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1. Introduction

The algebra of mixture sets provides a mathematical framework in which
the basic questions of von Neumann–Morgenstern (VNM) utility theory
can be addressed. At a high level of abstraction, mixture sets (MS) and
mixture-preserving (MP) functions formalize the decision-theoretic notions
of “lottery sets” and “linear” utility functions, respectively. These tools were
first introduced into decision theory by Herstein and Milnor (1953) in an
attempt to clarify the algebra of expected utility of von Neumann and Mor-
genstern (1944), p. 26. They are still part of the modern treatment of the
subject. The major example is Fishburn’s authoritative textThe Founda-
tions of Expected Utility (1982), in which he states a mixture-set version of
the VNM representation theorem before moving to less abstract versions of
this result.

Despite this and other references, the properties of MS have hardly been
studied. Herstein and Milnor (1953), p. 292, contented themselves with men-
tioning that “a convex set in a real vector space is easily seen to be a mixture
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set”. In the main, later writers in decision theory have shown little interest
in any further algebraic investigation. Are convex sets the only examples of
MS, and, if not, how should Herstein and Milnor’s axioms be strengthened in
order to characterize convex sets? This note is mostly concerned with these
two questions. Section 2 makes it clear by means of counterexamples that
MS have a much weaker structure than convex sets. Section 3 states the main
result, namely, an isomorphism theorem which amounts to a MS axiomati-
zation of convexity. The main advantage of this result is that it delivers the
familiar modelling of “lotteries” as elements of a convex set, starting with
primitive operations which are in some sense more natural than the vector
space operations. As we discovered, our theorem is a variation on an earlier
one proved by the mathematician Stone (1949); this and related references
are discussed in Section 3. Finally, Section 4 elaborates on the applications
of the algebraic approach that is presented here.

2. Mixture sets: definitions and examples

As Herstein and Milnor (1953) define it, amixture set (MS) is any non-empty
setM which is endowed with an external operation:

[0,1] × M × M → M
(λ, x, y) → xλy

such that:

(A1) x1y = x;
(A2) xλy = y(1 − λ)x;
(A3) (xλy)µy = x(λµ)y.

These axioms have the following consequences (see Luce and Suppes
(1965) or Fishburn (1982), pp. 15–16):

x0y = y, xλx = x

(xλy)µ(xνy) = x(λµ+ (1 − µ)ν)y.

Thus, (A1) may be replaced with

(A1+) xλx = x

to provide an equivalent axiomatization.
A function u from M to a real vector space is said to bemixture-

preserving (MP) if

∀ (x, y) ∈ M × M,∀ λ ∈ [0,1], u(xλy) = λu(x)+ (1 − λ)u(y).

Denote byL(M) the set of all real-valued MP functions onM. Clearly,
L(M) is a vector space and all constant functions are in it.
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Convex subsets are the obvious examples of MS, with theλ-operation
interpreted as

(λ, x, y) �→ λx + (1 − λ)y.

MP functions on convex subsets are well-known to be affine.

Fact 1. If M is a convex subset of a vector spaceV, u ∈ L(M) if and only
if u is affine onM (i.e., if and only if there is a linear formϕ and a constant
functionk on V such that, for allx ∈ M, u(x) = ϕ(x) + k). (A proof of
this fact can be found in Coulhon and Mongin (1989), p. 183.)

In the wake of Herstein and Milnor (1953), p. 292, decision theorists –
such as Fishburn (1982) – have regularly observed that convex subsets of a
real vector space – e.g., convex subsets of measures – are MS, but they have
abstained from investigating the reverse inclusion. As the examples below
illustrate, the reverse inclusion does not hold.1

Fact 2. Not every mixture set is isomorphic to a convex subset of a vector
space.

Example 1. TakeM = {x, y, z}, x �= y, x �= z, y �= z, and all mixtures
equal tox except for:

yλy = y, zλz = z, ∀ λ ∈ [0,1],
x0y = y1x = z0y = y1z = y and x0z = z1x = y0z = z1y = z.

Example 2. TakeM to be the triangle inR2 which has verticesx = (0,1),
y = (0,0) andz = (1,0). It is the case that anyξ ∈ M can be written as
ξ = αx + (1 − α)[βy + (1 − β)z] for someα, β ∈ [0,1]. We define the
λ-operation onM as follows.

For ξ1, ξ2 ∈ M with ξ1 = α1x + (1 − α1)[β1y + (1 − β1)z] and
ξ2 = α2x + (1 − α2)[β2y + (1 − β2)z], the mixtureξ1λξ2 is:

• z if ξ1 = ξ2 = z andλ ∈ [0,1], or if ξ1 = z andλ = 1, or if ξ2 = z and
λ = 0,

• [λα1 + (1 − λ)α2]x + (1 − [λα1 + (1 − λ)α2])y otherwise.

