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Abstract 

If a vector-valued function has convex range and one of its components is related to the others by a Pareto-like 
condition, that component must be affine w.r.t, the others; sign restrictions on the coefficients follow from suitably 
strengthening the unanimity condition. The theorem is applied to social choice and decision theories. 

JEL classification: D71 

I. Introduction 

This paper  proves a simple and general  t heo rem on affine aggregation.  Cons ider  a 
vector-valued funct ion F = (f0, f l ,  • • • ,  fn) having convex range.  Assuming  that  f0 is re la ted to 
the  n remain ing  componen t s  by a unanimi ty  condi t ion,  we investigate the funct ional  
re la t ionship be tween  f0 and fx, • • • ,  fn" W h e n  the f, are utilities, the unanimi ty  condi t ions  are 
simply those of Pareto.  Our  t heo rem states that  for most  of the envisaged condi t ions,  f0 is 
affine in terms of the f l ,  • • •,  f ,  and that  sign restrictions on the coefficients result  f rom a 
suitable choice of the unanimi ty  condit ion.  

By specifying the type of the f/ we genera te  relevant  choice- theoret ic  applications.  In 
part icular ,  we derive variants of Harsanyi 's  (1955) Aggregat ion  T h e o r e m  and give a general  
solut ion to the wel l -known prob lem of signing the coefficients in Harsanyi ' s  affine social 
choice rule. We discuss fur ther  applications to A n s c o m b e  and A u m a n n ' s  (1963) expec ted  
utility theory  and to some recent  results on probabil i ty aggregat ion (Mongin ,  1993). 

2. Definitions and basic facts 

Cons ider  any n o n e m p t y  set X and F =  (f0, f l  . . . .  , fn):X---~ R "+1. We study the effect of 
impos ing  one  of the following conditions:  for any x, y E X, 
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(P0)f/(x) = f ( y ) ,  i =  1 , . . . ,  n ~ f o ( X )  =f0(Y). 

(P1)f/(x) >~ f ( y ) ,  i = 1 , . . . ,  n ~ fo(X) >~ fo(Y)" 

(Pz)f~(x) > f ( y ) ,  i = 1 , . . . ,  n ~ fo(X) >f0(Y). 

(P3)f(x) ~> f/(y), i --- 1 , . . .  , n& 3j : fj(x) > fj(x) ~ fo(X) >f0(Y). 

(P4)f~(x) ~>f(y), i = 1 , . . . ,  n&fo(X ) <~ fo(Y) ~ F(x) = F(y) .  

If the f are utility functions, then (Po), (Pt), (P2), and (P3) become standard Pareto 
conditions, i.e. those of Pareto-indifference, Pareto-weak preference, Weak Pareto, and Strict 
Pareto, respectively. The conjunction of (Po) and (P3) is then the Strong Pareto condition, 
while the nonstandard condition (P4) says that any conflict between the weak preferences of 
the social observer and those of society as a whole are resolved by general indifference. We 
also introduce the following condition of min imum agreement among the f :  

3x*,  y * E X ,  V i =  l , . . . , n ,  f i i ( x* )> f ( y*  ) .  (C) 

The following lemma clarifies the relations between the (Ps): 

L e m m a  ( P 4 ) ~ ( P 3 ) ~ ( P 2 ) ;  ( P 4 ) ~ ( P 1 ) ~ ( P o ) ;  (Pa)C:>(Po)&(P3). I f  F (X)  is convex, 
(C)&(e3) => (P4). 

Proof.  Since the other relations are easy to check, we prove only the last statement. Assume 
that the antecedent of (P4) holds, i.e. 

f i (x)~>f(y) ,  i =  1 , . . . , n  and fo(X)<-fo(y).  

