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Abstract

Judgment (or logical) aggregation theory is logically more powerful than so-
cial choice theory and has been put to use to recover some classic results of this
�eld. Whether it could also enrich it with genuinely new results is still con-
troversial. To support a positive answer, we prove a social choice theorem by
using the advanced nonbinary form of judgment aggregation theory developed
by Dokow and Holzman (2010c). This application involves aggregating classi�-
cations (speci�cally assignments) instead of preferences, and this focus justi�es
shifting away from the binary framework of standard judgement aggregation
theory to a more general one.
Keywords: Social choice, Judgment aggregation, Logical aggregation, Ag-

gregation of classi�cations, Assignments, Nonbinary evaluations.
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Introduction

The newly developed theory of judgment (or logical) aggregation stems from
the long established social choice theory, and part of its agenda consists in revis-
iting the classic problems of that theory at a higher level of formal abstraction.
The aim is not simply to reorganize existing results, but also to add new items to
the stock. On the face of it, judgment aggregation theory has been more success-
ful in achieving the former than the latter. Leaving aside voting, on which there
have been very de�nite advances, and concentrating on preference aggregation
per se, what the theory most typically contributes is to recover classic results,
such as Arrow�s impossibility theorem and related variants. (See the sample
reviewed in Mongin, 2010, with particular reference to Dietrich and List, 2007,
and Dokow and Holzman, 2010b.) Without by any means diminishing the value
of unifying this existing body of knowledge, one may wonder whether the theory
will be able to extend it signi�cantly.
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It may be that judgment aggregation theory has not yet reached the proper
technical stage. The bulk of the current work employs a binary notion of judg-
ment, as in classical logic (the judgment either validates or does not validate
the proposition), and Dokow and Holzman�s (2010c) use of a nonbinary notion,
as in some non-classical logics (the judgment can evaluate the proposition in
more than two ways) remains exceptional. The nonbinary case is signi�cantly
more complex than the binary one (compare with Dokow and Holzman, 2010a
and b, on the latter). But there are parts in social choice theory that judgment
aggregation theorists cannot subsume unless they move to the more complex
case. A prominent example is the aggregation of classi�cations - a typically
nonbinary concept - as against the aggregation of preferences - a binary concept
by de�nition. It comes as no surprise that Dokow and Holzman (2010c) apply
their main aggregative theorem to assignments, which are a particular case of
classi�cations.
In this note, we apply the same theorem to explore another facet of the

aggregation of assignments. While Dokow and Holzman take the individual and
collective assignments to be one-to-one (each item enters a di¤erent category),
we take them to be onto (each category contains at least one item). The ensuing
result can be added to the list of those in social choice theory which judgement
aggregation theory makes it possible to discover, and not simply to recover.

A problem in the aggregative theory of classi�cation

Our problem is best introduced by means of examples. Where military con-
scription applies, draft boards allocate conscripts into various defence services,
and they are expected to �ll each category with some conscripts. Some com-
mittees in charge of evaluating scienti�c projects begin by dispatching them to
inside or outside referees, while making sure that each referee takes some share
of the work. Trusts and charities must legally decide who, among the mem-
bers, will be the Chairperson, the Secretary, the Treasurer, or just an ordinary
member. Some countries divide their population according to ethnic or religious
criteria, with none of the relevant categories being left empty. In all of these
cases, the individuals who are called upon to make the classi�cation (the citi-
zens or the lawmakers in the last example) may have divergent views, and an
aggregation problem arises.
The task involved in all these examples is to classify the objects of inter-

est. The categories could obey a hierarchy, in which case a ranking task would
also be involved, but the examples make perfect sense without this assump-
tion, and the aggregation problem should be addressed also without imposing
it. What social choice theory has to say on this score appears to be scant; how-
ever, see Fishburn and Rubinstein, 1986, and some recent ensuing literature,
among which Chambers and Miller, 2011, and Dimitrov, Marchant and Mishra,
2012. Our examples share two speci�c features, (i) the individuals agree among
themselves and with the collective on what categories are to be used, and (ii)
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neither the individuals nor the collective leave any category un�lled. Feature (i)
may be taken as specifying assignments within the generic family of classi�ca-
tions. Feature (ii) is the particular restriction on assignments that we plan to
investigate. Our aggregative problem is fully described by these two features.
An interesting complication occurs when the set of ranking individuals and