In words, leaving aside trivial decompositions ofz, we project the two el-
ements of a mixture onto the vertical axis, and then compute the convex
combination of the projections.

In these two examples, Axioms (A1), (A2) and (A3) hold, while two
basic properties of convex sets fail, namely,

(A0) for anyλ ∈]0,1[, for anyx ∈ M, y �→ xλy is injective,

1 In the recent literature, Wakker’s book (1989), pp. 136–137, is exceptional in pointing
out this fact.



62 P. Mongin

and

(A0′) for anyx, y in M such thatx �= y, λ �→ xλy is injective.

Example 3. TakeM = {x, y, z}, x �= y, x �= z, y �= z, and define the
λ-operation as follows:

xλy = yλx = y, yλz = zλy = z, zλx = xλz = x, ∀ λ ∈]0,1[,
and

xλx = x, yλy = y, zλz = z, ∀ λ ∈ [0,1],
and

x0y = y1x = z0y = y1z = y, y0z = z1y = x0z = z1x = z,

z0x = x1z = y0x = x1y = x.

Thus, except for trivial mixtures involving the coefficients 0 and 1, each
element prevails over another, i.e.,y prevails overx, z overy, andx overz.

Example 3 illustrates a failure not only of (A0) and (A0′), but also of
two associativity properties which are satisfied by convex sets, namely,

(xλy)µz = x(λµ)

(
y
µ(1 − λ)

1 − λµ
z

)
∀ λ,µ ∈ [0,1], λµ �= 1, (A4)

and

xλ(yµz) =
(
x

λ

λ+ µ− λµ
y

)
(λ+ µ− λµ)z

∀ λ,µ ∈ [0,1], λ �= 0 orµ �= 0. (A4′)

We note incidentally that Example 3 is the most general of its kind. It
would seem possible to generalize it slightly by introducing the following
threshold behavior: for someλ0 ∈]0,1[,

xλy = y if 0 ≤ λ < λ0,

and

xλy = x if λ0 ≤ λ ≤ 1,

and similarly for the other pairs of elements. Intuitively,y would prevail over
x if and only if the proportion ofx is sufficiently small. However, threshold
behavior is incompatible with the mixture set axioms. (Takeλ such that
λ0 < λ < 1. Then,xλy = x, and from (A3) and (A1+), xλny = x for all
n ≥ 1. But clearly, for somen large enough,xλny = y.)

The main objective of this note is to axiomatize convex sets by strength-
ening Herstein and Milnor’s mixture set axioms suitably. In the next section
we show that the properties which were found to be missing in Examples 1, 2
and 3 are exactly those needed to recover the familiar notion of convexity.
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3. An axiomatization of convex sets

We first note that there are redundancies in the missing conditions. It is
readily seen that (A4) and (A4′) are equivalent. Also:

Fact 3. If (A1), (A2) and (A3) hold, then (A0) implies (A0′).

Proof. Takex, y ∈ M andλ,µ ∈ [0,1] such thatx �= y andxλy = xµy.
To prove thatλ = µ, assume first that 0< λ < µ. Then,λ = µν for some
ν ∈]0,1[, andxλy = x(µν)y = (xνy)µy from (A3), so that(xνy)µy =
xµy. Using (A2) and (A1+), we reach the contradiction thatx = y. The
caseλ = 0, µ > 0 leads to a similar contradiction.��

Now we proceed to show that (A0), (A1), (A2), (A3) and (A4) taken
together characterize convex sets. An equivalent and more economical ax-
iomatization is (A0), (A1+), (A2) and (A4). (This follows from the fact
that when (A1+) is assumed instead of (A1), (A3) is a particular case of
(A4).) The proof of the theorem will consist in showing that if, and only if,
a mixture set satisfies (A0) and (A4), is it isomorphic to a convex subset of
a vector space.

Given a mixture setM, we introduce the following equivalence relation
onM:

x ∼ y iff ∀ u ∈ L(M), u(x) = u(y).

This equivalence relation is compatible with the mixture operation onM.

Hence, there is an induced mixture operation on classes:
·
x λ

·
y=

·
�

xλy for
whichM/ ∼ is itself a MS. Clearly,M/ ∼ satisfies (A0).

We now define anon-degenerate M to be a MS such that all classes of
M/ ∼ are singletons, i.e.,x ∼ y ⇒ x = y. Examples 1, 2 and 3 illustrate
the opposite case of degenerate MS.

