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Abstract 

The paper investigates the relations between iterate and fixed-point accounts of common 
belief and common knowledge, using the formal tools of epistemic modal logic. Its main 
logical contribution is to introduce and axiomatize the following (fixed-point) notion of 
common belief. We first define a proposition to be belief-closed if everybody believes it in 
every world where it is true. We then define a proposition to be common belief in a world 
if it is implied by a belief-closed proposition that everybody believes in that world. Using 
the belief closure semantics of common belief, the paper proves soundness and complete- 
ness theorems for modal logics of varying strength. The weakest system involves a 
monotonicity assumption on individual belief; the strongest system is based on $5. 
Axiomatizations of common knowledge are secured by adding the truth axiom to any 
system. The paper also discusses anticipations of the belief closure semantics in the 
economic and game-theoretic literatures. 
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1. Introduction and overview 

Nontechn i ca l l y ,  a p r o p o s i t i o n  is c o m m o n  k n o w l e d g e  if it  is t rue ,  if eve ry  

ind iv idua l  knows  it,  if eve ry  ind iv idua l  knows  tha t  eve ry  ind iv idua l  knows  it,  and  
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so on ad infinitum. The significance of the common knowledge concept has come 
to be recognized by game theorists, mathematical economists, Artificial In- 
telligence as well as computer scientists, and philosophical logicians. In the hands 
of these researchers, it has led to numerous separate developments. The time 
seems to be ripe to investigate the analogies and disanalogies between the various 
approaches to common knowledge. The authors' recent survey paper (Lismont 
and Mongin, 1994a) brought to the attention of game theorists and mathematical 
economists a sample of the work recently pursued by AI scientists and logicians 
on this topic. This paper contrasted the informal (set-theoretic) method employed 
by the former with the logical approach to knowledge and belief, which involves 
the use of a formal language along with set-theoretic methods. 

The present paper has a comparative purpose of a different, more technical 
sort. Most of the currently available definitions of common knowledge can be 
classified as being of either the iterate or the circular (or fixed-point) kinds, to use 
Barwise's (1989) expressions. The authors' primary target here is to relate these 
alternative views of common knowledge to each other. 

Definitions of the former group just elaborate on the nontechnical one: they 
formalize the infinite regress of shared knowledge some way or another. 
Definitions of the latter group are not so close to the basic intuition as are the 
former, but they have proved to be both easier to handle and conceptually richer. 
One should expect of a fixed-point definition that it will imply some variant of the 
iterate definition, while also implying the following property: common knowledge 
of a proposition is essentially equivalent to everybody's knowledge of the 
common knowledge of that proposition, everybody's knowledge of everybody's 
knowledge of the common knowledge of that proposition, and so forth. This 
further property is clearly of the circular type. It points to the fact that, contrary 
to shared knowledge, common knowledge itself does not give rise to any infinite 
regress. In other Words, one intuitively feels that infinite hierarchies of shared 
knowledge do not normally collapse into first-order knowledge; this is why one 
needs a common knowledge concept. But one also feels that common knowledge 
is all one needs. Infinite hierarchies of common knowledge should collapse into 
first-order common knowledge. 

The distinction between iterate and fixed-point accounts cuts across the 
boundaries of several fields of inquiry. As will be argued below, it can be found in 
both the game theorists' and logicians' work, but emerges much more clearly from 
the logician's work. This is why we shall pursue most of our analysis within the 
confines of epistemic modal logic: it proves to be the most elegant and flexible 
framework for the present comparative purpose. However, the various con- 
nections of our results with the recent game-theoretic contributions will be 
emphasized in due course. 

To start with a now classic view of common knowledge, consider Aumann's 
(1976). He first defines it in terms of the meet of the individuals' information 
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partitions, and then explains that this definition can be rephrased into more 
intuitive terms, using the notion of a 'reachable' state of the world. Very roughly 
speaking, definition 1 is of the circular kind, and definition 2 of the iterate kind. 
However, in view of the immediate mathematical equivalence between definitions 
1 and 2, this interpretative comment strikes one as far-fetched. Clearly, Aumann's 
framework is not rich enough to suggest interesting differences between the 
iterate and fixed-point accounts of common knowledge. More will be said later on 
the game theorists' further contributions on this score. But Aumann's article is by 
and large representative of what can be expected from employing only straight- 
forward set-theoretic methods. 

The situation is not at all the same in epistemic modal logic. There, the duality 
of iterate versus fixed-point approaches normally interacts with the distinction 
between syntax (i.e. the formal language) and semantics (i.e. the informal 
meta-language). 'Normally' in the last sentence is intended to exclude infinitary 
logics: we shall here retain the standard practice of permitting only finite 
conjunctions in the syntax) Given this constraint, the syntactical account of 
common knowledge is bound to be circular. We shall indeed exploit a definition of 
the C operator by means of a fixed-point axiom (FP) and a rule o f  induction (RI) 
that is currently in favour in AI and logic (Fagin et al., 1991; Halpern and Moses, 
1990, 1992; Lismont, 1993; Lismont and Mongin, 1991, 1994a,b). The linguistic 
constraint is relaxed when it comes to semantics: both iterate and circular 
accounts then become available. As a matter of fact, epistemic modal logic has 
opened up the following three alternative possibilities. 

(1) Fagin, Halpern, Moses and Vardi (forthcoming) (henceforth referred to as 
FHMV) semantically define common knowledge of a statement in terms of the 
natural iteration: everybody knows that statement; everybody knows that every- 
body knows it, and so on ad infinitum. They have proved or stated a number of 
axiomatization theorems based on this semantics, using either the standard 
concept of a Kripke structure (e.g. Halpern and Moses, 1992) or the novel 
concept of a knowledge structure that they show to be closely related to the latter 
(e.g. Fagin et al., 1991). Barring these technical facts, the general interpretation 
of their results is as follows: they clarify the relations holding between the circular 
syntactical definition of common knowledge and the iterate definition chosen for 
the semantics. 

(2) At the other extreme, as it were, the present paper will give a try to the 
following, completely fixed-point semantics. Roughly speaking, a proposition will 
be defined to be common knowledge if it is implied by a proposition that, for one, 
happens to be known by everybody, for another, has the following special 

1 For an infinitary logic approach to common knowledge, see Kaneko and Nagashima (1991, 1993). 
These authors criticize finitary axiomatizations of the standard type. The infinitary logic approach is 
also adopted in Heifetz (1994a). 
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property of belief closure: it is believed (known) at every state of the world where 
it is true. Abstracting from the logical context, this definition is by and large 
analogous to earlier ones stated by the economist Milgrom (1981), and the game 
theorists Mertens and Zamir (1985), and Monderer and Samet (1989). A proper 
comparison will be made in due course. It suffices now to mention the common 
theme: there is a privileged connection between common knowledge propositions 
and those special propositions (referred to as belief-closed), which cannot hold 
without everybody believing them. To investigate the various facets of the belief 
closure semantics is an important technical step in the strategy of this paper. 
Using the concepts of a neighborhood and a Kripke semantics in succession, it 
will prove several soundness and completeness theorems. Informally, these results 
should be viewed as stating the relations that hold between the circular syntactical 
definition of common knowledge and the also circular definition now chosen for 
the semantics. 

(3) The last semantics to be considered does not fit easily within the iterate/ 
fixed-point classification. Essentially, it amounts to interpreting the syntactical 
common knowledge operator in terms of the existing interpretations of the 
syntactical individual knowledge operators. In the context of Kripke structures, 
this method leads to a semantic definition of the well-known 'transitive closure' 
type (see, for example, Halpern and Moses, 1992, or FHMV, forthcoming). It is 
only in the more general context of neighborhood structures that method (3) fully 
manifests its technical potentialities. Lismont (1993) introduced a neighborhood 
semantics definition of the common knowledge operator that is phrased in terms 
of the neighborhood counterparts of the individual knowledge operators. This 
construction leads to several soundness and completeness theorems; it has a fixed 
point as well as an iterate component. 

