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Abstract 

The paper introduces a modal logic system of  individual and common belief which is 
shown to be sound and complete with respect to a version of  Neighbourhood semantics. 
This axiomatization of  common belief is the weakest of  all those currently available: 
it dispenses with even the Monotonicity rule of  individual belief. It is non-minimal in 
that it does not use just the Equivalence rule but the conjunction of  the latter with the 
specially devised rule of  C-Restricted Monotonicity. 

1. General 

Informally, a proposition is common belief (CB) if every individual in the 
group believes it, believes that every individual in the group believes it, and 
so on ad infinitum. Given the usual definition of knowledge as true belief, 
the more standard notion of common knowledge (CK) follows: a proposition 
is CK if it is true, every individual in the group knows it, etc. The logic 
of these concepts has been thoroughly investigated in the context of modal 
propositional calculi and Kripkean variants of the possible world semantics: 
see [6] and [10, Sections 2 and 3] for up-to-date surveys. 

A problem of axiomatizations of CB ~ la Kripke is that they involve heavy 
and questionable epistemic assumptions. From the definition of a K-System 
[2, Chapter 4] individual belief is required to reproduce any logical inference 
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(Monotonicity rule), include any logical truth (Necessitation axiom), and 
preserve conjunctions (Conjunctiveness axiom). There certainly are computer 
science applications for which K, and even stronger systems such as $4 or $5, 
can be assumed as good approximations. For instance, Halpern and Moses [5] 
show how S5-based axiomatizations of CK apply to distributed systems anal- 
ysis. In epistemic logic and artificial intelligence, however, the Monotonicity 
rule and Necessitation axiom have been repeatedly criticized on the grounds 
that they imply logical omniscience on the individuals' part [3,7,8,12-14]. For 
example, Fagin and Halpern [3] state the following reasons why it is unreal- 
istic to assume that individual belief can reproduce any logical inference and 
include any logical truth: (i) lack of awareness; (ii) lack of computational re- 
sources; (iii) ignorance of the relevant mathematical rules; (iv) inconsistency 
between different "frames of mind". 

These criticisms, in particular (iv), can arguably be extended to the Con- 
junctiveness axiom. As is well known, the latter raises epistemic problems of its 
own--i t  is incompatible with probabilistic belief except for the case of events 
having probability 1. In view of the development and applications of probabil- 
ity logics in AI (see [ 1 ] for a survey), this incompatibility might strike one as 
a further unpleasant feature of the K-system. A related reason for dispensing 
with Conjunctiveness has to do with the recent work in game theory on the 
quantified notion of p-common belief [11]. 

The above epistemic considerations motivate the attempt to axiomatize CB 
in terms of weaker systems of individual belief, and more powerful seman- 
tics than Kripke's. Several "nonstandard" frameworks are currently available 
in epistemic logic to tackle the logical omniscience problem [4, Chapter 5]; 
presumably, one of them will provide the path to the proper axiomatization 
of CB. The present paper uses the framework of Neighbourhood semantics, 
which stands prominently among the current alternatives because of its mathe- 
matical generality and its flexibility in epistemic applications. The notion of a 
Neighbourhood (or Montague-Scott)  structure is known strictly to include that 
of a Kripke structure, while still delivering epistemically interpretable sound- 
ness and completeness theorems for modal logic systems [2, Chapters 7-9]. 
This convenient feature might explain why some of the recent work in AI in- 
spired by the logical omniscience problem involves Neighbourhood structures 
or variants of them ( [ 13,14 ]; see also the "frames of mind" construction in [ 3, 
Section 6] ). In connection with the point made above on Conjunctiveness, it 
is worth stressing that this approach can be related to the probability calculus 
if needed. Further motivation can be found in [10, Section 4]. The latter 
paper also contains an informal review of axiomatizations of CB reached by 
the present writers in the Neighbourhood semantics framework. 

