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Abstract. Part I of this paper offers a novel result in social choice theory by 
extending Harsanyi's well-known utilitarian theorem into a "multi-profile" 
context. Harsanyi was contented with showing that if the individuals' utilities u~ 
are von Neumann-Morgenstern, and if the given utility u of  the social planner is 
VNM as well, then the Pareto indifference rule implies that u is affine in terms of 
the u~. We provide a related conclusion by considering u as functionally 
dependent on the ul, through a suitably restricted "social welfare functional" 
(ul, . . . ,  u , ) ~ u = f ( u l  . . . . .  u,). We claim that this result is more in accordance 
with contemporary social choice theory than Harsanyi's "single-profile" 
theorem is. Besides, Harsanyi's initial proof  of the latter was faulty. Part II of 
this paper offers an alternative argument which is intended to be both general 
and simple enough, contrary to the recent proofs published by Fishburn and 
others. It finally investigates the affine independence problem on the u~ discussed 
by Fishburn as a corollary to Harsanyi's theorem. 

1. Introduction 

In 1955 John Harsanyi proved the following theorem: if the individuals' utility 
functions ui as well as the social utility function u are von Neumann-Morgenstern 
(VNM), and if the Pareto indifference rule holds, then the social utility function is 
an affine transformation of individual utilities, i.e. u = ~ aiu~ + b. This is clearly an 
important result on utilitarianism, indeed one of the fundamental ones along with 
the result in d 'Aspremont and Gevers' classic paper (1977). However, it is by no 
means as assertive as the latter, or, by the same token, any standard result in the 
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post-Arrowian social choice literature. As Sen has aptly pointed out (1986, p 1124), 
it deals with "single-profile exercises" only. That is, Harsanyi's theorem claims that 
a given VNM u can be represented as an affine transformation of given VNM 
(u 1 ..... u,), provided that u and (ul,. . . ,  u,) are connected by a Pareto-like condi- 
tion. There is no implication, of course, that the coefficients a t and b should remain 
the same when (ul ..... u,) is changed into (u[ .... , u'.). On the other hand, d'Aspre- 
mont and Gevers' theorem is typically a "multi-profile exercise". That is, they 
consider various axiomatic restrictions on a social welfare functional (SWF) 
f :  (u 1 ..... u,)~-*f (u 1, ..., u,), from which they derive utilitarian properties for f 
That the latter concept bears no relationship to the approach taken by Harsanyi is 
worth emphasizing, since there is a vacillation in his own account. In 1977 (p 69), he 
claims that Bentham's utility sum rule, or rather its means utility variant, logically 
derives from his theorem. This cannot be the case, for utilitarian rules can only be 
captured within the mathematical framework of "multi-profile exercises". In 
particular, the anonymity requirement, which is implied by any utilitarian variant, 
cannot be defined in terms of a single (n + 1)-tuple (u 1 .... , u,, u). 

The primary aim of this paper is to build a "multi-profile exercise" upon 
Harsanyi's suggestive result, i.e. to extend it into a result on SWF's when the utility 
space is restricted to von Neumann-Morgenstern functions. This much is achieved 
by Proposition 1 below, which roughly says that any such SWF is affine provided it 
satisfies a suitable Pareto condition, called "extended neutrality" after a related 
condition in the literature. Once this is proved, it is routine to derive utilitarian 
shapes for f from the usual anonymity requirement. Proposition I may be 
compared with d'Aspremont and Gevers' result, or rather a variant of it which 
is suited to our definition of extended neutrality. Proposition 1 is more precise 
than the variant, which only claims that f ( u  1 ..... u , ) ( x ) > f ( u l , . . . , u , ) ( y  ) iff 
~,u i (x )>~ui (y) ,  but some might find the VNM requirement an exacting one. 
Indeed, the axioms mentioned in the variant of d'Aspremont and Gevers' theorem 
are primafacie more economical. But it should be stressed that Proposition 1 does 
not require any assumption on cardinal comparability. The normal cocardinality 
property of utilitarian rules turns out to be a consequence of our axioms, or rather 
only of the VNM restriction and the extended neutrality condition irrespective of 
the anonymity requirement. 