To sum up the state of the art, the modal logic of common knowledge typically 
involves a circular syntax, whereas the semantics is diverse. The syntax/semantics 
duality creates a rich framework of analysis in which the question of iterate versus 
circular accounts of common knowledge can be addressed. 

The paper is organized as follows. Section 2 introduces the syntactical 
definitions. The formal language is of the usual modal propositional type; its 
unary operators are intended to represent individual, shared, and common belief 
or knowledge, respectively. The axioms are selected among those most widely 
discussed in epistemic logic and AI. Some purely syntactical facts about common 
belief and common knowledge are collected in Proposition 1. Section 3 introduces 
the belief closure semantics in the context of neighborhood structures. It then 
proves a soundness and completeness theorem for a weak system consisting of a 
fixed-point axiom (FP), a rule of induction (RI), and a monotonicity rule imposed 
on both the individual and common belief operators (Theorem 2). Section 4 
defines the belief closure semantics in the case of Kripke structures and then 
derives soundness and completeness results for systems consisting of (FP), (RI), 
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the monotonicity rule of common belief, and various systems of individual belief: 
Theorem 3 deals with Kripke's minimal system, while Theorem 4 covers several 
stronger systems, including the classic $4 and $5. Once the logical groundwork 
has been completed,  it becomes possible to move to the major  question of this 
paper.  Section 5 addresses it by mutually comparing approaches (1), (2) and (3). 
Proposit ion 5 and Theorem 6 summarize the various implications holding between 
them. It turns out that complete equivalence prevails in the Kripkean context, but 
breaks down in the more general neighborhood context. This final section 
comments on these results and stresses the connections between our belief closure 
semantics and relevant anticipations from the economic and game-theoretic 
literatures .2 

2. Syntactical definitions and facts 

The formal language and axiom systems discussed in this paper derive their 
special features from the fact that there are belief (knowledge) operators B a, one 
for each individual or 'agent'  a, and, even more importantly, a specific operator  C 
to render  'it is common belief (knowledge) that'. 

Before  proceeding further, we should clarify our underlying distinction between 
knowledge and belief. Following a widespread view, what is known must be true, 
whereas what is believed may be either true or false. Contemporary epistemic 
logic drastically simplifies the analysis of knowledge versus belief by taking only  

this difference into account. That  is to say, it analyzes knowledge as a particular 
case of belief, i.e. the particular case in which the believed statement or 
proposition is true. Despite its well-recognized philosophical defects, we shall 
follow the epistemic logician's practice and (at least from now on) conform our 
terminology with it. 

More  precisely, we shall take the intended meaning of the B a to be 'a believes 
that '  in the general case, and to be 'a knows that' only exceptionally, when the 
so-called truth axiom holds ( 'what is believed is true') .  Consistently, we shall 
interpret  C to mean 'it is common belief that'  in the general case, and 'it is 
common knowledge that '  only in the special case where the truth axiom holds. In 
view of this terminological distinction, most of the work currently pursued under 
the heading of 'common knowledge' is, in fact, concerned with common belief. 
The  present paper is no exception to this state of affairs. 

2 Some prior knowledge of the basic tools of epistemic modal logic, especially Kripke and 
neighborhood structures, might facilitate the appreciation of the present results. The usual rec- 
ommended introduction to modal logic at large is Chellas (1980). FHMV's (forthcoming) textbook is a 
specifically epistemic treatment of various modal logic systems. The reader might also consult the 
companion paper to this one (Lismont and Mongin, 1994a). However, the present paper provides the 
relevant definitions and is therefore essentially self-contained. 
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The formal language of our systems is constructed from the following building 
blocks: 

(i) a set P V  of propositional variables of any cardinality; 
(ii) the logical connectives A, V, --1, --->, <-->; and 
(iii) the unary operators: (Ba)aea, C and E. 
The requirement that the set of individuals A be finite is crucial for this paper. 

The added shared-belief  operator E is introduced for convenience (its intended 
meaning is 'everybody believes that').  Let @ denote the set of well-formed 
formulas constructed from these components following the obvious closure rules. 
The letters ~0 and ~b will refer to typical elements of ~. 

Our 'minimal' system MC m is made out of any axiomatization of the proposi- 
tional calculus (by means of suitable tautologies) and the following modal rules 
and axiom schemata: 

( R M a )  Baq~ .-o na~ ' for any a E A ; 

(Def .E)  E~o <--> A Ba~° ; 
a E A  

~o---> ~ 
(RMc)  C~o---> C~b ; 

(FP) Cq~---> E(C~p A ~o) ; 

~o--o E~o 
(RI) E~0 ---> C~ " 

The monotonici ty  rules (RMa) mean that the logic defined by the above system 
and the agents' logic share a strong common component. However, MC a is 
compatible with the following two limiting cases: an agent does not believe 
anything at all; he believes in a contradiction. These two limiting cases disappear 
from the stronger systems than MC A, which also include, for any a E A, 

(Na) B a T ,  

(Po) - Sa-L, 

where T and _1_ stand for any propositional theorem and contradiction, respec- 
tively. Even when M C  a is enriched with (Pa), the agent might entertain a belief in 
~0 and a belief in --a~0 'without drawing the consequences'. This case is excluded 
from the systems that also include (Ca): 

(Ca) Ba~ A Ba~b--> Ba( ~ A ~b). 

The converse statement to (Ca) already holds because of monotonicity; hence, 
when (Ca) holds, individual beliefs fully preserve conjunctiveness. 
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Because of the powerful monotonicity assumption, our systems are open to the 
widely discussed objection of 'logical omniscience'. 3 Vardi (1986, 1989) alleviates 
the problem of logical omniscience by weakening (RMa) into the familar rule o f  

equivalence of so-called classical systems: 

(RE~) Ba ~ <-'~ Ba$  " 

There are a host of technical and conceptual problems with the axiomatization of 
common belief under (RE~). These problems explain why we strengthen here 
(REa) into (RM~). Note that one should not expect all and every property of the 
Ba to be transmitted to C just by (FP) and (RI). Intuitively, this is one of the 
reasons why we explicitly require the monotonicity of common belief in (RMc).  

(FP) says, in effect, that common belief implies everybody's belief as well as 
everybody's belief of the fact that common belief prevails, a property that 
explains why this axiom is referred to as a f ixed-point  one. (RI) says, in essence, 
that if a statement is inherently everybody's belief, it is common belief. The label 
rule o f  induction may be justified as follows. Using (RMa), a E A and (Def .E) ,  
we note that E is monotonic: 

(RMe)  Eq~---> Etp " 

A simple inductive argument then leads to 

~p ---> E~p 
for all k > 0 ,  

E~_...~ E k ~  , 
k t i m e s  

M 

where E g is of c o u r s e ' E , . . . ,  E. 'Very intuitively, (RI) says that this inductive 
process can be recapitulated into a singular inference. (FP) and (RI) are typical 
examples of the current method of axiomatizing common belief. FHMV have a 
closely related variant, e.g. Halpem and Moses (1992, Section 4). Whatever the 
technical differences, 4 the axiomatization of common belief must  be of the circular 
kind because of the logician's commitment to finite conjunctions. 

Other axioms to be considered in the paper are, for any a E A: 

(4a) Ba~ ---> BaBa~ ; 

(5a) -aBa~o--~ B ,  - 1 B , ~  ; 

(T~) Ba~o"> qo ; 

(T'a) nana~o --> naqo ; 

(Da) B aq~---> "aB a ~ q~ . 

3 See FHMV (forthcoming) for a survey of this problem and its tentative solutions. 
4 See Lismont and Mongin (1994a, Section 3) for a compari/on with the FHMV axiom set. 
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(4a) and (5a) are positive and negative introspection axioms. The latter has come 
under fierce attack from many writers in epistemic logic and AI. 5 The truth axiom 
(Ta) may be weakened into (T'a) to deliver a converse statement to the seemingly 
innocuous (4a). (Da) is known to be equivalent to (Pa) when (RMa) , (Na) and 
(Ca) hold (see Chellas, 1980, p. 133). Obviously, any modal logic containing (Ta)  
also contains (Da). 