The notion of a non-degenerate MS will serve here as a link between
the axiom set and the convex representation. We investigate it by means of
the following construction. LetL(M)′ be the dual space ofL(M), i.e., the
space of all linear forms onL(M). For anyx ∈ M, define theevaluation
function at x,Ex ∈ L(M)′, by

∀ u ∈ L(M), Ex(u) = u(x).

Then, consider the functionE : M → L(M)′ which is defined byE(x) =
Ex . Clearly,E is MP onM. It is injective if M is non-degenerate. The
image (i.e., set of values) ofE in L(M)′ is convex. Accordingly, we have
just proved.

Fact 4. If M is non-degenerate,M is isomorphic to a convex subset of the
linear spaceL(M)′.
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In words: points in a non-degenerate MS can be identified with corre-
sponding evaluation functions, so thatM is isomorphically embedded in a
vector space. Now, if we can show that MS satisfying (A0) and (A4) are
non-degenerate, we will obtain the desired implication from our axiom set to
the convex representation. The following terminology will be needed in the
proof below. IfM is a MS andN ⊂ M, we defineN to be amixture subset
if N is a MS for the restriction of theλ-operation toN . Clearly,N ⊂ M is
a mixture subset if and only if

∀ x, y ∈ N ∀ λ ∈ [0,1], xλy ∈ N.

Proposition. If M is a MS, the following statements are equivalent:

(i) M satisfies (A0) and (A4);
(ii) M is non-degenerate;
(iii) M is isomorphic to a convex subset of some linear space.

Proof. Trivially, (iii) ⇒ (i), and we have just seen that (ii)⇒ (iii). It remains
to prove that (i)⇒ (ii). This implication holds whenM is a singleton; so we
assume that #M ≥ 2. Takex̄ �= ȳ; we want to constructu ∈ L(M) with
u(x̄) �= u(ȳ). Take any pair of distinct values foru(x̄) andu(ȳ). Define the
subset

Mx̄,ȳ = {z ∈ M|∃α ∈ [0,1] : z = x̄αȳ}.
From one of the properties listed after the MS axioms,

∀ z, z′ ∈ Mx̄,ȳ , ∀ λ ∈ [0,1], zλz′ = x̄[αλ+ (1 − λ)β]ȳ,
so thatMx̄,ȳ is a mixture subset. Now, for anyz = x̄αȳ, define

u(z) = αu(x̄)+ (1 − α)u(ȳ).

(A0′) implies that this is a well-defined function. It is easily seen to be MP
onMx̄,ȳ .

Suppose now thatu has been extended from{x̄, ȳ} to a mixture subset
N in such a way thatu is MP onN . Suppose that there isx ∈ M \ N . We
want to show that

Nx = {z ∈ M|∃α ∈ [0,1], ∃y ∈ N : z = xαy}
is a mixture subset and thatu can be extended to a MP function onNx . Take
any two elementsz = xαy andz′ = xβy ′ inNx . Consider the mixturezλz′.
If λ, α, β /∈ {0,1}, we can apply (A4) and (A4′) in succession and conclude
that

zλz′ = (xαy)λ(xβy ′) = x[β(1 − λ)+ αλ]
(
y

λ(1 − α)

1 − αλ− β(1 − λ)
y ′

)
.
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Hence,zλz′ ∈ Nx . This also holds in the case whereλ, α, β ∈ {0,1}. We
conclude thatNx is a mixture subset. Now, fix a value foru(x), and for any
z = xαy, define

u(z) = αu(x)+ (1 − α)u(y).

This is a well-defined function. To see that, we note first that, ifz = xαy =
xβy ′, (A0) implies that eithery = y ′ andα = β, or y �= y ′ andα �= β.
Consider the latter case and assume thatα < β. Then, (A2), (A3) and (A0)
imply that

y = x

(
β − α

1 − α

)
y ′,

so that the valueu(z) is the same whichever of the two decompositions is
chosen. It is easy to check thatu is MP onNx .

Now, consider all mixture subsetsS such thatx̄, ȳ ∈ S andu has been
extended to a MP functionus onS. Partially order the setP of pairs(S, us)
in the following way:

(S, us) ≤ (S ′, us′) iff S ⊆ S ′ andus′ extendsus.