As it happens, the "multi-profile exercise" casts some light on the "single- 
profile" one. Harsanyi's initial argument in his seminal 1955 paper lacked 
definiteness and we shall pinpoint a mistake in the 1977 version of his theorem. It 
was not until recently that social choice theorists grew dissatisfied with the 
mathematics of Harsanyi's theorem and began to publish either alleged counter- 
examples (Resnik 1983) or novel proofs (Domotor 1979; Fishburn 1984; Border 
1985; Selinger 1986). Among those contributions, Domotor's and Fishburn's are at 
the highest level of generality. They do not make any irrelevant restriction on the 
utility space and their formalism relies on mixture sets and mixture-preserving 
functions, the most general way of capturing the intuitive notions of a lottery set and 
a VNM utility. This algebraic approach is also adhered to all throughout this paper. 
We were able to offer a novel simple proof of the "single-profile" result by adapting 
the basic argument of Proposition I to the case of given (u~ ..... u,) and u. As it 
happens, little work is required to move from our "multi-profile" theorem to 
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Proposition 2, i.e. Harsanyi 's  theorem expressed in the formalism of mixture sets. 
The resulting p roof  is much shorter than Fishburn's and turns out to be related to 
some degree to Domotor ' s .  The end of this paper  investigates the independence 
problem on the ul , . . . ,  u,, discussed in Fishburn's corollary to Harsanyi 's  theorem. 

2. Basic Facts About Mixture Sets 

In the formalism of  this paper, a lottery set and a VNM utility are defined as a 
mixture set (MS) and a mixture-preserving (MP) function respectively. Recall that 
a mixture set dg is any set together with an operation 

[0, 1 ] x .~ '  x .A'/-,. . / / /  

()~, X, y) ~ x)~y 

as defined by the following set of  axioms: 

x ly  =x (A1) 

x2y = y (1 - 2)x (A2) 

(x2y)#y= x(2p)y (A3) 

Intuitively, (2, x, y) w-~x2y should be seen as the operation of"mix ing"  lotteries x 
and y according to the "weights" 2 and 1 - 2  respectively. As an example of  a 
mixture set, take ~ / =  the set of  all probability distributions on a given measurable 
set E. More generally, any convex subset C of a linear space Fis  a mixture set; there 
is a converse of  a sort to this statement, as pointed out in footnote 2. Comparing 
linear spaces with MS's makes it plain how weak an algebraic structure the latter 
have 1 . 

Despite their convenient generality, mixture sets are not widely resorted to 
among social choice theorists. A more common practice is to assume a set E of basic, 
nonrandom alternatives ("pure prospects") and build the lottery set L(E) from E 
after making suitable assumptions on E. As an example of  this procedure in the 
context of  our problem, Harsanyi (1977, p 64) and Border (1985) assume that E is 
measurable and define L(E) as the set of  probabilities on E. A trivial, rather 
uninteresting particular case of  the latter assumption obtains when Eis taken to be a 
finite set, as in Selinger (1986). As an alternative specification, consider defining a 
set of  "feasible endowments" E c  R" and a set of  binary lotteries on E, L(E)= the 
convex hull of  E. This is, of  course, an attractive assumption when the issue under 
investigation is income or wealth distribution among n individuals. However, it 
should be clear that such two-step procedures are unduly specific from the vantage 
point of  a general social choice theory. First of  all, they all neatly fall under the 
mixture set concept as particular cases. Second, and even more importantly, it may 
happen that there is no such thing as a "set of  pure prospects'prior to anddistinet of 
the lottery set f rom which the social planner is to choose. 

1 Mixture sets were first introduced by Herstein and Milnor (1953). For some details and examples see 
Fishburn (1982, Chap. i). 
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A function f :  J g - , I R  is said to be mixture-preserving (MP) if: 

V(Lx ,  y) e [ 0 , 1 ] x ~ x ~  , 

f (x)~y) =)~f (x) + (1 - 2) f (y) . 

A function Jld- ,IR n which is MP componen t  by componen t  will be called MP as 
well. Note  that  the case just made in the last paragraph  for the mixture set formalism 
does not  carry with it the suggestion that  mixture-preserving functions are the 
relevant utility concept. That  is, mixture sets may  also be used in the context of  a 
theory o f  rat ional  decision-making under  risk which is not yon Neumann-  
Morgenstern.  

