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ABSTRACT. We show that several logics of common belief and common knowledge
are not only complete, but also strongly complete, hence compact. These logics involve a
weakened monotonicity axiom, and no other restriction on individual belief. The semantics
is of the ordinary fixed-point type.
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1. INTRODUCTION

Common belief and common knowledge constitute one of the areas in
which the foundational concerns of game theorists and mathematical eco-
nomists can be best met by importing the logicians’ particular methods
of analysis. True, the informal definition of common knowledge (“every-
body knows that everybody knows that. . . ”) and the corresponding one for
common belief (“everybody believes that everybody believes that. . . ”) are
sufficient for several practical purposes. In games of finite size, depending
on the particular equilibrium concept, the standard assumption that “the
rules of the game are common knowledge” may be replaced by the less
formidable one that the rules of the game are shared belief (rather than
shared knowledge), that these shared beliefs are themselves shared beliefs,
and so on up to some fixed level k which depends on the size of the game
at hand. Here, some use of epistemic logic may help to handle the finite
sequence of shared beliefs, but the logic of common belief is irrelevant.
However, for infinite games generally and for particular equilibrium con-
cepts even in finite games, the common belief or common knowledge
assumption becomes genuinely needed, and its logic definitely helps to
clarify the various asymptotic and fixed-point properties that are part and
parcel of this assumption.

The formal analysis of common knowledge, which was lacking in
Lewis’s pioneering work, Convention [16], later came from two quarters,
namely, the foundational work in game theory and mathematical econom-
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ics that ensued from Aumann’s paper [1], and the no less foundational
work pursued by logicians and computer scientists in relation to AI and
Distributed Systems (a good deal of which is covered by Fagin, Halpern,
Moses and Vardi in [8]). At least initially, there was a stark contrast be-
tween the methods adopted by the two groups of scholars. Aumann’s paper
and his first followers’ work are exclusively set-theoretical. The general
idea is to fix a “universal” set of states of nature and express facts of nature
and epistemic facts alike in terms of this set, i.e., by identifying them with
subsets of it. In this framework, an individual’s beliefs are conveniently
summarized by a mapping that transforms subsets into other subsets, i.e.,
factual events into epistemic events, and epistemic events into higher-order
epistemic events. Epistemic regularities can then be stated in terms of
elementary properties imposed on the belief mappings. Over the years,
the method of belief mappings has become part of the bread-and-butter of
game-theory, and it has also been used in the general equilibrium context
to clarify the assumptions underlying the “no trade” theorems.1

From the logicians’ point of view, belief mappings and other related
set-theoretic objects are just semantics, and the economists’ and game
theorists’ analysis lacks the crucial component of a syntax. Desirable or
plausible properties of individual belief and knowledge should also be for-
mulated as axioms or inference rules in a formal language. Given the pecu-
liar finiteness constraints normally embodied in the syntax, it will provide a
perspective that is complementary to that offered by the semantics. Some-
times more intuition can be gained from turning from the semantics to
the syntax. A classic example is the axiomatic decomposition of the game
theorists’ “partitional model of information”, which is arguably clearer
than the corresponding list of set-theoretic properties. More important,
however, is the fact that the syntax allows for a kind of investigation that
cannot be carried on the semantic side. The standard method of epistemic
logic is to describe each belief held by an individual with a modal formula.
Thus, the problem of investigating the individual’s inferences reduces to
that of investigating a particular subset of the system’s inferences.

Once defined in their own right, the syntax and semantics of belief
and knowledge should ideally be related by means of a soundness and
completeness theorem. Modal logicians (e.g., Hughes and Cresswell [13])
usually distinguish between completeness, i.e.:

(∗) every formula that is a semantic truth can be proven formally,
and strong completeness, i.e.:

(∗∗) every formula that can be obtained as a semantic consequence
from some set of assumptions can also be proven formally from the same
set of assumptions.
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The present paper is concerned with a specific, actually very weak, logic
of common belief that we demonstrated in [19] to be sound and complete
according to definition (∗). We will now establish that the stronger form
(∗∗) can be obtained, a much more satisfactory result from the point of
view of finding a “well-behaved” axiomatization of common belief. As far
as we can judge, to prove a strong completeness theorem is an innovation
in the subarea of common belief logic. We emphasize this fact and make
relevant comparisons at the end of the paper.

To return to the game-theoretic motivation of this work, there is a sup-
plementary reason to move from a purely semantic framework of epistemic
analysis to a proper logic, and it has to do with the time-honoured project of
introducing bounded rationality into game theory. One among the (many)
facets of bounded rationality is well captured by what is commonly called
the logical omniscience problem. We just emphasized that epistemic logic
makes it possible to describe the individual’s own inferences in terms
of subsets of the system’s inferences. How small should the subsets be?
How small can they become without wrecking the project of developing
a well-behaved formalism? These syntactical questions provide a useful
perpective on logical omniscience, hence on bounded rationality. They are
important to the present writers, whose constant objective has been to make
sense of common belief under very weak assumptions put on individual be-
lief. Unexpectedly, the syntactical theme of logical omniscience connects
with the logical topic discussed above, i.e., the two forms of completeness.
As we will explain, strong completeness can be obtained only for those
common belief systems where logical omniscience assumptions are some-
how kept to a minimum. The more popular systems à la Kripke, as in [9]
and [18], make much more demanding epistemic assumptions, and these
systems are demonstrably only complete, not strongly complete. The in-
triguing connection between logical omniscience and strong completeness
is the topic of the present paper.

2. COMMON BELIEF AS A FIXED-POINT OF A SET-THEORETIC

MAPPING

The semantics of common belief or common knowledge is mainly of two
types, i.e., the iterative and the fixed-point one. Here, we will exclusively
rely on fixed-points constructions, referring to other papers for compar-
isons with the other type.2 Nearly unexceptionally, the fixed-point con-
structions of common belief are based on the simple observation (usually
attributed to Tarski) that a monotonic set-function has a greatest fixed
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point. We state a variant of this well-known fact in the first proposition
below.