The axiom set consisting of (RMa),  (Na) and (Ca) is the K-system for agent a, 
to be denoted by K a. As is well known, K is the weakest system that can be 
interpreted by means of Kripke structures. Among the Normal systems for a (i.e. 
the stronger systems than K~), KaD ~ = KaPa, KaDa4a, and (perhaps not very 
plausibly) KaDa4a5a have been defended as formal accounts of individual belief. 
Similarly, KaTa, KaTa4a, and (not so obviously) KaTa4a5a, which is equivalent to 
KaT~5~, have been defended as accounts of individual knowledge. 

All systems considered in this paper include MC m. We denote them as ~fc(')- 
That is to say, Xc(KA) is MC~ + K a for all a ~ A ,  and the like. The formal 
inference relation of system "~c(') is denoted by ~-~c()" The subscript will be 
omitted when the context is obvious. Our definition of the formal inference 
relation is the standard one. If F C ~ and q~ E ~,  we define F }-:~c() ~ by the 
following property: there are a finite number of well-formed formulas 
(~1 . . . . .  (~/~n E F  such that }-:~c(.) ~o~ ̂  " . .  ^ q~n--> q~ holds. 

We end up this section by stating representative theorems that can be derived 
from MC A and stronger systems. 

Proposition 1. 
(i) ~McAC~O-"-> Ekq~, for all k >~ l; (ix) 

(ii) ]-McAC~O~Ck~o, foral lk>~l;  (x) 
(iii) ~-MCA Cq~ ~ E ( ~  ^ C~); (xi) 
(iv) ~--MCA C~ ~ ECq~; (xii) 
(v) }-MCA ECq~--~ CE~o; (xiii) 

(vi) ~-MC A C~ --9" CE¢; (xiv) 
(vii) ['--~c(CA) CE¢ --* EC¢; (xv) 

(viii) }-Zc(%) Cq~ ~ ECho ^ E~o; (xvi) 

Sketch of the proof. 

[--:~C(CA) C~ ~ CE¢ A E~p ; 
}-Zc(CA) C¢ ~ C(E~o ̂  ~o); 
I-~c(C~) C~ ^ C4J~C(~o ^ ~); 
[-~c(SA) CT;  
[--~.c(PA ) -7 C_L; 
~Zc(rA) C~o --> q~; 
~Zc(TA ) C~p ~-> ck~o, for all k >>- 2; 

~-~c(CA+T~) Cq~ o C*~p, 
for all k >~ 2. 

(i) ~-MCA C¢--'>Eq~: from (FP) and (RMe) .  The theorem for any k > 1 follows 
inductively using (FP) and (RME). 

(ii) ~MCA C¢ ---> CC¢: from (FP), (RI)  and (RMc) .  The theorem for any k > 2 
follows inductively using (RMc) .  

5 For a recent example, see Modica and Rustichini's (1994) discussion of negative introspection in 
relation to 'awareness'. 
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(iii) ~-uca E(~o ̂  Cq0--* Cq~: from (FP), (RI) and (RMc). 
(iv) ~-MCA Cq~--->ECq~: from (FP) and (RMe). 
(v) ~-Mca EC~p---~ CEq~: from (iv), (RI) and (RMc) as applied to (i) with k = 1. 
(vi) ~-MCA C,~o---~CEq~: from (iv) and (v). 
(vii) ~--~dcA) CEq~---~ ECq~: from 

(a) CE¢ ^ E¢  ~ E C E ¢  ^ EE~o ^ Eq~ 
(b) CEq~ ^ E~p ^ ~o--> E(CEq~ ^ Eq~ ^ q~) 
(c) E(CEq~ A Eq~ ^ q~)~ C(CEq~ A E~p ^ ~o) 
(d) E(CEq~ ^ Eq~ ^ ~)--~ C~o 
(e) CEq~ ^ Eq~ ~ C~ 
(f) ~(CE~ ^ E~)--, EC~ 
(g) CEq~ ~ EC~ 

(FP), (RME); 
(a), (CA); 
(b), (RI); 
(c), (RMc); 
(a), (d), (Ca); 
(e), (RMe); 
(f), (FP). 

(viii) ~c(cm) C ~ p ~ E C ¢  ^ E~: from (i), (iv), (iii) and (CA). 
(ix) ~XC(CA) Cq~ ~ CEq~ A E~p: from (v), (vii) and (viii). 
(x) ~-zc(ca) Cq~ ~ C(Eq~ ^ q0: from (v), (CA) and (RMc). 
(xi) ~--~c(CA) C~ A CO--~ C((~ A I~): from 

(a) C~p A cO ~ E(C~o A ~o A CO ^ O) 
(b) C~ ^ CO ^ ~o ^ O ~  E(C~o ^ C¢ ^ ~ ^ O) 

(c) E(C~ ^ CO ^ ~ ^ ¢ ) ~  C(C~ ^ CO ^ ~ ^ O) 

(d) C~ ^ C O ~  C(~ ^ O) 
(xii) ~-:~ctNa)CT: from (NA), (Def.E), (RME) and (RI). 
(xiii) ~-~C(VA)--I CA-: from (i), (Def.E) and (PA). 
(xiv) ~-~c(XA)Cq~---~o: from (i), (Def.E) and (TA). 
(xv) ~-Zc(TA)Cq~ ~ Ck~p, for all k ~>2: from (ii), (xiv) and (RMc). 
(xvi) ~-:~c(CA+T~)Cq~ ~ ck~o, for all k 1> 2: from (ii) and 

(a) CCq~--~ EC~o ^ EE~  (i), (RME); 
(b) EEq~--~Eq~ (Oef.E), (RME), (T~); 
(c) CC~-->C~ (a), (b), (viii); 
(d) C*~ ~ Cq~ by induction on k, using (RMc). 

(FP), (G);  
(a), (RMe); 
(b), (aI) 
(c), (RMc), (a). 

[] 

This proposition consists of three groups of results. Property (i) formalizes the 
desirable iterative property of common belief. Properties (ii) to (x) are related to 
the specifically fixed-point property of common belief. Interestingly, the weaken- 
ing of 2fc(KA) - or, for that matter, ,~c(CA) - into MC A results in the loss of some 
of the variants. This negative fact can be checked by semantic means once 
determination theorems are proved. Finally, properties (xi) to (xv) show that the 
common-belief operator inherits the following properties of individual operators: 
(CA), (NA), (PA), (TA), when they are added to MCA. A particular consequence 
is that one ipso facto endows C with a K-system by assuming KA. As (xvi) shows, 
the transmission of property (TD to C is slightly more complex because it also 
depends on (CA). 
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It should be emphasized that the parallelism between C and the individual 
operators breaks down completely when it comes to (4A) and (5A). AS (ii) 
demonstrates, C obeys positive introspection even in systems without (4 a). Using 
a semantic argument once determination theorems become available, it can be 
seen that even in systems involving (5A), it is not a theorem that C satisfies 
negative introspection. 

3. A determination theorem for monotonic belief and common belief 

We start by introducing our variant of neighborhood semantics, and then prove 
a determination result in this framework. 

The C operator has no explicit counterpart in the structures that we are 
considering. Hence, these will be of the familiar types in modal logic, barring the 
minor differences introduced by the multi-agent framework. A monotonic 
neighborhood or Scott structure is any (IAI + 2)-tuple: 

m = (W, (Na)a~m, V ) ,  

where 
• W is a nonempty set (referred to as a set of possible worlds), 
• for any a E A, N a is a mapping W---~ ~ ( ~ ( W ) )  - where 3~(.) denotes the power 

set - such that for any w ~ W, Na(W ) is closed under supersets (i.e. if P E Na(w ) 
and PC_P' C_W, then P' ENa(W)); 

• v is a mapping W × PV--* {0, 1} (referred to as a valuation). 
For convenience, we introduce the mapping Ne: W----~ ~ ( ~ ( W ) )  defined by 

Ne(w ) = (-') N , ( w ) .  
a E A  

Except for sentences q~ = C~O, to be discussed below, our definition of the 
validation relation for the monotonic neighborhood structures is completely 
standard. Then, for any m = (W, (Na)a~ A, v ): 
• if q~EPV, ( m , w )  ~ q~C:>v(w,~p) = 1; 
• if q~=~O, ( m , w ) ~ q ~ C ~ ( m , w ) ~ O ;  
• if q~-=~l ^~b2, ( m , w ) ~ q ~ C : ; , ( m , w ) ~ O  1 and (re, w) ~ ~b2, 
and similarly for the remaining propositional clauses: 
• if q~ = BaqJ, (m, w) ~ ~oc=>~bF ENa(w); 
• if q~ =E~/,, (m,w)~q~Cz>l[~l,]]m~Ne(w), 
where ~b]" denotes the truth set of qJ, i.e. { w ' E W  I ( m , w ' ) ~ b }  (the 
superscript m may be omitted). 