The set of  all MP functions on ~ ,  denoted by ~ (J/¢'), is clearly a linear space 2. 
As an example o f  ~ ( J g ) ,  take J¢/=lR" and consider the set d of  all affine real 
functions on IR". Obviously, d c 5e (J/C), but  it is also clear that  ~ (J¢/) c d ,  since a 
funct ion which preserves convex combinat ions  on IR" is bo th  concave and convex 
on IR", that  is affine on IR". This result easily extends to any linear space J¢/, a fact 
which we shall record here without  p roof :  

Remark 1. I f  JC{ is a linear space, ~ ( ~ / )  is the set o f  all affine functions on J/g. 

We may  also note the fact that, if f :  ~ '  - ,  IR is MP, and T: IR- ,  IR is affine, T o f i  s 
MP as well. 

A further remark  may  be clarifying. Given d/d, consider those x, y e J / t h a t  no 
element in &o(j~) "separates"  f rom each other, i.e. those verifying 
f ( x ) = f ( y )  for every mixture-preserving f on  JC{. In the context o f  a paper 
centering upon  the V N M  theory o f  social choice, it seems to be reasonable to regard 
such x and y as one and the same element. This is formally possible since the 
suggested equivalence relation x ~ y  preserves the mixture set structure. Actually, 
slightly more  than that  is true:  

Remark 2. Suppose X is any set provided with any operat ion [0, 1] x X x  X- ,X ,  
(2, x, y)~-,q~(2, x, y). Define a ~o-preserving function as a f :  X ~ N  such that  

(V (2, x, y) ~ [0, 1 ] x X x X) f (~o (2, x, y)) = )~f (x) + (1 - ~.) f (y) . 

Also define the following equivalence relation ~ : 

(V (x, y) ~ X 2) x ~ y ~* (V f q0 -preserving on X) f (x) = f (y) . 

Then, (p induces an operat ion cb on X / ~  which satisfies the mixture set axioms. 

If  a mixture set ~"  is such that  its 2P (~ / )  consists of  constant  functions only, 
~ / ~  reduces to a singleton - a case which is hardly worth  studying. The "mult i-  
profile" theorem of  Sect. 3 does not  apply to such degenerate MS. 

2 Using a duality argument, it may be seen that every mixture set J//is essentially identical with a 
convex subset of a linear space. Define ~(Jg) '  the space of linear forms on ~(Jg)  and i the function: 
dC--*~°(J#) ', which maps x into Ex, the evaluative function with respect to x (E x is the linear form 
mapping every u ~ ( J { )  into u(x)). Clearly, i is injective and maps mixtures in ~ into convex 
combinations in ~o (~¢/),. This fact suggests a technique for proving results on mixture sets. The resulting 
proofs may be simpler, though they should be less illuminating than the direct ones used in this paper. We 
are indebted in this footnote to a hint of L. Haddad. 
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3. The Multi-Profile Theorem 

Before proving the multi-profile theorem, some social choice terminology needs to 
be introduced. Given n, the number of individuals in the society, and Jg  a mixture 
set, ~ is a set (usually a vector space) of real functions on ~g/. A social welfare 
function is a function 

U= (ul ..... u . ) ~  f (U) . 

We shall here be concerned with SWF's verifying g =  ~ ( J l ) .  Let us call yon 
Neumann-Moroenstern restriction (VNM) this domain and range restriction on the 
permissible SWF's. 

Define independence of irrelevant alternatives as: 

( v u ~ " ) ( v u '  e ~ " ) ( V x e . g )  
(IR) 

U(x) = U'(x) ~ f (U) (x) = f ( U') (x) . 

Note that this is stronger than d'Aspremont and Gevers' own independence 
axiom (1977, pp 201-202), which only implies ordinal invariance in case of partially 
identical U and U'. The stron9 Pareto principle (SP) will be defined as the 
conjunction of: 

(v Ue g")(V(x, y) e :g2) 
(SP1) 

U(x) = U(y) ~ f (U) (x) = f (U) (y) 

and 

(V V = (u t .... , un) e 8")(V (x, y) ~ all[ 2) (SP2) 

ui(x)>>_ui(Y), i= l , . . . , n  and ui(x)>uj(y ) for a j~{1  ..... n} 

=~ f (U)(x) > f (U)(y) . 

(IR) and (SP1) together are clearly equivalent to the following property on 
utilities, which we shall call extended neutrality." 

(vue  g")(V u '  e g")(V (x, y) e ~g2) 
(XN) 

U(x) = U' ( y )~  f ( U)(x) = f ( U')(y) . 