the set of objects to be ranked overlap, which happens in some though not all of
the above examples. The two sets are equal in the last, which has been explored
in some detail by Kasher and Rubinstein (1997) and subsequent writers, like
Miller(2008). This work illuminates our problem by the same token, but it is
limited by the assumption that there are only two categories. (Kasher and Ru-
binstein motivated their work by the question "What is a J?", meaning that the
Js and non-Js exactly partition the society.) List (2007) has usefully noted the
connection between the Kasher-Rubinstein literature and judgment aggregation
theory. However, in its basic form, the theory shares the same binariness as this
literature, and it can elegantly recover some of its results, but not extend them
to any number of categories, as would be desirable. Our theorem permits such
an extension, and this is a further way of motivating it.

The formal set up

The set up is Dokow and Holzman�s (2010c) in the same notation.
J = f1; :::;mg is the set of issues;
P = f1; :::; pg is the set of positions;
N = f1; :::; ng is the set of individuals.
Cardinality restrictions will occur in the theorems below.
An evaluation is a vector (x1; :::; xm) 2 Pm and X � Pm is the subset of

feasible evaluations. For all j 2 J , Xj is the j-projection of X, i.e., the set of
feasible evaluations relative to j. Unlike Dokow and Holzman, we assume that
Xj = P for all j 2 X because this proves su¢ cient for our application. Observe
that one may still have X  �j2J Xj = Pm. A domain X is nonbinary if p � 3.
An aggregator is a mapping F : Xn ! X, ((x11; :::; x

1
m); :::; (x

n
1 ; :::; x

n
m)) 7�!

(x1; :::; xm).
Think of pro�les ((x11; :::; x

1
m); :::; (x

n
1 ; :::; x

n
m)) as being n � m matrices x.

Denote by xi and xj the i-th line and j-th column respectively.
F satis�es Independence (I ) if for all (x1; :::;xn); (y1; :::;yn) 2 Xn, and for

all j 2 J ,
xij = y

i
j for all i 2 N ) xj = yj .

F satis�es Unanimity (U ) if for all (x1; :::;xn) 2 Xn, for all j 2 J , for all
u 2 P ,

xij = u for all i 2 N ) xj = u.

F satis�es Supportiveness (S ) if for all (x1; :::;xn) 2 Xn, and for all j 2 J ,
for all u 2 P ,

xj = u ) 9i : xij = u.
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F satis�es Dictatorship (D) if there is i 2 N such that for all (x1; :::;xn) 2
Xn and for all j 2 J ,

xij = xj .

X is an impossibility domain if every F satisfying I and S also satis�es D.

Theorem 1 (Dokow and Holzman, 2010) Take p � 3, m � 2, n � 1. If X is
multiply constrained and totally blocked, X is an impossibility domain.

The following auxiliary notions are needed to explain the two conditions
("multiply constrained" and "totally blocked").
A subbox in Pm is a subset of the form B = �j2J Bj , with Bj � Xj = P

for all j 2 J , and as particular case, a 2-subbox has jBj j = 2 for all j 2 J . Only
the evaluations (x1; :::; xm) 2 B \X are feasible.
For all (x1; :::; xm) = (xj)j2J 2 Pm, we may �x K � J and consider the

K-evaluation de�ned by the subvector (xj)j2K 2 P k.
Given a subbox B = �j2J Bj , a K-evaluation is within B if it is in the

K-projection of B, i.e., if (xj)j2K 2 �j2K Bj .
A K-evaluation (xj)j2K that is within B is feasible within B if there is

(xj)j2J 2 B \ X having (xj)j2K as a subvector, it is infeasible within B oth-
erwise, and it is minimally infeasible within B (brie�y: a B-MIPE ) if it is
infeasible within B and all its subvectors are feasible within B.
A binary relation, called relative conditional entailment (RCE ), will be de-

�ned on the set
G = f(u; u0; j) 2 P � P � J : u 6= u0g .

Let us say that (u; u0; k) RCE (v; v0; l) if k 6= l and there are a 2-subbox B =
�j2J Bj with Bk = fu; u0g and Bl = fv; v0g and a B-MIPE (xj)j2K such that
k; l 2 K and xk = u and xl = v0.
(Here is the interpretation: taking position u rather than u0 on issue k

entails taking position v rather than v0 on issue l, given the positions taken on
the other issues in the K-evaluation, and given what positions on the issues are
made available by the 2-subbox B.)
Now to de�ne the two conditions in the theorem.
X is multiply constrained if there is a subbox B � Pm and a B-MIPE

(xj)j2K such that jKj � 3:
X is totally blocked if, for all (u; u0; k), (v; v0; l) 2 G with k 6= l, (u; u0; k)

RCE (v; v0; l), where RCE is the transitive closure of the RCE relation (i.e.,
(v; v0; l) can be reached from (u; u0; k) by a chain of triples each of which is
related by RCE to the next).