Henceforth, we shall adhere to the philosophical use of reserving the word 
'proposition' for those subsets of possible worlds that are truth sets of some 
formula. 
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The neighborhood functions N a and Ne are easily understood in the present 
context of epistemic applications of modal logic. They provide systems of belief 
for a and E ( 'everybody'),  respectively. To every world w they associate the 
propositions (semantically viewed) that are (semantically) believed at w. (This is 
not to say that all and every subset in NQ(w), Ne (w  ) is a proposition.) Mongin 
(1994) suggests that this semantic rendering of belief is more natural than the 
more popular one by means of Kripke structures. Part of the attraction of 
neighborhood structures in epistemic logic stems from the fact that they are a 
generalization of the Boolean structures of measure theory. Recall also the 
important point that probabilistic reasoning violates the conjunctiveness axiom 
(Ca), which is part of Kripke's system. 

We proceed now to the unfamiliar component of the semantics. We define a 
subset P of W to be belief-closed (abbreviated as: b.c.) if: 

Vw E P, e E Ne (w  ) . 

Take a subset P that happens to be a proposition: then the condition of belief 
closure stipulates that P is believed in every world where it is true. 

The validation clause for common belief may now be introduced: 
• if to = CqJ, (rn, w )  ~ t o C : ~ 3 P E N e ( w  ) such that P C I[~O]] m and P is b.c. 
Again, the intuitive motivation of this clause becomes clear when one restricts 
one's consideration to propositions. Then, the definition simply states that 
common belief of 0 prevails at w if the proposition corresponding to ~O includes a 
(possibly different) proposition that is both believed by everybody at w and 
belief-closed. 

Let us denote the class of monotonic neighborhood structures by :g N. As usual, 
m ~ to and :g ~ to abbreviate [for all w ~ W, (m, w) ~ to] and [for all m in the 
relevant class J//, m ~ to], respectively. Reference to d / m a y  be omitted when the 
context is obvious. As usual, again, given E C_ q), ,~ ~ to means the following: for 
all structures rn in the underlying class J / ,  if [for all qJ E X, m ~ ~O], then m ~ to. 
The definitions of this paragraph will also be used in the context of Kripke 
structures. 

We may now state the result of this section: 

Theorem 2. 

FMCA to to- 

The proofs of this and the following theorems will be simplified by introducing 
further notation. Given m E ~ N ,  consider the mapping b a : ~(W)--~ ~ (W) :  

ba(P ) = {w E W I P ~ Na(w)} • 

It satisfies the condition that, for all formula tO, 

~Bato]] r~ = b a ( ~ t o ] m )  . 
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Similarly, take the mapping be:  ~ ( W ) - +  ~(W) ,  which is defined by either: 

be(P ) = {w E W IP ~ NE(w)}, 

or (equivalently) by 

be(P ) = ~ ba(P) .  
a E A  

It satisfies the property that, for any formula ~, 

[Eq~ m -~ bE(~p]m) . 

Note carefully that ba, b e are monotonic from the construction of j~N6 
Now, the following easy lemma holds for any m EdeN: 

Lemma 1. (1) P E ~ ( W )  is belief-closed if and only i f  e C be(P ). 
(2) (m,  w> ~ Cq~ ¢:>3P C ~o] m f-1 be(P ) such that w ~ be(P ). 
(3) [C~D~ m = LJ {be(P) IP C_ [~]m 0 be(P)} .  

Proof of the soundness part of Theorem 2. Obviously, (RMA), (Def .E)  and 
(RMc)  are valid in eg s. We have to check that (FP) as well is valid, i.e. that for 
any model: 

c_ , ,  

Using the restatement of ~ C ~  in Lemma 1, take any P C W such that P C ~0] N 
be(P ) . Then, 

be(P ) C_ [[C~ , 

and from the monotonicity property of b E applied twice over: 

be(P ) C. be([[~]l t"l bE(P)) C be(Jill] A [[C~ll) = ~E(C~ A ~)]] . 

Hence the desired inclusion. 
In order to check that (RI) is valid we assume that in any model: 

and aim at showing that 

c_ 

From the assumption, [~] = [q~] N b e ( ~ ] ) .  Hence, from the expression of [C~oB in 
Lemma 1, be([~0])C_ [C~o] holds, which is the desired conclusion. [] 

6Contrary to the syntactical operators Bo, E, these set-theoretic operators are well known to 
economists and game-theorists; see, for example, Bacharach (1985) and Geanakoplos (1992). Notice 
that they are normally endowed with stronger properties than just monotonicity. 
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Proof of the completeness part of Theorem 2. It involves four lemmas. The 
general idea is to prove the relevant implication: 

~ N ~ I~I ~ F McA ~1 , 

for a given formula ~b, adapting the standard construction of a canonical model 
based on the maximal consistent sets of formulas. 7 Definitions and facts relative to 
the maximal consistent subsets of formulas, as in Chellas (1980, Chapter 2) are 
taken for granted in this paper. 

Given any ~p E qo, we inductively define the depth of q~, denoted by dp(¢): 
• if ¢ E PV, then dp(¢) = 0; 
• d p ( ~ )  = dp(~0); 
• dp(~0 v g,) = dp(~o ^ qJ) -- dp(~ ~ g,) = dp(~ ~ ~) = max(dp(¢), dp(q0); 
• dp(B,~,) = dp(E~) = dp(C~) + 1. 

We also define ~P[~] to be the subset of those formulas that satisfy the 
following two conditions: 

(i) they are constructed from the subset of propositional variables occurring in 
g,; 

(ii) they have depth at most dp(qJ). 
A set F C_ cp[~] is said to be cP[~]-maximal consistent if it is consistent and no 
formula of ~ [~ ]  can be added to it without making it inconsistent. Clearly, the 
set I ~ of the g~[~]-maximal consistent sets is exactly the set of intersections 
F '  n cp [g,], whenever F '  ranges over the set of maximal consistent subsets of ~P. 
In the definition below of a ~[g,]-canonical model, we shall take the set of 
possible worlds W to be I *. 

For any ~ E cp[g,], the notation [~]* will refer to the set {F E I~' I ~ E F},  or, 
equivalently, {F E I * IF  ~-MCA q'}" Normally, superscripts will be dropped. We 
leave it for the reader to check the following properties: 

Lemma 2. (1) The set I ¢" is finite. 
(2) All  subsets o f  I ~ can be characterized by a formula o f  tP[O ] in the following 

sense: 

For any P C I* , there is q~o E ~[g,] such that P = [~P0] • 

( 3 )  For all ~t)l, ~D 2 E (/) [~/], [~ l l  C_ [~021 ~::) ~- ~D1----) ~D 2. 

7 Completeness proofs of the 'each formula' kind have already been devised in modal logic to solve 
altogether different problems from those raised by the C operator: see Boolos (1979) or Cresswell 
(1983). Another source is the selective filtration method used in dynamic logic, e.g. Harel (1984) or 
Goldblatt (1987). All existing completeness results relative to common belief depend on the 'each 
formula' type of proof: see Kraus and Lehmann (1988), Halpern and Moses (1990, 1992), Lismont 
(1993), and Lismont and Mongin (1994b). 
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The neighborhood functions of the q~[~0]-canonical model are constructed as: 

VF ~ I*, Na(F ) ~=ef {p C I* [ 3q~ ~ q~[~O] such that [q~] C P and F ~- Baq~ } . 