Take anytotally ordered chain ofP, (Si, usi )i∈I . It has an upper bound
(∪i∈I Si, ū), with ū defined by:ū(x) = usi (x) if x ∈ Si . (The point here
is that∪i∈I Si is a mixture subset, and thatū is well-defined and MP on
∪i∈I Si .) Thus, we can apply Zorn’s Lemma and conclude thatP has a
maximal element for≤. Denote it by(S̃, ũ). SupposeM �= S̃. Then we
could takex /∈ S̃ and apply the second part of the proof to construct(T , v)

such that(S̃, ũ) ≤ (T , v) andT �= S̃, a contradiction. HenceM = S̃, and
ũ extendsu to the whole domain. ��

The salient features of this proof are, on the one hand, the transfinite
induction argument which makes it parallel to the proof of the Hahn–Banach
theorem, and, on the other hand, the use of the added axioms (A0) and (A4)
in order to achieve the inductive step.

After deriving the above proposition, we found two early variants of it in
Hausner (1954) and Stone (1949), respectively. In essence, Hausner (1954),
Theorem 3.2, states that if a setM is endowed with aλ-operation satisfying
(A0) to (A4), it can be isomorphically embedded into a convex subset of a
vector space. Hausner’s embedding device is not the same as ours, and his
statement does not make any reference to the intermediary characterization
of convex sets as non-degenerate mixture sets. Stone (1949),Theorem 2, also
provides an axiomatic characterization of convex sets without assuming any
vector space structure, but his primitive operation is different from theλ-
operation investigated here. For any nonempty setM, he defines an external
operation(x, y;α, β), x, y ∈ M, α, β ≥ 0, α + β > 0, which can be
interpreted as the operation of assigning weightsα andβ to the elements
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x andy, respectively.2 Stone’s axioms on his weighting operation can be
related to axioms imposed on theλ-operation. Although this is only implicit
in his work, Stone may be credited with first showing that a setM endowed
with a λ-operation which satisfies (A0) to (A4) can be represented by a
convex set.3

We might follow Hausner (1954), Theorem 3.4, by complementing the
above proposition with a suitableuniqueness result. Suppose that a mix-
ture setM is shown to be isomorphic to two convex subsetsC andC ′
of linear spacesL andL′, respectively; i.e., there are two MP bijections
ϕ : M → C ⊂ L andϕ′ : M → C ′ ⊂ L′. Evidently,C andC ′ are them-
selves isomorphic in the sense that there is a MP bijectionf = ϕ′ ◦ ϕ−1

from C ontoC ′. In this trivial sense, the convex representation of a MS
satisfying (A0) and (A4) can be said to be unique. However, a stronger
(and perhaps not completely obvious) uniqueness property also holds. We
recall that ifX is a subset of some linear space, theaffine span of X is the
set of all affine combinations of elements ofX, i.e., of all

∑n
i=1 λixi , for

n ≥ 1, x1, · · · , xn ∈ X, and
∑n

i=1 λi = 1.

Fact 5. Assume thatL,L′ are linear spaces, and thatϕ : M → C ⊂ L

andϕ′ : M → C ′ ⊂ L′ are MP bijections. Then,f : ϕ′ ◦ ϕ−1 can be
extended uniquely to an affine bijection from Aff(C) onto Aff(C ′), where
Aff (C) [Aff (C ′)] is the affine span ofC in L [of C ′ in L′, respectively].

The proof relies on a standard extension device which is used, for in-
stance, in Coulhon and Mongin’s (1989), p. 183, proof of Fact 1, and so we
do not give it here. A significant consequence of Fact 5 is that it makes it
possible to define thedimension of a MS satisfying axioms (A0) to (A4). For
such a mixture setM, we define its dimension to be the affine dimension
of any convex setC to whichM is isomorphic. This statement makes sense
since, from Fact 5, any other convex representationC ′ of M must have the
same affine dimension as that ofC.4 When (A0) and (A4) do not hold, it is
not clear to us how the dimension of a MS can be defined.

4. Applications

Elaborating on Stone’s and Hausner’s results, Gudder (1977) and Gudder
and Schroeck (1980) have argued that theλ-operation provides a satisfactory
idealization of various natural and psychological phenomena involving the

2 The weights may belong to any ordered field.
3 Gudder (1977) credits Stone with this finding.
4 Recall that theaffine dimension of a (non-empty) subsetX of a linear spaceL is the

linear dimension of the translated setX− x0, wherex0 is any element ofX. See, e.g., Kelly
(1979). Importantly, the dimension concept which is preserved by the isomorphismf in
Fact 5 is theaffine dimension, not thelinear dimension.
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intuitive notion of mixing. For instance, in chemistry, the effect of blending
two substances depends on both the particular substances and the surround-
ing circumstances, so that each of the axioms (A0) to (A4) may or may
not hold, depending on the case in hand. A curious fact reported by Gudder
and Schroeck (1980), p. 985, is that even the apparently unexceptionable
(A1+) may sometimes be violated. A gasoline with octane number 100 can
be mixed with a different gasoline with identical octane number to get a
gasoline with octane number 105. This and similar counterexamples mean
that the mixture axioms have empirical content, at least as far as chemistry
is concerned.