Then, (P3) clearly implies that fi(x) =f/(Y), i = 1 , . . . ,  n. Assume by way of contradiction that 
fo(X) <fo(Y) and define the vector 

u = (1 - e)(F(x) - F(y))  + e(F(x*) - F ( y * ) ) ,  

where x*, y* are as in (C) and e E ]0,1[. For e small enough, u o < 0 and u i > O, i = 1 , . . .  , n. 
Since the set {F(x) - F(y ) Ix ,  y E X }  is convex, there are ~:,~' E X such that u = F(s c) - F(~ ' ) ,  
contradicting (P3)- [] 

We need a few definitions and basic facts of convex analysis in finite-dimensional vector 
spaces. A subset D of E = ~"+1 is said to be polyhedral  if it is the set of solutions of a finite 
system of linear weak inequalities. Polyhedral sets are clearly convex and closed. Several of 
the arguments below crucially depend on assuming finite dimensionality. For i = 0, 1 , . . . ,  n, 
let e i denote the ith vector of the canonical basis. Given D, D ' C  E, let V(D)  denote the 
vector space spanned by D in E, and D - D '  the set {z - z '  I z E D, z '  E D ' } .  

The linear form v is said to separate the sets K 1 , K 2 C E if 
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inf {v,k~>>~sup (u, k 2 > , a n d 3 k ,  E K , , k 2 E K 2 . < v ,  k l )  > ( v ,  k2> , 
klEK1 k2EK 2 

and to separate  them strictly if the first inequality is strict. The standard separating hyperplane  
t heo rem states that there is a separating v if K~ and K 2 are nonempty ,  convex, and mutual ly 
disjoint. It is also known that there is a strictly separating v if the previous conditions hold,  
and fu r the rmore  K~ is closed and K 2 compact  (Rockafel lar ,  1970, Corollary 11.4.2.). It is also 
the case that there  is a strictly separating ~, whenever  K1, K 2 c E are polyhedral ,  nonempty ,  
and mutual ly disjoint (Rockafellar ,  1970, Corollary 19.3.3.). 

3. Affine aggregation results 

Proposit ion 1. As sume  that K = F(X)  is convex. Then, (Po) holds i f  and only i f  there are real 
numbers  A 1 , . . . ,  An, /~ such that 

Vx E X ,  fo(X) = ~ Aifi(x) ~ ~ . (*) 
i = I  

(P1) [(P4)] holds i f  and only i f  there are non-negative [resp. strictly positive] numbers  
A~, . . . , A n and a real number  tx satisfying (*) .  

Proof.  The sufficiency part  in each s ta tement  is obvious. To prove necessity in the case of 
(Ps), s = 0, 1, we shall reformulate  these conditions appropriately.  Notice first that (P0) is 
equivalent  to: Vx, y E X, [ f ( x ) = f i ( Y ) ,  i =  1 , . . . ,  n f i fo(X)~>f0(Y)].  Define: 

R 0 {z "- ~n+l = ~ z o < O a n d z i = O , i = l , . . .  , n }  , 

R 1 = {z E ~ , + l i z  ° < 0 a n d z  i >-O,i = 1 , . . .  , n }  , 

and let /~0 and/~1 denote  the closures of R 0 and R1, respectively. The following equivalence 
clearly holds for s = 0, 1: 

(Ps)C=>RsnK- = 0 ,  

where  K -  denotes  the set K - K. Using the fact that K -  is convex and symmetr ic  with respect 
to 0, it can be checked that for s = 0, 1, 

(P~)C=>RsNV(K ) = 0 .  

tn  
[To see that,  assume that there is z E R s n V ( K - )  and write z = Ei= ~ aizi, where  Z l , . . .  , z,, 
are  e lements  of K - .  The symmetry  proper ty  of K -  means that the a i can be taken to be 
non-negative.  The case z = 0 is trivial. If z # 0 ,  the convexity proper ty  implies that z ' =  
(Y, Oil) -1 F,i'=~ aiz i is in K - ,  a contradiction.] Since /~  - e  0 C R~, 

(Ps) f ( /~  - e0) O V ( K - )  = O. 

Thus,  we have just reduced the problem to that of separating two sets that are polyhedral ,  
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nonempty ,  and mutually disjoint. Applying the latter strict separation theorem in Section 2, 
there  is ~, = (u0, Vl, • • • ,  t,,) such that for s = 0, 1, 

(u,Z-eo)>(v,k), VkEV(K-),VzER,. 

