1}) - s_t = i_{t \to t+1} - i_{t \to t+1}^{\star}$$
(3)

- "Uncovered" because the investors face future currency risk.
- Fisher equation. Suppose that $i_{t\to t+1} = \pi_{t,t+1} + r_{real}$ and $r_{real} = r^{\star}_{real}$. Then

$$i_{t \to t+1} - i_{t \to t+1}^{\star} = \pi_{t,t+1} - \pi_{t,t+1}^{\star}$$
(4)

"Classic" models 00000000000	Forecastability and Predictability	New models 0000000	Exchange rates as asset prices
Uncovered I	nterest Rate Parity II		

- A building block for many models. Even if doesn't work well empirically.
- Testing : unbiasedness.
- With risk-aversion, a risk premium : $E_t(s_{t+1}) - s_t = i_{t \to t+1} - (i_{t \to t+1}^* + \rho_t)$
- The risk premium can be endogenously derived from a standard portfolio-choice model.
- For example, for investors with CARA preferences with the risk aversion coefficient γ , the conditional variance of the exchange rate σ_t^2 and stochastic net supply of foreign currency n_t the UIRP may take the form of (Jeanne and Rose, 2002) :

$$\overline{E_t}(s_{t+1}) - s_t = i_{t \to t+1} - i_{t \to t+1}^{\star} + \gamma n_t \sigma_t^2$$
(5)

where $\overline{E_t}$ are "average" market expectations at time t.

"Classic" models 000000€00000	Forecastability and Predictability 00000000000	New models 0000000	Exchange rates as asset prices
The monetar	y model		

Flexible prices, PPP and UIRP hold : Frenkel (1976), Mussa (1976), and Bilson (1978).

$$s = p_t - p_t^{\star} \tag{6}$$

$$m_t - p_t = l(i_t, y_t) \tag{7}$$

$$m_t^{\star} - p_t^{\star} = l(i_t^{\star}, y_t^{\star}) \tag{8}$$

then

$$s_t = (m_t - m_t^*) - (l(i_t, y_t) - l(i_t^*, y_t^*))$$
(9)

and linearizing

$$s_t = (m_t - m_t^{\star}) - c(y_t - y_t^{\star}) + b(i_t - i_t^{\star})$$
(10)

Problem here : is the interest rate really an exogenous variable ? Portfolio balance models : adding assets to the equation.

"Classic" models	Forecastability and Predictability	New models	Exchange rates as asset prices
0000000000000	000000000	0000000	00000
Rational	expectations : a building	block.	

- Efficient markets hypothesis : prices fully reflect all available information. Any good forecasting model should have no systematic errors in predictions.
- Agents have rational expectations about a variable if their subjective expectations are the same as the expected value conditional of all publicly available information.
- RE : a consistency requirement in economic models. Agents must form expectations consistent with the model.

$$s_t = (m_t - m_t^{\star}) - c(y_t - y_t^{\star}) + b(i_t - i_t^{\star})$$
(11)

Substitute from the UIRP for the interest rates and assume $\gamma z_t = (m_t - m_t^*) - c(y_t - y_t^*).$

$$s_t = \gamma z_t + b(E_t(s_{t+1}) - s_t) \tag{12}$$

or, where $eta=rac{b}{1+b}\in(0,1)$

$$s_t = \frac{\gamma}{1+b} z_t + \beta E_t(s_{t+1}) \tag{13}$$

But, agents with RE have an expectation (given the model) what $E_t(s_{t+1})$ is.

$$E_t(s_{t+1}) = \frac{\gamma}{1+b} E_t z_{t+1} + \beta E_t(s_{t+2})$$
(14)

Repeating for all future t we obtain

$$s_t = \frac{\gamma}{1+b} \sum_{k=0}^{\infty} \beta^k E_t(z_{t+k})$$
(15)

Then

$$s_t - E_{t-1}s_t = \frac{\gamma}{1+b} \sum_{k=0}^{\infty} \beta^k (E_t(z_{t+k}) - E_{t-1}(z_{t+k}))$$
(16)

- "Surprises" or "news" drive the changes in the exchange rate.
- Fundamentals included can be more general than the ones we assumed here.