These axiomatizations share the following feature: they dispense with Ne- 
cessitation and Conjunctiveness, which is a step in the right direction, but 
retain Monotonicity, which is worrying. For there is general agreement that 
this rule is at the core of the logical omniscience problem. Fortunately, it can 
be weakened, as the novel result of this paper demonstrates. As in earlier 
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axiomatizations, the CB operator is required to satisfy a Fixed-Point axiom 
and an Induction rule. Crucially, the individual belief axiom block replaces 
Monotonicity with the conjunction of the following two rules: 

(i) the Equivalence rule, which requires the individual to reproduce logical 
inferences when the premises are logically equivalent to the conclusion 
and are believed by that individual; 

(ii) the specially devised rule of C-Restricted Monotonicity, which requires 
him to reproduce logical inferences when the premises logically imply 
the conclusion and are common belief. 

Taken individually, (i) and (ii) weaken the Monotonicity rule by restricting its 
application to a particular case of logical implication and a particular case of 
belief in the premises, respectively. Taken together, they are strictly weaker than 
Monotonicity, as will be checked. It would have been more satisfactory to use 
just (i), which is well known to be the minimal axiomatization of individual 
belief within Neighbourhood structures. There are, however, difficulties, both 
technical and conceptual, to make this further step. The present conjunction 
of (i) and (ii) is tailor-made to meet the prima facie conflicting requirements 
posed on the logic: When added to the CB axiom block, the individual belief 
axiom block should 

( 1 ) deliver a sound and complete axiomatization with respect to the Neigh- 
bourhood semantics of individual and common belief, 

(2) be strong enough to imply the intuitively desirable properties of CB, 
(3) make progress with the logical omniscience problem, hence be weak 

enough not to imply Monotonicity. 
Section 2 explains the syntactical definitions as well as results supporting 

claim (2). Section 3 explains the semantics, the CB part of which is expressed 
in terms of belief closure, and states the determination (i.e., soundness and 
completeness) theorem required by claim (1). Section 4 contains a proof and 
states the simple independence corollary warranting claim (3). Modifications 
of the proof deliver the axiomatization results that are mentioned in [I0, 
Section 4] and were derived in [9] under the unnecessarily strong rule of 
Monotonicity. Since the present paper derives the most powerful among the 
determination theorems relative to CB in Neighbourhood structures, it should 
be clear that it supersedes [9] as the relevant technical source for the review 
article [ 10 ]. 

2. Syntactical definitions and results 

The vocabulary of our systems consists of a set PV of propositional variables 
(of any cardinality), the usual propositional connectives, and unary operators 
with intended epistemic applications. There is afinite set A of "agents" each of 
whom is endowed with a belief operator Ba, the CB operator C and (just for 
convenience) the shared belief operator E. Let qb denote the set of well-formed 
formulas constructed from these components. 
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The first system, to be denoted by M C  A, consists of any axiomatization of 
the propositional calculus, and the following modal rules and axiom schemata: 

Individual Belief Axiom Block. 
~o ~ q/ for any a E A; (REa) Ba~O ~ B a ~  

(Def.E) E~o ,--, A Ba~o; 
aEA 

(C-RMa) C ~ - - ~ £ q /  for any a E  A; 

Common Belief Axiom Block. 

(FP) C~o ~ E(Cq~ A ~0); 

~ E  

(RMc) C ~ C ~ "  

The original feature in block (i) is the C-Restricted Monotonicity rule (C- 
RMa) that the previous section informally contrasted with the more standard 
Monotonicity rule: 

(RMa) Ba~ ~ aqZ" 

The second system, to be denoted by MCA, involves the following alternative 
block (i') of  individual belief: (RMa) for any a E A, plus the unproblematic 
(Def.E). Clearly, (i') implies (i) in the presence of (FP). That this implication 
is strict will be clarified below. 

Note the easy fact that (i) as well as (i') are satisfied in models in which 
agents do not believe anything at all. This possibility would disappear if the 
already discussed Necessitation axiom were added to the individual belief 
axiom block: 

(Na) BaT for any a E A (where T stands for any theorem). 

Similarly, (i) and (i') are satisfied in models in which agents hold beliefs 
without holding the conjunction of them, i.e., violate Conjunctiveness: 

(Ca) Ba~OABa~ ~ Ba(~OA~/) • 

We recall in passing the formal definition of a K-system for agent a: (RMa) 
+ (Na) -I- (Ca). 