Given a nonempty set W , we denote the power set of W by P(W) and
define a mapping f : P(W) → P(W) to be monotonic (respectively:
quasi-monotonic, reflective-monotonic) if for all X,Y ⊆ W ,

X ⊆ Y �⇒ f (X) ⊆ f (Y )
(respectively: X ⊆ f (X) ∩ Y �⇒ f (X) ⊆ f (Y ), and: X ⊆ f (X) �⇒
f (X) ⊆ f (f (X))). Clearly, any monotonic mapping is quasi-monotonic,
and any quasi-monotonic mapping is reflective-monotonic. A subset
F ⊆ W will be said to be a fixed-point of f whenever f (F ) = F . A great-
est fixed-point is a fixed-point that includes any other. Observe that these
definitions do not prevent ∅ from being a fixed-point (or even a greatest
fixed point) of f .

PROPOSITION 1. If f is a quasi-monotonic mapping, then f has a great-
est fixed-point, which is

F =
⋃
{X ⊆ W | X ⊆ f (X)}.

Proof. If X is a fixed-point of f , i.e., if f (X) = X, then X ⊆ F from
the definition of F . If F = ∅, F is a greatest fixed-point by the following
argument. Because ∅ = F ⊆ f (F ) and f is quasi-monotonic, hence
reflective-monotonic, f (F ) ⊆ f (f (F )), so that f (F ) is one of the sets X
in the definition of F . This implies that f (F ) = ∅. From the observation
in the first sentence, there is no other fixed point than F = ∅.

We may now assume that there is w ∈ F . There is X such that w ∈ X,
and X ⊆ f (X) ∩ F . Since f is quasi-monotonic, f (X) ⊆ f (F ), so that
w ∈ f (F ), and thus F ⊆ f (F ). To prove the converse inclusion, we use
again the fact that F ⊆ f (F ) �⇒ f (F ) ⊆ f (f (F )), so that f (F ) ⊆ F

from the definition of F . ✷
To define common belief semantically, we introduce the key notion of a
belief closed event. In this paper, an “event” means any subset of the setW ,
which is to be thought of as a set of possible worlds (or states of the world
in the game theorist’s terminology). We denote by P(W) the power set
of W . Intuitively, an event is belief closed iff everybody believes it to take
place whenever it effectively takes place. Symbolically, if P ⊆ W is an
event, ba(P ) ⊆ W denotes the event that agent a ∈ A believes P , and

bE(P ) =
⋂

a∈A
ba(P )
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denotes the event that every agent believes P , we say that P is belief closed
if

P ⊆ bE(P ).
Lismont and Mongin in [19] and [20] propose that common belief be

semantically defined as follows:

(LM) P is common belief at w ∈ W if there exists X which is belief
closed, believed at w, and included in P .

Denoting by FP ⊆ W the event that “P is common belief”, the definition
translates into the following:

FP =
⋃
{bE(X) | X ⊆ bE(X) ∩ P }.

The next proposition restates this definition in a perhaps less interpretable,
but convenient way.

PROPOSITION 2. Define F ′P =
⋃{X′ | X′ ⊆ bE(X

′ ∩ P)}. If bE :
P(W)→ P(W) is quasi-monotonic, then

FP = F ′P .
Proof. Suppose there is w ∈ FP . There is X such that w ∈ bE(X)

and X ⊆ bE(X) ∩ P = bE(X) ∩ (bE(X) ∩ P). Because bE is quasi-
monotonic, bE(X) ⊆ bE(bE(X) ∩ P), so that bE(X) ⊆ F ′P and w ∈ F ′P .
This proves one of the two inclusions. For the other, take w′ ∈ X′, with
X′ ⊆ bE(X

′ ∩ P). The event X′ ∩ P satisfies the desired property that
X′ ∩ P ⊆ bE(X′ ∩ P) ∩ P , so that w′ ∈ FP . ✷
In view of Proposition 2, Proposition 1 entails that common belief of P ,
in the (LM) sense, is the greatest fixed point of the following mapping
indexed by P :

fP : P(W)→ P(W), X→ fP (X) = bE(X ∩ P).
Related notions of common belief or common knowledge have ap-

peared in the game-theoretic literature. In [22], Mertens and Zamir con-
struct a particular set of states of the world W from sequences of (prob-
abilistic) mutual beliefs of any order. They are concerned with common
knowledge specifically. Abstracting from probabilistic features, their de-
finition states that P is common knowledge at w ∈ W0, where W0 is a
finite subset of W , if P includes the smallest belief closed event X such



120 LUC LISMONT AND PHILIPPE MONGIN

that w ∈ X. We will restate this definition in relation to the whole set
W instead of restricting attention to finite subsets, and accordingly drop
reference to the smallest belief closed event, which may not exist. Hence:

(MZ) P is common knowledge at w ∈ W iff P includes a belief closed
event X such that w ∈ X.

Here is the resulting (MZ) definition for the event that “P is common
knowledge”:

GP =
⋃
{X ⊆ W | X ⊆ bE(X) ∩ P }.

This is again the greatest fixed point of a mapping indexed by P , i.e.:

gP : P(W)→ P(W), X→ gP (X) = bE(X) ∩ P.
In [23] Monderer and Samet propose still another definition of com-

mon belief (rather than common knowledge). Abstracting again from any
probabilistic features, their variant reads as:

(MS) P is common belief at w ∈ W iff there is a belief closed event X
such that w ∈ X, and P is believed at every w at which X takes
place.

Accordingly, the event that “P is common belief” is now:

HP =
⋃
{X ⊆ W | X ⊆ bE(X) ∩ bE(P )}

which makes this definition a greatest fixed-point once again. The relevant
mapping is:

hP : P(W)→ P(W), X→ hP (X) = bE(X) ∩ bE(P ).
Comparing the three definitions, we observe that in (MZ), the event P

actually occurs at every state where it is commonly believed, whereas the
other definitions just require P (in (MS)) or even a smaller event than P (in
(LM)) to be believed at every state where it is commonly believed. Given
the standard construal of knowledge as true belief, which we take here for
granted despite its obvious shortcomings, it becomes clear that (MZ) are
concerned with the (objective) notion of common knowledge, and (LM)
and (MS) with the (subjective) notion of common belief.