"Classic" models	Forecastability and Predictability	New models	Exchange rates as asset prices
000000000000			
Exchange rat	es and news : an exar	mple	

"Classic" models	Forecastability and Predictability	New models	Exchange rates as asset prices
00000000000	000000000	000000	00000
The monetary	with RE (III)		

We have

$$s_t = \frac{\gamma}{1+b} \sum_{k=0}^{\infty} \beta^k E_t(z_{t+k})$$
(17)

and

$$E_t s_{t+1} = \frac{\gamma}{1+b} \sum_{j=0}^{\infty} \beta^j E_t z_{t+1+j}$$
(18)

then

$$E_{t}s_{t+1} - s_{t} = \frac{\gamma}{1+b} \sum_{j=0}^{\infty} \beta^{j} \left(E_{t}z_{t+1+j} - E_{t}z_{t+j} \right)$$
(19)

- In a model with rational expectations, the exchange rate could be perfectly predictable.
- Expectations about the changes in the future fundamentals should drive the expected changes in the exchange rates !
- Problem for forecasting : how to know these objects?

0000000000 00000000 000000 00000	"Classic" models	Forecastability and Predictability	New models	Exchange rates as asset prices
	00000000000	•000000000	000000	00000

Forecastability and Predictability

"Classic" models	Forecastability and Predictability	New models	Exchange rates as asset	prices
00000000000	000000000	000000	00000	
Forecastabi	lity and Predictability	v of exchang	re rates	

- The Meese and Rogoff (1983) puzzle?
- Coping with the aftermath.
- How forecasting is done.

"Classic" models 00000000000	Forecastability and Predictability	New models	Exchange rates as asset prices
The Meese a	and Rogoff (1983) puzzle?	

- Received wisdom : exchange rate models based on fundamentals cannot beat the random walk in forecasting out-of-sample at short term horizons (1-month).
- This pertains to models based on prices (PPP), interest rates (UIRP) or monetary fundamentals, etc. (*all* in fact!)
- Across different samples, currencies and periods (see Rossi [2013] for a review)
- This is a big challenge to international macroeconomics!

- Erroneous views : efficient market hypothesis works ! Exchange rates should NOT be predictable.
- Different statistical methods
- New models
- Different objectives :
 - Directional predictions.
 - A portfolio criterion.
 - Predictability.
- Refined data : real-time data, eliciting expectations etc.

- "Efficient financial markets hypothesis" (EFMH) does not imply that the exchange rates should be unpredictable or unrelated to fundamentals.
- EFMH : the bilateral exchange rate would be the best guess of the market of the fundamental value of a currency at each time based on all available information.
- This best guess would be related to the best guesses about future fundamentals that may be difficult to predict.

"Classic" models	Forecastability and Predictability	New models	Exchange rates as asset prices
000000000000	000000000	0000000	00000
Different s	tatistical models		

- Cointegration : Mark (1995), ...
- Long samples and panel data : Mark and Sul (2001), Rapach and Wohar (2002), Cerra and Saxena (2010),...
- Markov switching models : Engel (1994), ...
- Time-varying parameter models : Wolff (1987), Schinasi and Swamy (1989), ...
- Nonlinear methods, machine learning methods : Schinasi and Swamy (1989), Amat, Michalski and Stoltz (2015)...
- Bayesian Model Averaging (of linear models) : Wright (2008),...
- Principal components : Greenaway-Mcgrevy (2012),...

" Classic" models 000000000000	Forecastability and Predictability	New models	Exchange rates as asset prices
Forecastabilit	ty vs_predictability		

- Forecastability : does the model provide better forecasts than the random walk ?
- Predictability : Do the fundamentals provide valuable information when included in the forecasting equation ?
 - Most recent literature about predictability.
- forecastability \neq predictability
- Both are different from testing whether variables considered in the model are estimated with the right coefficients.