We have borrowed our terminology from d'Aspremont and Gevers (1977, p 202), 
although their own condition is again weaker than ours in view of their weaker 
independence axiom. As defined here, extended neutrality is best seen as an 
extension of  the standard Pareto indifference rule. It is the relevant welfare 
condition for the "multi-profile" version of Harsanyi's theorem. It has the 
following important consequence: for a given a~ ~) Rge U, one may find a 

U ~ 8  n 

unique real number F(a) associated with it by considering any U and any x such that 
U(x)=a, and putting F(a)=f(U)(x).  Thus, what (XN) says in effect is that 

n U F . f (U) : ~ / ~  IR can be factored out as J/# ---> U R g e  U-~ R, F being independent of 
U ~  n 
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U and unique with respect to f .  In the case where g = ~ ( ~ ) ,  all the constant 
functions on Jg belong to ¢, and clearly U Rge U= IR". Let us record these facts: 

U ~ g  n 

Remark 3. Suppose a SWF f satisfies (VNM) and (XN). Then, there is a unique 
F:IR"~IR such that 

(V U~ [&°(Jg)]")(Vx ~ J g ) f ( U ) ( x )  =r(U(x) )  . 

Now, we are ready to prove the "multi-profile" theorem: 

Proposition 1. Given a non-degenerate mixture set Jg, any SWF f satisfying ( VNM) 
and (XN) is affine on J//l. That is, there are unique real numbers a 1 .... , a,, b such that: 

(V U = (u  1 . . . . .  Un) ~ [£P(Jg)]")f(U) = ~, alui+b . 
i = l  

Since ,/~ is non-degenerate, there are q)~Y~(~gg) and (x ,y )~J#  2, such that 
q~(x) # q~(y). We know from Remark 3 that f can uniquely be expressed in terms of 
the ui. The proof consists in using the mixture-preserving property of U and f ( U )  to 
show that the auxiliary F is affine on IR". From Remark 1 above, this conclusion 
would result from the fact that F preserves convex combinations of vectors in IR", 
i.e. it will obtain if we prove: 

(V(a, b) ~ ]R" x IR")(V2 ~ [0, 1]) 

V(2a + (1 - 2)b) = 2F(a) + (1 - 2)r(b)  . (P) 

Take a=(al , . . . ,a , )  and b=(bl , . . . ,b , )  in R", a#b .  There is a M P  function 
U= (ul, . . . ,  u,) verifying U(x)= a and U(y)=b. For instance, consider the affine 
transform of ~o given by: 

q,(¢)-  ~0(y) ~0(~)- q,(x) 
ui(~)=ai q,(x)-q~(y) ~-bi ~o(y)-q~(x) ' i=1 ..... n , 

which is a MP function as well. Now, the left-hand member of(P)  can be written as 

F(2 U(x) + (1 - 2) g(y))  = F(g(x2y))  

= f (U) (x2y)  =) , f (U)(x)  + (1 - 2 ) f ( U ) ( y )  

= ) . r ( U ( x ) )  + (1 - 2)  r ( U ( y ) )  , 

which is the right-hand member of (P). [] 

Proposition 1 by itself implies certain invariance properties on f. To make this 
precise, define the individual origins of  utilities property as: 

(v (ul . . . . .  u,) ~ ¢ " )  (v (ul , . . . ,  u',) ~ ¢ " ) ( w  e IR + *) 

(V(/~, . . . . .  /L) ~ ~" ) (V(x ,  y) E ~ )  

f ( u  a ..... u,)(x) > f (ua,..., u , ) ( y )~  (IOU) 

f (c~ua + fll ..... eu, + ft.) (x) _> f (c~u 1 + fll ..... 0~u, + ft, ) (y) . 
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This is exactly d'Aspremont and Gevers' definition of (IOU) (1977, p 200). 
When g = 5P(J4'), the (IOU) condition can be restated in a more precise way. As is 
well-known, if a VNMpreference ordering N is represented by a mixture-preserving 
function u, any positive affine transform of u is a M P  representation of N as well, 
and conversely, any M P  representation of ~ is a positive affine transform of u (e. g. 
Fishburn 1982, p 14). Thus, when # = ~ ( ~ ' ) ,  (IOU) is equivalent to 

(V(u~ . . . . .  u.) ~ [ ~ e ( ~ ) j " ) ( v ~  e P,+ *) 

(V(fl~,..., ft,) e JR")(3# e ]R + *)(3 v e Ill) ( VNM-IO U) 

f (c~ul + i l l , ' " ,  o~u, + ft ,)= # f  (ul,. . . ,  u,)+ v . 