Gudder (1977) makes a similar claim for an altogether different field,
i.e., color vision. By surveying some salient results of the theory of visual
perception, he interestingly shows that, again in this area, the mixture ax-
ioms can be endowed with empirical content. Relevant in this connection
is, for instance, the familiar fact that intensity (or brightness) influences the
perceptual effect of mixing one color with another, so that, at very low inten-
sity levels, a person with normal vision tends to react like a monochromat.
This, and other facts of the matter, can be described in the language of mix-
ture sets. Krantz (1975) also discusses applications of MS (which he calls
“Grassman structures”) to color perception.

In decision theory,lotteries are the virtually unique application of the
MS algebra. One way of connecting the latter with the empirical concept
of a lottery is as follows. (Since the construction is elementary, we do not
give the full details.) Start with a non-empty setX0, to be thought of as the
set of final results; we take it to be finite for simplicity. GivenXn−1, n ≥ 1,
defineXn to be the set of all elements(λ, x; (1 − λ), y), whereλ ∈ [0,1]
andx, y ∈ Xn−1. Intuitively,Xn is the set ofn-level lotteries based onX0.
Elements(1, x; 0, y) ∈ Xn are identified with the elementx ∈ Xn−1. This
implies thatXn−1 ⊂ Xn, which makes it possible to define aλ-operation on
X = ∪n∈NXn: for all x, y ∈ X, we definexλy to be(λ, x; (1−λ), y) ∈ Xn+1

wheren is the level of the higher-level of the two elementsx or y. By
construction, thisλ-operation satisfies (A1). We make it satisfy (A2) and
(A3) by imposing the corresponding restrictions at each leveln.

An interesting feature of this construction is that it involves only a limited
form of the principle of reduction of compound lotteries (for a statement, see
Luce and Raiffa (1957), p. 26). Not all compound lotteries can be reduced
to simpler ones. For instance,(1

4,1$; 3
4, (

1
3,1$; 2

3,2$)) can be reduced to
(1

2,1$; 1
2,2$), but

(
1

4
,3$; 3

4
,

(
1

3
,1$; 2

3
,2$

))
and

(
1

4
,1$; 3

4
,

(
1

3
,3$; 2

3
,2$

))
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are treated as distinct elements, and the reduced form of these two lotteries,
i.e., (

1

4
,1$; 1

2
,2$; 1

4
,3$

)

is not even defined in the present framework. The MS version of the VNM
theorem (Herstein and Milnor (1953); see also Fishburn (1982), p. 14) ap-
plies here, which means thatthe full force of the compound lottery principle
is not needed for the VNM theorem to hold. To the best of our knowledge,
this fact had never been brought to light by decision theorists.

Notice that the previous construction is drastically simplified if we im-
pose (A4) on top of the other axioms. Then, lotteries of three or more final
results can be defined meaningfully in terms of the initial, exclusively two-
element concept of lottery. To add (A4) amounts to requiring the full force
of the compound lottery principle.

It is a matter for empirical examination whether or not the weakening of
the reduction principle that is suggested by the MS axioms has any decision-
theoretic relevance. However, scepticism might be prompted by the fact
that the previous construction allows for generous reduction ofsome high-
level lotteries (i.e., when the same result occurs at each successive level),
whereas level 1 lotteries having three distinct results cannot even be taken
into account. Theprima facie conclusion is that there is no significant gain
of content in proving the VNM theorem within such a weak axiom system
as that of Herstein and Milnor.

This author’s recommendation is that VNM theory should be developed
either in the context of the stronger axiom system (A0) to (A4) or by assum-
ing directly that the decision-maker’s alternative set is a convex set (typically
but not necessarily, a convex set of measures). Either of these frameworks
has its merits. The fact that MS satisfying (A0) to (A4) have been shown to
be essentially identical with convex sets does not mean that it is better to
start with sets than with axioms. Indeed, we follow Gudder (1977), p. 230,
in thinking that the axiomatic approach might be justified even if there exists
a convenient representation. One argument for this claim is that the linear
operations which underlie the convex representation of MS are introduced
ex post and somewhat artificially; only the mixture operation is primitive.
Another relevant argument is that to formalize the latter makes it possible to
perceive curious analogies between such diverse fields as chemistry, color
vision and decision theory.
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