"Classic" models	Forecastability and Predictability	New models	Exchange rates as asset prices	
	00000000000			
The typical	forecasting equations	5		

$$\ln \widehat{S}_{t+1} - \ln S_t = \alpha_t + \sum_{j=1}^{N} \beta_{j,t} (f_{j,t}^A - f_{j,t}^B)$$
(20)

"Classic" models	Forecastability and Predictability	New models	Exchange rates as asset prices
00000000000	0000000●000	0000000	
The typical	forecasting equations		

$$\ln \widehat{S}_{t+1} - \ln S_t = \alpha_t + \sum_{j=1}^{N} \beta_{j,t} (f_{j,t}^A - f_{j,t}^B)$$
(20)

• The (relative) PPP (fundamentals = inflation rates)

$$\ln \widehat{S}_{t+1} - \ln S_t = \alpha + \beta \left(\pi_t - \pi_t^* \right)$$
(21)

"Classic" models	Forecastability and Predictability 0000000●000	New models	Exchange rates as asset prices
The typical	forecasting equations		

$$\ln \widehat{S}_{t+1} - \ln S_t = \alpha_t + \sum_{j=1}^{N} \beta_{j,t} (f_{j,t}^A - f_{j,t}^B)$$
(20)

• The (relative) PPP (fundamentals = inflation rates)

$$\ln \widehat{S}_{t+1} - \ln S_t = \alpha + \beta \left(\pi_t - \pi_t^* \right)$$
(21)

• UIRP (fundamentals = interest rates)

$$\ln \widehat{S}_{t+1} - \ln S_t = \alpha + \beta \left(i_{t \to t+1} - i_{t \to t+1}^\star \right)$$
(22)

"Classic" models	Forecastability and Predictability 0000000●000	New models	Exchange rates as asset prices
The typical	forecasting equations		

$$\ln \widehat{S}_{t+1} - \ln S_t = \alpha_t + \sum_{j=1}^{N} \beta_{j,t} (f_{j,t}^A - f_{j,t}^B)$$
(20)

• The (relative) PPP (fundamentals = inflation rates)

$$\ln \widehat{S}_{t+1} - \ln S_t = \alpha + \beta \left(\pi_t - \pi_t^* \right)$$
(21)

• UIRP (fundamentals = interest rates)

$$\ln \widehat{S}_{t+1} - \ln S_t = \alpha + \beta \left(i_{t \to t+1} - i_{t \to t+1}^{\star} \right)$$
(22)

 Flexible price monetary model (fundamentals = money stock and output)

$$\ln \widehat{S}_{t+1} - \ln S_t = \alpha + \beta_1 \left(\widehat{m}_t - \widehat{m}_t^\star \right) + \beta_2 \left(\widehat{y}_t - \widehat{y}_t^\star \right)$$
(23)

"Classic" models 000000000000	Forecastability and Predictability 00000000●00	New models	Exchange rates as asset p 00000	rices
Varieties of	forecasting equation	ns [.] the exan	nole of PPP	

О

$$\ln \widehat{S}_{t+1} - \ln S_t = \alpha + \beta \left(p_t - p_t^{\star} \right)$$
(24)

$$\ln \widehat{S}_{t+1} - \ln S_t = \alpha + \beta \left(p_t - p_t^{\star} \right)$$
(24)

• The (relative) PPP (fundamentals = inflation rates)

$$\ln \widehat{S}_{t+1} - \ln S_t = \alpha + \beta \left(\pi_t - \pi_t^* \right)$$
(25)

$$\ln \widehat{S}_{t+1} - \ln S_t = \alpha + \beta \left(p_t - p_t^{\star} \right)$$
(24)

• The (relative) PPP (fundamentals = inflation rates)

$$\ln \widehat{S}_{t+1} - \ln S_t = \alpha + \beta \left(\pi_t - \pi_t^* \right) \tag{25}$$