Hence the associated functions b a " ~ ( Iq ' )  - '~ ~(I  *) are 

ba(P ) ~e=f {F ~ I* I P ~ Na(F)} = {F ~ I * lay ~ ~[~01 such that 

[q~] C_ P and F ~ B~q~}. 

Lemma 3. (1) For all q ~ [ q ~ ] ,  bo(M)=(r  *lrkBo } and be([q~])= 

(2) For all ~o ~ ~[~b] such that dp(~)< dp(~), ba([~p])= [B~]  and be([~])= 
[E~]. 

Proof. For the first assertion, the inclusion (F ~ I ° IF ~ Baq~ } C ba([q~]) is trivial. 
To check the opposite inclusion, take any F such that 3~o'E ~[~0] satisfying 
[q~'] C [~] and F ~-B,~0'. The first condition and Lemma 2 yield that ~-q~'---~ ~. 
Using the second condition and (RMa), we conclude that F ~ Baq~. Hence, 
ba([~o]) C {/" ~ I q' IF F- Baq~}. The second equation in the first statement immedi- 
ately follows from the first and axiom (Def.E). 

The second assertion follows from the first and the fact that F ~- q~' and q~' ~ F 
are equivalent when ~0' ~ q~[~0]. [] 

Given ~0 E q~ and tb[~0], a cb[O]-canonical model is a (IAI + 2)-tuple: 

m ~ = (I  ~, (Na)a~a, 0 ) ,  

where all symbols but the last one have already been defined. The valuation v is 
the following function, for all F E I ~, for all p E PV: 

v(F, p) = 1 ¢:>p ~ F . 

The ¢[~b]-canonical models are well-defined members of ~/N. In our O-depen- 
dent approach, Lemma 5 below states a property analogous to that of the 
canonical models in classical modal logic. Before deriving this lemma, we state 
another purely syntactical fact: 

Lemma 4. Let q~ E ~[~O] such that dp(~0)<dp(0). 
(1) Let qO E I*. Then 

Cq~EFCz>3%~q~[~b], such that F ~ E%, ~%---~ q~ and 

(2) [Cq~] = U {be([~Po]) I ~o ~ q~[O], [9'o] C [q,] n be([~pol)}. 

~-%--~ E%.  

Proof. The second assertion will immediately follow from the first one, Lemma 2 
and Lemma 3. For the first assertion, assume that ~p ~ q~[~] and dp(~p) < dp(~). 
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Then clearly ~P0 = C~ ^ ~ ~ qB[~b]. The condition that F ~-E~p o results from the 
assumption that C~p ~ / "  along with (FP). The condition that ~-~0---> ~ is trivially 
met. Finally, ~-~po--->E~0 also follows from (FP). 

Conversely, assume that there is q~0 as stipulated. (RI) and (RMc)  lead to 
~-E~0---> C~p 0 and ~-C~p0---~ Cq~, respectively. Hence, F ~- C~, i.e. Cq~ ~ F from the 
assumption on the depth of q~. [] 

Lemma 5. For all q~ E qb[~b], ~0] m~k = [~0] ~b. 

Proof. The proof goes by induction on the complexity of ~. 
• If ~ E PV, [~] = [~] from the definition of v. 
• If ~ =-aq~': 

~-a~p'] = I~'~q~ ']1 

= 

= 

(from the definition of ~ )  

(from the induction hypothesis) 

(from the maximality proper ty) .  

• The remaining propositional cases are dealt with similarly. 
• Suppose that ~ = Baq~'. 

~na¢ p '~ = ba([~o '~) 

= b o ( [ ¢ ' ] )  

= [Ba¢']  

(from the definitions of ~ and ba) 

(from the induction hypothesis) 

(from Lemma 3(2)).  

• A parallel argument applies to the case in which q~ = E~p'. 
• Suppose that ¢ = Cq~'. 

~Cq~'] = U {be(P)  lP  c lisp'I] n be(P)} (from Lemma 1) 

= U {bE(P) I P _c [~'] n bE(P)} (from the induction hypothesis) 

= U {be([q~o]) I ¢0 E ~[~b] and [%] C [¢'] O bE([¢0])} 

(from Lemma 2) 

= [C¢'] (from Lemma 4(2)). [] 

End of the proof of Theorem 2. For any given ~, E ~ ,  assume that JR N ~ ~/,. In 
particular, ~/, is valid in m ~. Lemma 5 implies that [~b] ~ =  ~/,]m~, i.e. [~b] ~ =  I~; 
hence,  that ~b E F for all ~[~b]-maximal consistent sets F. This is equivalent to 
saying that ~b E F '  n ~[~b] for all maximal consistent sets F ' ,  i.e. that ~/, is in all 
maximal consistent sets of system MC A. Hence [-~b. [] 
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4. Determination theorems for normal systems of  belief and common belief 

We now proceed to the Kripkean variant of our semantics. It will be seen to 
deliver simple determination theorems for 2c (Ka)  (Theorem 3), as well as for 
some Normal systems of  belief and common belief (Theorem 4). 

In the multi-agent framework of this paper, a Kripke structure is any (IAI + 2)- 
tuple: 

m = (W, (R,)~ea,  v ) ,  

where W and v are as before,  and for any a E A ,  R a is a binary relation on W. For 
convenience we introduce the binary relation R e defined a s  [,-~a~a Ra" The class of 
Kripke structures will be denoted by ~ r 

Except  for sentences ~ = C~b, our definition of the validation relation in ~t r is 
the familiar one. That  is to say, for any m = (W, (Ra)a~A, O), the propositional 
clauses are as in Section 3, and 
• if ~ =Barb, (m,w)~qoC:>Ra[W]C_~q~ rn, 
• i f~=E~b ,  (m,w)~cp<:~RE[W]C~] m, 
where Ra[w]~e {w ' E WIWRaW' } and Re[w ] is similarly defined. 

In an epistemic context the accessibility relations Ra, R e may be viewed as 
connecting with w ~ W those w' E W that a, E,  respectively, regard as accessible 
from w. This informal interpretation is rather shaky. As an explicans of belief, the 
notion of subjective accessibility is obscure. It seems to result from a simple, ad 
hoc modification in the modal understanding of the relations (as describing 
objective or metaphysical possibility). We have already argued that it seems more 
natural to use neighborhood structures than Kripke structures in a context of 
epistemic applications, especially if one is concerned with connecting one's 
modelling of belief with the probabilistic one. There are two reasons, however,  
why it is useful to extend the investigation of this paper to Kripke structures. For 
one,  they have been used extensively, whether explicitly or not, in the semantic 
discussions of common belief. For another,  they provide elegant counterparts to 
the axioms when MC a is enriched with further constraints on individual belief, as 

in ,~c(KA4a) or ~c(KATA5A). 
Given m E ~ r ,  a set P C_ W is said to be belief-closed (b.c.) if: 

Vw E P, RE[w ] C_ P . 

The validation clause for common belief may now be stated: 
• if q~ = CqJ, (m, w) ~ q~ ¢:> 3 P  C_ W such that P C_ [[e/l]", Re[w ] C_ P and P is b.c. 

Following a well-known construction of modal logic, ~t r can be embedded into 
~ s  (see Chellas, 1980, Chapters 7 and 8). Using this construction, it is routine to 
check that the above definitions of belief closure and the validation clause for C~0 
are equivalent to those already given in Section 3, when JR N is restricted to utt r .  
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Given m E ~  r,  we shall introduce the mappings ba, b E : ~ ( W ) - - - - > ~ ( W )  
defined by 

ba(P ) = { w E  W I R a [ W  ] C__P} , 

b e (P  ) = {w ~ WIRe[w] c_ P} , 

or equivalently, 

b e ( P  ) = ['1 b , ( P ) .  
a E A  

The mappings satisfy the property that, for all formulas q~, 

[Ba¢ll" = ba([qq] m) and [Eq~]l m = be([q~]" ) . 