Following the standard contemporary approach to utilitarianism, (IO U) has to 
be assumed as one among the a priori restrictions imposed on f .  In the utilitarian 
theory sketched in this paper, (IOU), i.e. (VNM-IOU), is a consequence of the 
axioms. It is worth noting that it holds irrespective of the anonymity requirement 
defined below, as a straightforward corollary to Proposition 1 : 

Corollary 1.1. Given a mixture set J¢, any SWF f satisfying (VNM.) and (XN) 
satisfies ( IO U). 

It is by now an easy task to derive utilitarian rules from the hypotheses in 
Proposition 1 and the usual anonymity requirement: 

(V(ul ..... u,) ~ #") (Va permutation of {1 .... , n}) 
(A) 

f (u~a),..., u~(,)) = f (ua ..... u,) . 

Any affine f on ~" satisfying (A) has its a i equal to each other. This follows from 
taking u1=1, ui=0,  1 <iNn,  in (A). Note also that positivity of the ai's in 
Proposition 1 obtains when ( S P 2 )  , i.e. the second part of the strong Pareto 
condition, is super imposed to the initial set of hypotheses. To see this, recall from 
the proof of Proposition 1 that, for i=  1 ..... n, there are mixture-preserving Ui such 
that, for some z i, x i in ~ ' ,  Ui(zi) = O, U~(xi) = ei, the ith vector in the canonical basis 
of IR'; then, apply (SP 2) to the Uv Let us sum up the facts stated in this paragraph: 

Corollary 1.2. Given a mixture set Jig and a SWF f satisfying ( VNM), (1R), ( SP ) and 
(_.4), there are unique real numbers a and b, with a > O, such that: 

( V U m ( u  I . . . . .  Un)~g n) f ( U ) = a  ~ ui+b . 
i=1 

Corollary 1.2 may be compared with d'Aspremont and Gevers' classic 
characterisation of utilitarianism (1977, p 203). However, since their independence 
axiom is different from ours, such a comparison could not be relied on to show what 
is the added value of imposing the (VNM) restriction. Somewhat artificially, we 
shall rather compare our "multiprofile" results with the following variant of 
d'Aspremont and Gevers' characterisation: 

Proposition (see d'Aspremont and Gevers 1977). Given a mixture set Jg, take 
= ~ (d/l), the set o fa l l  real functions on JC[. Any f: ~" ~ ~ satisfying (IR), (SP), (A) 
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and (IOU) is such that: 

(V U =  (u~ ..... u.) ~ g")(V (x, y) e ~,2)  

f(U)(x)> f(U)(y)'*> ~ ui(x)> ~', ui(y) . 
i = i  i = 1  

It has been pointed out that (IR) implied d'Aspremont and Gevers' own inde- 
pendence axiom. Thus, the above proposition is a straightforward logical conse- 
quence of their theorem. The logical connection between this variant and our 
utilitarian result is entirely clarified by Corollary 1.1. The latter in effect claims that 
the (VNM) restriction implies (IOU) in the presence of (IR) and (SP). Since the 
converse is obviously false, the hypotheses in the variant are strictly weaker than 
those of Proposition 1. It comes to no surprise that the result is strictly weaker as 

well, i.e. f(u) may be increasing with ~ ui without being of the prescribed affine 
i = 1  

form. As long as we consider the planner's problem of ordering social utility 
amounts, there is no difference between this result and ours. The added value of 
strengthening the hypotheses with the (VNM) restriction becomes apparent only 
when we move to the problem of ordering first differences in social utility. Our 
affine result for f (u) of course means that the latter ordering reflects the ordering of 
first differences in utility sum. This is not so under the weaker hypotheses of the 
proposition, which ensure that f (U) (x) - f (U) (y) and f (U) (x') - f (U) ( j )  are 

ordered in the same way as ~ (u, (x) - ui (y)) and ~ (u,(x')-ui(y')) only in the 
i = l  i = 1  

particular case of quantities opposite in sign. Let us rehearse this simple point as a 
further corollary: 

Corollary 1.3. Given a mixture set J/[, any SWF f satisfying ( VNM), ( IR ), (SP), and 
(A) is such that: 