The (ii) block is common to M C  A and MCa. A Fixed-Point axiom, (FP), 
says in effect that CB of any statement implies shared belief of that statement 
and of the statement that there is CB. The property obtained by changing the 
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end of the last sentence into: "shared belief of that statement and shared belief 
of  the statement that there is CB" is easily derived in MCA. It also holds in 
M C ~ ,  as shown in Proposition 1 (i) and (v) below. 

(RI) says in effect that if a statement ~0 is inherently public belief--i.e., it 
is a theorem that ~0 cannot happen without everybody's believing it--then ~0 
is inherently CB. The intuitive connection between public and common belief 
was first pointed out in the economics literature--see [10] for details. This 
paper also explains why rules like (RI) have been called Induction rules. 

Finally, (RMc) is the Monotonicity of  CB rule. Its technical role will become 
clear from the syntactical results below. Readers aware of the axiomatization 
of CB in [5,6] could check that (RMc) is implied by the particular version 
of the Induction rule adhered to in these papers, granting their assumption of 
a K-system for any a 6 A. 

Any rule or axiom schema in this paper is taken to hold for every a or for 
none. Hence the self-explanatory notations: (REA), (C-RMA), etc. The formal 
inference relations F-MC; and ~-MCA are defined in the standard way. We shall 
drop the subscript where there is no ambiguity. 

Proposition I. 
(i) Granting (RMc) and (Def.E), 

axiom: 
(C-RMA) is equivalent to the following 

C~p ---, E~0. 

Granting (FP), (RI) and (Def.E), (C-RMA) is equivalent to the fol- 
lowing rule: 

~ ~ E ~o /~ ~ 
E~o ~ E ~  

The following theorems hold: 
(ii) For any k >I 1, FMC ~ C~o --, Ek~o. 

(iii) 

(iv) 

(v) 

(vi) 

(vii) 

(viii) 

(ix) 

For any k >t 1, ~-MC~ C~ --o ck~.  
F-MC ~ C¢o ~ E ( C~o A ~O ). 

~-MCy C~O ~ ECho. 
FMC ~ ECco ~ CE~o. 
F-MC ~ C~ --o CE~o. 

(CA) [-MC~ CEco ~ ECho. 
(CA) F-MC ~ Coo ~ ECho A E~o. 

Proof. (De£E) and (C-RMA) clearly imply the axiom in (i); the proof of the 
converse depends on (Def.E) and (RMc).  To derive the rule in (i) from 
(Def.E) and (C-RMA), use (RI); for the converse, use (FP). 

For (ii): Assume that F- C~o ~ Ek~o has been proved up to some k /> 1. 
Then, F- C~0 A ~0 ---, Eke0 holds, as well as (from (C-RMA) and (Def.E)) 
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F- C ( C ~  A ~o) ~ Ek+l~o. Applying (FP) and (RI) in succession leads to 
~- E(Cq~ A ~o) ~ C ( C ~  A ~0), whence (from applying (FP) again) ~- Cfp --, 
C(C~o/x ~0). We conclude that F- Cfp ~ Ek+lfp. 

To prove (iii) note that (RMc) implies that F- C(C~o A ~0) ~ Czq~; hence 
F- C~p --, C2q~, and from an inductive argument ~- Cfp ---, Ck~p for any k >/2. 

(iv): From (FP), (RI) and (RMc).  
(v): From (iii), (C-RMA) and (Def.E). 
(vi): From (v), (RI) and (RMc) as applied to (i). 
(vii): From (v) and (vi). 
(viii): From (i), (v), (CA), (RI), (RMc),  (C-RMA) and (Def.E). (ix): 

From (i), (v), (iv), (CA) and (Def.E). [] 

The properties of C-Restricted Monotonicity in (i) provide some further 
intuition on this rule. As indicated by the first restatement, (C-RMA) can be 
defended on definitional grounds once the monotonicity of CB is taken for 
granted. The second restatement says in effect that monotonicity applies when 
the premisse ~0 is inherently public belief. Proposition 1 also lists intuitively 
desirable properties of C, two of which deserve special emphasis: (ii) captures 
the standard iterate notion of CB, while (iii) is the C-analogue of Positive 
Introspection, a property of CB which is taken for granted in a number of 
applications. The fact that (ii) to (ix) hold in MCA is an immediate corollary 
to Proposition 1. 