Except in [19], the three formalizations above were introduced for in-
dividual belief operators ba that were at least monotonic, a property in-
herited by the shared belief operator bE ≡ ⋂

a ba . From the epistemic
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point of view, monotonicity captures a form of logical omniscience: for
any two events X and Y , if X implies Y , the agents’ reasoning automat-
ically replicates this implication. In some Artificial Intelligence applica-
tions, monotonicity, as well as other forms of logical omniscience, may
be unproblematic – or so it is argued by computer scientists. However, in
relation to human reasoners, logical omniscience appears to be a question-
able assumption even for normative purposes. The standard modelling of
the agents’ reasoning both in epistemic logic and game theory is thus open
to a significant objection.

In epistemic logic, the prevailing semantic model is that of a Kripke
structure. It is equivalent to assuming monotonicity, plus the following,
hardly less exacting requirement on the agents’ part: first, they should be-
lieve any truth that can proved in the system, a property that logicians call
“necessitation”; second, if the agents believe in two events, they automat-
ically believe in their conjunction, a property labelled “conjunctiveness”.
Symbolically:

• ba(W) = W ,

• for all X, Y ⊆ W , ba(X) ∩ ba(Y ) = ba(X ∩ Y ),
and the same hold of bE as a matter of consequence. Game theory is in
an even worse predicament than standard epistemic logic. Its celebrated
model of information partitions turns out to be equivalent to the three prop-
erties that underlie a Kripke structure, plus further assumptions, mostly
imposed on the agents’ introspective abilities. The introspective axioms
have been famously criticized.3

The argument just sketched against logical omniscience has led the
present writers to investigate common belief in an epistemic context that
is not monotonic. Although more radical departures from logical omni-
science have been proposed elsewhere in epistemic logic (notably in
Rantala’s work [24], [25] on “non-normal worlds”), [19] appears to be the
only attempt made to analyze common belief under a truly weak assump-
tion imposed on individual belief. The only requirement on ba (and bE) is
precisely that which we singled out at the outset, i.e., quasi-monotonicity.
The next section takes up the project of this earlier paper by further clari-
fying the logic of quasi-monotonic constructions.

Before we proceed, we record some relevant properties of the formal
concepts of common belief or common knowledge. We note in passing
that when bE is quasi-monotonic, so are fP , gP and hP for any P ⊆ W .
The next proposition shows how the three concepts FP , GP , HP relate to
each other:
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PROPOSITION 3. If bE : P(W) → P(W) is quasi-monotonic, P ∈
P(W), then GP = FP ∩ P , and FP ⊆ HP . Further, there are W , P ∈
P(W) and a quasi-monotonic mapping bE such that GP ⊂ FP ⊂ HP .

Proof. (1) Take first w ∈ FP ∩ P . There is X ⊆ fP (X) = bE(X ∩ P)
such that w ∈ X. Thus w ∈ X ∩ P ⊆ bE(X ∩ P) ∩ P = gP (X ∩ P),
whence w ∈ GP . Now, take w ∈ GP . There is X ⊆ bE(X) ∩ P such that
w ∈ X. Since w ∈ bE(X), w ∈ FP (Proposition 2) so that w ∈ FP ∩ P .

(2) Let X ⊆ bE(X ∩P). Since X ∩ P ⊆ bE(X ∩ P)∩X and X ∩ P ⊆
bE(X ∩ P) ∩ P , quasi-monotonicity implies that bE(X ∩ P) ⊆ bE(X) ∩
bE(P ), which leads to the conclusion.

(3) Let:

• W = {0, 1, 2};
• bE(∅) = bE({0}) = bE({2}) = {0};
• bE({1}) = bE({0, 1}) = bE({0, 2}) = bE({1, 2}) = {0, 2};
• bE({0, 1, 2}) = {0, 1, 2}.

Then G{1} = ∅ ⊂ F{1} = {0} ⊂ H{1} = {0, 2}. ✷
The second group of facts concerns the monotonicity or otherwise of the
common belief concepts when FP , GP and HP are regarded as mappings
P(W)→ P(W).

PROPOSITION 4. For all P,P ′ ∈ P(W),

(1) If bE is quasi-monotonic, FP is monotonic, i.e.,

P ⊆ P ′ �⇒ FP ⊆ FP ′ .
(2) If bE is quasi-monotonic, GP is monotonic.
(3) If bE is quasi-monotonic, HP is quasi-monotonic, i.e.,

P ⊆ HP ∩ P ′ �⇒ HP ⊆ HP ′ .

Further, there are W and a quasi-monotonic mapping bE such that
HP is not monotonic, i.e., such that for some P ⊆ P ′, HP � HP ′ .

(4) If bE is monotonic, HP is monotonic, i.e.,

P ⊆ P ′ �⇒ HP ⊆ HP ′ .

Proof. (1) Let P ⊂ P ′ and X ⊆ bE(X ∩ P). Then X ∩ P ⊆ bE(X ∩
P) ∩X ∩ P ′. Quasi-monotonicity implies that bE(X ∩ P) ⊆ bE(X ∩ P ′),
which leads to the conclusion.

(2) This follows from the definitions of gP and gP ′ . (The assumption of
quasi-monotonicity is needed only to ensure the existence of the greatest
fixed-point.)
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(3) Let P ⊆ HP ∩ P ′ and w ∈ P . Since w ∈ HP , there is X ⊆
bE(X) ∩ bE(P ) with w ∈ X, so that w ∈ bE(P ). Hence P ⊆ bE(P )

∩ P ′.
Quasi-monotonicity entails that bE(P ) ⊆ bE(P

′), which leads to the con-
clusion.

Now, let:

• W = {0, 1, 2};
• bE(∅) = bE({1, 2}) = ∅;
• bE({1}) = bE({0, 2}) = {0, 2};
• bE({0}) = bE({2}) = {1};
• bE({0, 1}) = {2};
• bE({0, 1, 2}) = {0, 1, 2}.