The Social Choice Theorem
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Our problem can be �tted in the judgment aggregation framework, and as
far as nonbinary classi�cations are concerned, in the framework of last section.
We are interested in evaluations that �ll every available position with some issue.
Call the relevant X an ontoness domain. Formally,

X = f(x1; :::; xm) 2 Pm : 8u 2 P;9j 2 J; xj = ug .

We will investigate aggregators F : Xn ! X when the ontoness domain is
nonbinary, i.e., when p � 3.

Theorem 2 Take X to be an ontoess domain with n � 1 and either m = p � 4
or m > p � 3. If F : Xn ! X satis�es I and U, it also satis�es D.

The proof is based on the previous theorem and the following lemmas.

Lemma 3 For m � p � 3, U is equivalent to S.

Proof. Suppose that for some pro�le (x1; :::;xn) 2 Xn and some issue j� 2 J ,
xj = u but xij 6= u for all i 2 N .
Fix a subset J� of m� p+1 issues not containing j� and construct a pro�le

y = (y1; :::;yn) as follows. For all i 2 N , (i) yij� = x
i
j�
; (ii) yij = u for all j 2 J�

(iii) the p� 2 issues j 6= j�, j =2 J� are distributed in yi so as to cover the p� 2
positions v 6= u; yij� . Hence (y

1; :::;yn) 2 Xn. By U, yj = u for all j 2 J�, and
by I, yj� = u. There are p� 1 positions to be �lled with only p� 2 issues, hence
y =2 X, a contradiction.

Lemma 4 For m = p � 4 or m > p � 3, X is multiply constrained.

Proof. (i) Case m = p � 4. Take K to be a subset of 4 distinct positions, say
w.l.g. positions 1, 2, 3 and 4, and take the subbox B = �j2JBj s.t. B1 = f1; 4g,
B2 = f2; 4g, B3 = f3; 4g, B4 = f1; 2; 3g, and Bj = P if 5 � j � m. Take
K = f1; 2; 3g and de�ne (xj)j2K = (1; 2; 3). This K-evaluation is within B,
and there infeasible, since it cannot be completed so as to cover p positions
(any completion will lack position 4). It is also minimally infeasible within B
since taking out any one component makes a full completion available (4 will
be recovered). Thus, (xj)j2K is a B-MIPE, and since jKj = 3, X is multiply
constrained.
(ii) Case m > p � 3. Take K to be a subset of m� p+ 2 distinct issues and

the K-evaluation assigning position 1 to each of them, i.e., (xj)j2K = (1; :::; 1).
By construction, jKj � 3. This K-evaluation is infeasible within the maximal
subbox B = Pm because the p � 2 issues that remain can cover at most the
same number of distinct positions, so any completion can have at best p � 1
of them. Taking any one component out makes a full completion available, so
(xj)j2K is a B-MIPE, as requested.

Lemma 5 For m � p � 3, X is totally blocked.
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Proof. We need to prove that (u; u0; k) RCE (v; v0; l) under the de�nitional
constraints k 6= l, u 6= u0, v 6= v0. In view of the de�nition of RCE and the fact
that Xj = P for all j 2 X, the proof will not depend on the choice of k and
l. Thus, we can take k = 1, j = 2 without loss of generality. We �rst prove a
particular case of the statement, i.e.,

(�) (u; u0; 1)RCE(v; u; 2)

We can take u = 1, u0 = 2, v = 3 without loss of generality. The proof has two
cases.
(i) For m = p � 3, de�ne B1 = f1; 2g, B2 = f1; 3g, B3 = f2; 3g, and

Bj = f1; jg, 4 � j � m = p. Take K = f1; 2g and (xj)j2K = (1; 1). Thus,
B = �j2JBj is a 2-subbox with Bk = fu; u0g and Bl = fv; ug; xk = u and
xl = v0; (xj)j2K is infeasible within B since it cannot be extended to cover
more than p � 1 distinct positions (either 2 or 3 is excluded); (xj)j2K is also
minimally infeasible within B since deleting either component permits �nding
extensions that cover the p positions (both 2 or 3 can now be obtained). Hence
(xj)j2K is a B-MIPE as required.
(ii) For m > p � 3, de�ne

� if 1 � j � m� p+ 2, Bj = f1; 2g if j is odd and Bj = f1; 3g is j is even;

� if j = m� p+ 3, Bj = f2; 3g,

� if m � p + 4 � j � m, Bj = f1; j + p�mg, i.e., Bm�p+4 = f1; 4g, ...,
Bm = f1; pg.