3. Semantic definitions. The soundness and completeness theorem 

Our concept of structures is a specially devised variant of the standard 
concept of Neighbourhood structures [2, Chapter 7]. Define a C-Restricted 
Monotonic Structure to be any (IAI + 2)-tuple: 

m = (W, (Na)a~,4, v), 

where: 
• W is a nonempty set (referred to as the set of  possible worlds); 
• for all a E A, Na is a mapping W ~ 2 2W (i.e. the power set of the power 

set of W) such that for all w c W, all P, P' c_ W, 

i f P E f ' ] a ~ A N a ( w )  and P c_ {w' c W I P C N a c A N a ( w ' ) } ,  ( , )  

then P C_ P' ~ P' E ~ac A Na ( w ) . 

(This condition, to be discussed below, will be called C-Restricted Mono- 
tonic Closure. ) 

• v is a mapping W × P V  ~ {0, 1} (referred to as a valuation). 
For convenience we introduce the following notation: for any w E W, 

N E ( w )  = N Na(w) .  
aEA 
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Let us denote by M M- the class of C-Restricted Monotonic structures. 
Replacing condition ( , )  in the above definition with the simpler condition of 
Monotonic Closure: 

i f P  E Na(w), then P C_ P' ~ P' C Na(w), (**) 

one would get the class of Monotonic structures, to be denoted by M M. Clearly, 
(**) =~ ( .) ,  i.e., M M c_ M M-. The inclusion is strict as the following easy 
example shows. Take [AI = 2, W = (w~,w2} and v defined on PV in any 
way; Nal (wl) = Na~ (w2) = {~b, W}, Na2 (Wl) = Na2(W2) = {W}. This model 
is in M M- but not in M M. 

The validation relation: (m, w) ~ ~0 is defined for any m ~ M M- and any 
~0 E q) through a standard inductive process. We just state the modal clauses 
of the inductive definition: 

• if ~o = Ba~, (m,w) ~ ~o iff [l~[]m E Na(W), where []~u[] m denotes the 
truth set of  ~t in m (i.e. [l~l] m -- {w' E w I (m,w') ~ v) ) ;  

• i f ¢  = E~, (m,w) ~ ~ iff []~[]m E NE(W); 
• if ~0 = C~u, (re, w) ~ ~o iff there is P c W s.t. P c_ [1~1] m, P ~ NF~(W) 

and e C_ {w' E W I e E N~ (w')}. 
The intuitive interpretation of the Na functions is the usual one in an 

epistemic context. Given w, Na (w) is a system of belief for a at that world-- 
i.e., the set of  subsets that are a's objects of  belief at w. The familiar validation 
clause for Ba~ connects this semantic account of individual belief with the 
syntactical one in the case when subsets are propositions. We proceed to the 
unfamiliar part of the semantics. For any Q c_ W, define Q to be belief closed 
(b.c.) if: 

V w E Q ,  QE Ne(w),  i.e., QC_ {w' c W I Q c N E ( W ' )  }. 

Intuitively, Q is b.c. if it is an object of  shared belief at every world at 
which it occurs. This is a semantic rendering of an event which is "public by 
nature". (Notice, however, that the belief closure property is relative to the 
given model.) The validation clause for C~u says that CB of ~ prevails at 
w iff there is a subset P (which may not be a proposition) that (i) implies 
the proposition corresponding to ~u in the model, (ii) is everybody's object of 
belief at w, and (iii) is b.c. This is one among several plausible fixed-point 
semantic definitions of CB. It embodies the basic intuition (also underlying 
(RI))  that events which are "public by nature" are also "CB by nature". The 
belief closure definition of CB implies the semantic account of CB in terms 
of a countable iteration, as in [5,6]: this follows from Proposition 1 (ii) and 
the determination theorem below. (The converse implication, however, does 
not hold in MM-; for details and further comparison of the iterate versus 
fixed-point semantics of CB, see [10, Section 4].) 