Then H{1} = {0, 2} and H{1,2} = ∅.
(4) Monotonicity implies that bE(P ) ⊆ bE(P

′), which again leads to
the conclusion. ✷
Proposition 3 states that the closely related (LM) and (MS) concepts are
nonetheless distinct, an observation already made by Heifetz [10]. There
are more sets having the common belief property under the (LM) definition
than there are under the (MS) definition. Proposition 4 points towards a
conceptually relevant difference between the two concepts. That common
belief is monotonic has been taken for granted nearly unexceptionally, and
indeed appears to be an intuitively desirable property. Now, given what
has been said about logical omniscience, it is worthwhile to obtain this
property even when shared belief is not itself monotonic, but just quasi-
monotonic. The (LM) concept achieves this result, but the (MS) concept
does not.

When conjunctiveness is assumed on top of monotonicity, the (LM) and
(MS) concepts collapse into each other. In particular, the Kripke and a for-
tiori the partitional modelling will confound them. Even so, the two con-
cepts remain distinct from the (MZ) one. Introducing formally the “knowl-
edge property”:

• ba(X) ⊆ X,

we see that:

bE monotonic and bE satisfies the knowledge property �⇒ FP ⊆ GP

bE satisfies the knowledge property �⇒ HP ⊆ GP .

The inclusions can be shown to be strict in general.
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3. THREE AXIOM SYSTEMS FOR COMMON BELIEF

Our syntax makes it possible to state three axiomatic systems, correspond-
ing to the (LM), (MZ) and (MS) notions, respectively. The axioms and
rules will be provided for the three systems at one go. The formal lan-
guage is exactly as usual in epistemic modal logic. It is built upon the
following ingredients: a set of propositional variables p ∈ PV , which
are meant to represent the basic nonepistemic facts; the standard sym-
bols of propositional connectives, i.e., ¬ (to represent “not”), ∨ (“or”),
∧ (“and”), → (“implies”), ←→ (“is equivalent to”); and finally several
symbols of unary operators acting on formulae, with an intended epistemic
interpretation. These syntactic operators are: Ba (“a believes that. . . ”or “a
knows that. . . ”, depending on the axiomatic context), where a ranges on
the (finite) set of agents A; E (“everybody believes that. . . ” or “everybody
knows that. . . ”); and last but not least, C (“it is common belief that. . . ”
or “it is common knowledge that. . . ”). Actually, we will employ three
variant symbols for C, i.e., Cf , Cg , Ch, whose intended interpretation is
common belief, or common knowledge, in each of the (LM), (MZ) and
(MS) versions respectively. The formulae of the language are obtained by
concatenating the primitive symbols in the natural way; we skip the details.
The important fact is that a formula always involves a finite number of
symbols. This excludes infinite conjunctions or disjunctions, hence a direct
axiomatic definition of common belief in terms of an infinite conjunction
of shared belief formulas. Within the more standard framework of epis-
temic logic, the semantics of common belief may be either of the iterative
or fixed-point type, but the syntax is of necessity of the fixed-point type.4

The three systems will be denoted by QMCBf , QMCBg, QMCBh, with
QMCB serving as a generic label. Here is the part of the axiomatization
which is common to each of the three. It has to do with individual and
shared belief:

(PL) Any axiomatization of propositional logic

(REa)
φ ←→ ψ

Baφ ←→ Baψ
, a ∈ A

(Def.E) Eφ←→
∧

a∈A
Baφ

(RQME)
φ→ Eφ ∧ ψ
Eφ→ Eψ

As usual, the horizontal bar symbol is used to denote an inference rule,
to be carefully distinguished from an axiom or a theorem. The axiomatiza-
tion of propositional logic will typically contain the familiar rule of Modus
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Ponens as well as suitable propositional axioms. We concentrate on the
epistemic component of the systems. The rule (REa), or Rule of Equiva-
lence, says in words that if φ ←→ ψ holds as a theorem of the system, it
is possible to infer Baφ ←→ Baψ as another theorem of the system. Its
epistemic import is that each agent a has sufficient reasoning ability in or-
der to reproduce the logical equivalences that can be proved in the system.
(REa) claims the property only for logical equivalences, not for logical im-
plications. Herein lies the important difference between the present (called
“minimal” in Chellas’s text [6]) and the much stronger monotonic logics
such as the Kripke one. There is an ingredient of monotonicity in our sys-
tems, however. The rule (RQME) or Rule of Quasi-Monotonicity, says that
if φ → Eφ ∧ ψ holds as a theorem of the system, so does φ → Eψ . To
paraphrase it, if (it is a theorem that) ψ and everybody’s belief in ϕ hold
whenever ϕ does, then (it is a theorem that) everybody’s belief in ψ holds
whenever everybody’s belief in ϕ holds. Hence a subclass of the logical
implications provable in the system can be reproduced by the individuals’
reasoning. The authorized implications involve what amounts to a syntac-
tical rendering of belief closure. Roughly speaking, belief closed sentences
support monotonic reasoning on the agents’ part. Notice that our restric-
tion is stated directly in terms of the “everybody believes” operator E, not
the individual operators Ba. As to the axiom (Def.E) it defines E in terms
of the Ba in the obvious way.

Now to the specific part of each system. For QMCBf :

(PFf ) Cf ϕ→ E(Cfϕ ∧ ϕ)
(RIf )

χ → E(χ ∧ ϕ)
χ → Cf ϕ

For QMCBg:

(PFg) Cgϕ→ ECgϕ ∧ ϕ
(RIg)

χ → Eχ ∧ ϕ
χ → Cgϕ

For QMCBh:

(PFh) Chϕ→ EChϕ ∧ Eϕ
(RIh)

χ → Eχ ∧ Eϕ
χ → Chϕ

We define the � inference relation of a given system in the following
way, which is standard in modal logic generally. First, for any formula ϕ,
we say that � ϕ holds if ϕ can be obtained as the last element in a finite
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sequence of formulae of the following specified form: either they are in-
stances of axioms of the given system, or they are derived from previous
formulae in the sequence by applying one of the inference rules of the
system. Second, for any set � of formulae, and for any formula ϕ, � � ϕ
holds if there is a finite subset �0 ⊆ � such that � ∧�0 → ϕ can be
obtained, where ∧�0 is the conjunction of all formulae in �0, taken in any
order (this does not matter since (PL) is part of the systems). Notice once
again the finiteness restrictions which are typical of the syntax.

When � ϕ holds, we say in words that ϕ is a theorem of the system, and
when � � ϕ holds, that formula ϕ can be proved in the system from the
set of assumptions �.