Clearly, b~ and b e are monotonic functions. More than that is true: we leave it for 
the reader to check that Lemma 1 holds again under the present definitions. 

Here is a first determination result: 

Theorem 3. 

~--ZC(KA) ~ ° ¢:> ~ r ~ ~ • 

Proof of the soundness part. (Def.E) is obviously valid. The Kripkean features of 
the semantics mean that (RMA), (NA) and (CA) are valid. In view of the fact that 
Lemma 1 holds and b e is monotonic, the proof in Section 3 that (FP) and (RI) 
are valid is unchanged. [] 

As it turns out, the use of the b a and b E also greatly simplifies the proof of the 
completeness part. The desired implication, 

K ~ I~ ~ F.~c(KA) ~/, 

will be proved for the given formula q,. Assuming now that ~- is ~-Zc(KA)' we may 
rely on the earlier definitions of ~[~],  I ~ and [¢]z. 

We leave it for the reader to check that Lemma 2 holds of system Xc(KA). 
A q)[~b]-canonical model  is now a (IAI + 2)-tuple: 

m ~ = <P, (Ra)o~A, o ) ,  

where, for all F E I ~, 
• Ra[r] = (a ~ / *  I (~ ~ ~[~,] I r F 8o~)  c__ A); 
• for all q E PV, v(F, ~o) = 1 ¢~ q~ E F. 

The mappings b, relative to the ~[~/,]-canonical model are: for all P E ~(/~), 
for all F E I ~, 

F E b ~ ( P ) C : ~ V A E I * ,  if {~4~[~llFFBo~)c_a, then A E P .  
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We now check that Lemma 3 of Section 3 holds true of these newly defined b a: 

Lemma 6. (1) For all q~•~[~b], bA[~])={V•IOlrFB.~} and be([~])= 
{ r • I * l r F  E~}. 

(2) For all q~ • ~[~b], such that dp(q 0 < dp(~b), b~([~p]) = [Baq~ ] and bg([q~]) = 
[E~].  

Proof. In order to prove the first equation in the first assertion, we have to check 
that the following two statements are equivalent: 

(a) for all A • I *, if {~p' • ~[q,] I r F B~q~'] C_ A then ~ • A, 
(b) F ~- B,~o. 

It is trivial that (b) implies (a). For the converse, assume that (a) is true. The 
formula q~ is in all ~[0]-maximal  consistent sets containing {~o' • ~ [ ~ O ] I F  ~- 
B,q~'}. This is equivalent to saying that 

(~' • ~[q,] I r F Ba~°') ~ ~"  

Hence,  there exist formulas q~ l , . . . ,  q~, (n 1> 0) such that 
(i) for all i<-n, F~Baq~i; 

(ii) ~-q~l ̂ " "  ^ ~Pn--->q ~" 
If n = 0, (ii) is simply ~-q~, and (Na) and (RMa) imply that F ~- Baq~. If n > 0, the 
application of (RMa) and (Ca) leads to the same conclusion. 

The end of the proof is exactly the same as in Lemma 3. [] 

End of  the Proof  of  Theorem 3. The proofs of Lemma 4, Lemma 5 and the 
completeness part of Theorem 2 of Section 3 can be repeated word for word. [] 

We now proceed to derive determination results for some Normal systems for 
A. The schemata (T~), (Da), (4a) and (Sa) will be seen to have their usual 
relational counterparts in the Kripke semantics (see Chellas, 1980, Chapter 5, for 
definitions). In our multi-agent framework a reflexive (serial, transitive, reflexive- 
Euclidean) Kripke structure is one in which, for every a, R~ is reflexive (serial, 
transitive, reflexive and Euclidean, respectively). (Recall that a reflexive and 
Euclidean relation is an equivalence relation, and conversely.) 

L e m m a  7. (1) Let R* be the transitive closure o f  a binary relation R on W and 
P C W :  

(Vw • P, R[w] C_C_ P) ¢~ (Vw • P, R*[w] C_ P ) .  

(2) For any F and A E I* such that (q~ •~ [~b ] lF~ -Ba q~)  C A  , there exists a 
maximal consistent set F ' ~_ F such that { ~ • • I B a q~ • F ' } U A is consistent. 

Proof. The first point is obvious. For the second, notice first that there are a finite 
number  of classes in A relative to logical equivalence. In any class, select a 
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formula and call q~. the chosen formula in the class of ~o. Suppose now that for 
every maximal consistent set F '  _DF, {~o E ~ ]B.~0 ~ F ' }  U A is not consistent. 
Then, for each F ' ,  there exists q r, with B.~or 'EF ', and qJr '~z l  such that 
~_~pr' r '  

- -~-nO,.  Defining q~, to be the (finite) conjunction of the formulas q,,,r' 
~-q~r'--~-nO, holds, and applying (RM,) ,  ~-B,~pr'--~Ba ~ 0 , .  This implies that 
for all maximal consistent sets F' D F, B, -7 ~ ,  E F', i.e. r ~- B, --1 O,. From the 
assumption and the fact that ~ ,  ~ O[q~], -nq~, ~ A ,  a contradiction. [] 

Theorem 4. Zc(KATA), 2fc(KaDa) , Zc(KA4A) and 2fc(KaTa5a) are determined by 
the classes o f  reflexive, serial, transitive and reflexive-Euclidean Kripke structures, 
respectively. 

Proof. Concerning (TA). The only property to be checked is that when (T,)  holds 
for a E A, the ~[~O]-canonical model m ~ = (I  ~, (Ra)aEA, O) is reflexive. Then the 
previous proof can be repeated without change. For any F E I*, consider the set: 

(,o ~ 4'[Ollr [- B.~). 

From (T,)  this set is included in F. Hence, F ERa[/"],  the desired property. 
Concerning (DA). Similarly, we check that these axioms, or, equivalently, (PA), 

make the ~ [0J-canonical model a serial one. We have to prove that for any a E A 
and any F ~ I ~, there is A ~ I ~ such that 

Because of (Na) , the set on the left is never empty. Lindenbaum's lemma implies 
that there is A as required unless this set proves a contradiction. Assume 
that it does. Then, there would be q~l, • • •,  ~0, such that (i) ~-qh ̂  " '"  A ~p,---> _1_ 
and (ii) I '~Baq~ 1 ^ . . .  ^ Baq~ n. Applying (RM,)  and (C,)  to (i), we derive 
~ B a ( ~ O  1 A ' ' '  /3 ¢pn)----> Ba_l_. Then, from (ii), F ~ na-l_ , which contradicts (Pa)" 

Concerning (4a). Define new canonical models as follows. 8 

m ,  ~ = ( I  ~, ( R * ) . ~ a , v ) ,  

where I ~, R a and v are as above, and R* is the transitive closure of R,.  

8 Those readers who know the standard techniques of modal logic might be puzzled by the 
roundabout derivation below of completeness for 2fc(Ka4a) and Zc(KaTa5a). It would seem as if we 
could prove the completeness of any system stronger than £c(KA) just by checking the relational 
properties of the corresponding q~[~b]-canonical models. This simple intuition works in the 2c(KaTA) 
and ,~c(KaDa) cases. But it becomes difficult to apply to systems involving axiom schemata (4A) and 
(5a). The intuitive reason is that one has now to consider formulas whose depth exceeds that of the 
given qs, and accordingly modify the initial notion of a q~[0]-canonical model. This is why we adopted 
a nonstandard proof technique to deal with the Zc(Ka4a) and Zc(K,~Ta5a) cases. 
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Obviously, these models are transitive. In order to prove completeness, we have 
to check by induction that for every a ~ A and all ~o ~ @[~b]: 

[ , F  ~ = [ , ] .  

The proof of Lemma 5 should be adapted only for the case in which q~ = Baq~' and 
~p = C~',  where ~ ' ~  q~[~/,] and dp(tp') < dp(~b). 