Condition (**) in our definition of structures is the familiar semantic notion 
of Monotonicity. The not so demanding ( , )  imposes Monotonic Closure on 
those P only which satisfy conditions (ii) and (iii) of  the last paragraph. The 
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intended meaning is to allow for just that amount of monotonicity, hence of 
logical omniscience, which is required by the semantics of CB. 

For any structure m and any relevant class of structures, A4, m ~ ~0 and 
M ~ ~0 are defined in the usual way. 

Theorem 2. M C ;  is a sound and complete axiomatization of the class of C- 
Restricted Monotonic structures, i.e. for any ~ E q), 

F-MC ~ q) i f f  M M- ~ ~0. 

4. Proof of the determination theorem 

As usual, the soundness part is easy. The following observation will be useful: 

Lemma 3. For any m E A4 M-, if P c_ [l~0l] m and P is b.c., then P c_ [[C¢I] 'n. 

Proof of the soundness part. 
(C-RMA): Assume that for all m ~ ./vl M-, [](pl]m C [[I,bt]] m. Take any 

m' 6 M M- and any w' E W'. We assume that (m',w') ~ C~o and wish to 
prove that (m' ,w')  ~ Eq/. From the semantic definitions there is P c_ []~0[] m', 
hence P C [[~[]m', s.t. P ~ NE(w') and P is b.c. The property of C-Restricted 
Monotonicity implies that any superset of P is in NE (w');  in particular [I ~1] m' 
is. Hence the conclusion. 

(FP): Take any m 6 Ad M- , any w c W, and assume that (m,w) ~ Qo. There 
is P as in the relevant semantic clause. From Lemma 3, P _C []C~o t ] m N [1¢1 ] m = 
[[ C~0 A ~o t ] m. p satisfies the condition for applying C-Restricted Monotonicity. 
Hence [[C~0 A ~]]m C NE(W), i.e., (re, w) ~ E(C~o A ~o). 

(RI): Assume that for all m E M M-, [[q~l]m C_ [IEq~[] m. Take any m' c 
?el M- and any w' c W'. We assume that (m',w') ~ E~o and wish to prove 
that (m',w') ~ C~o. Let P = [l~0]] m'. From the assumptions P is b.c. and 
P E NE(w');  it trivially satisfies P c_ [1~01] m'. Hence the conclusion. 

(RMc),  (REz)" left to the reader. [] 

The proof of the completeness part is roundabout. We shall leave the more 
familiar parts for the reader. The general strategy is to prove the implication: 

.M M- ~ ~J ~ [-MC A ~ll 

for any given well-formed formula ~,, adapting to that formula the usual con- 
struction of a canonical model [2]. Completeness proofs of the "each formula" 
kind seem difficult to avoid whenever the system includes an axiomatization 
of CB in the style of the (ii) block; see also [6]. As a result of this tech- 
nique, some information that could have been derived from a "universal" 
completeness proof--e.g, compactness--will be lost. 
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The first step is to define a sublanguage O [ ~ ]  relative to ~u. Given any 
~o E • the depth of ~o, to be denoted by dp(~o), is defined inductively: 

• if ~0 E PV,  then dp(~o) = 0; 
• dp ( -~o)  = dp(~0); 
• dp(~ol • ~02) = max(dp(~ol),dp(~o2)) for any two-place connective ,; 
• dp(Ba~o) = dp(E~o) = dp(C~o) = dp(~o) + 1. 

We now define • [~,] to be the subset of those formulas in • which are 
constructed from the propositional variables occurring in ~, and have depth at 
most dp(~)  + 1. The subset • [~u]- is defined in the same way except for the 
following variant: "depth at most dp(~u)". 

C[MCA] will denote the class of  maximal consistent sets of O-formulas 
relative to the system M C j  (see [2] for the definition and properties of 
maximal consistent sets of formulas). We introduce the following equivalence 
relation on C[MCA]: 

V F, A E C [ M C Z ] , F  ~ A  i f f r n O [ ~ ]  = A N O [ ~ u ] .  