It is easy to list epistemically relevant theorems for the systems just
introduced. We single out those expressing the fact that common belief
implies shared belief of any order. For QMCBf , we prove that � Cfϕ →
Eϕ in the following way:

� Cf ϕ→ E(Cfϕ ∧ ϕ) from (PFf )
� Cf ϕ ∧ ϕ→ E(Cf ϕ ∧ ϕ) ∧ ϕ
� E(Cf ϕ ∧ ϕ)→ Eϕ from (RQME).

And we inductively prove that for all k, � Cϕ→ Ekϕ from the following:

� Cf ϕ ∧ ϕ→ E(Cf ϕ ∧ ϕ) ∧ Ek−1ϕ

� E(Cf ϕ ∧ ϕ)→ Ekϕ from (RQME)

Proofs are similar in the cases of QMCBg and QMCBh.
The semantics of our systems hinges on set-theoretic mappings with

an epistemic interpretation, as in the previous section. Given a nonempty
set W , to be thought of as a set of states of the world, there will be individ-
ual belief mappings ba , a ∈ A, to serve as a counterpart for the syntactical
operators Ba , as well as derived mappings to serve as counterparts for the
syntactical E and C = Cf ,Cg, Ch. The previous section has paved the
way for the formal definitions to come. First, we define a quasi-monotonic
belief structure (or model) to be a tuple

m = 〈W, (ba)a∈A, v〉,
where W is a nonempty set, the ba are mappings P(W) → P(W) such
that the mapping bE defined by bE ≡ ⋂

a∈A ba is quasi-monotonic, and v
(called a valuation function) is a mapping PV → {0, 1}. In this def-
inition, the individual belief mappings ba are restricted only indirectly,
i.e., through the quasi-monotonicity constraint put on bE . Readers who
would rather assume that each ba is quasi-monotonic and that bE inherits
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this property are welcome to do so. The epistemic motivation for assum-
ing quasi-monotonicity, rather than monotonicity, was explained earlier in
connection with the semantic mappings.

Second, using the items in m, truth conditions for formulae ϕ are de-
fined inductively in a standard way. We say that ϕ is true in structure m at
state w, to be denoted by (m,w) |= ϕ, if:

• v(p) = 1 whenever ϕ = p ∈ PV ,
• (m,w) |= ψ and (m,w) |= ψ whenever ϕ = ψ ∧ χ , and the

appropriate clauses for the remaining connectives ¬,∨,→, and←→,
• w ∈ ba(‖ψ‖W) whenever ϕ = Baψ ,
• w ∈ F‖ψ‖W whenever w = Cfψ (or: w ∈ G‖ψ‖W whenever w =

Cgψ , or: w ∈ H‖ψ‖W whenever w = Chψ),

where the abbreviation ‖ψ‖W denotes the set {w′ ∈ W | (m,w′) |= ψ}.
Third, we say that ϕ is true in structure m, to be denoted by m |= ϕ,

if (m,w) |= ϕ holds for all w ∈ W . Let us denote by QM the generic
notion of a class of quasi-monotonic structures. It will mean either QMf ,
or QMg , or QMh, since each semantic clause for common belief generates
a class of quasi-monotonic belief structures. We say that ϕ is true in QM,
a property denoted by

QM |= ϕ (or when the context is clear: |= ϕ)
if m |= ϕ holds for all m ∈ QM. We say that is ϕ a semantic consequence
of �, to be denoted by

� |= ϕ,
if for all m = 〈W, (ba)a∈A, v〉 ∈ QM and all w ∈ W , (m,w) |= ϕ

whenever (m,w) � � (i.e., whenever (m,w) |= ψ for all ψ ∈ �). This
completes the definitions of the semantics.

4. SOUNDNESS AND COMPLETENESS THEOREMS

The previous sections have provided separate definitions of the syntax
and semantics of belief (knowledge) and common belief (common knowl-
edge). In this section we will reconcile the two viewpoints in terms of a
two-way theorem. In one direction, the soundness part, the theorem states
that every formula that can be proved in the system from some set of
assumptions can also be obtained as a semantic consequence from that
set. Formally, for all formulae ϕ, and all sets of formulae �,

� � ϕ �⇒ � |= ϕ.
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The other direction, or strong completeness part, states that every formula
that can be obtained as a semantic consequence from some set of formulae
can also be proved from this set, i.e., for all formulae ϕ, and all sets of
formulae �,

� |= ϕ �⇒ � � ϕ.
In actual fact, there will be three theorems, since each syntactical system
QMCBf , QMCBg,and QMCBh is mapped into a distinct class of semantic
structures, QMf , QMg, and QMh, respectively. We have grouped the
results because the proofs can be carried simultaneously.

THEOREM 1. QMCBf , QMCBg ,and QMCBh are sound and strongly
complete axiom systems for the classes QMf , QMg , and QMh, respec-
tively.

Proof (For the soundness part). In order to establish soundness, it is
sufficient to check that the axioms are true, and the rules validly apply, in
QM. A proof of soundness for QMCBf and QMf can be found in Lis-
mont and Mongin ([19]). As a variant, we give here the proof for QMCBh
and QMh. The proof for the remaining case follows a similar pattern.

The proof is an immediate application of the chosen definition of com-
mon belief. As to (FPh), we have to show that ‖Chϕ‖W ⊆ ‖EChϕ∧Eϕ‖W
for all W ∈ QMh. We fix W in the ensuing argument, so we may drop
the subscript in ‖ · ‖W . Take w ∈ ‖Chϕ‖ = H‖ϕ‖. There is X ⊆ bE(X) ∩
bE(‖ϕ)‖) = bE(X)∩‖Eϕ‖ such that (i):w ∈ X. ThenX ⊆ bE(X)∩H‖ϕ‖.
Quasi-monotonicity entails that (ii): X ⊆ bE(X) ⊆ bE(H‖ϕ‖) = ‖EChϕ‖.
The conclusion follows from (i) and (ii).

Concerning (RIh), we have to check that:

if for all W ∈ QMh, ‖χ‖W ⊆ ‖Eχ ∧ Eϕ‖W,
then for all W ∈ QMh, ‖χ‖W ⊆ ‖Chϕ‖W.