• An error-correction PPP

$$\ln \widehat{S}_{t+1} - \ln S_t = \alpha + \beta \left(s_t - \left(p_t - p_t^\star \right) \right)$$
(26)

$$\ln \widehat{S}_{t+1} - \ln S_t = \alpha + \beta \left(p_t - p_t^{\star} \right)$$
(24)

• The (relative) PPP (fundamentals = inflation rates)

$$\ln \widehat{S}_{t+1} - \ln S_t = \alpha + \beta \left(\pi_t - \pi_t^* \right) \tag{25}$$

• An error-correction PPP

$$\ln \widehat{S}_{t+1} - \ln S_t = \alpha + \beta \left(s_t - (p_t - p_t^{\star}) \right)$$
(26)

• An error-correction PPP with relative PPP

$$\ln \widehat{S}_{t+1} - \ln S_t = \alpha + \beta_1 \left(s_t - \left(\rho_t - \rho_t^\star \right) \right) + \beta_2 \left(\pi_t - \pi_t^\star \right)$$
(27)

"Classic" models	Forecastability and Predictability 00000000000	New models 0000000	Exchange rates as asset prices
PPP and the	nominal exchange ra	te (repeat)	

"Classic" models	Forecastability and Predictability 000000000●	New models	Exchange rates as asset prices
Forecasts ar	nd evaluating their q	uality	

$$\ln \widehat{S}_{t+1} - \ln S_t = \alpha_t + \sum_{j=1}^N \left(\beta_{j,t}^A f_{j,t}^A - \beta_{j,t}^B f_{j,t}^B \right) = \sum_j \beta_{j,t} f_{j,t}$$

- Evaluation method : Root mean square error (RMSE)
- Training (estimation) period of $t_0 = 120$ months

$$RMSE = \sqrt{\frac{1}{T - t_0} \sum_{t=t_0+1}^{T} \left(\ln \widehat{S}_t - \ln S_t \right)^2}$$
$$= \sqrt{\frac{1}{T - t_0} \sum_{t=t_0+1}^{T} \left(\left(\ln \widehat{S}_t - \ln S_{t-1} \right) - \left(\ln S_t - \ln S_{t-1} \right) \right)^2}$$

000000000 000000000 0000000 000000	"Classic" models	Forecastability and Predictability	New models	Exchange rates as asset prices
	00000000000	000000000	•000000	00000

New models

"Classic" models	Forecastability and Predictability	New models	Exchange rates as asset prices
		000000	
New models			

- The "Taylor-rule" model of exchange rates
- The Gourinchas Rey model
- The Scapegoat model

Central banks started using the Taylor rule in their monetary policy.

$$\overline{i_t} = \pi_t + \phi(\pi_t - \overline{\pi}) + \gamma \widetilde{y_t} + r + \delta q_t$$
(28)

where

- $\overline{i_t}$ is the target interest rate
- $\overline{\pi}$ is the target inflation rate
- $\tilde{y_t}$ is the output gap and r is the equilibrium level of the interest rate
- q_t is the real exchange rate (for small open economies)

Molodtsova and Papell [2009] consider a model where the interest rate partially adjusts to the target

$$\dot{i}_t = (1 - \varpi)\overline{\dot{i}_t} + \varpi \dot{i}_{t-1} + \nu_t \tag{29}$$

Then

$$\Delta s_{t,t+1} = \omega - \omega_{\pi} \pi_{t,t+1} + \omega_{\pi}^{\star} \pi_{t,t+1}^{\star} - \omega_{\widetilde{y}} \widetilde{y}_{t} + \omega_{\widetilde{y}}^{\star} \widetilde{y}_{t}^{\star} + \omega_{q_{t}}^{\star} q_{t}^{\star} - \omega_{i} i_{t-1} + \omega_{i}^{\star} i_{t-1}^{\star}$$

- Note that the effect of higher inflation is opposite than in the monetary model (instantaneous appreciation).
- The future change depends on whether UIRP holds or not.