The linear space property  of V(K-)  implies that 

Vk E V(K-), <~,k)  = 0 .  (a) 

Applying the above inequality to z = 0, we conclude that v 0 < 0. Thus, Eq. (1) as restricted to 
K -  can be written as 

Vx, y E X ,  fo(X)-fo(Y) = ~ v,(-Vo)-l[f(x) - f ( Y ) ]  • (2) 
i = 1  

Fixing y E X leads to coefficients h 1, . . . ,  h , ,  /x satisfying (*), which proves the (P0) case. It 
remains to be shown that (* )  holds for non-negative h i when (P1) holds. For any i = 1 , . . .  , n 
and a > 0, one has ~e i E/~1, whence 

<.,  ei) > e0), 

and the conclusion that t,,./> 0 follows from dividing by a and letting a ~ +oo. 
To deal with (P4) define: 

R 4 = {z E R"+l lz  0 ~<0andz  i t>0, i = 1 , . . .  , n} \{0} ,  

a={zER4 z,-zo=l}. 
i = l  

From the definition of R 4 we have 

(P,)  <:=> R 4 A V(K-)  = O, 

whence ( P a ) ~ A  A V ( K - ) = 0 .  Since A is convex and compact,  and V(K-)  is convex and 
closed, the former  strict separation theorem in Section 2 applies. There  is ~, = (~0, v ~ , . . . ,  v,) 
such that 

( , , 6 )  > ( v , k ) ,  W E a ,  V k E V ( K - ) .  

As before,  (1) holds, leading to 

( , , ~ )  > 0 ,  W E a .  

Applying this inequality to 6 = - e 0 ,  e ~ , . . .  , e ,  in turn, we conclude that u0 < 0  and u,. > 0 ,  
i = 1 , . . . ,  n. Hence ,  (2) again follows from (1), and (* )  holds with strictly positive hi, i = 
1 , . . . , n .  [] 

Proposition 2. Assume that K = F(X) is convex. I f  (P2)[(P3)] holds, then there are non-negative 
numbers h i , . . .  , h, ,  not all of  them zero [resp. strictly positive numbers h i , . . . ,  h,] ,  a 
non-negative number K, and a number l.t, such that 
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Vx x ,  ,,fo(X) = + u , .  (*  * )  
i = 1  

Assuming  (P2) and (C) [(P3) and (C)], there are non-negative Ai, not all o f  them zero [resp. 
strictly positive )%], and there is ix, such that (* )  in Proposition 1 holds. 

Proof. To prove the first part, define the following convex sets: 

Rz = {Z ER"+l l zo<~Oandz i  > O , i  = l ,  . . . ,n} 

I n I and R z =/~2 + E~=l ei. The polyhedral se t s  R 2 and V ( K - )  can be separated strictly. Sign 
restrictions in (* *) derive from considering the following vectors: for Y >0 ,  - y e  0 + ET= ~ e~ 
and yej + E 7=~ e~, for j = 1 , . . . ,  n, and using a limiting argument. A related argument takes 
care of the c a s e  R 3. [For instance, define: 

R 3 = {z E ~n+l [Z 0 ~< 0, Z i I> 0, i = 1 , . . . ,  n and 3j ~ 0: zj > 0} 

= {z E Rn+llz 0 ~<0, zi1>0, i = 1 , . . .  ,n}\{(z 0,0 . . . .  ,0)[z  0 ~ 0 } ,  

and 

t n R 3 = R  3 N {zER~+I]~ ,=  l z , =  1}.] 

As to the second part, note that if (C) is added to (P2), there is (~0, E l '  " ° " ' ~Tn) ~ K -  such 
that ~i > 0, for i -- 0, 1 , . . .  , n. Then, (* *) implies that 

K~0 = ; h ~ l  + "'" + X . G ,  

and hence that K < 0. To deal with the case in which (C) is added to (P3), apply Proposition 1 
together with the Lemma. [] 

There is no hope of strengthening the first part of Proposition 2, as the following shows. 
Take X = R 2, fo(X, y) = x, f l (x ,  y) = y, fz(x, y) = - y .  Clearly, the range of (fo, fl ,  f2) is 
convex and (P3), hence (P2), trivially holds. This example illustrates the importance of the 
nontriviality condition (C). 