(v u =  (u~,..., u,) ~ e")(V(x, y) e .M~)(v (x ', y') e ~ )  

f (U)(x)- f (U)(y) > f (U)(x')-  f (U)(y') 
n 

¢*" • (ui(x)-ui(y)) >_ ~ (ui(x')-ui(y')) . 
i = 1  i=i 

One may be willing to go the opposite way, i.e. to derive results that are even 
more akin to Benthamism than Corollary 1.2. To get a social welfare function which 

is y' u i or - u~, specific normalizations should be resorted to. Since a > 0, it is 
i = l  i=l n 

always permissible for the social planner to change his VNM representation f (U) 
into another one, which is identical with the desired sum or average utility rule. This 
procedure is very much in the spirit of  Harsanyi's work, where Benthamite forms for 
f(U) are derived for particular representations of the moral observer's ordering 3. 

3 See Harsanyi (1955, 1977). This procedure is in the vein of Fleming's early "single-profile" result 
(1952), where the assumed individual and social orderings are those of standard consumer theory and a 
utilitarian result u=~ u~ is derived for well-chosen utility representations. 
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4. The Single-Profile Theorem Reconsidered 

Harsanyi's theorem calls for a separate proof from its "multi-profile" counterpart. 
Considering all elements in [~(A/)]" makes it possible to factor out any f ( U )  as 

U n F 
~' -~N ~IR, an especially convenient decomposition. When a single element 
U=(ul  ..... u,) is given, the Pareto indifference condition implies that f ( U )  can 

U F~ 
be decomposed as JCl--;Rge U-:--MR. Since it is not the case in general that Roe U 
= IR", a different result from Remark 1 above is needed if an argument paralleling 
the proof of Proposition 1 is to succeed" 

Lemma. Suppose K is a convex subset o fN"  and F: K ~  IR is mixture-preserving. Then, 
there are real numbers a 1 ..... a,, b such that 

V ( x l , . . . , x , ) ~ K  , F(xl  ..... x , ) =  ~ aix~+b . 
i=1 

Recall that any non-empty finite-dimensional convex set K has a non-empty 
relative interior, i.e. K has at least one interior point X o with respect to the affine 
subspace it spans (Berger /978, vol 3, p 29). As a result, the translated convex 
~ 2 = K - X o  has 0 as an interior point with respect to Vect K, the vector space 
spanned by K. Define G on K: 

(V X 6 K) G (X) = F ( X +  X o) - F ( X  o) . 

G is M P  and satisfies G(0) = 0. Write G(X)= 2G , with 2 any positive number 
X 

large enough for ~-e K. Since G satisfies positive homogeneity, G is a well-defined 

function which extends G on Vect K. It is easy to check that G is linear. Now, call P 
the (linear) projection oflR" onto Vect _~. GP is a linear form which extends G on IR". 

Write G P ( X ) =  ~ a,x i. Going back to F, one constant term is added, and the 
i=1 

conclusion of the lemma holds. [] 

Now, let us state and prove Harsanyi's theorem: 

Proposition 2 (Harsanyi). Suppose ~ is a mixture set; suppose U = (u 1 ..... u,), u are 
M P  functions from JCl into IR", IR respectively and satisfy the following ("Pareto 
indifference") condition : 

(v x e ~ )  (Vy e J g )  U(x) = U ( y )  ~ u  (x )  = u ( y )  . ( P )  

Then there are real numbers a 1 .... , a,, b such that 

u= ~ aiui+b • 
i=1 

It is clear that the (P) condition is equivalent to the following one: 

3F:U(JI)-+IR s.t. u=Fo U . 
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U( ~ ' )  is a convex subset of ~".  For if X1 = U(xl), X2 = U ( x 2 ) ,  the mixture- 
preserving property of U implies that, for any 2 ~ [0, 1 ]: 

,~Xl + (1 - ,t ) X2 = U ( x l  ~ . x 2 )  • 

Harsanyi's theorem follows at once from the lemma if we prove that F is M P  on 
K =  U(J/g). But the latter is an easy consequence of the mixture-preserving property 
of u: for any X1,X2e  U(Jg), 2e  [0, 1] , 

F(2X 1 + ( - 2) X 2) = F(U(x  12x2)) = u (x 12x2) 

= 2 U ( X l ) + ( 1 - 2 ) u ( x z ) = 2 r ( x 1 ) + ( 1 - 2 ) F ( X 2 ) .  [] 