In the case in which ~ = BAY', the proof that b*a([~'])= ba([CP']), or ,  equiva- 
lently, that for all F ~ I~: 

Ra[F ] C_ [~'1 ¢~R~* [r] c_ [~'] ,  

will imply the conclusion. The inclusion from right to left is obvious. To prove the 
converse inclusion, let us show that 

R~[r] c_ [~'] ~ R~[r] c_ [~'] ,  

where 

A ~ R~[F] ¢~ 3Fo . . . . .  r , ,  such that F~+ 1 ~ R~[F/,.], F 0 = F and F, = A.  

Assume that A E R:[F] and Ra[F ] _C [~o'], which is equivalent to F E ba([~0']). By 
Lemma 6, ba([~o']) = [B~q~']. Thus, B~¢' ~ F. By (4~), F ~- BaB,¢', which implies 
that B,~v' ~F~. Applying (4~) repeatedly, we conclude that Ba~O'EFn_ 1 and 
~0' ~ r ,  =A. 

In the case in which tp = C~o', the proof that [for all P C_ I ~, P C_ be(P)] is 
equivalent to [PC_b*e(P)] will deliver the conclusion. This fact follows from 
Lemma 7(1). We may apply it since the transitive closure of the union of the 
transitive closures R* of the individual relations R~ is equal to the transitive 
closure of the union of the individual relations R a. 

Concerning (TA5A). Define the canonical models m ,  as in the previous case. 
They are reflexive because of (TA) and transitive from the construction. As (4A) is 
derivable from (TA) and (5A), the proof of the last paragraph applies. It remains 
to show that canonical models are symmetric. We have to prove that for all a E A 
and all F, A E I~: 

(V~ E qD[~], F ~- B a ~v ~ ~R ~ A ) ::~ ( V ~p E ~ [ ~b ] , A ~- B a q~ ::~ ~p e r ) . 

Assume the antecedent and take ~p such that ~p E • [~] and ~,t~ F. Let F '  be any 
maximal consistent set such that F '  _~F. Since -aq~ ~ F ,  ~p,~F' and from (Ta) 
Ba~p~F', i.e. -aBa~EF'. Applying (5~) leads to Ba~B,q~EF'. From the 
assumption and Lemma 7(2), there exists a maximal consistent set F ' D  F such 
that {~ ~ ~ I B~p E F '}  U A is consistent. Lindenbaum's lemma then ensures that 
there exists a maximal consistent set A' D {q~ E • I Ba~P E F '}  O A. As B~ --1B~q~ E 
F ' ,  mB~p ~ A' and A ~ B~p. [] 
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5. Fixed-point versus iterate validation clauses, and some further comments 

The primary aim of this section is to analyze the relation of the belief closure 
semantics to alternative semantics, i.e. those mentioned under headings (1) and 
(3) in the introduction. We first note that the belief closure semantics satisfies the 
following basic property, to be referred to as the Minimum Semantic Require- 
ment: if common belief of ~0 holds in a world, then shared belief of q~, shared 
belief of shared belief of q~, etc. hold in that world. This property is, of course, the 
semantic counterpart of (i) in Proposition 1. In the case of Kripke structures, the 
one-way implication stated in the Minimum Semantic Requirement turns out to 
be an equivalence. As a consequence, validation clause (1) and the b.c. validation 
clause (2) are themselves equivalent. 

Proposition 5. For any m ~ N  and w EW, if (m, w) ~ C~o, then (m, w) ~ E ~ ,  
for all k >>- 1. For any m ~ J/l K and w E W, a corresponding implication holds, and, 
conversely, if (m, w) ~ Eke, for all k >! 1, then (m, w) ~ Cq~. 

Proof. The proof of the first implication goes by induction on k i> 1. Take 
m Ed~ N such that (m, w ) ~  Cq~. Then there is P as stipulated in the definition. 
For k = 1, using the monotonic closure of NE(w ), we conclude that [q~U ~ NE(w), 
i.e. (m, w) ~ Eq~. Assume that for any w' EW, if (m, w') ~ Cq~, then (m, w') 
Ek~o. It is immediate that for any w"~ P, (m, w") ~ Cq~. So P C_ ~Cq~n C_C_ ~Ek~]. 
We conclude that (m, w) ~ Ek+l~ from the monotonic closure of N E. 

Now, take any m E ~t r and w in it. The implication just proved holds again 
since ~/~ can be embedded into ~t N. For the converse implication, assume that 
(m, w) ~ Ek~o, for all k/> 1, and put P = Nk~> 1 [Ek~o~ M ~q~]. Trivially, P C ~q~. It 
is easy to check that Re[w ] C_ P and P is b.c., so that (m, w) ~ Cq~. [] 

We now discuss the type (3) approach to the validation clause for Cq~. If the 
semantics is Kripkean, it is enough to construct the relational counterpart R c of C 

R 9 as the transitive closure of the shared belief relation e, and then state the 
validation clause for C~ in usual Kripkean terms: 

def 
(m, w) ~ C~l~:~[]t] m C_Rc[w I . 

Using this notion of the validation clause, the following observation is trivial: 

(m,w)~C~OCz>Vk>~l, (m ,w)~EkqJ .  

Hence, the type (3) approach collapses into (1), which has just been proved to be 
equivalent to the b.c. approach. 

9 F o r m a U y ,  if m =  (W~(Ra)aEA, l.))~d~ l( and  w , w ' E W ,  wRcw' holds  iff t he re  is n > l  and  a 

s e q u e n c e  o f  n wor lds  w l , . . . ,  w ,  E W such tha t  w 1 = w, w,  = ii,' and  w iRew ~+1, for  1 ~< i ~< n - 1. 
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The analysis of (3) is not so obvious in the neighborhood context as it is in 
Kripke's. The validation clause for CO can only be defined after the following 
cons t ruc t ion -due  to Lismont (1993)-  has been made. The general idea is to 
define N c as the greatest fixed point of a set-theoretic operator that is defined in 
terms of the N a (or ArE) and iterated infinitely. The iteration of the set-theoretic 
operator is formalized as a transfinite induction. We shall here briefly restate this 
construction in equivalent terms, using, once again, the convenient function b E . 

Formally, a sequence of functions b, is defined inductively on ordinals as 
follows: for any P C W, 

(i) bo(P ) = be(P),  
(ii) If 71 > 0: b,(P)  = bE(n¢<,  b:(P) n P). 
The sequence b, can be seen to be decreasing: i.e. for all ordinals "q, ~" and for 

all P C W, if ~7 < ff then b:(P)C_ b,(P).  From the substitution schema, there is a 
smallest ordinal min such that for any P C W, bmin+l(P)--bmin(P ). The common 
belief operator b c is then defined to be bmin. It can be seen to satisfy the property 
that 

VP C_ W, bc(P ) = bE(bc(P ) O P ) .  

Let us denote by N c the neighborhood function corresponding to b c, i.e. 
P E Nc(w ) iff w E bc(P ). 

The validation clause for CO is the usual one in a neighborhood structure: 

(m, w) ~ Cl~t(z~[]l] m E N c ( w  ) . (*) 

Clearly, ~Cq~] m= bc(~O]m). Using this semantics, Lismont (1993) proves that 
system MC a is determined by ~ N. 

The following theorem states that the validation clause (*) and the belief 
closure clause used throughout this paper are equivalent. It also states the 
important set-theoretic fact that the fixed-point construction underlying (*) had to 
be transfinite. In words, when it comes to neighborhood structures, validation 
clause (3) and the b.c. validation clause (2) are (nontrivially) equivalent, but 
clause (1), which is just based on a countably infinite iteration, is not equivalent 
to (2) or (3). 

Theorem 6. (a) Let m = (W, (Na)aEA, l) ) be monotonic. Then, for any w E W and 
any PC_W, 

P E Nc(w ) <=> 3P'  ~ N~(w) ,  such that P' C P and P' is b.c. 

(b) For any ordinal ~i there exists a neighborhood structure in which the ordinal 
min is equal to ~1. 

Proof of part (a). Equivalently, we have to prove that 

VP C_ W, bc(P ) = U {bE(P') I P '  C_ be(P')  n P ) .  
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Taking P '  = bc(P ) f] P, the inclusion from the left to the right follows immedi- 
ately from the fact that bc(e ) = bE(bc(e ) N P)= bE(P' ). 