For any equivalence class [F]  ~', let F~' stand for its intersection. Note carefully 
that F~' may contain formulas of any depth: it is the set of those formulas 

which are deducible from F N • [ ~u ]. Clearly, F ~ A iff F ~' = A ~'. The general 
idea of  the sequel is to construct a ~u-specific canonical model having the set 

of ~-equivalence classes, to be denoted by U', as its set of  possible worlds. 
Lemmas 4 and 5 record two technically useful properties of subsets of  U'. 

The proof of Lemma 4 hinges on the fact that U' is finite; that of  Lemma 5 
on the precise use of the above definitions. 

L e m m a  4. For all P c_ H' there is ~o E • [~]  such that: 

P =  {[F]  ~ ' E I  v l ~ a E F ~ } .  

For any ~o E • we shall denote sets such as P by [~o]~' 

L e m m a  5. For all ~ol E O[~u] and ~o2 E O, i f  [~Ol] ~' C_ [~o2]~', then F- ~ol ~ (02. 

Now, we define a ~u-canonical model to be a ([A] + 2)-tuple m~, = 
(W, (Na)a~A,V) such that: 

• W = I v,  

• for all a E A and [F]~' E U', 

Na([F] ~') = {P C U' ] 3 ~0 E • [gt] s.t. P = [~o] ~' and Bag E F~'}; 

• foral l  ~oEPV and [F]~'EU',v([F]~',~o) = 1 iff~0 EF t ' .  
Lemma 6 clarifies this construction with a view of showing that ~u-canonical 

models are in M M- . 

L e m m a  6. For all a E A and F E C [ M C~ ], 
(i) V ~o ~ O[¢]-,Ba~o ~ F ~ [~o]~' ~ N,~([F]~'); 
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(ii) V q~ E ~[q / ] ,  [~0]~' E N~([F]~') ~ Ba~o E I'q/; 
(iii) Na ( [ F ] ~' ) satisfies C-Restricted Monotonic Closure. 

Proof. 
(i) immediate. 
(ii) Assume that [~ ] ~' E Na ( [F ] ~' ). From the definition there is (Do E • [ ~ ] 

s.t. Ba~o E F ~' and [@0] ~' = [~]~'. Lemma 5 implies that ~- ~ ~ ~00. Hence 
from (REa), Ba¢ E F~'. 

(iii) Take any P,P' s.t. P c_ P' c_ I~' and: (I) P E Na([F] ~') for all 
a E A; (II) P _c {[F']~' I P E ~aEANa([F']~')}. We wish to prove that: (III) 
P' E Na([F] ~) for all a E A. From Lemma 4 P = [q~]~' for some q~ E qb [~].  
Now, condition (I) and part (ii) imply that for all a, Ba~ E F~', hence that 
Eq~ E F~', using (Def.E). Condition (II) can be restated as: [(p]V, c_ {[F']~' I 
[~]~' e NaEANa([F']~'} or (using part (ii) and (Def.E))" [~0]~' c_ {[F ' ]~  ] 
Eq~ E F '~'} = [Eq~] ~'. Applying Lemma 5 once again, ~- @ ~ Eq~ holds and 
(RI) implies that ~- E~ ~ C@, whence C@ E F ~'. Now, Lemmas 4 and 5 imply 
that P' c_ I~' can be expressed as [q~']~' for some @' E • [~/], and ~- q~ -~ q~' 
holds. (C-RM~) delivers the conclusion that Eq~' e F ~', which (using (Def.E) 
and part (i)) implies that (III) holds. [] 

The following lemma says in effect that y-canonical models are indeed 
canonical in the usual sense of modal logic. 

1.emma 7. Take a q/-canonical model m~,. Then, for all F e C[MC A ] and 
~,' e q, [~,]- ,  

<m~,, [F]~'> # q/ iff ~u' e F ~'. (*) 

Proof. As usual with the proof of canonical lemmas, by induction on the 
propositional complexity of ~'. The definition of v in m~, deals with the case 
of a zero-complexity V/. The inductive hypothesis can be stated as: 

[lq, i] m, = 

The only cases of interest are ~u' = Ba@ and ~'  = C~,. 
Case 1: ~'  = Ba~O. Equivalence ( , )  then reads as: 

[ItPl] m~ e Na( [F]  ~') ¢~ Ba~0 E F ~', 

which follows from the inductive hypothesis together with Lemma 6 (i) and 
(ii). 