If the assumption holds, then for any given W , ‖χ‖W ⊆ ‖Eχ ∧ Eϕ‖W =
bE(‖χ‖W) ∩ bE(‖ϕ‖W) = h‖ϕ‖W (‖χ‖W). Then, for this W , ‖χ‖W ⊆
H‖ϕ‖W = ‖Chϕ‖W . The argument holds regardless of the chosen W , which
means that the conclusion holds. ✷

Proof (For the strong completeness part). Following a well-known
proof technique, we construct a so-called canonical model for each of the
three systems. A canonical model is but a quasi-monotonic belief structure
m = 〈W, (ba)a∈A, v〉, where each of the symbols is filled in a partic-
ular way using as data the axioms and rules of the given system. The
construction of m will be done stepwise.
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First, we take W to be the set of maximal consistent sets  of formulae
of the given system, a set henceforth denoted by MC. We will use the
standard notation |ϕ| to refer to { ∈ MC | ϕ ∈  }, i.e., the set of maximal
consistent sets that contain the formula ϕ.5

Second, the individual belief mappings ba : P(MC) → P(MC) are
defined as follows:

ba(X) = |Baϕ| if X = |ϕ|,
ba(X) =

⋃
{|Eϕ| | |ϕ| ⊆ |Eϕ| ∩X} otherwise.

The first part of this definition is coherent because of (REa). To see that,
suppose that |ϕ| = |ϕ′|, then from a property of maximal consistent sets of
formulas, we have that � ϕ ←→ ϕ′, and from (REa), � Baϕ ←→ Baϕ

′,
or |Baϕ| = |Baϕ′|, so that ba(X) is the same whether ϕ or ϕ′ is chosen
to define it. Repeatedly in this proof, we will have to rely on a similar
argument based on (REa), but we will not spell it out anymore.

Third, we define bE : P(MC) → P(MC) by putting bE(X) =⋂
a ba(X) as required by the definition of m ∈ QM. It remains to check

that this definition also satisfies the main restriction, i.e., that bE is quasi-
monotonic. From (Def.E), it is easily seen that:

bE(X) = |Eϕ| if X = |ϕ|,
bE(X) =

⋃
{|Eϕ| | |ϕ| ⊆ |Eϕ| ∩X} otherwise.

We show that these set-theoretic equations ensure quasi-monotonicity by
using a lemma on quasi-monotonic mappings (the proof is given after-
wards):

LEMMA 1. For any nonempty set W , suppose that B(W) ⊆ P(W), and
f : B(W) → B(W) is quasi-monotonic. Then, the following mapping,
which extends f to the whole of P(W):

f ∗(P ) = f (P ) if P ∈ B(W),

f ∗(P ) =
⋃
{f (P ′) | P ′ ∈ B(W) and P ′ ⊆ f (P ′) ∩ P } otherwise,

is quasi-monotonic.

In view of Lemma 1, we just have to check that bE is quasi-monotonic on
the subset

B(W) = {|ϕ| | ϕ is a formula}.
That is to say, we have to check that for all ϕ and ψ , if |ϕ| ⊆ bE(|ϕ|) ∩
|ψ |, then bE(|ϕ|) ⊆ bE(|ψ |). This follows from (RQME) and relevant
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properties of maximal consistent sets. The proof that the chosen canonical
model m belongs to QM is now complete.

We move on to proving that for all ϕ:

|ϕ| = ‖ϕ‖.

(We are now dropping the subscript in ‖ · ‖MC because there is no am-
biguity.) The proof goes by induction on the complexity of ϕ. The cases
involving propositional connectives, like ϕ = ϕ1 ∧ ϕ2, are immediate. If
ϕ = Baψ , the desired equation follows from the definition of ba and the
inductive hypothesis:

‖Baψ‖ = ba(‖ψ‖) = ba(|ψ |) = |Baψ |,

and similarly for ϕ = Eψ . The case ϕ = Cψ , with C = Cf ,Cg, Ch is the
object of the remainder of the proof, except for the very last paragraph.

Our aim is to reach the equation ‖Cψ‖ = |Cψ |. We make two prepara-
tory steps:

(i) |Cψ | =⋃{|χ | | |χ | ⊆ f (|χ |)}
(ii)

⋃{|χ | | |χ | ⊆ f (|χ |)} =⋃{X ⊆ MC | X ⊆ f (X)},

where f serves as a generic symbol for three distinct mappings P(MC)→
P(MC):

• f|ψ | = bE(X ∩ |ψ |)
• g|ψ | = bE(X) ∩ |ψ |
• h|ψ | = bE(X) ∩ bE(|ψ |).

(These mappings were introduced in the first section to analyze the three
concepts of common belief.)

We prove that (i) holds in the case of QMCBf . The inclusion from left
to right is based on (FPf ). Suppose that  ∈ |Cψ |, or Cψ ∈  . Then,
E(Cψ ∧ ψ) ∈  . Putting χ = Cψ , we see that  ∈ |χ | with |χ | ⊆
|E(χ ∧ ψ)| = bE(|χ | ∩ ψ) = f|ψ |(|χ |), as required. The inclusion from
right to left is based on (RIf ). Take χ such that  ∈ |χ | ⊆ |E(χ ∧ ψ)|.
Then, � χ → E(χ ∧ ψ), and � χ → Cψ follows, which is |χ | ⊆ |Cψ |.
So  ∈ |Cψ |. The argument for the other systems is similar: one direction
depends on the appropriate version of (FP), the other on the appropriate
version of (RI).

As to (ii), it will follow from another lemma on quasi-monotonic map-
pings (also proved below):
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LEMMA 2. For any nonempty set W , assume that B(W) ⊆ P(W), f0

and f are two mappings B(W)→ B(W), f is quasi-monotonic, and for
all X ∈ B(W),

X ⊆ f0(X) �⇒ X ⊆ f (X).
Take any mapping f ∗ which coincides with f on B(W), and otherwise
satisfies either of these two clauses:

(a) f ∗(X) = f (X′) for some X′ ∈ B(W) s.t. X′ ⊆ X;
(b) f ∗(X) =

⋃
{f (X′) | X′ ∈ B(W),X′ ⊆ f (X′) ∩X}.