The proof  offered here is much shorter than Fishburn's lengthy inductive 
argument (1984). Since it uses mixture sets, it is more general than the technically 
elegant argument used by Border (1985). It bears some relationship to Domotor 's  
(1979) earlier proof, which also relied on proving the linearity of the auxiliary 
function F. Some comments on Harsanyi's latest published proof  (1977) may also 
be called for. First of all, it involves changing the zero points and measurement units 
of the u~ and u, so that the affine formula holds for affine transforms of the original 
functions. This is slightly confusing, but unimportant after all since all the 
transformations used by Harsanyi turn out to be invertible, so that he could have 
easily reverted to the original functions. Second, Resnik (1983) has noted a curious 
feature of Harsanyi's proof:  it appears to "assume" some x s~g  with special 
properties. As it happens, the so-called "assumptions" can be rationalized ex post 
as simple facts on convexity such as were used in the proof  of the lemma. But 
Harsanyi's wording is technically faulty, in particular his discussion of negative 
homogeneity which would hold good only if his initial F were replaced by a suitable 
G, as defined above. 

A seemingly curious feature of our proof  is that it makes no use of the axioms of 
a mixture set, but only of the definition of mixture-preservation. This is an optical 
illusion, as can be seen from Remark 1 in Sect. 3. The very definition of mixture- 

preservation on X makes X / ~  a mixture set. Proving u(x)= ~ aiui(x ) +b for any 
i = l  

x e X is equivalent to proving it for any representative x ~ x ~ X / ~ ,  which involves 
using the mixture set structure of X / ~  after all. 

A particular case of Theorem 1 obtains when ~ / i s  taken to be a vector space. 
From Remark 1 above, a M P  function is affine, i.e. the sum of a linear form and a 
constant term. If f is a linear form on ~/g, denote its null space by Kerf .  
Proposition 2 is then easily seen to follow from a well-known fact in linear algebra: 

Proposition. Suppose Jg is a vector space and ua .... , u,, u are linear forms on ~ with 

Ker u ~ (~ Ker ul . 
i = 1  

Then, there are real numbers a t ..... a. such that 

U= ~ aiu i . 
i = 1  
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As stated, Harsanyi's theorem does not say anything on uniqueness and 
positivity of the a i. Both issues will be addressed in the rest of this section. They are 
usefully discussed in Fishburn (1984, p 27). We shall briefly restate his results and 
investigate the r61e of his (C)-condition, as defned below. The main clarification 
here is provided by Corollary 2.1, which states that, when applied to a set of 
mixture-preserving functions, affine independence turns out to be not only implied 
by, but equivalent to the seemingly stronger (C)-property. 

Corollary 2.1. Let 5F (all) be the vector space o fa l l  real M P  functions on a mixture set 
JPl. Then, for any family u 1 .... , u, of Aa(~'), affine independence is equivalent to the 
following independence condition: 

('v'j e {1 ..... n})(3 (xj, y j) s j//z) 
(c) 

uj(x j )¢uj(y j )  and u i (x j )=ui (y j ) ,  i C j .  

Suppose ul , . . . ,  u, are affinely dependent. Then, there is a j<n ,  and there are n 
scalars 2~, 1 < i < n, i Cj  and #, such that: 

(V x e ~ )u~(x) = F, ,~u~(x) + ~ . 
iCj 

Clearly, j makes it impossible for (C) to hold. 
Conversely, suppose that (C) does not hold. Then, there is a j<_n such that: 

(VxsJC/)(Vyedt') u~(x)=u~(y), 1 <iNn,  i ¢ j ~  uj(x)=u~(y) . 

This is the (P) condition of Proposition 2 with u i instead ofu. From Proposition 2, it 
follows that uj= ~ 2iui+# for some 2i and #, i.e. the family (ui .... , u,) is affinely 

i c j  
dependent. [] 

If no restriction is posed on the u~, it is of course most easy to find affinely 
independent functions that do not satisfy (C): 

U 2 

/ U l  
J 

DP 

U 1 

t I ~ H2 

i 
i I 
I ! 