Importantly, (P2) and (P3) behave differently in the presence of (Po). To see that, take 
X = ~ ,  fo(X)= x, f l (x )=  - x ,  f2(x)= 0. Here (P2) and (Po) hold but it is impossible to have 
non-negative coefficients. Obviously, this example violates (P3)- To assume (P3) and (Po) 
together is tantamount to assuming (P4), which has been said to imply the existence of strictly 
positive coefficients. 

4. Applications 

Following Harsanyi's (1955) Aggregation Theorem, if the individuals and the social 
observer have von Neumann-Morgenstern (VNM) utility functions, f l , - ' ' ,  fn and fo, 
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respectively, and if f0 satisfies the Pareto-indifference condition with respect to the f,., then f0 is 
affine in terms of the f/. Under the VNM assumption, however formalized, the range of 
F =  (f0, f l , . . . ,  fn) is convex, so that Harsanyi's theorem in any axiomatic variant follows 
from the (P0) part of Proposition 1. There has been much discussion on how (and even 
whether) unanimity conditions other than Pareto-indifference could be used to sign the 
coefficients of individual utilities in Harsanyi's affine conclusion. This was a relevant question 
to raise because the theorem was intended as a technical step towards deriving truly utilitarian 
rules. The first attempt to give a complete answer was probably Domotor  (1979). Fishburn 
(1984) showed that Pareto-weak preference implied non-negative coefficients. He defines 
VNM utilities as mixture-preserving ('linear') functions on a mixture set, so that his proof is at 
the highest possible level of generality; it is, however, more complicated than the geometric 
argument used here to solve the (P1) case. Weymark (1993, forthcoming) has recently 
analyzed the role of the Weak and Strong Pareto conditions with identical results to those 
reached here with respect to (P2) and (P4)- His proofs use the Lemma of the Alternative and 
are thus implicitly related to the convex analysis pursued here. Unfortunately, Weymark's 
proofs are not at the highest possible level of generality. He defines VNM functions as 
expected-utility functionals on a lottery set which is constructed from a f inite set of pure 
prospects. Besides simplicity, the present approach has the advantage of being completely 
general. Also, we analyze the respective contributions of Pareto-indifference and Strict Pareto 
within the Strong Pareto condition. 

Another  easy application is to the theory of subjective expected utility derived by 
Anscombe and Aumann (1963). Take X to be the set of acts, i.e. of functions from I to ~7, 
where I is a finite state space and ~7 a lottery set. Define ~ *  to be the set of simple 
probabilities on X. As is well known, Anscombe and Aumann assume that there are VNM 
functions v and v* on ~q and ~?*, respectively, then connect them with each other through the 
Monotonicity and the Reversal of Order axioms in order to derive a (unique) subjective 
probability on I. Here is a quick variant of their proof. Using Reversal of Order, it is easy to 
define functions f//, i E I, that are mixture-preserving on 3?* and satisfy 

f~(x) = v(x(i))  , Vi E I, Vx  @ X .  

Putting ]Co = v*, the vector F =  (f0, f l , . . - ,  fn) is seen to have convex range. Monotonicity 
together with Reversal of Order imply that F satisfies (P~) above. Proposition 1 then implies 
the existence of a subjective probability on I (the uniqueness of which is secured by an affine 
independence argument). More could be said on the use of Proposition 1 in the context of 
Anscombe and Aumann's theory when state-dependent utilities are allowed, as in Karni et al. 
(1983) and Dr~ze (1987). 

A further application results from taking the f/ to be atomless probabilities as required by 
Savage's (1954) own version of subjective expected utility. By Lyapunov's (1940) theorem, 
the range of a vector-valued, atomless finite measure is convex, so that Propositions 1 and 2 
can again be put to use. Mongin (1993) has recently explored the aggregative properties of 
atomless probabilities as a step in the analysis of the aggregative properties of Savagean 
orderings. Notice that the probabilistic application automatically satisfies (C), hence avoids 
the technical problems connected with condition (P2) or (P3) in the utility context. 
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