Then:
⋃
{X ∈ P(W) | X⊆f ∗(X)} =

⋃
{X ∈ B(W) | X⊆ f (X)}.

We obtain (ii) by putting W = MC, B(W) = B(MC), and showing that
the assumptions of the lemma are met in the case of each system QMCB.
Here is a detailed argument for QMCBf . We have to check that f|ψ | can be
viewed as the mapping f ∗ of the lemma, with:

f (|χ |) = f|ψ |(|χ |) = bE(|χ | ∩ |ψ |),
f0(|χ |) = bE(|χ |) ∩ |ψ |.

Clearly, the definitions for f0 and f satisfy the condition in the lemma that
for all X ∈ B(MC),

X ⊆ f0(X) �⇒ X ⊆ f (X).
Now, to see that f|ψ | is as requested, suppose thatX /∈ B(W). IfX∩|ψ | =
|χ |, f|ψ |(X) = bE(|χ |) = f (|χ |), and clause (a) of the lemma is satisfied.
Otherwise, from the definition of bE :

f|χ |(X) = bE(X ∩ |ψ |) =
⋃
{|Eχ | | |χ | ⊆ |Eχ | ∩X ∩ |ψ |}.

Each of the χ in the union is such that |χ | = |χ | ∩ |ψ |. Hence,

f|χ |(X) =
⋃
{bE(|χ | ∩ |ψ |) | |χ | ⊆ bE(|χ |) ∩ |ψ | ∩X}

=
⋃
{f (|χ |) | |χ | ⊆ f0(|χ |) ∩X}

which means that clause (b) is satisfied.
The other systems are handled similarly by means of Lemma 2. The

mapping for QMCBg, i.e., g|ψ |(X), is of the prescribed form f ∗ with the
following definitions for f and f0:

f (|χ |) = g|ψ |(|χ |) = bE(|χ |) ∩ |ψ |);
f0(|χ |) = bE(|χ |).
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So is the mapping for QMCBg , i.e., h|ψ |(X), with:

f (|χ |) = h|ψ |(|χ |) = bE(|χ |) ∩ bE|ψ |),
f0(|χ |) = bE(|χ |).

This completes the proof of step (ii).
Once the two preparatory steps (i) and (ii) are secured, the proof that

‖Cψ‖ = |Cψ | derives at once:

‖Cψ‖ =
⋃
{X ⊆ MC | X ⊆ bE(X ∩ ‖ψ‖)}

=
⋃
{X ⊆ MC | X ⊆ bE(X ∩ |ψ |)}
from the inductive hypothesis

=
⋃
{X ⊆ MC | X ⊆ f|ψ |(X)}

=
⋃
{|χ | | |χ | ⊆ f|ψ |(|χ |)} from (ii)

= |Cfψ | from (i).

The end of the proof follows a familiar pattern in modal epistemic logic.
Suppose that it is not the case that � � ϕ. Then, � ∪ {¬ϕ} is consistent,
hence � ∪ {¬ϕ} ⊆  for some maximal consistent set  . In the canon-
ical model m, the equation |ϕ′| = ‖ϕ′‖ holds for all formulae ϕ′; hence
(m, ) |= ϕ′ for all ϕ′ ∈ � ∪ {¬ϕ}. We conclude that it is not the case that
� |= ϕ. ✷

Proof of Lemma 1. We must show that for all X, Y ⊆ W ,

X ⊆ f ∗(X) ∩ Y �⇒ f ∗(X) ⊆ f ∗(Y ).
The cases where X, Y ∈ B(W) and X, Y /∈ B(W) directly follow from
the assumptions. If X ∈ B(W), Y /∈ B(W), the antecedent becomes X ⊆
f (X) ∩ Y , whence f (X) = f ∗(X) ⊆ f ∗(Y ). For the case where X /∈
B(W) and Y ∈ B(W), take w ∈ f ∗(X), i.e., w ∈ f (X′) with X′ ⊆
f (X′)∩X ⊆ f (X′)∩Y . The quasi-monotonicity of f entails that f (X′) ⊆
f (Y ) = f ∗(Y ), so we have shown that w ∈ f ∗(Y ). ✷

Proof of Lemma 2. Put

F ∗ =
⋃
{X ∈ P(W)) | X ⊆ f ∗(X)} and

F =
⋃
{X ∈ B(W) | X ⊆ f (X)}.

The inclusion F ⊆ F ∗ is trivial. For the converse inclusion, take w ∈ F ∗.
There is X ∈ P(W) such that X ⊆ f ∗(X). Then:
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• If X ∈ B(W), then f ∗(X) = f (X), and the conclusion that w ∈ F
follows immediately.

• If f ∗(X) = f (X′) for some X′ ∈ B(W) such that X′ ⊆ X, then
the reflective-monotonic property of f entails that f (X′) ⊆ F . As
w ∈ X ⊆ f ∗(X) = f (X′), the conclusion follows again.

• If f ∗(X) = ⋃{f (X′) | X′ ∈ B(W),X′ ⊆ f0(X
′) ∩ X}, there is

X′ ∈ B(W) such that X′ ⊆ f0(X
′) and w ∈ f (X′). By assumption

on f and f0, X′ ⊆ f (X′). So f (X′) ⊆ f (f (X′)), f (X′) ⊆ F , and
the conclusion follows again. ✷

COROLLARY 1. The rule

ϕ→ ψ

Cϕ→ Cψ

can be derived in QMCBf and QMCBg but not QMCBh. The rule

ϕ→ Cϕ ∧ ψ
Cϕ→ Cψ

can be derived in QMCBh. The rule

ϕ

Cϕ

cannot be derived in any system.
Proof. The fact that the stated rules can be derived follows immediately

from soundness and completeness.
To prove that the rule

ϕ→ ψ

Cϕ→ Cψ

cannot be derived in QMCBh, take p, p′ ∈ PV and m a model where:

• W and bE are the same as in point (3) of Proposition 4;
• the valuation is such that ‖p‖m = {1} and ‖p′‖m = {1, 2}.