"Classic" models	Forecastability and Predictability	New models 00000●0	Exchange rates as asset prices
The Gourinch	nas – Rey model		

- Current account balance of each country is a result of forward-looking intertemporal saving decisions by economic agents (Obstfeld and Rogoff 1995).
- But : incorporate capital gains and losses on the net foreign asset position (Gourinchas and Rey 2007).
- For a country that has high negative NFA wealth transfers may occur via the depreciation of their home currency.
- Empirical result : Cyclical external balances can forecast the effective (weighted) U.S. dollar exchange rates.

- Observation : Practitioners have different narratives on what "drives" the exchange rates at any given point in time.
- Cheung et al. (2005) : the relationship between fundamentals and the exchange rate is highly variable thru time.
- Idea : The exchange rate may change due to unobserved liquidity trades. The market may seek the fundamental that explains the movements. As a result, some variable is going to be weighted "too much" relatively to others in a period.
- Fratscher et al. (2015) test the model : works in sample, but forecasting power is mixed.

000000 00000000 00000000 0000000 000000	"Classic" models	Forecastability and Predictability	New models	Exchange rates as asset prices
	00000000000	000000000	000000	0000

Exchange rates as asset prices

"Classic" models	Forecastability and Predictability	New models	Exchange rates as asset prices
00000000000		0000000	0●000
Exchange rat	tes as asset prices		

Engel and West (2005) argument

- Exchange rates are asset prices.
- Current and past fundamentals may have low correlations with future exchange rate realizations.
- When agents have discount factors close to one, exchange rates may be well approximated by a random walk (especially in the short run)!
- That is why it is so hard to beat the random walk for models based on fundamentals.

"Classic" models 000000000000	Forecastability and Predictability	New models	Exchange rates as asset prices 00●00
Revisiting the	e monetary model		

Reconsider the equation of the monetary model (11) with the UIRP containing now a term ρ being the risk premium or an expectational error and assuming $\gamma = 1$.

$$E_t(s_{t+1}) - s_t = i_{t \to t+1} - i_{t \to t+1}^* - \rho_t$$
(30)

Equation (13) now becomes

$$s_t = (1 - \beta)z_t + \beta\rho_t + \beta E_t(s_{t+1})$$
(31)

and the corresponding equation (17) is

$$s_{t} = (1 - \beta) \sum_{k=0}^{\infty} \beta^{k} E_{t}(z_{t+k}) + \beta \sum_{k=0}^{\infty} \beta^{k} E_{t}(\rho_{t+k})$$
(32)

where β is the discount factor.

Assume that

$$\Delta m_t = \phi \Delta m_{t-1} + \epsilon_{mt} \tag{33}$$

and

$$\Delta \rho_t = \theta \Delta \rho_{t-1} + \epsilon_{\rho t} \tag{34}$$

Then

$$\Delta s_{t} = \frac{\phi(1-\beta)}{1-\beta\phi} \Delta m_{t-1} + \frac{1}{1-\beta\phi} \epsilon_{mt}$$

$$+ \frac{\beta\theta}{1-\beta\theta} \Delta \rho_{t-1} + \frac{\beta}{(1-\beta)(1-\beta\theta)} \epsilon_{\rho t}$$
(35)

Suppose now $\rho_t = 0$. As $\beta \to 1$ then $\Delta s_t \approx \frac{1}{1-\phi} \epsilon_{mt}$ and the variance of Δs_t is finite. But if $\rho_t \neq 0$ then as $\beta \to 1$ then $\Delta s_t \approx cst \epsilon_{\rho t}$ and the variance of Δs_t grows and is dominated by $\epsilon_{\rho t}$.

"Classic" models	Forecastability and Predictability	New models	Exchange rates as asset prices
			00000
Interpretation			

If $\beta\approx 1$ then

- A regression of Δs_{t+1} on fundamentals may yield a nonzero coefficient...
- ...but its explanatory power is going to be small
- so that Δs_{t+1} is going to be well approximated by white noise.

Empirically,

- Fundamentals (both observed and unobserved) seem to be either I(1) or highly autoregressive processes.
- The discount factor $\beta \in (0.970.98)$ in the data.
- There is a risk premium that helps to explain some other puzzles (we will return to that).