For example if m = 4 and p = 3, B1 = f1; 2g, B2 = f1; 3g, B3 = f1; 2g,
B4 = f2; 3g.
Take K = f1; :::;m� p+ 2g and (xj)j2K = (1; 1; ::; 1). The 2-subox B =

�j2JBj and the K-evaluation (xj)j2K meet the conditions on the indexes. An
argument similar to that of case (ii) shows that (xj)j2K is minimally infeasible
within B, hence is a B-MIPE, as required.
We prove another particular case of the statement, i.e.,

(��) (u; u0; 1)RCE(u0; u; 2).

For case (i), it is enough to rede�ne B2 as f1; 2g. For case (ii), take

� if 1 � j � m� p+ 2, Bj = f1; 2g;

� if m � p + 3 � j � m, Bj = f1; j + p�mg, i.e., Bm�p+3 = f1; 3g, ...,
Bm = f1; pg.

Either argument now carries through.
Repeated application of (�) and (��) deliver more particular cases of the

statement. For instance, (u; u0; 1)RCE(u0; v0; 2) follows from

(u; u0; 1)RCE(u0; u; 3)RCE(u0; v0; 2)
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and (u; u0; 1)RCE(u; u0; 2) from

(u; u0; 1)RCE(u0; u; 3)RCE(u; u0; 2).

The cases (u; u0; 1)RCE(u; v0; 2) and (u; u0; 1)RCE(v; u0; 2) similarly follow. In
a �nal easy step, we show that (u; u0; 1)RCE(v; v0; 2) for distinct u; u0; v; v0, thus
completing the proof that X is totally blocked.

More comments

Dokow and Holzman�s (2010c, Example A and Corollary 1) explore a di¤er-
ent case of aggregating assignments. They consider the problem of distributing
several people in P among several jobs in J under the natural restrictions that
a person can only do one job and that the people (or candidates) are at least as
many as are the jobs. (Equally well, they could have considered the problem in
which jobs are assigned to candidates, any job is assigned to at most one can-
didate, and there are at least as many jobs as there are candidates.) Formally,
they have an injectivity domain:

X = f(x1; :::; xm) 2 Pm : 8j; j0 2 J; xj 6= xj0g

with p � m, so that their application and ours complement each other rigor-
ously. Using their main theorem, Dokow and Holzman conclude that X is an
impossibility domain for p � m � 4, a corollary that overlaps with Theorem
2 for all p = m � 4. This leaves undecided the case p = m = 3. However, by
another theorem in their paper, they show that X is an impossibility domain
also in this case (see 2010c, Example 3).
One may wonder whether these new social choice results could not be proved

directly by the tools of social choice theory. This is indeed the case for Theorem
2, which the authors can also obtain from an ultra�lter construction (available on
request). This approach might strike social choice theorists as more congenial,
but were it used exclusively, it would miss the interesting connections that
judgment aggregation theory brings out, for instance the complementarity with
the injectivity domain.
A word may be added in connection with the motivating examples of this

note. In our view, the con�ict between U, I and ontoness is neither simply
predictable from this list, nor easy to resolve after it is recognized. If the
aim was to aggregate preferences, with the axioms U and I being rede�ned
accordingly, the �rst suggestion would be to relax ontoness as regards the range
of the aggregator (see Maniquet and Mongin, forthcoming, for a voting context
in which this appears to be the way out). Another, more drastic departure would
be to allow for categories that di¤er among the individuals, or di¤er between the
individuals and the collective, and this would entail considering classi�cations
more generally than assignments, as in Fishburn and Rubinstein (1986) and
followers. However, our examples were meant to show that shared categories and
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ontoness are often part of the institutional setting of the aggregation problem.
When this is the case, there is a thorny choice to be made between U and I,
two prima facie defensible conditions.
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