As p → p ∨ p′ is a theorem of QMCBh, if the rule were true, Cp →
C(p ∨ p′) should also be a theorem. By soundness it should be true in
any world of any structure of the appropriate class. But this is not the case
in m, as the following shows: ‖Cp‖m = {0, 2} since H{1} = {0, 2}, but
‖C(p ∨ p′)‖ = ∅ since ‖p ∨ p′‖m = {1, 2} and H{1,2} = ∅.

To prove that the rule

ϕ

Cϕ
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cannot be derived it is sufficient to exhibit a model in which FW (resp. GW ,
HW ) is not W . Let m satisfy W = {0} and bE(∅) = bE(W) = ∅. Then
FW = GW = HW = ∅ �= W . ✷

5. TECHNICAL COMMENTS AND COMPARISONS

The theorem of this paper contributes two things. For one, it extends the
earlier theorem of Lismont and Mongin in [19] for quasi-monotonic logics
to two notions of common belief that the authors did not consider at the
time, i.e., those of Mertens and Zamir in [22] and Monderer and Samet
in [23], respectively. It is interesting to find out that these alternative con-
cepts are amenable to a satisfactory logical treatment under the very weak
epistemic assumption of quasi-monotonicity.6 This result agrees with the
authors’ position that common belief is not as demanding a notion as it
first seems – or at least as it first seemed from the classic work, like Au-
mann’s [1], that introduced it. Briefly put, it makes good sense to speak of
common belief taking place between human agents who are very imperfect
logicians, as in the present framework. This observation will perhaps not
be wasted to game theorists since it heuristically leads to the following
practical recommendation: weaken the agents’ cognitive abilities, but re-
tain the standard assumption that the rules of the game are common belief
among the players.

Second, and more importantly from the logical viewpoint, this paper
has proved what appears to be the first strong completeness theorem of the
common belief and common knowledge logics. Using the notation of the
previous section, the previously available theorems have stated that:

|= φ ⇐⇒ � φ,
which corresponds to the particular case of our result � = ∅. As modal
logicians are well aware, the difference is irrelevant as far as soundness
goes, but there is a major difference as far as completeness goes.

We briefly point out where in the proof we departed from the argu-
ment usually made. The previous axiomatizations of common belief used
a filtration technique of proof which can only deliver completeness sim-
pliciter. Essentially, the language is relativized to the particular formula ϕ
for which the implication |= φ �⇒ � φ should be proved. This makes
it possible to consider only a finite number of maximal consistent sets of
sentences, a crucial step to take the reasoning to its successful end. Here,
the device of filtration was made unnecessary by the use of Lemmas 1
and 2.
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Strongly complete systems enjoy the desirable property of compact-
ness, i.e.:

if in a set of formulae �, each finite subset �0 ⊆ � is satisfiable,

then � is satisfiable.

“Satisfiable” is defined here as “true in some world w of some struc-
ture”. The Kripke logics of common belief are not compact. The standard
argument to establish this negative result involves taking

� = {¬Cϕ} ∪ {Eϕ,E2ϕ, . . . , Ekϕ, . . .},
where Ekϕ means E . . . Eϕ with k repetitions of E. Each finite subset
�0 ⊂ � is such that �0 ⊆ {¬Cϕ,Eϕ, . . . , Ekϕ} for some k. Using the
semantic definitions for Kripke logics, �0 can be shown to be satisfiable,
whereas � cannot be so. The counterexample is powerful. It does not trade
merely on the semantic definition of common belief in Kripke structures,
i.e.:

(K) (m,w) |= Cϕ iff (m,w) |= Ekϕ for all integers k

but on the proven fact that alternative semantic definitions in terms of
fixed-points automatically collapse to clause (K). However, the counterex-
ample does not apply to weaker common belief systems than the Kripke
one. It has again been proven that for weaker logics such as the monotonic
one, the equivalence between (K) and the fixed-point definitions of com-
mon belief does not hold anymore.7 In other words, the counterexample
does not work for these logics, given the fixed-point definition of common
belief.

Of course, the failure of the standard counterexample in the non-
Kripkean case does not amount to a proof. It just delivers a heuristic hint
that weaker systems may be compact after all. The present article has ex-
hibited a family of such systems that are compact, i.e., the quasi-monotonic
systems QMCBf , QMCBg and QMCBh. We do not yet know whether the
good news holds good of the monotonic axiomatizations. It seems as if
the technique of proof used in this paper cannot be transferred straightfor-
wardly to the case where (RQME) is replaced by the standard monotonicity
rule:

ϕ→ ψ

Eϕ→ Eψ
.

Systems of this sort raise an interesting open question for modal epistemic
logic.
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NOTES

1 Some early examples of these applications are Bacharach’s [3], Milgrom and Roberts’s
[21] and Monderer and Samet’s [23].

2 The distinction between the iterative and the fixed-point approaches was introduced
by Barwise in [4]. It is further explored along Barwise’s lines by Lismont in [17] and, from
a different point of view, by Heifetz in [12].

3 Game theorists and mathematical economists are growing increasingly aware of the
rich potential of nonpartitional models, which in essence preserve the properties of a
Kripke structure, but avoid the introspective assumptions. See the discussions by Dekel
and Gul in [7] and Battigalli and Bonanno in [5].

4 The approach of standard epistemic logic should be contrasted with that of infinitary
logic, which allows for disjunctions or conjunctions of countably many formulae. Kaneko
and Nagashima ([15]) and Heifetz ([11]) axiomatize the iterative notion of common knowl-
edge within infinitary modal logics. Kaneko ([14]) and Heifetz ([12]) compare the common
knowledge concept defined in this way with the finitary concept of standard epistemic
logic.

5 The existence and standard properties of maximal consistent sets of formulae will
be taken for granted here; see modal logic texts such as Chellas’s ([6]) or Hughes and
Cresswell’s ([13]).

6 Compare with Heifetz’s work in [10]. His paper contains a monotonic axiomatization
of common belief in the MS sense, and a comparison with the monotonic axiomatization
in the LM sense.

7 The equivalences and non-equivalences of this paragraph were discussed by Halpern
and Moses in the Appendix to [9], and by Lismont and Mongin in [19]. They are further
clarified by Heifetz in [12].
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