I E 

I . . . .  " . . . . . . . . . . . . . . . . . . .  R* 

F i g .  1 

x l  Yl 

x~ Y2 

(Contrary to the right-hand side, where both (C) and affine independence are met 
on ~t' = N+, the left-hand side exhibits two affinely independent u 1 and u 2 which 
cannot be C-independent since they are strictly monotonic). 
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Let us now restate Fishburn's results on uniqueness and positivity of the ai : 

Corollary (Fishburn). Suppose the hypotheses of Proposition 2 hold. Then, there are 

unique al, . . . ,  a, and b such that u = £ alu i +b if  and only i f (C) holds. Suppose the 
i = l  

following ("stron9 Pareto") condition also holds: 

(Vx ~.M)(Vy ~,////) 
(SP) 

U(x)>_U(y) and ui(x)>ui(y ) for some i ~ u ( x ) > u ( y )  . 

Then, the a i and b such that u= ~ aiui+b satisfy ai>0,  i=  1 .. . . .  n , / f ( C )  holds. 
i=1 

See Fishburn 1984, p 27. [] 

In his early article (1955), Harsanyi appeared to believe that adding (SP) to the 
hypotheses of his theorem would ensure positivity. What this conjecture exactly 
means is very unclear when the u i are affinely dependent, since, from Fishburn's 
corollary, there are many, indeed infinitely many, feasible a~ in such a case. It is a 
straightforward matter to find examples of affinely dependent ul, . . . ,  u,, where each 
feasible set involves one non-positive element; so that the above conjecture is false, 
however it may be interpreted in the case where the ui are affinely dependent 4. 

Leaving aside the (SP) condition, Fishburn's corollary, supplemented with the 
equivalence result stated in Corollary 2.1, makes it very easy to construct cases 
where the hypotheses of Harsanyi's theorem fail to lead to a determinate expression 
of social utility u in terms of the u~ : take any society where one of the u~ is affinely 
dependent on some other uj. How is this indeterminateness problem to be solved? 
The following purports to offer an answer: 

Corollary 2.2. Suppose the hypotheses of Proposition 2 hold. Then, if  not all of  the u i 
are constant functions, there is a maximal subset {u~ . . . . . .  uik }, 1 <_ k <_ n, for which 
there are unique a i . . . . . .  aik, b verifying 

k 

u= ~ ai~ui~+b . 
l=1 

Furthermore, i f  (SP) holds, the a i ..... , ai~ are positive. 

From the very definition of (C), or more visibly from the definition of affine 
independence, it follows that either all of  the u~'s are constant functions or there is a 
non-empty subset {ui, ..... ui~} satisfying (C). Apply Fishburn's corollary to the 
latter. [] 

This result offers a partial solution to the indeterminateness problem raised 
above. If all of the u~ are constant, the (P) condition of Harsanyi's theorem implies 
that u is constant as well - a hardly interesting case for social choice theory, which 
can be dispe~,sed with as was done in the last section. (Still, one may note the 
difference: the "single-profile" theorem trivially holds true, whereas the "multi- 
profile" result would not apply). Knot  all of the u~ are constant, we may express u as 

4 Resnik's  example (1983) is to the point here. 
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an affine t r ans fo rm of  util i t ies t aken  f rom a max ima l  subset  {a h . . . .  , aik}, pu t t ing  
a i = 0 for  the remain ing  n - k  coefficients.  The resul t ing express ion is not  a canoni -  
cal one;  there are several  max imal  subsets  for  a given family  {ul . . . .  , u,} as soon as 
the la t ter  is aff inely dependent .  Thus, a rb i t ra r iness  in the decompos i t ion  o f  u can 
only be al leviated.  Some would  poss ib ly  c la im tha t  it is immater ia l  which max ima l  
subset  is chosen, since any o f  them conta ins  the same in fo rma t ion  as any  o ther  - 
roughly  speaking  the more  basic character is t ics  out  of  which the rest o f  society is 
made.  We feel tha t  this a rgumen t  is sl ippery. To make  it precise, an ax iom is needed 
such as the a n o n y m i t y  requ i rement  o f  the last  section, but  it has been emphas ized  
tha t  the la t ter  d id  not  make  sense in a "s ingle-prof i le"  exercise. Indeed,  the ma in  
po in t  o f  this d iscuss ion on  independence  and  uniqueness  is to show tha t  a "single-  
prof i le"  a p p r o a c h  to V N M  social  choice is su r rounded  with unnecessary  com- 
plexities and  should  leave g r o u n d  for  the "mul t i -p ro f i l e"  one. 
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