To prove the converse inclusion, we inductively show that if P 'C  be(P' ) ¢] P, 
then for any ordinal 7, bE(P')C b~(P). 

(i) If 7/= 0: the monotonicity of b E implies that be(P' ) C be(P ) = bo(P), 
(ii) If 77 > 0, from the inductive hypothesis: 

P' C_ bE(P' ) f]P C_ N be(P) f ]P.  

From the monotonicity of b E, we conclude that 

b e ( r  ) c_ b e ( , Q  " b¢(P) n P)  = b,(P) . 

Proof of part (b). Define W = 77 + 1 and v in any way whatsoever. For any two 
ordinals ~1 ~< ~2, let us define [~1, ~z] = {5 1 ffl ~< ~ ~< ~2}. For all a E A and P C_ W, 
define: 

(i) ba(P ) = [min(P)+ 1, 77] if P is nonempty and if min(P), i.e. the smallest 
ordinal in P, is less than 7, 

(ii) ba(P ) = 0, otherwise. 
Clearly, the functions ba are monotonic, and for any a E A, b e = bQ. Now, we 

show that 

Y~ <7, be(W) = [~ + 1 ,7 ] ,  

using an inductive argument. First, if 7 = 0, bo(W ) = be(W ) = [1, 7]. Second, for 
any ordinal ~ < 7: 

The following deals with the case ff = 7: 

b,7(W ) = be(f~<,~ b,(W)f-1 W )  = be(f~< " [~ + 1, 7])  = be([7, 7 ] ) =  0.  

This last result completes the proof that 

V~ < 7 ,  b~+i(W) ~bc(W) .  

Hence min 1> 7. 
To see the converse inequality, note that b ,+l (W ) = b , (W)= 0, and therefore 

y Q  c W ,  b~+l(Q ) = b,(Q) =~,  

from the properties of the be functions. Hence min ~< 7- [] 

Theorem 6 completes our attempt to mutually relate the fixed-point and iterate 
semantic accounts of common belief. We now discuss a technical problem that has 
attracted some attention among specialists of modal logic. This problem is 
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unrelated to the main theme of the present section, but the above results and 
constructions happen to cast some light on its discussion. As emphasized in the 
previous section, completeness proofs for common belief systems are derived for 
each given formula ~b. This 'formula-by-formula'  technique does not deliver 
extended completeness, i.e. the property that for any (finite or infinite) set of 
formulas 2 and any formula ~: 

zb  zF . 
In the case of Normal axiom systems it is easy to demonstrate that extended 
completeness fails. Here  is the (by now, well-known) counterexample. 

Take 2 = {Ekp I k/> 1} and ~, = Cp, where p is any propositional variable. If m 
is any Kripke structure and w any world in it such that (m, w) ~ 2,  it is also the 
case that (m, w) ~ Cp. (Depending on the chosen definition of the validation 
clause for common belief, this implication holds either definitionaUy, or as a 
consequence of Proposition 5 above.) Hence,  2 ~ ~. Assume now that 2 ~- ~b. 
Then,  there would exist a finite subset 2 ' C 2  such that 2 ' ~ - ~  and (from the 
soundness theorem) 2 '  ~ ~b. But it is not difficult to construct a Kripke structure 
m' and a world w' in it such that (m' ,  w ' )  ~ 2 '  and (m' ,  w ' )  ~ ~b. (Specifically, 
the finiteness property of 2 '  means that there is an upper limit K on the k such 
that Ekp E 2 ' ;  it is enough to make sure that (m', w ' ) ~  Ek+lp.) 

Interestingly, the counterexample of the last paragraph does not say anything 
on extended completeness in the case of monotonic axiom systems. To see why 
this is so, take a monotonic neighborhood structure such as that exhibited in the 
proof  of Theorem 6, part (b), choosing 7/= to + 1 and defining the valuation v in 
any way, provided that [[p]]m = W. For any k I> 1, this model satisfies the property 
that (m,  w) ~ Ekp whenever w E [k, to + 1]. Hence,  

(m, t o + l ) ~ E k p ,  V k ~ l .  

But (m, to + 1) ~ Cp follows from the fact mentioned in the proof that bc(W ) = 
0. Hence,  the previous argument does not carry through. 

More  generally, we are not aware of any proof  that extended completeness fails 
in the case of monotonic axiomatizations of common belief. Notice that if it 
existed, such a proof would also be a proof that monotonic axiomatizations are 
not  compact, in the logician's usual sense of the word. 

We end up this section by briefly discussing papers in economics and game 
theory that deliver anticipations of the belief closure approach to common belief, 
i.e. Milgrom (1981), Bacharach (1985), Monderer  and Samet (1989), and Samet 
(1990). 1° Each of these four papers provides an independent restatement (or 
possibly weakening) of Aumann's  (1976) classic definition of common knowledge 

10 For further references in this literature, see Lismont and Mongin (1994a). It would be interesting 
to sketch a comparison with alternative logical renderings of the fixed-point notions of common belief, 
e.g. Barwise (1989, Chapter 9), and Halpern and Moses (1990, Appendix A). Such a comparison 
would lead one far beyond the scope of this paper. 
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in terms of the meet of the agents' partitions. The two papers closest in spirit to 
our belief closure semantics are perhaps Milgrom (1981), and Monderer and 
Samet (1989). The former restates Aumann's  definition by means of properties 
that are informally connected with (FP) and (RI) above (Milgrom, 1981, p. 220). 
The latter introduces the notion of an evidently known event as one that is known 
by everybody whenever it occurs. It then re-expresses common knowledge h la 
Aumann in the following way: an event E is common knowledge at a state iff 
there is an evidently known event E '  such that E '  occurs at the given state and E '  
implies that everybody knows E (see Monderer and Samet, 1989, pp. 174-175). 
Monderer  and Samet's definition of evidently known events is identical to our 
definition of belief-closed subsets. Assuming monotonicity and the truth axiom, 
their definition of common knowledge events and our validation clause for C~b 
collapse into each other. But, in general, the two definitions are distinct. Heifetz 
(1994b) further elaborates on this point. 

Another  relevant game-theoretic connection is the hierarchical construction by 
Mertens and Zamir (1985). Roughly speaking, these authors exhibit a set W of 
worlds endowed with much internal structure: any w E W is an infinite sequence 
(0, 1 2 (Pa)a~a, . . .  ), where E (Pa)a~m, , 0 O is the value of an objective parameter, 
P1 a is player a's subjective probability on fg, P] is player a's subjective probability 
on the agents' subjective probabilities on ~9, and so on ad infinitum. These 
(countably) infinite sequences are constrained to satisfy coherence conditions that 
turn out to be interpretable epistemically. Mertens and Zamir's isomorphism 
theorem implies that each world w can be paired in a one-to-one way with a 
v e c t o r  {O,(Oa(W))aEZ) where the Oa(W ) a r e  subjective probabilities on W. They 
investigate subsets P of W - 'belief subspaces' - with the following property: 

V w E P ,  V a E A ,  Oa(W)(P ) = 1 .  

In words, a belief subspace is an event of the world space that is believed (in the 
sense of having probability 1) by everybody in every world in which it occurs. 
This notion is the authors' main tool to investigate common belief. There are 
visible analogies between the Mertens-Zamir  approach and neighborhood seman- 
tics; Lismont (1992) provides further clarification. Note also the curious analogy 
between the above probabilistic hierarchy and the semantic construction of 
knowledge structures in Fagin et al. (1991), and of belief worlds in Vardi (1986); 
Mongin (1995) sketches a comparison with the latter semantics. 

A common feature of the above-mentioned papers is that they have no 
syntactical component. To the epistemic logician they count mainly as preliminary 
clarifications of the various semantics that the formal operators may receive. An 
instructive conclusion from this literature is that the circular or fixed-point 
properties of common belief can be expressed easily in the semantics, which then 
becomes conveniently close to the (inevitably) circular syntax. This conclusion 
was the heuristic starting point for the logical elaborations provided in the present 
paper. 
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