Case 2: V / =  CQ~. From left to right in ( .):  Using the definition of semantic 
validation, there is P c_ I ~' s.t. conditions (I) and (II) in the proof of Lemma 
6(iii) hold and P c_ [l(Pl]~ = [@]vC Lemma 4 implies that P = [q~0] ~ for 
some @0 E ~[V/],  and Lemma 5 that F- Co0 ~ q~. In the presence of (I), 
Lemma 6 (ii) together with (Def.E) implies that E@0 E F~'. Now, repeating an 
argument already made in the proof of Lemma 6(iii) we conclude from (II) 
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that ~- E~00 ~ C~o0. It then follows that C~o0 E F~'. Applying (RMc) leads to 
the desired conclusion that C~0 E F~'. 

From right to left in ( ,) :  Assume that C~o E F~'. (FP) implies that E(C~o/~ 
~0) E F~'. Clearly, Cfp A ~0 E qO[V]-, so that we may apply Lemma 6(i) and 
conclude that [C~0A~0]~' E Na([F] ~') for all a E A. Putting P = [CfpA~0]~' we 
have thus shown that (I) holds of P. Using (FP), (Def.E) and Lemma 6(i) 
again, it can be checked that (II) also holds of P. Thus, we have found P c_ I~' 
satisfying (I), (II) as well as--obviously--the condition that P c_ [q~]~' = 
Ileal] ~'. Hence (m~,, [F]~') ~ Qo. [] 

End of the completeness proof. Use Lemma 7 and the already-mentioned con- 
sequence of Lemma 6(iii) that m~, E M M-, as in the standard argument for 
completeness [2, Chapter 2]. [] 

Corollary 8. M C X is decidable. 

Proof. From the standard argument spelled out in [2, pp. 62-64], and the fact 
that the ~u-canonical model constructed above is finite. [] 

Corollary 9. MC X is strictly weaker than MCA. 

Proof. Assume that MCA = MCff. Then, from the soundness theorem, rule 
(RMA) should be valid in A4 M- . But this is not the case in view of the model 
used in Section 3 to prove that j ~ g  C5 / .A/[M-. [] 

Proposition 10. MCa is a sound and complete axiomatization of the class of 
Monotonic Structures, i.e., for any ~o E q~, 

~-MCA ~ if f  MM ~ ~. 

Proof (Sketch). 
The reader will readily check that (RMA) is valid in M M. As far as soundness 

is concerned, no further direct verification is needed. For it has been shown 
that the remaining rules and axioms are valid in M M- , hence in M m. 

To prove completeness, the reader might repeat the construction in this 
section after replacing C[MC~] with the class of maximal consistent sets 
relative to MCA. Using whenever necessary the fact that MCA is stronger that 
MC~, Lemmas 4, 5, and 6( i ) - ( i i )  carry through. Simplifying the argument 
used to prove Lemma 6 (iii), it can be seen that Na ([/']~) satisfies Monotonic 
Closure. The rest of  the proof carries through, using again the above syntactical 
fact. [] 

Proposition 10 is mentioned in the authors' survey of the logic of CB [10, 
Section 4, Theorem 8]. In [9] it received a direct proof, which is superseded by 
the present one. Given that Theorem 2 above provides the most powerful, both 
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mathemat ica l ly  and conceptually,  among  the current  axiomat iza t ions  of  CB in 
Ne ighbourhood  structures, it is best  to regard Proposi t ion 10 as a der ivat ive  
result. A related c o m m e n t  applies to an al ternat ive monoton ic  ax iomat iza t ion  
of  CB ment ioned  as [10, Section 4, T h e o r e m  7]. This  result trades on a 
semant ic  account  of  CB in te rms  of  uncountable  iterations. It  can be der ived 
f rom Proposi t ion  10, hence also recovered within the present  f ramework,  once 
the connect ion between iterate and f ixed-point  val idat ion clauses in Monoton ic  
Ne ighbourhood  structures is clarified (see [10, Section 4, Proposi t ion 9] ) .  
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